
Chapter 3: Analytical environments
Roger Bivand

This is a draft chapter/article. The final version is available in Handbook of Spatial Analysis in the Social
Sciences edited by  Sergio J. Rey and Rachel Franklin, published in 2022, Edward Elgar Publishing Ltd, 
https://doi.org/10.4337/9781789903942.00010.

The material cannot be used for any other purpose without further permission of the publisher, and is for 
private use only.

Source materials are available from https://github.com/rsbivand/sass22.



Analytical Environments

Roger Bivand

Abstract

Analytical environments are layered abstractions, and may be understood differently both by 
those belonging or not belonging to them, and by varieties of communities taken as belonging to
a given analytical environment. It is helpful to see the role of evolving communities and often 
symbiotic relationships between participants as a lens that will help us grasp the “life” of 
analytical environments. This life is also implicit in the experiences of participants, be they 
users, developers, recipients of research output, students, or providers of key underlying 
software libraries.

In this chapter, a partly autobiographical approach has been adopted in order to position this 
reading of how analytical environments may be understood as outcomes of willed actions. 
These willed actions, to provide software among other things for teaching and research, do not 
limit themselves to achieving pre-defined goals. In the cases used, Python and R, the reach and 
influence of the language platforms has evolved greatly over the twenty years work has been 
progressing. In addition, the communities of users and developers have matured and grown, 
although the pressing need for bringing in younger and more diverse contributors is recognised.

We also know too little about the impact of these analytical environments, as citation practice 
with regard to software tools such as Python or R packages has not been encouraging in the 
social sciences. Going forward, and as part of the movement towards reproducible research, it 
would be interesting to encourage journal editors to require article authors to document their 
work by citing the software used. Unfortunately, as of now it is not possible to give a systematic 
overview of who uses which analytical environment for what, so this chapter will follow the 
chosen partly autobiographical approach, rendering the claims advanced largely subjective.

Introduction

In conducting applied research, social scientists use a range of toolboxes containing methods. 
The methods and their allocation to toolboxes evolve over time, building on contributions from 
social science disciplines and from disciplines beyond the social sciences. An analytical 
environment in such a setting is associated with one or more toolboxes and may relate to one or 
more sub-discipline or disciplines. Use of toolboxes may engender collaboration or 
communication between users and developers of methods, with overlaps between the roles of 
applied researchers viewing themselves as just users, users expressing needs to developers, and 
developers focussed chiefly on innovation in methods, among others.

One could also view an analytical environment as a layered community, in which users and 
developers interact. Interaction may be asymmetrical, with developers (or software vendors) 
conditioning the choices proposed to users. In scientific research, these choices may be further 
ordered by reviewers of work for publication, and by thesis committees. It is not at all 
impossible for domain communities to adopt differing specifications of the conceptualizations 



they are using, leading to the choice of different analytical environments, based on the relative 
distances between nodes in research communities.

This chapter will consider the background to selected analytical environments for spatial 
analysis in the social sciences, choosing to use the R and Python languages as examples. 
Attention will be concentrated on empirical quantitative analysis rather than, for example, 
deterministic and simulation-based modelling, or qualitative methods. The ability to map data 
and the results of fitting models to data will be used to draw together similar kinds of analytical 
environments. Stress will be placed on the roles played by the shared open source infrastructure
underpinnings in the R and Python communities. This extends to the ways in which 
communities associated with these analytical environments view the mutual relationships 
between software components.

Antecedents

Duncan et al. (1961) discussed in some detail the challenges facing social scientists analyzing 
areal data. The increasing use of areal data by social scientists from the 1950s, such as census 
and population data, raised numerous questions. These included some topics that are still 
central, and others which are now more neglected. They also highlighted issues arising in the 
development of appropriate methods of analysis for areal data, but apologize for their concern 
with methodology. They acknowledged that most scholars occupy themselves with substantive 
research questions, conceptual and applied, but few develop and implement appropriate 
methods. In this context, they pointed to the potential benefits of learning from other 
disciplines with disparate subject matter. The dust jacket of the book starts with the depressing 
assertion:

“Specialists adopting techniques derived for the solution of other sorts of problems 
than those specifically concerning them share an unhappy lot. Such are those faced 
with the analysis of the quantitative data of the social sciences having areal 
significance.”

While spatial data encompass more than areal data, such as aggregate census counts within 
arbitrarily given boundaries, it remains important to develop appropriate methods, and to 
propose and describe how they should be used in research practice. In the 1950s, some 
tabulation could be done by machine, but most calculation in the social sciences was done 
manually. During the 1960s, psychometricians and some social scientists, as well as their 
statistician colleagues and co-authors, began to be able to access computers, but most methods 
needed to be implemented as software using available languages such as Fortran and Algol 
using batch processing, or BASIC, which provided a degree of interactivity when using a teletype
terminal.

Once SAS (1972) and SPSS (1968) became available for batch processing on mainframe 
computers, many university quantitative social scientists were relieved of the burden of 
building software from scratch, and analytical environments developed around the proprietary 
systems available. If the required method was not available, researchers still needed to be able 
to compile from source, but as compilers were always provided with mainframe computers, this
was only an additional step, provided source code was available. Note that it was not 
uncommon at this time for authors to offer access to listings of source code in papers and books 
(Roger S. Bivand, 2009; Cliff & Ord, 1969).



The entry of minicomputers and microcomputers during the 1970s presented challenges to the 
batch processing mainframe model of computing in the social sciences. It took time for licensing
and software publication business models to catch up with new hardware opportunities. 
However, libraries of Fortran subroutines for linear algebra (LINPACK, EISPACK) were released 
to the public domain, initially on magnetic tape, later from FTP archives. Researchers still 
needed to compile from source, linking to these libraries. A profusion of development 
environments arose, like MATLAB, which was written to give interactive access to linear algebra
functionalities (MATrix LABoratory).

The birth of spreadsheets on the earliest microcomputers before the IBM PC offered an 
important and direct way for social scientists to handle tabular data. Its importance lay in the 
immediacy of interaction between the analyst and the data, subsequently mirrored in graphical 
interface design for many statistical software systems. This perception of the user interface has 
now been influential for almost forty years despite its weaknesses. A major weakness is that, 
unless backed by a transactional database or other system, there is no record of changes made 
to data or instructions using the GUI. Consequently, and unlike the batch processing of the 
previous two decades, it can be very difficult to reconstruct steps taken in the course of analysis.

In the decades between 1990 and 2010 with the widespread use of personal computers and 
licensed commercial software, a division of labour was strengthened separating developers and 
users. In the case of economics and econometrics, Renfro (2009) writes:

One of the consequences of this specialization has been to introduce an element of 
user dependence, now grown to a sufficiently great degree that for many economists 
whichever set of econometric operations can be performed by their choice of program 
or programs has for them in effect become the universal set (p. 24).

This situation arose over time, and certainly did not characterise the research context when 
quantitative social science came into being. At that time, graduate students simply regarded 
learning to program, often in Fortran, as an essential part of their preparation as researchers. 
This meant that researchers were much “closer” to their tools, and could adapt them to suit 
their research needs.

Until recently, fewer appear to have felt confident as programmers despite the fact that modern 
high-level languages such as Matlab, Python, or R are easy to learn and very flexible, and many 
statistical software applications offer scripting languages (such as SAS, Stata, SPSS). In addition, 
Python and R can be used without licence costs, and installed cross-platform. Happily, this is 
changing, including collaboration between R and Python communities (Turner, 2020) to 
increase diversity and to ensure that all are welcome in rapidly evolving communities.

In this article, a number of pictures will be drawn, hoping to indicate in a non-prescriptive 
manner the motivations behind and the functioning of the chosen environments for handling 
and analysing spatial data. First we will consider the handling of spatial data as a prerequisite 
for analysis, before progressing to environments for analysing spatial data.

Environments for handling spatial data

Bending towards the consideration of autobiography in Holt-Jensen (2019), I have chosen to 
discuss environments that have informed and shaped my own work (see also Johnston, 2019; 



Meeteren, 2019). I learned to program as a PhD student at the London School of Economics in 
the early 1970s, because I needed to handle and analyse data for my thesis in ways that were not
otherwise possible using software available at the University of London Computing Centre.

London, early 1970s

Few social science departments had facilities for technical drawing when books and articles 
were prepared using typewriters. Human geographers often did have access to map libraries, 
from which the bases for thematic cartography could be borrowed for tracing. Many articles 
and books were richly furnished with figures constructed by hand, sometimes by researchers 
themselves, but often by skilled technical staff working from sketches provided by researchers. 
While tabular computations could be conducted and line-printer output could be entered into 
typewritten manuscripts, figures were a much greater problem.

Figure 1 (left panel) shows a typical example of a hand-drafted map showing county 
boundaries, county letter codes and contiguous neighbour counts used extensively in Cliff & Ord
(1973) for testing for spatial autocorrelation. When the figure was prepared, very few 
researchers irrespective of discipline had access to hardware permitting the input of boundary 
positions as data, or to hardware for outputting hard copy maps.

I was fortunate to participate in the doctoral programme at the Department of Geography, 
London School of Economics 1972-1975. We had access to a Wang minicomputer (probably a 
2200 model with CRT, using Basic for programming), connected to a large digitizer. This let 
those of us willing to use considerable time to construct boundaries by recording chosen 
boundary points. The points were then listed in line sets, and line sets as closed polygon 
boundary sets; other examples of work using a Wang minicomputer with a digitizer may be 
found (Jeremíasson, 1976).

Figure 1. Left panel: Counties of the Irish Republic, (Cliff and Ord, 1973, page 54; Right panel: 
Population density in London, 1971, (Shepherd et al., 1974, page 15.)



Figure 1 (right panel) is typical of the output of choropleth maps with boundary input digitized 
using the Wang minicomputer (Shepherd et al., 1974). Margaret Jeffery and Hazel O’Hare wrote 
software called “Chormap” to utilize the digital polygon boundaries with matching census data, 
to be run in batches on the University of London Computing Centre CDC7600, and output on a 
CalComp 1670 microfilm recorder on 35mm monochrome film. The association of input and 
output hardware, together with uniquely skilled technical assistance made it possible for the 
very few researchers with access to these resources to plot publishable choropleth maps much 
more efficiently than hand drafting had permitted. These polygon boundaries also permitted 
the extraction of lists of neighbouring Norwegian census tracts, used in my thesis to calculate 
Moran’s I  statistics using self-written software (Roger S. Bivand, 1975).

This analytical environment was people-based, a community of graduate students, technical 
staff and junior lecturers, who needed to create choropleth maps from census data, and carry 
out aspatial analyses, for example using SPSS. Any non-standard analyses meant creating 
software oneself in Basic or Fortran; some shared code was available, and advice from 
colleagues very helpful.

Geographical information systems and handling spatial data

The subsequent emergence of geographical information systems (GIS) software, and of the 
adoption of standards for file formats for transferring spatial data, made it easier for social 
scientists to work where no digitizers were available. The US Census introduced the 
Topologically Integrated Geographic Encoding and Referencing (TIGER) format (Marx, 1986), 
and others adopted other ad-hoc standards. The earlier GIS ran only on larger, multi-user 
computer systems with command line interfaces. During the 1990s, ESRI introduced ArcView, 
and MapInfo Corporation MapInfo; these were programs with graphical user interfaces for 
personal computers. They used the ESRI Shapefile and Mapinfo TAB file formats respectively, 
and both formats used multiple files for a single data collection, and dBase DBF files to hold 
attribute data.

Typically, digitizer output was specified in planar units, often in the native units of the digitizer 
itself, or in decimal inches or millimetres. At this stage, coordinate reference systems (CRS) 
were not seen as essential. This treatment of CRS as unimportant extended to the specification 
of the ESRI Shapefile (ESRI, 1998), which was only subsequently optionally supplemented with a
*.prj file containing an ESRI-specific Well Known Text representation.

University geography departments were offered academic licenses for teaching and research; 
use of GIS was tied to PC labs, and often to dedicated staff who could keep the software 
operating. Certainly, in the 1990s and 2000s the dominant analytical environment was GIS-
based, but while take-up in the environmental sciences was strong, this was seldom the case in 
the social sciences.

The adoption of GIS in human geography among the social sciences led to accusations that GIS 
was positivist in its essence and expression (Schuurman, 2000). Consequently, while other 
empirical and quantitative social sciences found that the ability to handle spatial data in the 
new common file formats enhanced the range of tasks they could accomplish, human 
geographers were challenged. The “science wars” begun thirty years ago continue (Thatcher et 
al., 2016), at least in human geography. This has meant that few human geographers receive any



training in handling spatial data as graduate students or earlier, leaving them disadvantaged 
when the tools might prove useful.

Moving beyond GIS

It is not however the case that being able to handle spatial data, especially aggregate data, has 
passed by without application in the social sciences, despite the “science wars.” One example is 
the use of R as an environment for handling and visualizing data, some of which is spatial 
(Cheshire & Uberti, 2014). One of the authors related in a blog 
(https://jcheshire.com/visualisation/r-visualisations-design/) that:

The majority of graphics we produced for London: The Information Capital required R
code in some shape or form. This was used to do anything from simplifying millions of
GPS tracks, to creating bubble charts or simply drawing a load of straight lines. We 
had to produce a graphic every three days to hit the publication deadline, so without 
the efficiencies of copying and pasting old R code, or the flexibility to do almost any 
kind of plot, the book would not have been possible.

Another pair of examples are two atlases mostly using cartograms to visualize many aggregate 
variables avoiding the excessive figure area occupied by large sparsely populated areal units 
(Ballas et al., 2014, 2017). In these cases, the authors do not state which software environment 
has been used for handling the spatial data beyond the method (Gastner & Newman, 2004), but 
they provide guidance in an earlier article (Dorling & Ballas, 2011).

These examples demonstrate very active use of spatial data in the social sciences, using scripts 
and other software components, but not as such directed towards the fostering of analytical 
environments. They do, however, show that GIS had become too limiting for the creative needs 
of these projects, leading to movement beyond expecting software to be provided ready-for-use 
by GIS vendors.

Contemporary scripting environments for handling spatial data

Scripting is not just interactive computing, entering successive commands at a command 
prompt. It presumes the active use of the language “behind” the prompt, and that the command 
sequences can be submitted from a file, a script, by analogy with performance. The script 
contains the sequence of steps needed to reach the intended conclusion.

Scripting and the use of “little languages” had been seen as an alternative to the graphical user 
interfaces that increasingly dominated GIS from the early 1990s (Roger S. Bivand, 1996, 1997, 
1998). Scripts would also play an important role in advancing reproducibility in analysing 
spatial data (Brunsdon & Comber, 2020). Although neither R nor Python are “little languages” 
any more, their on-ramps are less forbidding and much better supported by communities and 
training than previously. Both are also largely open-source, and both support the integration of 
external open-source geospatial software into scripting environments.

R (R Core Team, 2021) and Python (Van Rossum & Drake, 2009) permit scripts to be written 
using basic language functionality. This functionality, however, does not extend to the handling 
of spatial data. The R analytical environment includes the Comprehensive R Archive Network 
(CRAN), which serves user contributed packages of software with documentation. These have 



included packages for spatial data handling and analysis since the early 2000s (Roger S. Bivand, 
2020b), including packages providing scripting access to key open-source geospatial software 
libraries. These libraries, and some of the interface and other code in R packages, are written in 
languages requiring compilation, which may complicate distribution to users. CRAN provides 
users with “binary” contributed packages for Windows and MacOS to permit users to install 
such packages and their dependencies. R contributed packages may be installed and updated in 
a running R session, but should not be updated if already used in a session. Because CRAN 
contributed package binaries are available for Windows and MacOS, and contain their required 
external library components by static linking, the computing environment is closely controlled 
and almost certainly coherent (because served packages are tested against each other on 
multiple platforms continuously).

Python packages are provided in a very similar way using the Python Package Index. Unlike R, 
Python packages should not be installed in a running Python session, but prior to its 
commencement. Typically, pip has been used to manage handling contributed packages, and 
more recently complete conda computing environments are also available. Specified computing 
environments permit users to carry out chosen tasks without the need to install chains of 
individual software components, in much the same way as the decision by CRAN to link 
Windows and MacOS packages accessing external libraries statically. External libraries do 
evolve, and if a new version changes an interface component for whatever reason, then software
such as Python or R packages using that library but linking dynamically would need re-
compilation. Further opportunities for customizing and controlling computing environments 
are offered by containers such as Docker, or by using Binder to create computing environments 
for remote users.

While computing environments are a strict subset of analytical environments, they do matter a 
great deal. Community activity on mailing lists and question-and-answer fora often provide 
example scripts resolving problems. These solutions are however dependent on the versions of 
software components being used, both the packages themselves, other packages they use, and 
the external software libraries that they interface. Open source packages for analysing spatial 
data share many components in their use of open source external libraries, and this leaves most 
of them vulnerable to changes (Roger S. Bivand, 2014). Such changes do occur frequently, 
recently in PROJ (Evenden et al., 2022), GEOS and GDAL (Rouault et al., 2022). These changes 
lead to churn in releases of R and Python packages as small numbers of maintainers struggle to 
adapt to upstream changes while assuring the stability of downstream packages and scripted 
workflows.

Examples of upstream changes in PROJ and GDAL feeding through into R and Python packages 
concern the ways in which coordinate reference systems (CRS) are represented. In the 1990s, 
the specification of CRS of spatial data was downplayed; for example .prj files containing a text 
version of the CRS were optional. Correct CRS specification impacted visualization in web 
mapping applications from the mid-2000s, and was always essential for the integration of data 
across multiple data sources. In such cases of upstream changes, a change in the computing 
environment may engender changes in the wider analytical environment, where users are 
obliged to absorb technical details which might have seemed unimportant.



R and contributed packages
Sys.setenv(PROJ_NETWORK="ON")
library(sf)

## Linking to GEOS 3.10.2, GDAL 3.4.1, PROJ 8.2.1; sf_use_s2() is TRUE

packageVersion("sf")

## [1] '1.0.5'

The sf package (Pebesma, 2018, 2020), introduced in late 2016, is a modern replacement for the 
sp package (Pebesma & Bivand, 2005, 2021); see Roger S. Bivand (2020b) for a fuller account. In 
Roger S. Bivand et al. (2013) and other books presenting spatial data handling workflows, sp is 
used for both vector and raster data, supplemented by raster (Hijmans, 2022). The rgdal 
package (Roger S. Bivand et al., 2021) then provided functionalities offered by the external PROJ 
and GDAL libraries for reading and writing spatial data files; the rgeos package (Roger S. 
Bivand & Rundel, 2021) interfaced GEOS predicates and topological operations. The sf package 
was first written as a replacement for vector data handling in sp, rgdal and rgeos, but also now
supports raster data handling by interfacing GDAL for the stars package (Pebesma, 2021). 
Changing from sp based workflows to sf based workflows is proceeding, but necessarily impacts
the broader analytical environment. It has been important to ensure that sp based workflows 
continue to function as far as possible. The rgdal and rgeos will be retired by or before the end 
of 2023 to simplify maintenance of the R-spatial package ecosystem.

We will use a dataset from the British Census 2011 for Output Areas in the Borough of Camden 
in London used in Roger S. Bivand & Wong (2018), and described in detail there. It is stored in a 
Geopackage format file, which overcomes many of the shortcomings of the legacy ESRI Shapefile
format. It is read into an "sf" object using the GDAL GPKG driver:

camden <- st_read("oa_census.gpkg")

## Reading layer `oa_census' from data source 
##   `/home/rsb/papers/sass19/oa_census.gpkg' using driver `GPKG'
## Simple feature collection with 749 features and 5 fields
## Geometry type: POLYGON
## Dimension:     XY
## Bounding box:  xmin: 523954.5 ymin: 180959.8 xmax: 531554.9 ymax: 187603.6
## Projected CRS: OSGB36 / British National Grid

This dataset includes only a very few variables chosen from the 2011 Census, including counts of
total population, unemployed and potentially economically active. The proportion of the 
population who were potentially economically active varies a good deal across the output areas, 
from less than half of the population to almost everyone:

summary(with(camden, all_categories_economic_activity/Population))

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.4636  0.7360  0.7870  0.7886  0.8399  0.9912

The density of the potentially economically active also varies greatly by output area; there are 
some parks in Camden which yield low densities. The units package (Pebesma et al., 2021) is 
used to present the output of st_area() in hectares rather than square metres:

ha <- st_area(camden)
library(units)



units(ha) <- as_units("ha")
dens <- camden[["all_categories_economic_activity"]]/ha
print(quantile(dens, seq(0, 1, 0.25)), digits=4)

## Units: [1/ha]
##       0%      25%      50%      75%     100% 
##    2.327   85.288  125.428  177.413 3364.327

The cartogram map shown in the right panel of Figure 3 iterates over the boundaries of the 
output areas to adjust them to better proportionality with the number of potentially 
economically active residents (Dougenik et al., 1985; Jeworutzki, 2020).

library(cartogram)
sf_cont <- cartogram_cont(camden, "all_categories_economic_activity", 7)

The classInt package (Roger S. Bivand, 2020a) is used internally by a number of map plotting 
functions in R packages to calculate class intervals. Here we show its output breaks, calculated 
using the Fisher (1958) style:

(cI <- classInt::classIntervals(camden[["Unemployment"]], n=6, style="fisher"))

## style: fisher
##         [0,2.02774)  [2.02774,3.668135) [3.668135,5.542755) [5.542755,7.745236) 
##                 129                 196                 189                 144 
## [7.745236,11.19164) [11.19164,18.62348] 
##                  80                  11

The colour palette is chosen from the sequential palettes provided by the rcartocolor package 
(Nowosad, 2019).

pal <- rcartocolor::carto_pal((length(cI$brks)-1L), "TealGrn")

The left panel of Figure 3 shows a standard choropleth map of unemployment as a percentage of
the number of economically active residents, using the tmap package (Tennekes, 2018, 2021); 
the right panel shows the cartogram. Using the same intervals and colours for the output areas 
map and the cartogram is made easy by passing the class intervals and colour palette just 
defined.

library(tmap)
a <- tm_shape(camden) + tm_fill("Unemployment", breaks=cI$brks, palette=pal) + 
  tm_layout(main.title="Output Areas")
b <- tm_shape(sf_cont) + tm_fill("Unemployment", breaks=cI$brks, palette=pal) + 
  tm_layout(main.title="Cartogram", legend.show=FALSE)
tmap_arrange(a, b)



Figure 2: left panel: Percentage unemployment by output area in Camden, 2011 Census; right 
panel: cartogram of percentage unemployment with output areas adjusted to the size of the 
economically active population

We can capture an interactive visualization on contextual information from Open Street Map 
using the mapview package (Appelhans et al., 2021), showing the census output area 
boundaries on the contextual background of the street network in Camden and its surroundings
(Figure 4).

library(mapview)
if (sf:::CPL_gdal_version() >= "3.1.0") mapviewOptions(fgb = FALSE)
camden_wmap <- mapview(camden, zcol="Unemployment", col.regions=pal, at=cI$brks)
mapshot(camden_wmap, file=file.path(getwd(), "camden_wmap.png"))



Figure 3. Interactive choropleth map of percentage unemployment shown on an Open Street Map 
layer

In order to create an interactive web map, the camden object has to be transformed from the 
“OSGB 1936 / British National Grid” projected CRS (EPSG:27700) as read in from file to 
geographical coordinates in the WGS84 datum (OGC:CRS84), then projected internally to Web 
Mercator (EPSG:3857) to match the background. The second step is not hard, but the first step 
depends on the spatial object having a well-defined CRS, and that descriptions of the steps to get
from that CRS to the geographical CRS in WGS84 are known. They may be multiple descriptions, 
with differing degrees of accuracy.

Before PROJ 6 and GDAL 3, released in March 2019, projected CRS definitions were typically 
stored in text files distributed with the software. The definitions, known as Proj4 strings, 
contained key-value pairs of definition components, and often provided hints about how to 
transform to WGS84. To transform from one non-WGS84 datum to another non-WGS84 datum, maps
were transformed first from source CRS to WGS84, then on to the target CRS, incurring two sets of
transformation errors. Transformation means converting from one datum, a model of 
deviations from a specified ellipsoid, to another datum (Iliffe & Lott, 2008). Errors from 
ignoring datum transformation, termed ballpark accuracy, are typically greater than 100m, or 3 
to 4 Landsat 7 satellite image pixels.



PROJ 6 (2019) introduced an SQLite database, also used by GDAL 3 (also 2019), to replace the text
files distributed with the system. This modernization changed the approach used for datum 
transformation from partly ad-hoc to authority-based, and happened at the same time as the 
introduction of the WKT2:2019 international standard for referencing coordinates (ISO, 2019). All
geospatial software is adapting to these ongoing changes, and for open source software, the 
changes are driven by decisions made by PROJ and GDAL developers.

Before PROJ 6, Proj4 strings could contain +datum= keys taking values such as OSGB36. A very few 
values are valid in PROJ 6 and later, but OSGB36 is not one of these. If we feed the valid PROJ 5 
string through the sf st_crs() method to create a "crs" object from a Proj4 string, degradation 
occurs when sf uses PROJ version 6 or later, with the +datum=OSGB36 key value pair replaced by 
+ellps=airy; this ellipsoid definition is correct, but the key-value pair is insufficiently clear 
about which datum definition to choose, so the PROJ library falls back to the ellipsoid:

(degraded_proj4 <- st_crs(paste("+proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717",
"+x_0=400000 +y_0=-100000 +datum=OSGB36 +units=m +no_defs"))$proj4string)

## [1] "+proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000 +y_0=-100000 
+ellps=airy +units=m +no_defs"

The fully qualified WKT2:2019 representation as read from the Geopackage file (CRS name shown
as User input) appears more verbose, specifying exactly which European Petroleum Survey 
Group (EPSG) code is used in each definition:

st_crs(camden)

The step being taken within mapview is to transform from the source CRS to the target 
OGC:CRS84 CRS; here we will choose the centroid of the first census output area as an example 
(for comparison with Python below):

sfc <- st_centroid(camden[1,])

From PROJ 7, a cloud resource permits transformation grids to be accessed from a content 
download network (CDN, https://cdn.proj.org/) on-demand as an Amazon Public Dataset and 
used if accuracy would be improved. The network may be enabled by setting the environment 
variable PROJ_NETWORK to ON before loading the sf package or any other package needing access 
to the CDN.

Sys.getenv("PROJ_NETWORK")

## [1] "ON"

This means that if:

sf_proj_network()

## [1] TRUE

then st_transform() will proceed by first looking up candidate transformation pipelines in the 
PROJ database, and choose the most accurate, including pipelines using transformation grids. If 
the required grids are not already available on the system running the command, they will be 
downloaded and cached before being used; the output coordinates are given with extreme detail
to demonstrate below that they agree with the Python output:



(sfc_ll_best <- st_transform(sfc, "OGC:CRS84")) |> st_coordinates() |> print(digits=17)

##                      X                  Y
## 1 -0.17053693927522964 51.546909001711455

Since st_transform() does not report which pipeline was chosen, and if we would like to know 
the choice, we may use sf_proj_pipelines() to list the candidate transformation pipelines. Here
we see that the tenth accuracy value (given in metres) is the smallest, followed by the second; 
the last (eleventh) is known as ballpark accuracy as its accuracy cannot be determined from the
PROJ database:

trans_pipes <- sf_proj_pipelines(st_crs(sfc), "OGC:CRS84")
trans_pipes$accuracy

##  [1] 21  2 21 10 21 18 35  3  5  1 NA

Transformation pipelines are divided into steps, where here for the best choice the first step 
reverse projects from OSGB36 to geographical coordinates, next a horizontal grid shift is applied 
between that datum and the current WGS84 datum (actually the European Terrestrial 
Reference System 1989 (ETRS89), EPSG:4258, for this grid), finally converting back from radians
to degrees:

gsub("\\+step", "\n+step", trans_pipes$definition[10]) |> cat("\n")

## +proj=pipeline 
## +step +inv +proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000 +y_0=-100000 
+ellps=airy 
## +step +proj=hgridshift +grids=uk_os_OSTN15_NTv2_OSGBtoETRS.tif 
## +step +proj=unitconvert +xy_in=rad +xy_out=deg

We can confirm that this pipeline was in fact used by re-running the transformation and 
specifying the pipeline to be used; the output point is the same as that returned when 
st_transfrom() chose the most accurate available pipeline itself:

st_transform(sfc, "OGC:CRS84", pipeline=trans_pipes$definition[10]) |> 
st_distance(sfc_ll_best) |> c()

## 0 [m]

Had we persisted in using the legacy Proj.4 string representation described above, no 
transformation step is present and we simply apply inverse projection:

gsub("\\+step", "\n+step", trans_pipes$definition[11]) |> cat("\n")

## +proj=pipeline 
## +step +inv +proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000 +y_0=-100000 
+ellps=airy 
## +step +proj=unitconvert +xy_in=rad +xy_out=deg

In this degenerate case, the output point is about 123m from the most accurate transformation:

st_transform(sfc, "OGC:CRS84", pipeline=trans_pipes$definition[11]) |> 
st_distance(sfc_ll_best) |> c()

## 122.837 [m]



In the absence of transformation grids, the next-best transformation pipeline with 2m accuracy 
is offered by a Helmert seven-parameter transformation, with parameters retrieved from the 
PROJ database:

gsub("\\+step", "\n+step", trans_pipes$definition[2]) |> cat("\n")

## +proj=pipeline 
## +step +inv +proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000 +y_0=-100000 
+ellps=airy 
## +step +proj=push +v_3 
## +step +proj=cart +ellps=airy 
## +step +proj=helmert +x=446.448 +y=-125.157 +z=542.06 +rx=0.15 +ry=0.247 +rz=0.842 
+s=-20.489 +convention=position_vector 
## +step +inv +proj=cart +ellps=WGS84 
## +step +proj=pop +v_3 
## +step +proj=unitconvert +xy_in=rad +xy_out=deg

This pipeline would be the one chosen if the transformation grid was not available and 
automatic downloading from the PROJ content download network was turned off; the point is 
almost 2m from the most accurate transformation known to the PROJ database:

st_transform(sfc, "OGC:CRS84", pipeline=trans_pipes$definition[2]) |> 
st_distance(sfc_ll_best) |> c()

## 1.764523 [m]

In other settings, the PROJ database offers a starker choice between enabling the CDN and only 
ballpark accuracy if grid transformation is not available, so use of sf_proj_pipelines() to check
which choices are available is advised.

Handling spatial data, then, requires that the geometries of the spatial entities be recorded and 
input, be associated with the best available specification of the CRS, be correctly associated with 
the values of variables of interest, be subsetted and transformed, and usually be visualized in 
the form of thematic cartography. It is only very recently that it has been desirable to pay 
sustained attention to coordinate reference systems and their transformation. To put this brief 
presentation of some simple aspects of the R environment for spatial data handling, we’ll now 
draw on Python equivalents. These environments are by no means just the language platform 
and contributed packages, but include upstream software libraries, software developers and 
maintainers and their interactions with users, and the varied ways in which these participants 
conceive of their needs and the goals of their activities.

Python and contributed packages

The whole Python environment has shifted to Python 3, causing some churn among packages. 
For geospatial data, the geopandas package (Bossche et al., 2021) uses a similar approach to the
R sf package, representing data as a data frame with a geometry column. Unlike sf, geopandas 
does not itself link to PROJ, GDAL or GEOS, relying on the pyproj package for PROJ (Snow et al., 
2021), the Fiona package for GDAL (Gillies, Buffat, et al., 2021), and the Shapely package for 
GEOS (Gillies, Taves, et al., 2021):

import geopandas
geopandas.show_versions()

## 
## SYSTEM INFO



## -----------
## python     : 3.10.2 (main, Jan 17 2022, 00:00:00) [GCC 11.2.1 20211203 (Red Hat 
11.2.1-7)]
## executable : /usr/bin/python
## machine    : Linux-5.15.16-200.fc35.x86_64-x86_64-with-glibc2.34
## 
## GEOS, GDAL, PROJ INFO
## ---------------------
## GEOS       : 3.10.2
## GEOS lib   : /usr/local/lib64/libgeos_c.so
## GDAL       : 3.4.1
## GDAL data dir: None
## PROJ       : 8.2.0
## PROJ data dir: /home/rsb/.local/lib/python3.10/site-packages/pyproj/proj_dir/share/
proj
## 
## PYTHON DEPENDENCIES
## -------------------
## geopandas  : 0.10.2
## pandas     : 1.3.4
## fiona      : 2.0dev
## numpy      : 1.21.5
## shapely    : 1.8.0
## rtree      : None
## pyproj     : 3.3.0
## matplotlib : 3.5.1
## mapclassify: 2.4.3
## geopy      : None
## psycopg2   : None
## geoalchemy2: None
## pyarrow    : None
## pygeos     : None

Consequently, geopandas bundles other packages and their interfaces to external software 
libraries, modularizing perhaps more effectively than sf. The same Geopackage file may be read 
into a "GeoDataFrame" using many of the same underlying parts of the open source geospatial 
software stack as in the sf example above:

geodf = geopandas.read_file('oa_census.gpkg')

In R, we took the centroid of the first output area, indexing by 1 because R indices are 1-based; 
Python indices are 0-based, so we get the same output by using a zero index; the centroid is 
found using GEOS through shapely:

cent1 = geodf.centroid[0]
cx = cent1.x
cy = cent1.y

The CRS of the census output areas data set is identical with the sf output above:

geodf.crs

## <Derived Projected CRS: EPSG:27700>
## Name: OSGB36 / British National Grid
## Axis Info [cartesian]:
## - E[east]: Easting (metre)
## - N[north]: Northing (metre)
## Area of Use:
## - name: United Kingdom (UK) - offshore to boundary of UKCS within 49°45'N to 61°N 
and 9°W to 2°E; onshore Great Britain (England, Wales and Scotland). Isle of Man 
onshore.



## - bounds: (-9.0, 49.75, 2.01, 61.01)
## Coordinate Operation:
## - name: British National Grid
## - method: Transverse Mercator
## Datum: Ordnance Survey of Great Britain 1936
## - Ellipsoid: Airy 1830
## - Prime Meridian: Greenwich

The adoption by geopandas of the pyproj CRS interface described in a helpful blog 
(https://jorisvandenbossche.github.io/blog/2020/02/11/geopandas-pyproj-crs/) mirrors the 
changes made in the R spatial package ecosystem. Indeed, the pyproj package was an early 
mover in this respect, and coding in rgdal was in part based on the then development version of
pyproj (Snow et al., 2021). Anecdotally, the use of Cython to interface the compiled code of PROJ
in pyproj permitted the prototyping of this functionality during a 7 hour train trip in late 
October 2019, leading to workable listing of transformations from a source CRS to a target CRS; 
TransformerGroup() is very similar to sf::sf_proj_pipelines(). The benefits of open source 
software also lie in seeing how other communities have approached shared puzzles.

It is then not surprising that sf retrieves the same transformation pipelines from PROJ as 
pyproj does. Here we’ll retrieve all the feasible pipelines included in a TransformerGroup object. 
We turn on the CDN first to include any relevant transformation grid (here downloaded and 
cached during the first such run in R above):

import pyproj
from pyproj.transformer import TransformerGroup
pyproj.network.set_network_enabled(True)
tg = TransformerGroup(geodf.crs, 'OGC:CRS84', always_xy=True)
itg = TransformerGroup('OGC:CRS84', geodf.crs, always_xy=True)
tg

## <TransformerGroup: best_available=True>
## - transformers: 11
## - unavailable_operations: 0

The best available pipeline is returned in the 0-index position; this is the grid-based 
transformation:

import re
print(re.sub("step", "\nstep", tg.transformers[0].definition))

## proj=pipeline 
## step inv proj=tmerc lat_0=49 lon_0=-2 k=0.9996012717 x_0=400000 y_0=-100000 
ellps=airy 
## step proj=hgridshift grids=uk_os_OSTN15_NTv2_OSGBtoETRS.tif 
## step proj=unitconvert xy_in=rad xy_out=deg

GEOS is here returning the same projected coordinates for the centroid of the first census output
area in projected coordinates, and PROJ is returning the same best available transformation 
pipeline and using it to yield the same output coordinates:

ll0 = tg.transformers[0].transform(cx, cy)
ll0

## (-0.17053693927522964, 51.546909001711455)

The second pipeline is the same Helmert transformation-based one as above:



print(re.sub("step", "\nstep", tg.transformers[2].definition))

## proj=pipeline 
## step inv proj=tmerc lat_0=49 lon_0=-2 k=0.9996012717 x_0=400000 y_0=-100000 
ellps=airy 
## step proj=push v_3 
## step proj=cart ellps=airy 
## step proj=helmert x=446.448 y=-125.157 z=542.06 rx=0.15 ry=0.247 rz=0.842 s=-20.489 
convention=position_vector 
## step inv proj=cart ellps=WGS84 
## step proj=pop v_3 
## step proj=unitconvert xy_in=rad xy_out=deg

and yields a similar distance between coordinates. There does not seem to be functionality in 
geopandas or packages it uses to calculate distances on the sphere, so we transform back using 
the grid-based transformation and measure the distance on the plane; sf in R uses the s2 
package interfacing the s2geometry library, so the measurement is not identical:

ll2 = tg.transformers[2].transform(cx, cy)
from shapely.geometry import Point
point_df = geopandas.GeoDataFrame({'geometry': 
[Point(itg.transformers[0].transform(ll2[0], ll2[1]))]}, crs='EPSG:27700')
point_df.distance(cent1)

## 0    1.769709
## dtype: float64

Finally, the ballpark accuracy transformation pipeline is the same:

print(re.sub("step", "\nstep", tg.transformers[10].definition))

## proj=pipeline 
## step inv proj=tmerc lat_0=49 lon_0=-2 k=0.9996012717 x_0=400000 y_0=-100000 
ellps=airy 
## step proj=unitconvert xy_in=rad xy_out=deg

with almost the same distance between points:

ll10 = tg.transformers[10].transform(cx, cy)
point_df = geopandas.GeoDataFrame({'geometry': 
[Point(itg.transformers[0].transform(ll10[0], ll10[1]))]}, crs='EPSG:27700')
point_df.distance(cent1)

## 0    123.137447
## dtype: float64

So for important components of spatial data handling, the Python and R environments perform 
in very similar ways, not least because both build on the strengths of the same underlying open 
source geospatial software libraries. Density (count per unit area) measures build on the same 
library, GEOS, to calculate polygon areas, but then need to use other software implementations 
for creating a numeric sequence and quantiles, R using seq() in base-R and quantile() in the 
base-R stats package, but in Python two functions in numpy:

import numpy as np
dens = geodf['all_categories_economic_activity'] / (geodf.area/10000)
arr = np.quantile(dens, np.linspace(0, 1, 5))
np.set_printoptions(precision=3, suppress=True)
print(arr)

## [   2.327   85.288  125.428  177.413 3364.327]



The output is the same, but this might not have occurred had the default interpolation methods 
for the two implementations not given the same outcome for this data set (quantile() in R has 9
types, in numpy there are 5).

Creating cartograms is a much narrower topic, so it is perhaps not surprising that output of the 
cartogram_geopandas package (Viry, 2015) is rather different from that of the R cartogram 
package (Jeworutzki, 2020) used above, even though both claim to implement the same 
Dougenik et al. (1985) algorithm.

from cartogram_geopandas import make_cartogram
transformed_geodf = make_cartogram(geodf, 'all_categories_economic_activity', 7, 
inplace=False)

The Python PySAL (Python Spatial Analysis Library) has developed, like the R-spatial package 
ecosystem, over a number of years (Rey et al., 2015; Rey & Anselin, 2007, 2010). It includes the 
mapclassify package (Rey & Wolf, 2021), which is very similar to the R classInt package, and 
the FisherJenks() classifier is like the classInt "fisher" style shown above:

import mapclassify as mc
fj6 = mc.FisherJenks(geodf["Unemployment"], k=6)
fj6

## FisherJenks           
## 
##    Interval      Count
## ----------------------
## [ 0.00,  2.02] |   129
## ( 2.02,  3.65] |   196
## ( 3.65,  5.53] |   189
## ( 5.53,  7.69] |   144
## ( 7.69, 10.94] |    80
## (10.94, 18.62] |    11

The breaks are systematically off by 0.01, so we can insert the values from R to achieve better 
comparability in plotting; as yet the reasons for the differences have not been explored:

cIfj = mc.UserDefined(geodf["Unemployment"], bins=[2.027740,  3.668135,  5.542755,  
7.745236, 11.191642, 18.623482])
cIfj

## UserDefined           
## 
##    Interval      Count
## ----------------------
## [ 0.00,  2.03] |   129
## ( 2.03,  3.67] |   196
## ( 3.67,  5.54] |   189
## ( 5.54,  7.75] |   144
## ( 7.75, 11.19] |    80
## (11.19, 18.62] |    11

We can create a figure similar to Figure 3 using matplotlib and inserting the TealGrn colour 
palette used above:

import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
mycmap = ListedColormap(["#b0f2bc", "#82e6aa", "#5bd4a4", "#3fbba3", "#2e9ea1", 
"#257d98"])
plt.figure(figsize=(13,7))



ax1 = plt.subplot(121)
cIfj.plot(geodf, cmap=mycmap, ax=ax1, legend=True, legend_kwds={'loc':'lower left'});
plt.title('Output Areas')
plt.axis('off');
ax2 = plt.subplot(122)
cIfj.plot(transformed_geodf, cmap=mycmap, ax=ax2);
plt.title('Cartogram')
plt.axis('off');
plt.show()

Figure 4: left panel: Percentage unemployment by output area in Camden, 2011 Census; right 
panel: cartogram of percentage unemployment with output areas adjusted to the size of the 
economically active population

As one might expect, these examples of handling spatial data in two environments show some 
differences, but also a considerable convergence, especially where both environments build on 
the same open geospatial software libraries. Consequently, one would not expect to see 
differences in analytical results because of differences in the reading and cleaning of spatial 
data.

Perhaps it would be helpful to have added more than citations of the packages, because the 
authorships of packages in each environment do overlap to a considerable extent. This 
overlapping generated within communities of developers and users leads to understandings of 
the needs of packages where they form dependency networks. In addition, there is some contact
between developers of spatial packages in Python and R; for example the author of 
cartogram_geopandas is a member of the Github organization to which the R cartogram 
package belongs.



Environments for analysing spatial data

Some spatial analysis in the social sciences has used distance between point-support 
observations as such, in point pattern analysis and using spatial interpolation in a geostatistical 
way. Point-support observations, such as house prices or reported crimes, are however often 
aggregated either by the analyst, or by public agencies prior to publication, for example census 
data. Election data are only reported for areal aggregates. Much quantitative analysis takes 
place on aggregated, tabular data without acknowledging the underlying challenge of spatial 
autocorrelation (Cliff & Ord, 1969; Duncan et al., 1961). In addition, the aggregation units 
themselves may not match the spatial footprint of the underlying data generation process, 
leading to the intertwined issues of the ecological fallacy (Robinson, 1950), and the modifiable 
areal unit problem (MAUP) (Openshaw & Taylor, 1979).

While the ecological fallacy and MAUP remain open problems, spatial autocorrelation can be 
approached in a number of ways, including testing for its presence in variables and regression 
residuals, and adding spatial autoregressive terms in regression models. These steps involve the 
preparation of spatial weights representing the sets of neighbouring observations for a chosen 
definition of neighbour. A typical definition is that areal units share a boundary point (Queen 
neighbours as on a chessboard), or a boundary line segment (Rook neighbours). It is possible to 
read shared boundaries from a map, such as Figure 1, and tabulated in Appendix 2 of the same 
book (Cliff & Ord, 1973). The provision of software for automating this process is central in the 
creation of analytical environments for areal data.

Having had access to the digitizer at the LSE in the early 1970s, it was not hard to see that 
finding lists of neighbours of polygons for analysis could be automated. The choropleth map 
program needed point coordinates, ordered vectors of point IDs belonging to lines, and ordered 
vectors of line IDs forming closed polygons. It was then uncomplicated to extract pairs of 
polygon neighbours, where the same line IDs occurred in polygon definitions (Roger S. Bivand, 
1975). Sadly, the Fortran subroutines I wrote have not survived many moves, but the underlying
specification of spatial neighbour objects is effectively unchanged. Most of those implementing 
spatial neighbour and spatial weights objects from the 1970s to today have either used lists of 
neighbour IDs, or dense or sparse matrices.

An example may be the poly2nb() function in the R spdep package, returning a list of 
neighbours object specified as neighbours if polygons share at least one boundary point (Queen 
criterion):

library(spdep)
(nb_q <- poly2nb(camden, queen=TRUE))

## Neighbour list object:
## Number of regions: 749 
## Number of nonzero links: 4342 
## Percentage nonzero weights: 0.7739737 
## Average number of links: 5.797063

table(card(nb_q))

## 
##   1   2   3   4   5   6   7   8   9  10  11  12  13  14  17 
##   1  19  61 104 168 157 112  66  33  14   6   2   4   1   1



The print method for the neighbour object reports the number of regions and of non-zero links; 
these are counted treating the graph as possibly directed, so symmetric links are counted twice. 
Some implementations assume that the neighbours are symmetric, so count each link once only.

lw <- nb2listw(nb_q, style="W")

Once we have the neighbour sets, we can attach weights to the links, for example row-
standardising the weights for each observation so that they sum to unity for each observation, 
using style="W". W can compare the sizes of the objects: the spatial weights list lw, the same 
object converted into a dense matrix, and converted into a sparse matrix (from spdep version 
1.2-1, modelling functionality is to be found in spatialreg), here given in Kb:

sz1 <- object.size(lw)
sz2 <- object.size(listw2mat(lw))
requireNamespace("spatialreg", quietly=TRUE)
sz3 <- object.size(as(lw, "CsparseMatrix"))
sz <- c("listw"=sz1, "dense"=sz2, "sparse"=sz3)
round(sz/1024, 1)

##  listw  dense sparse 
##  246.1 4430.1  149.0

In the Python environment, the libpysal package (Rey, Wolf, Gaboardi, et al., 2021; Rey, Anselin,
et al., 2021) can be used to create a Queen-criterion neighbour object from the polygons in the 
geopandas object; the tabulation of counts of observations with the same numbers of 
neighbours is the same as for poly2nb():

from libpysal import weights
w_cont = weights.Queen.from_dataframe(geodf)
w_cont.histogram

## [(1, 1), (2, 19), (3, 61), (4, 104), (5, 168), (6, 157), (7, 112), (8, 66), (9, 33),
(10, 14), (11, 6), (12, 2), (13, 4), (14, 1), (15, 0), (16, 0), (17, 1)]

From there, we can test for spatial autocorrelation in the unemployment variable using global 
Moran’s I  without further difficulty using the spdep package (Roger S. Bivand & Wong, 2018):

moran.test(camden[["Unemployment"]], lw)

## 
##  Moran I test under randomisation
## 
## data:  camden[["Unemployment"]]  
## weights: lw    
## 
## Moran I statistic standard deviate = 12.254, p-value < 2.2e-16
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic       Expectation          Variance 
##       0.268652075      -0.001336898       0.000485435

The test output is returned as an "htest" object with a print method in the base-R stats 
package, here with the alternative hypothesis asserting positive spatial autocorrelation, and the 
variance computed under randomisation. A Python alternative can be found in the esda 
package (Rey, Wolf, Arribas-Bel, et al., 2021). We set the style - transformation - of the 
neighbours to weights as "R" for row-standardised, and print out two of the returned elements, 



the value of I  itself, and the standard deviate under randomisation, both of which agree with 
those from spdep:

import esda
w_cont.transform = "R"
mi = esda.Moran(geodf["Unemployment"], w_cont)
np.set_printoptions(precision=9, suppress=True)
print(np.array((mi.I, mi.z_rand)))

## [ 0.268652075 12.254073315]

Similarly, calculating the local Moran’s I i values only involves choosing the appropriate 
function, in R from spdep. Global Moran’s I  is the sum of the local I i (in the first column of the 
returned object) divided by the sum of the spatial weights returned by utility function Szero():

I_i <- localmoran(camden[["Unemployment"]], lw)
print(sum(I_i[,1])/Szero(lw), digits=9)

## [1] 0.268652075

Reproducing the same output in esda leads to a small puzzle, accounted for in Roger S. Bivand 
& Wong (2018) (pp. 724, 738); in the original definition of local Moran’s I i, the variance of the 
variable of interest was calculated dividing the sum of squared deviations from the mean by n 
not (n−1 ):

lisa = esda.Moran_Local(geodf["Unemployment"], w_cont)
np.sum(lisa.Is)/w_cont.s0

## 0.2682933940977779

The spdep function includes an argument mlvar= which is TRUE by default to demonstrate the 
reason for the difference:

I_ia <- localmoran(camden[["Unemployment"]], lw, mlvar=FALSE)
print(sum(I_ia[,1])/Szero(lw), digits=16)

## [1] 0.2682933940977779

Figure 5 presents hotspot cluster core maps of local Moran’s I i calculated under randomisation 
on a choropleth map and a cartogram - even though the output areas are designed to be similar 
in counts, the visual impact of the two displays differs somewhat. The figure does not follow the 
proposal advanced in Anselin (2019), to firstly adjust the probability values by false discovery 
rate and secondly tighten the cutoff for interesting observations to 0.005, as this would have left
no interesting observations for the variable in question.

While it might be tempting to see the "Low-Low" local spatial autocorrelation measure in one 
southern output area (here an oddly-shaped OA with 10% unemployment among about 300 
economically active where only 30 inhabitants were not economically active), the OA contains 
Russell Square, the Senate House of the University of London, and most of the British Museum, 
so any interpretation might well be misleading. On the other hand, the "High-High" local 
autocorrelation seen around Rowley Way and Ainsworth Way on the edge of the borough in the 
west reflects neighbouring OAs with 6-9% unemployment. The cartogram helpfully adjusts the 
visual impact of the OA after its area has been adjusted by the number of economically active:



HS <- attr(I_ia, "quadr")$mean
is.na(HS) <- p.adjust(I_ia[, "Pr(z != E(Ii))"], "none") >= 0.05
camden$HS <- HS
sf_cont$HS <- HS
a <- tm_shape(camden) + tm_fill("HS", palette=pal, colorNA="grey95", textNA="Not
\"interesting\"") + tm_layout(main.title="Output Areas")
b <- tm_shape(sf_cont) + tm_fill("HS", palette=pal, colorNA="grey95", textNA="Not
\"interesting\"") + tm_layout(main.title="Cartogram", legend.show=FALSE)
tmap_arrange(a, b)

Figure 5: Local Moran’s I hotspot cluster cores: left panel: choropleth map; right panel: cartogram

Here we have used R and Python to exemplify how flexible a command line interface may be. 
Both of these offer notebooks, permitting reports to be written embedding code, the output of 
executing the code, and text relating these to the questions being handled in a single document. 
This approach has been followed here as an Rmarkdown document rendered into Word format 
(source materials available from https://github.com/rsbivand/sass22). We could also have 
referred to ArcGIS (Scott & Janikas, 2010), the original SpaceStat system (Anselin, 1992), or 
indeed GeoDa (Anselin et al., 2006, 2021) and other analytical environments, but have chosen to 
present R and Python as examples of analytical environments within the broader open source 
geospatial communities. In conclusion, it is worth stressing that these analytical environments 
are not (just) computer scripts, packages, libraries or languages; they grow and thrive through 
self-constituted and self-renewing communities of users and developers. In particular, if users 
intervene actively to express needs for additional functionalities, it is likely that progress will be
achieved, but being active is crucial, as there is no “sales department” searching for unexploited 
demand.



Prospects

As the ease of use of notebook approaches to authoring research reports increases, and as 
commitments to reproducible research strengthen (Brunsdon & Comber, 2020), the scripting 
language used may slip into the background. Many tools are already available, and applied 
researchers will be most concerned to use these tools in addressing relevant research questions.

It will remain relevant to compare implementations of research methods in software tools. With
co-authors, I have been attempting to compare the implementations of tools in different 
analytical environments for analysing spatial data: fitting spatial regression models (R. S. 
Bivand et al., 2021; Roger S. Bivand & Piras, 2015), fitting spatial multilevel models (Roger S. 
Bivand et al., 2017), and testing for spatial autocorrelation (Roger S. Bivand & Wong, 2018). 
When we know more about reasons for differences in tools apparently implementing the same 
method, users will be able to be confident that at least the calculation of results is carried out in 
a documented way.

Without doubt there is more to do, and it remains important to maintain and enhance 
collaboration between those implementing similar functionalities in the various environments, 
as we undoubtedly have much to share and to learn from each other. In this spirit, building 
communities of developers and users emerges as being as important as maintaining software 
and carrying out research into methods in geoinformatics, spatial statistics, or visualization. 
The R community has been fortunate in seeing advances in this respect, with a recent book 
undergoing active revision as an example (Lovelace et al., 2019). The PySAL community is also 
working on a work-in-progress book (https://geographicdata.science/book/intro.html), as are 
the R-spatial community (https://www.r-spatial.org/book). All these three reviews are also 
available online, and all use the notebook paradigm embedding reproducible code examples in 
the text.

References
Anselin, L. (1992). SpaceStat, a software program for analysis of spatial data. National Center for 
Geographic Information and Analysis (NCGIA), University of California.

Anselin, L. (2019). A local indicator of multivariate spatial association: Extending Geary’s c. 
Geographical Analysis, 51(2), 133–150. https://doi.org/10.1111/gean.12164

Anselin, L., Li, X., & Koschinsky, J. (2021). GeoDa, from the desktop to an ecosystem for exploring
spatial data. Geographical Analysis. https://doi.org/10.1111/gean.12311

Anselin, L., Syabri, I., & Kho, Y. (2006). GeoDa: An introduction to spatial data analysis. 
Geographical Analysis, 38, 5–22.

Appelhans, T., Detsch, F., Reudenbach, C., & Woellauer, S. (2021). Mapview: Interactive viewing of
spatial data in R. https://CRAN.R-project.org/package=mapview

Ballas, D., Dorling, D., & Hennig, B. (2014). The social atlas of Europe. Policy Press.

Ballas, D., Dorling, D., & Hennig, B. (2017). The human atlas of Europe. Policy Press.



Bivand, Roger S. (1975). The economic geography of regional differentiation: Studies in Sogn og 
Fjordane, Norway [PhD thesis, The London School of Economics; Political Science (LSE)]. 
http://etheses.lse.ac.uk/id/eprint/3210

Bivand, Roger S. (1996). Scripting and toolbox approaches to spatial analysis in a GIS context. In 
M. Fischer, Henk Scholten, & D. Unwin (Eds.), Spatial analysis perspectives on GIS (pp. 39–52). 
Taylor; Francis.

Bivand, Roger S. (1997). Scripting and tool integration in spatial analysis: Prototyping local 
indicators and distance statistics. In Z. Kemp (Ed.), Innovations in GIS (pp. 127–138). Taylor; 
Francis.

Bivand, Roger S. (1998). Software and software design issues in the exploration of local 
dependence. The Statistician, 47, 499–508.

Bivand, Roger S. (2009). Applying measures of spatial autocorrelation: Computation and 
simulation. Geographical Analysis, 41, 375–384.

Bivand, Roger S. (2014). Geocomputation and open source software: Components and software 
stacks. In R. J. Abrahart & L. M. See (Eds.), Geocomputation (pp. 329–355). CRC Press. 
http://hdl.handle.net/11250/163358

Bivand, Roger S. (2020a). classInt: Choose univariate class intervals. https://CRAN.R-
project.org/package=classInt

Bivand, Roger S. (2020b). Progress in the R ecosystem for representing and handling spatial 
data. Journal of Geographical Systems. https://doi.org/10.1007/s10109-020-00336-0

Bivand, Roger S., Keitt, T., & Rowlingson, B. (2021). Rgdal: Bindings for the ’geospatial’ data 
abstraction library. https://cran.r-project.org/package=rgdal

Bivand, R. S., Millo, G., & Piras, G. (2021). A review of software for spatial econometrics in R. 
Mathematics, 9(11). https://doi.org/10.3390/math9111276

Bivand, Roger S., Pebesma, E., & Gomez-Rubio, V. (2013). Applied spatial data analysis with R, 
second edition. Springer, NY. https://asdar-book.org/

Bivand, Roger S., & Piras, G. (2015). Comparing implementations of estimation methods for 
spatial econometrics. Journal of Statistical Software, 63(1), 1–36. 
https://doi.org/10.18637/jss.v063.i18

Bivand, Roger S., & Rundel, C. (2021). Rgeos: Interface to geometry engine - open source (’GEOS’). 
https://cran.r-project.org/package=rgeos

Bivand, Roger S., Sha, Z., Osland, L., & Thorsen, I. S. (2017). A comparison of estimation methods 
for multilevel models of spatially structured data. Spatial Statistics. 
https://doi.org/10.1016/j.spasta.2017.01.002



Bivand, Roger S., & Wong, D. W. S. (2018). Comparing implementations of global and local 
indicators of spatial association. TEST, 27(3), 716–748. https://doi.org/10.1007/s11749-018-0599-
x

Bossche, J. van den, Jordahl, K., & Fleischmann, M. (2021). GeoPandas: Python tools for 
geographic data. GeoPandas. https://github.com/geopandas/geopandas

Brunsdon, C., & Comber, A. (2020). Opening practice: Supporting reproducibility and critical 
spatial data science. Journal of Geographical Systems. https://doi.org/10.1007/s10109-020-
00334-2

Cheshire, J., & Uberti, O. (2014). London: The information capital. Particular Books.

Cliff, A. D., & Ord, J. K. (1969). The problem of spatial autocorrelation. In A. J. Scott (Ed.), London 
papers in regional science 1, studies in regional science (pp. 25–55). Pion.

Cliff, A. D., & Ord, J. K. (1973). Spatial autocorrelation. Pion.

Dorling, D., & Ballas, D. (2011). Innovative ways of mapping data about places. In J. Mason & A. 
Dale (Eds.), Understanding social research: Thinking creatively about method (pp. 150–164). 
SAGE Publications Ltd. https://doi.org/10.4135/9781446287972.n10

Dougenik, J. A., Chrisman, N. R., & Niemeyer, D. R. (1985). An algorithm to construct continuous 
area cartograms. The Professional Geographer, 37, 75–81.

Duncan, O. D., Cuzzort, R. P., & Duncan, B. (1961). Statistical geography: Problems in analyzing 
areal data. Free Press.

ESRI. (1998). ESRI shapefile technical description. Environmental Systems Research Institute, 
Inc., Redlands. https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

Evenden, G. I., Rouault, E., Warmerdam, F., Evers, K., Knudsen, T., & Butler, H. (2022). PROJ. 
https://doi.org/10.5281/zenodo.5884395

Fisher, W. D. (1958). On grouping for maximum homogeneity. Journal of the American Statistical
Association, 53(284), 789–798. https://doi.org/10.1080/01621459.1958.10501479

Gastner, M. T., & Newman, M. E. J. (2004). Diffusion-based method for producing density-
equalizing maps. Proceedings of the National Academy of Sciences, 101(20), 7499–7504. 
https://doi.org/10.1073/pnas.0400280101

Gillies, S., Buffat, R., & Arnott, J. (2021). Fiona reads and writes geographic data files. Toblerity. 
https://github.com/Toblerity/Fiona

Gillies, S., Taves, M., & Arnott, J. (2021). Manipulation and analysis of geometric objects in the 
cartesian plane. Toblerity. https://github.com/Toblerity/Shapely

Hijmans, R. J. (2022). Raster: Geographic data analysis and modeling. https://CRAN.R-
project.org/package=raster



Holt-Jensen, A. (2019). Transformations in the discipline of geography experienced over 60 years
by a norwegian geographer. Norsk Geografisk Tidsskrift - Norwegian Journal of Geography, 73(4),
229–244. https://doi.org/10.1080/00291951.2019.1617346

Iliffe, J., & Lott, R. (2008). Datums and map projections: For remote sensing, GIS and surveying. 
CRC.

ISO. (2019). ISO 19111:2019 geographic information – referencing by coordinates. 
https://www.iso.org/standard/74039.html

Jeremíasson, K. (1976). Basic program for point-density measurements using a Wang 2200C 
minicomputer with digitizer. Computers & Geosciences, 2(4), 507–508. 
https://doi.org/10.1016/0098-3004(76)90042-X

Jeworutzki, S. (2020). Cartogram: Create cartograms with R. 
https://CRAN.R-project.org/package=cartogram

Johnston, R. (2019). On (auto)biography and the history of geography. Norsk Geografisk 
Tidsskrift - Norwegian Journal of Geography, 73(4), 245–250. 
https://doi.org/10.1080/00291951.2019.1696399

Lovelace, R., Nowosad, J., & Muenchow, J. (2019). Geocomputation with R. Chapman and 
Hall/CRC. https://geocompr.robinlovelace.net/

Marx, R. W. (1986). The TIGER system: Automating the geographic structure of the United 
States census. Government Publications Review, 13(2), 181–201. https://doi.org/10.1016/0277-
9390(86)90003-8

Meeteren, M. van. (2019). The pedagogy of autobiography in the history of geographic thought. 
Norsk Geografisk Tidsskrift - Norwegian Journal of Geography, 73(4), 250–255. 
https://doi.org/10.1080/00291951.2019.1696397

Nowosad, J. (2019). ’CARTOColors’ palettes. https://CRAN.R-project.org/package=rcartocolor

Openshaw, S., & Taylor, P. (1979). A million or so correlation coefficients: Three experiments on 
the modifiable areal unit problem. In N. Wrigley (Ed.), Statistical applications in the spatial 
sciences (pp. 127–144). Pion.

Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R 
Journal, 10(1), 439–446. https://doi.org/10.32614/RJ-2018-009

Pebesma, E. (2020). Sf: Simple features for R. https://cran.r-project.org/package=sf

Pebesma, E. (2021). Stars: Spatiotemporal arrays, raster and vector data cubes. https://CRAN.R-
project.org/package=stars

Pebesma, E., & Bivand, R. S. (2005). Classes and methods for spatial data in R. R News, 5(2), 9–13.

Pebesma, E., & Bivand, R. S. (2021). Sp: Classes and methods for spatial data. https://cran.r-
project.org/package=sp



Pebesma, E., Mailund, T., & Kalinowski, T. (2021). Units: Measurement units for r vectors. 
https://CRAN.R-project.org/package=units

R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for 
Statistical Computing. https://www.R-project.org/

Renfro, C. G. (2009). Econometric software. In D. A. Belsley & E. Kontoghiorghes (Eds.), 
Handbook of computational econometrics (pp. 1–53). John Wiley & Sons.

Rey, S., & Anselin, L. (2007). PySAL: A python library of spatial analytical methods. The Review 
of Regional Studies, 37(1), 5–27. http://journal.srsa.org/ojs/index.php/RRS/article/view/134

Rey, S., & Anselin, L. (2010). PySAL: A python library of spatial analytical methods. In M. M. 
Fischer & A. Getis (Eds.), Handbook of applied spatial analysis: Software tools, methods and 
applications (pp. 175–193). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-
03647-7\_11

Rey, S., Anselin, L., Amaral, P., Arribas-Bel, D., Cortes, R. X., Gaboardi, J. D., Kang, W., Knaap, E., 
Li, Z., Lumnitz, S., Oshan, T. M., Shao, H., & Wolf, L. J. (2021). The PySAL ecosystem: Philosophy 
and implementation. Geographical Analysis. https://doi.org/10.1111/gean.12276

Rey, S., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J. (2015). Open geospatial 
analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. 
https://doi.org/10.3390/ijgi4020815

Rey, S., & Wolf, L. J. (2021). Classification schemes for choropleth mapping. PySAL. 
https://github.com/pysal/mapclassify

Rey, S., Wolf, L. J., Arribas-Bel, D., & Kang, W. (2021). Statistics and classes for exploratory spatial
data analysis. PySAL. https://github.com/pysal/esda

Rey, S., Wolf, L. J., Gaboardi, J., Oshan, T., & Arribas-Bel, D. (2021). Core components of python 
spatial analysis library. PySAL. https://github.com/pysal/libpysal

Robinson, W. S. (1950). Ecological correlations and the behavior of individuals. American 
Sociological Review, 15, 351–357.

Rouault, E., Warmerdam, F., Schwehr, K., Kiselev, A., Butler, H., & Łoskot, M. (2022). GDAL. 
https://doi.org/10.5281/zenodo.5884352

Schuurman, N. (2000). Trouble in the heartland: GIS and its critics in the 1990s. Progress in 
Human Geography, 24(4), 569–590. https://doi.org/10.1191/030913200100189111

Scott, L. M., & Janikas, M. V. (2010). Spatial statistics in ArcGIS. In M. M. Fischer & A. Getis 
(Eds.), Handbook of applied spatial analysis: Software tools, methods and applications (pp. 27–
41). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-03647-7\_2

Shepherd, J., Westaway, J., & Lee, T. (1974). A social atlas of London. Clarendon Press.

Snow, A. D., Whitaker, J., Cochran, M., & Bossche, J. van den. (2021). Python interface to PROJ. 
pyproj4. https://github.com/pyproj4/pyproj



Tennekes, M. (2018). tmap: Thematic maps in R. Journal of Statistical Software, 84(6), 1–39. 
https://www.jstatsoft.org/v084/i06

Tennekes, M. (2021). Tmap: Thematic maps. https://CRAN.R-project.org/package=tmap

Thatcher, J., Bergmann, L., Ricker, B., Reuben Rose-Redwood, (Landscapes. of I. R. C., O’Sullivan, 
D., Barnes, T. J., Barnesmoore, L. R., Imaoka, L. B., Burns, R., Cinnamon, J., Dalton, C. M., Davis, C.,
Dunn, S., Harvey, F., Jung, J.-K., Kersten, E., Knigge, L., Lally, N., Lin, W., … Young, J. C. (2016). 
Revisiting critical GIS. Environment and Planning A: Economy and Space, 48(5), 815–824. 
https://doi.org/10.1177/0308518X15622208

Turner, H. (2020). Moving forwards greater equity and inclusion in the R community. 
https://youtu.be/BbpkKzz71EY

Van Rossum, G., & Drake, F. L. (2009). Python 3 reference manual. CreateSpace.

Viry, M. (2015). Easy construction of continuous cartogram with GeoPandas / GeoDataFrame. 
https://github.com/mthh/cartogram_geopandas


