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Abstract  

As the basic technology of human action recognition, pose estimation is attracting more 

and more researchers' attention, while edge application scenarios pose a higher 

challenge. The authors propose a lightweight multi-person pose estimation scheme to 

meet the needs of real-time human action recognition on the edge end. This scheme 

uses AlphaPose to extract human skeleton nodes and adds ResNet and Dense 

Upsampling Revolution to improve its accuracy. Meanwhile, YOLO is used to enhance 

AlphaPose’s support for multi-person pose estimation and to optimize the proposed 

model with TensorRT. In addition, the authors set Jetson Nano as the Edge AI 

deployment device of the proposed model and successfully realize the model migration 

to the edge end. The experimental results show that the speed of the optimized object 

detection model can reach 20 FPS, and the optimized multi-person pose estimation 

model can reach 10 FPS. With the image resolution of 320×240, the model’s accuracy 

is 73.2%, which can meet the real-time requirements. In short, our scheme can provide 

a basis for a lightweight multi-person action recognition scheme on the edge end. 

1. INTRODUCTION  

In recent years, human action recognition technology based on computer vision has been 

widely used in the health, game, and medical areas (Kong & Fu, 2022). According to relevant 

research and market reports, it was estimated that by 2023, the share of the digital fitness 

market in the entire sports fitness field will reach 27.4 billion dollars (Jegham et al., 2020). 

Figure 1 presents a digital fitness sample, which is a mobile-oriented intelligent fitness 

software. The AI fitness trainer in the software can automatically identify the user's actions 

and give suggestions. This new fitness method is popular with young people. Meanwhile, 

the development of these mobile-oriented human action recognition applications needs the 

support of human action recognition technology and Edge AI technology. Some problems 
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in these two aspects restrict the development of this trend. Among them, in human motion 

recognition, the general model is mainly slow in human multi-object detection (Zhang et al., 

2019). The model size makes the model migration to the mobile and the edge end more 

challenging. Regarding Edge AI, the main problems are limited hardware resources and poor 

software tool-chain compatibility (Cao et al., 2016). 

 

Fig. 1. Illustration of intelligent fitness software 

In this regard, the authors first propose a hybrid human pose estimation model based on 

YOLO and AlphaPose to improve support for multiple human objects. Secondly, they 

enhance the structure of the model to obtain the trade-off between the accuracy and speed of 

the model. Finally, the authors compare and select a suitable Edge AI device, and migrate 

the lightweight model onto it to meet the need for the model to run in real-time on the edge 

end. Specifically, in optimizing the object detection model and multi-person pose estimation 

model, the authors mainly adjust the network structure of the model to improve the model 

speed. Meanwhile, the lightweight model with smaller model parameters is preferred in the 

consideration. The hardware, software, and performance are mainly compared in terms of Edge 

AI device performance analysis. All these specific evaluation criteria are limited to common 

indicators. For example, hardware includes CPU, GPU, memory, power consumption, etc.  

The software consists of an operating system, SDK, and AI framework. Performance 

includes the frame rate. The rest of the paper is organized as follows: Section 2 reviews the 

research related to human action recognition and Edge AI. Section 3 presents the proposed 

scheme's overall design framework and each component's functions. Section 4 compares and 

analyzes the results of the proposed method in object detection and multi-person pose 

estimation. Finally, the conclusions are discussed. 

2. REVIEW OF RELATED LITERATURE AND STUDIES 

In this section, the authors first review related studies on human pose estimation, which 

provides essential support for the scheme. In multi-person pose estimation, the top-down 

method represented by AlphaPose will be highlighted. In Sec. 2.2 the authors mainly introduce 

the development status of Edge AI and the related work of the current mainstream 

lightweight Edge AI devices. 
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2.1. Human pose estimation 

Human pose estimation is the primary technology in human action recognition, and its 

accuracy directly affects action recognition performance. According to the different data 

modes, human pose estimation methods can be divided into four categories: appearance-

based, depth-based, optical flow-based, and skeleton-based (Chung et al., 2022). Skeleton-

based schemes have recently attracted more researchers' attention due to their high 

recognition rate, fineness, and robustness (Sipola et al., 2022). Specifically, according to the 

processing sequence of human body parts, represent methods include two research branches: 

bottom-up and top-down (Gamra & Akhloufi, 2021).  

Bottom-up methods are also known as part-based methods, represented by OpenPose 

(Chen et al., 2020). These methods first detect all human skeleton nodes in the image and 

then reassemble them into an individual human skeleton through the association between 

skeleton nodes. Pishchulin et al. (2016) proposes that the body parts of all people can be first 

detected by DeepCut and then tagged, filtered, and assembled by integral linear 

programming of these parts. A more substantial part detector based on ResNet (Tran et al., 

2022) and a better incremental optimization strategy is proposed by (Gautam et al., 2020). 

Openpose introduces Part Affinity Fields (PAFs) to encode association scores between body 

parts with individuals and solves the matching problem by decomposing it into a set of 

bipartite matching subproblems. Kreiss et al. (2021) propose a method to enhance the 

correlation of human skeleton nodes by using a Part Intensity Field and a Part Association 

Field to locate and correlate body parts, respectively. Although the bottom-up method has 

proved its good performance because it mainly considers the local area of the image, their 

body part detectors may not be able to meet this challenge when the number of human 

objects in the image is small. The top-down methods have two stages, represented by 

AlphaPose (Fang et al., 2022). They first detect the human object in the image and mark the 

rectangular bounding box of each human area to eliminate the interference of non-human 

entities; Then, the skeleton points of each human body region are detected. Fang et al. (2017) 

propose a symmetric spatial transformer network to solve the problem of imperfect bounding 

boxes with huge noise given by human body detectors. Mask R-CNN (Nguyen et al., 2022) 

extends Faster R-CNN (Akshatha et al., 2022) by adding a pose estimation branch in parallel 

with the existing bounding box recognition branch after ROIAlign, enabling end-to-end 

training. Chen et al. (2018) use a feature pyramid network to localize simple joints and a 

refining network that integrates features of all levels from the previous network to handle 

complex joints. A simple-structured network (Xiao et al., 2018) with ResNet (Alnuaim et al., 

2022) as the backbone and a few deconvolutional layers as upsampling head show effective 

and competitive results. Sun et al. (2019) present a robust high-resolution network, where a 

high-resolution subnetwork is established in the first stage, and high-to-low-resolution 

subnetworks are added one by one in parallel in subsequent steps, conducting repeated multi-

scale feature fusions. Bertasius et al. (2019) extend from images to videos and propose a 

method for learning pose warping on sparsely labeled videos. Khirodkar et al. (2021) offer 

a Multi-Instance Pose Network (MIPNet) that predicts multiple 2D pose instances within a 

bounding box. It can overcome the limitations of crowded scenes with occlusions. The top-

down methods can achieve remarkable precision on popular large-scale benchmarks. 

Moreover, it can further improve the rate and accuracy of pose estimation by optimizing the 

detector at the human object detection stage.  
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2.2. Edge AI 

With the development of 5G, big data, and the industrial internet, the sinking of 

computing resources represented by edge computing has become a new development trend, 

which makes it possible for more artificial intelligence applications to appear at the edge 

(Shiraishi, 2020). With the support of Edge AI software technology and Edge AI hardware 

devices, it is possible to build a lightweight edge vision scheme that can meet the requirements 

of real-time data processing and response with low delay, and it will also provide critical 

support for the realization of edge oriented human pose estimation technology. In response, 

major hardware manufacturers have launched their own Edge AI hardware platform solutions. 

Figure 2 shows three common Edge AI devices. The GPU-based Jetson Nano launched by 

Nvidia has a sound software ecology (Süzen et al., 2020). The TPU-based Coral series 

development boards established by Google specifically for deep learning have high 

performance (Park et al., 2020). The latest version of Raspberry Pi (Dewangan & Sahu, 2021), 

which is widely used in the Internet of Things, has dramatically improved its hardware 

performance and can also provide good hardware support for Edge AI applications. Many 

computer vision schemes based on Edge AI have been successfully applied to various image 

and natural language processing scenes. However, Edge AI is still in its infancy. The 

software and hardware ecology are messy, the equipment performance is different, and the 

toolchain from data collection to model deployment and reasoning of each scheme still needs 

to be clarified. 

 

Fig. 2. Illustration of Edge AI devices 

To quickly and accurately deploy the human pose estimation model on the low-power 

and low-cost hardware platform, we focus on the optimization and migration of the human 

pose estimation model. It proposes to build a lightweight multi-person pose estimation 

scheme based on human skeleton nodes. Optimizing the object detection and pose  

estimation models allows the project to quickly obtain the image coordinates of human pose 

skeleton nodes, laying the foundation for human action recognition. Meanwhile, the system 

will use the model optimization framework to migrate the model to the Edge AI device. 

3. METHODOLOGY 

In this section, the authors first introduce the scheme's primary framework, which 

consists of YOLO and AlphaPose. Sections 3.2 and 3.3 present the optimization methods for 

object detection and multi-person pose estimation models, respectively. These optimization 

methods are processed based on the optimization framework-TensorRT. 
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3.1. Scheme design 

 

Fig. 3. Illustration of human action recognition scheme & our scheme 

In Figure 3, the action recognition scheme based on human skeleton nodes includes three 

stages: the human object detection stage, the human skeleton node extraction stage, and the 

human action recognition stage. In the human object detection stage, YOLO series models 

are lightweight object detection models widely used on the mobile and edge end. They have 

achieved good performance in terms of mean AP, frame rate, and other indicators. Therefore, 

we used YOLO to process human object detection tasks. In addition, we used off-the-shelf 

YOLO, which was trained on the COCO dataset, and it already worked well in our scheme. 

In the multi-person skeleton node extraction stage, AlphaPose is superior to the comparison 

model in the AP@ indicator, as shown in Table 1. The AP@ represents the detection 

accuracy when Intersection Over Union (IOU) is in a specific value. Therefore, the authors 

use AlphaPose as the base model of the multi-person pose estimation scheme. 

Tab. 1. Comparison of multi-person pose estimation models 

Model AP@0.5:0.95 AP@0.5 AP@0.75 

OpenPose 62.3 84.4 66.7 

Detection 67.2 88.0 73.1 

AlphaPose 73.3 89.2 79.1 

 

To improve the performance of the scheme, the authors reconstruct the network of 

AlphaPose. The original AlphaPose uses Fast_Reset50 as the backbone to extract skeletal 

nodes from the image, and we replace it with ResNet. In addition, we adopt the Dense 

Upsampling Convolution (DUC) (Sediqi & Lee, 2021) to upsample the extracted features, 

as shown in Figure 4. The DUC introduces a deformable convolution module and 

deformable RoI pooling module to improve the model transformation capabilities of CNN. 

Both are based on adding additional offsets to the module at spatially sampled locations and 

learning the offsets from the target task without additional supervision. The new modules 

can easily replace the normal modules in existing CNN and can be trained end-to-end  
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by standard back-propagation to produce deformable convolutional networks. The incor-

poration of DUC makes the improved AlphaPose more flexible in extracting skeleton 

features and can significantly reduce the scale of the model. We add three DUC modules to 

ResNet and used a 2D convolutional layer in 1×1 size to generate the heatmap. In addition, 

we first perform 2D convolution on a feature map of size c×h×w in the DUC module and 

then reshape it to c'×2h×2w via PixelShuffle (Liu et al., 2023). 

 

 

Fig. 4. The network architecture of our pose estimation model  

3.2. Model optimization 

TensorRT was mainly used to optimize YOLO and AlphaPose, optimization platforms 

and AI implementation, making NVIDIA for GPUs (Jeong et al., 2022). In Figure 5, it is 

both an inference optimization engine and a runtime execution engine. It provides optimal 

support for the inference phase of the model at the graphics optimization, operator 

optimization, memory optimization, and Int8 calibration levels. Specifically, it benefits from 

the fact that after training the neural network, TensorRT can compress, optimize and deploy 

the network at runtime without the overhead of a framework. TensorRT can also improve 

the latency, throughput, and throughput of the network through combining layers, kernel 

optimization selection, as well as performing optimization and conversion to optimal matrix 

math methods based on a specified precision. We first fine-tuned the network structure of 

the model by pruning and quantization and then further optimized the model with TensorRT.  
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Fig. 5. Model optimization processing flow of TensorRT 

3.2.1. Optimization of object detection model 

In the YOLO series models (Ge et al., 2021), YOLOv4 outperforms YOLOv3 in terms 

of detection speed and accuracy and is comparable to YOLOv-5 in terms of real-time 

performance. This article uses YOLOv4-tiny-416, a lightweight version of YOLOv4, as the 

optimization target. Its parameter size is 24.3MB. YOLOv4-tiny-416 can achieve a good 

balance between the speed and accuracy of detection. The specific optimization process is 

shown in Figure 6. In the Tensor dimension initialization phase, set the layer of network 

‘030_ Revolutionary = [h//32, w//32, c]’, and ‘ 037_ Evolutionary = [h//16, w//16, c]’. The 

h and w represent the height and width of the input image, respectively. The c represents the 

channels of the input image, and the “//” represents an integer division operation. After 

conversion, we propose the optimized model YOLOv4-opt, and its parameter is 27.7MB. 

 

 

Fig. 6. Object detection model optimize processing 

After the human object detection results are obtained, they need to be serialized. First, 

the result is converted into a two-dimensional tensor list. T_list = [[x1，y1，h1，w1，score1], 

[x2，y2，h2，w2，sc2]，...，[xi，yi，wi，hi，scorei]]， where [xi，yi，hi，wi，scorei] 

represents the structural data of the ith human object, x, and y represent the abscissa and 

ordinate of the image at the upper left corner of the human body prediction frame, 

respectively. The h and w represent the height and width of the prediction frame, 

respectively. The score represents the confidence level of the human body. In addition, we 

transform the original image Im_t into floating point 32-bit tensor data Im_t., which performs 

normalization operations, as in Formula (1), (2), and (3). 
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 𝐼𝑚_𝑡[0]+= −0.406         (1) 

 𝐼𝑚_𝑡[1]+= −0.457         (2) 

 𝐼𝑚_𝑡[2]+= −0.480         (3) 

Among them, the Im_t[0] is the R-Channel data of Im, the Im_t[1] is the G-Channel data of 

Im, and the Im_t[2] is the B-Channel data of Im. According to T_list, the human body region 

image is cut from the original image and arranged from high to low according to the score 

to obtain the serialized image list, which realizes the serialization of human body images and 

improves the data interaction efficiency between the object detection model and the human 

pose skeleton node detection model. According to T_lis, we cut the human body region images 

from the original images and arranges them in descending order according to the score to 

obtain the serialized image list. This serialization method of human body images improves 

the efficiency of data interaction between the object detection model and the human pose 

estimation model.  

3.2.2. Optimization of multi-person pose estimation model  

The original model parameter size of AlphaPose is 238.9MB, and the optimization 

method is shown in Figure 7. In the human pose estimation model, we initialize the input 

dimension of the dummy network layer and set it to the tensor type (1,3,Hdummy,Wdummy,). 

Among them, 1 represents the batch size, 3 represents the number of image channels, and 

Hdummy and Wdummy represent the normalization scale of the input image. We set Hdummy =224 

and Wdummy =160. An onnx network node is created for the dimension-initialized human pose 

estimation model, and the input-output network layer of it is customized, with the input layer 

set to "input1" and the output layer formed to "output1". We create the model calculation 

graph and set its input dimension to the tensor type (1,3,Hd,Wd). The 1 represents the batch 

size, and 3 represents the number of image channels, Wd and Hd represent the normalized 

scale of the input image of the network layer. In our paper, we set Wd = 160, Hd = 224, and 

generate the optimization model AlphaPose-opt, with 184.5MB of model parameter size. 

 

 

Fig. 7. Pose skeleton node detection model optimizes processing 
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3.3. Model migration 

There are significant differences in hardware, software, and performance between the 

various types of Edge AI devices; it needs the proper edge devices to make our model work 

well on the edge end. In Tables 2 and 3, the Jetson series device performs well in terms of 

performance and cost of trade-off. Therefore, we choose Jetson Nano as the hardware 

platform of the proposed model. 

Tab. 2. Comparison of Edge AI devices in hardware 

Edge AI 

Device 

General 

Processor 

AI 

Processor 

Peak 

Performance 

Memory 

Bandwidth 

Power 

Consumption 
Cost 

Raspberry 

Pi(4B) 

CPU:4*BCM2711 

CPU:4*Cortex-

A73 

Video Core 

VI 
735 GOP/s 75GB/s 7.5 Watts $50  

Coral Dev 

Board 

CPU:4*Cortex-

A53 GPU: 

GC7000 Lite 

TPU 4 TOP/s 34 GB/s 
2 TOPS per 

watt 
$130  

Jetson 

Nano 

CPU:4*Cortex-

A57 

128*CUDA 

GPU 
472 GOP/s 25.6 GB/s 5-10 Watts $100  

Tab. 3. Comparison of Edge AI devices in software and performance 

Edge AI 

Device 

Operating 

System 
SDK 

AI 

Framework 
Data type Frequency 

Raspberry 

Pi(4B) 

Ubuntu CentOS 

Windows 

Raspbian 

Raspberry Pi 

OS 

TensorFlow, 

Caffe, 

PyTorch, 

Paddle Lite 

FP16, Int8 
Low 

(<10fps) 

Coral Dev 

Board 

Mendel Linux 

OS 

Edge TPU 

API 

Tensor Flow 

Lite 

FP32, FP16, 

Int8 
Moderate 

(>10fps&<20fps) 

Jetson Nano NVIDIA L4T JetPack SDK 

TensorFlow, 

Pytorch, 

MXNet, Caffe 

FP32, FP16, 

Int8 

High 

(>20fps & 

<40fps) 

The operation of TensorRT for model migration consists of two main phases: build and 

deployment. The Build phase involves the conversion of the model from another model form 

to a TRT form. During the model conversion, the inter-layer fusion and accuracy calibration 

of the optimization mentioned above is completed. The output of this step is an optimized 

TRT model for the specific GPU platform and network model, serialized to disk or memory in 

the form of a plan file. The plan file from the previous step is first deserialized, a Runtime Engine 

is created, and the inference task can then be executed. In our paper, YOLO and STGCN are 

built in the PyTorch framework and converted into TRT models using ONNX intermediate 

conversions, as shown in Figure 8. After optimization, the model can reduce the model’s 

parameters by 16%. 
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Fig. 8. TensorRT model migration processing 

4. EXPERIMENT AND ANALYSIS 

The hardware environment used in the experiment is the NVIDIA Jetson Nano embedded 

development board, with 4-core 64bit ARM CPU, 128-core integrated NVIDIA GPU, 4GB 

DDR4 memory, and an apparent size of 80mm×100mm. The software environment is 64bit 

Ubuntu 18.04LTS, and the main tools relied on include OpenCV 4.5.1, Torch 1.7.0, and 

TensorRT 7.1.3. 

The experiment is mainly divided into two parts. The first part compares the current 

widely used YOLO series model with the optimized YOLOv4-opt, and the second part 

compares the current typical lightweight attitude estimation model with the optimized 

AlphaPose-opt. Specifically YOLOv3-spp-416, YOLOv4-tiny-416, YOLOv5s, YOLOv6s, 

and YOLOv7-tiny. Meanwhile, Pose, OpenPose, trt_Pose, Tf Posert, HyperPose. 

4.1. Dataset and Evaluation Metric 

The experimental test data comes from the public dataset Microsoft COCO dataset and 

UR Fall Detection dataset [31]. The first one is for YOLOv4-tiny-416-opt, and the other is 

for Pose_opt. The UR Fall Detection dataset is a commonly used human fall behavior dataset 

that can be used for the experimental analysis of the object detection model and pose skeleton 

node detection model. In out paper, the original dataset is expanded by using three image 

conversion methods: symmetrical inversion, rotation, and brightness transformation, and 

finally, 100 human behavior videos are obtained, with the video resolution adjusted to 

320×240, and the video frame rate is 30FPS. 

We select two evaluation indexes that reflect the detecting object detection model and 

the attitude estimation model to evaluate the improved model. The first is the average 

precision mean (mAP), which is calculated from the average precision (AP), as shown in 

Formula (4) and (5). Where Nc represents the number of categories, AP represents the 

average precision of different types. After getting the AP values of each class, average them 

to get mAP. The second is the frame rate (FPS), which is usually used to balance the real-

time performance of the model. It represents the number of pictures the neural network can 

process per second. 
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 𝐴𝑃 = ∫ 𝑃(𝑅)𝑑𝑅
1

0
            (4) 

 𝑚𝐴𝑃 =
∑𝑃𝐴

𝑁𝑐
             (5) 

4.2. Object detection model performance analysis 

In Table 4, the YOLOv4-opt has a detection frame rate of 20.3 FPS, 2.14 times that of 

the original model, and has little difference from other comparison methods in terms of mAP. 

The frame rate of YOLOv6s and YOLOv7-tiny can reach 10 frames/s, and YOLOv7-tiny is 

better than YOLOv4-tiny-416 in terms of the average frame rate. However, due to the 

complexity of deploying YOLOv7-tiny on JetsonNaon, it needs better support for edge 

devices. The mAP of YOLOv3-spp-416 is better than YOLOv4-opt, but its detection frame 

rate is only 3.8 frames/s, which cannot meet the real-time requirements. Therefore, considering 

the comprehensive performance of the model in terms of detection accuracy and frame rate, 

our model performs well in all comparison algorithms and applies to low-power embedded 

development boards. 

Tab. 4. Performance comparison of object detection models 

Model FPS mAP Image Resolution 

YOLOv3-spp-416 3.8 85.5 320×240 

YOLOv4-tiny-416 9.5 83.3 320×240 

YOLOv5s 6.7 82.4 320×240 

YOLOv6s 13.0 83.0 320×240 

YOLOv7-tiny 14.8 84.3 320×240 

YOLOv4-opt (ours) 20.3 83.1 320×240 

4.3. Multi-person pose estimation performance analysis 

In Table 5, the detection frame rate of the AlphaPose-opt is 1.5 times that of the original 

model, and the frame rate reaches 9.8 FPS while maintaining the same mAP. Therefore, the 

AlphaPose-opt has a certain degree of real-time. Meanwhile, the AlphaPose-opt has a better 

detection frame rate and average accuracy than OpenPose. The mAP of OpenPose is higher 

than that of trt-Pose, and the detection frame rate is reduced to 1/2 of trt-Pose, but the image 

resolution is 224×224. The mAP of TF-Pose is better than our model, but its detection frame 

rate is low, so it does not have high practicability. The all-around performance of HyperPose 

is consistent with AlphaPose-opt, and both have high detection accuracy and practicability. 

Therefore, our model has a high application value on the edge end. 
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Tab. 5. Performance comparison of pose skeleton node detection models 

Model FPS mAP Image Resolution 

Pose 6.5 74.3 320×240 

OpenPose 3.2 66.7 320×240 

trt-Pose 5.4 62.6 224×224 

TF-Pose 4.6 72.6 320×240 

HyperPose 11.3 69.5 320×240 

AlphaPose-opt(ours) 9.8 73.2 320×240 

5. CONCLUSIONS 

The authors focused on the multi-person action recognition scenarios on the edge end. 

They propose a lightweight hybrid model based on human skeleton nodes to solve the difficulty 

of the AI model running in a limited resource environment. Their scheme adopts the 

combination of YOLO and AlphaPose to process the multi-object and human skeleton node 

detection task, respectively. Meanwhile, the authors realize the light weight of the model by 

improving the model structure and optimizing the framework, and successfully migrating 

the model to Jetson Nano. The experimental results show that the proposed method has high 

real-time accuracy and can provide a basis for human action recognition on the edge end. 

However, the solution has some limitations, mainly: 1) the accuracy of the optimized 

human pose estimation model is not yet high enough and the frame rate is easily affected by 

the number of detected people, so the model is suitable for scenarios with a small number of 

people and a simple environment. 2) the resolution of the input video that the solution can 

handle is low, so it is more suitable for coarse-grained human pose estimation applications. 

Therefore, future research will continue on multi-target local occlusion, anti-light 

changeability, and complex environment adaptability to enhance the model's stability and 

robustness.  
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