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Abstract 

In the paper, the authors present the analysis of implementation of IoT system for road 

quality analysis. The proposed system was prepared for edge processing, on device.  

It allows to reduce the amount of data sent to cloud computing aggregation subsystem, 

sending only 2.5% of the original data. Several algorithms for road quality analysis 

were implemented on a real device and tested under real conditions. The system was 

compared with the state-of-the-art offline processing approach and showed the same 

accuracy on a set of known road artefacts, while detecting 92% of the artefacts recognized 

by the original cloud computing processing system. 

1. INTRODUCTION 

The number of cars and the size of the road network are steadily increasing, but it is very 

common for roads to be inadequately maintained, hence they deteriorate, resulting in a 

decrease of travel comfort. The report from 2022 published by General Direction of Roads 

and Motorways in Poland (GDDKiA) showed that at the end of 2020, 25.1% of roads were 

in the warning state, while 8.2% was marked as bad (Generalna Dyrekcja Dróg Krajowych 

i Autostrad, 2022). This is however only a part of the problem because the report lists only 

the major roads. Those which are maintained by the territorial government units are even 

worse, for example, as is shown in the report of Hrubieszów region (Powiatowy Zarząd Dróg 

w Hrubieszowie, 2022). 

There would be an interesting solution to prepare the Internet of Things (IoT) system, 

where the user can provide information about road quality and access such information, for 

example to avoid roads which are in a bad state. More importantly, a low-cost embedded 

type of device can be used as a base for a continuous monitoring system improving 

maintenance interventions with the respect to the conditions and the overall maintenance 

budget. 

The issue of finding the potential problems in the road surface, e.g. potholes or surface 

degradation points, as well as elements of the road which may cause the decrease of driver 

comfort, especially by using mobile devices and crowdsourcing is a problem being currently 

                                                           
* Lublin University of Technology, Faculty of Electrical Engineering and Computer Science,  

Department of Computer Science, Poland, m.badurowicz@pollub.pl 
** Lublin University of Technology, Faculty of Electrical Engineering and Computer Science,  

Department of Computer Science, Poland, sebastian.lagowski@pollub.edu.pl 

https://orcid.org/0000-0003-2249-4219


16 
 

under serious work by many researchers in multiple countries, since at least 2008 (Mohan et 

al., 2008). 

In this paper, the authors are willing to answer if there is a possibility to employ road 

artefact detection directly on the IoT acquisition device, thus limiting the amount of data 

being sent to the central processing system, if the already implemented algorithms are able 

to work in the streaming processing mode, and what will be their accuracy. The authors 

previously worked with similar systems, where all the processing was performed in the cloud 

computing system, using smartphones only as a data acquisition devices. 

2. RELATED WORKS 

The concept of using IoT systems to analyze the road condition by applying either 

cameras or accelerometers has been discussed with the major focus on smartphones (Astarita 

et al., 2012). The works range from simple thresholding (Nguyen et al., 2019), through 

different filtering methods (Mednis et al., 2011), dynamic time warping (Singh et al., 2017), 

usage of fuzzy methods (Badurowicz et al., 2020), and finally – Machine Learning 

approaches, especially based on Support Vector Machines (Vamsee et al., 2017), but also 

neural networks of various kinds (Gonzalez et al., 2017). Most of the proposed solutions are 

used online, sending the data to the global processing system (Astarita et al., 2012), where 

the analysis is being performed, thus treating a smartphone as a kind of IoT device. 

The usage of smartphones is a good all-in-one package solution as the device is already 

equipped with required sensors (accelerometer, gyroscope), but also communication means 

(3G/4G modem) and some kind of user interface. However, this solution is more expensive 

than dedicated IoT-class device. 

The concept of online processing system is problematic in one situation, namely when 

considering the amount of data being sent over the network to the processing system. For 

such systems, the frequency of data acquisition ranges from 10 Hz to 100 Hz, where each 

data packet includes information on acceleration, orientation, time and location (Badurowicz 

& Cieplak, 2019), so that the final data packet can reach 50 -100 bytes. In combination with 

high-frequency systems it creates a data stream of at least 1 KB per second, where the 

overhead of a protocol such as MQTT is not so high (Pérez et al., 2021). For commercial 

data plans, this is not a lot, but when the system lacks 4G connectivity and has to use other 

means (e.g., LoRa), this amount of data to transmit is too much. Similar situation is with 4G 

M2M (Machine to Machine) connectivity, which is also very expensive. 

In an attempt to limit this and send only data about found road artefacts to the cloud system, 

some kind of processing can be implemented on the device. For example, a data packet can only 

be sent if the data stream is something resembling a road artefact pattern, but this requires 

processing directly on the IoT device, in what is known as “processing on the edge” fashion. 

Hopefully, smartphones are powerful enough to take advantage of even neural network-

based systems, while neglecting potential battery drain issues. However, everything changes 

when low-power devices are included. The authors (Badurowicz & Cieplak, 2019) 

previously discussed the concept of building a specialized low-power, low-cost device that 

could be attached to cars for crowdsourcing data analysis, in the form of devices built on 

ARM architecture. Such a concept has also been discussed by other authors (Loprencipe et 

al., 2021). Devices such as ESP8266 and its derivatives are popular and compelling when 
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considering the "embedded" category, but they are not sufficient to implement ML models, 

even after significant trimming. 

3. THE PROPOSED SOLUTION 

3.1. The hardware side 

Some of the algorithms which are discussed in this field, are currently taken into account 

to be implemented in streaming analytics fashion directly on the device, and are simple 

enough to be implemented on IoT embedded class devices. The authors decided to concentrate 

on ESP32, which is an embedded platform equipped with a dual-core XtensaLX6 processor 

at 240 MHz and 520 KB of RAM ( ESP32 Series Datasheet, 2023), which has an integrated 

Wi-Fi and Bluetooth LE connectivity, still staying in the low-cost zone of about $10 and 

may be programmed with open-source development tools (Czerwinski & Przylucki, 2016). 

This device, as the main processor, has been partnered with micro electromechanical 

Inertial Measurement Unit (IMU). It is a single chip multi-axis device that estimates linear 

accelerations and angular velocities, commonly by integrating accelerometer and gyroscope, 

often paired with magnetometer to perform conversion between local and global orientation 

systems. For the proposed system, the MPU-9250, a 9 degrees of freedom module has been 

used. The inertial module integrates the accelerometer and gyroscope (the inertial sensors), 

the magnetometer and a pressure module (barometer and thermometer) (Loprencipe et al., 

2021). The readings are digitized using the on-chip 16-bit ADC (analog to digital converter) 

and published to the ESP32 device using the I2C interface. 

To mark the position of the potential classified road artefact, the user’s physical position 

must be known. In order to achieve this, the NEO-6M-based GNSS (Global Navigation 

Satellite System) module has been used. It connects with the ESP32 device using the NMEA 

protocol over the UART (serial) communication interface. The developer states that 

positioning accuracy (kamami.co.uk, 2022) should be approximately 3 meters, which is 

adequate for a continuous road monitoring system, where workers should be sent to perform 

a maintenance at the final stage. 

The devices was mounted on a breadboard and made into a small-factor form of the size 

of about 10x10 centimeters. The power source was a car-mounted phone charger. 

3.2. The software side 

Usual algorithms used for thresholding-based search for road artefacts are Z-THRESH, 

Z-DIFF, QSUM-THRESH and G-ZERO (Nguyen et al., 2019). The authors (Badurowicz et 

al., 2020) previously  prepared a modified version of the Z-THRESH algorithm, the MOD-

Z-THRESH, which improved the accuracy up to 93% while decreasing the False Positive 

Rate (FPR) down to about 5%. On the basis of the above, the authors decided to implement 

MOD-Z-THRESH, QSUM-THRESH and G-ZERO for the “edge processing” variant of the 

device. The basic approach was to acquire the values of acceleration in the Z2 axis, which 

is the calculated reoriented axis perpendicular to the Earth’s surface, as well as to search for 

the values which are over a defined threshold. 

In the case of MOD-Z-THRESH, the threshold is dynamically calculated based on the 

standard deviation of the last N values and a constant, M. In the case of this research, the M 
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value of 4.3 has been decided, similarly to the previous approaches, while the N number was 

decided to be equal to 100. 

In the case of QSUM-THRESH, the square root of the sum of squares of all (X, Y, Z) 

accelerations must be above a static threshold. The value of 1.2 has been decided, based on 

earlier experiments. 

In the case of G-ZERO approach, the detection is marked when the values of all (X, Y, Z) 

acceleration are close to 0, which means the free fall of the measuring device. 

All algorithms have been implemented using the C++ language and the Arduino 

framework and were working directly on the ESP32 device. For communication with the 

GPS module, the TinyGpsPlus library (Hart, 2022) has been used, while using (Kono, 2020) 

library for communication to the MPU device. 

 

Fig. 1. The acquisition and processing device and its components 

4. EXPERIMENTAL RESULTS 

The experiment  goal was to understand if the edge processing variants of the algorithms 

are able to detect and save positions of the road artefacts. The experiment was performed in 

Lublin, Poland, on a track of 15 km of length, through different types of streets varying with 

their quality, as presented in Figure 2. The device has been stably mounted in the test car, 

Peugeot 207 SW under the passenger’s seat, to record vibrations measured as acceleration 

values when the car was driving over the different road artefacts. 

The device was accompanied by a second test device, a Nokia Lumia 820 smartphone 

equipped with the previous implementation of the author’s data acquisition software 

(Badurowicz et al., 2016), which will be used to cross-validate the results. 
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Fig. 2. The track of the experiment, as mapped on the map of Lublin, Poland (red) 

The system was prepared in an offline manner. The device was performing streaming 

analytics with implemented algorithms and saving the results to the internal flash memory 

to be read after the experiment. 

4.1. Known artefacts 

The first phase of the experiment was to analyze if the Edge-processing variants of the 

implemented algorithms are able to perform proper classification. The experimental track 

included the locations of 19 known locations, consisting of 12 speed bumps and 7 potholes. 

In the case of both MOD-Z-THRESH and QSUM-THRESH, all the known artefacts were 

detected by the system. In the Figure 3, where the positions of the known artefacts were 

marked with red pins, the fragment of the test track is presented, while the green circles are 

the positions of artefacts as detected by the MOD-Z-THRESH algorithm. 

The G-ZERO approach has not found any of the known artefacts; thus its results have 

been ditched in the following phases of the experiment. 

The important point is that, however, due to potential inaccuracy of the GNSS system, 

the classification was marked as positive if the location of the detected road artefact were in 

a circle of 10-meter radius of the known position of the road artefact. A value of 10 meters 

is based on the previous research (Badurowicz & Cieplak, 2019) and the approximate 

average value of reported smartphone-based GNSS system accuracy. 
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Fig. 3. Locations of the detected road artefacts (green) and known artefacts (red pins) 

4.2. Aggregation process and visualization 

The second problem is that even if a single road artifact is found, it can sometimes happen 

that this particular artefact can be detected multiple times. This issue was analyzed by the 

authors and can be seen in Figure 4 and also in Figure 3. 

In the case of the elevated pedestrian crossing presented in Figure 4, the algorithms are 

detecting both coming “up” and “down” the crossing – the “known” position is marked by 

a red circle, while the detections by smaller green circles. 

In the previous works, this was solved by aggregation – grouping together detections 

which are in close proximity to each other. A similar process was used in this experiment, 

where points were aggregated to a radius of 2 times the current GNSS system accuracy, as 

reported by the GNSS device itself. 

Finally, the two Edge variants of the algorithms, MOD-Z-THRESH and QSUM-

THRESH detected 557 and 267 road artefacts in total. 

When cross-validated against the previous implementations, the non-Edge variant of 

MOD-Z-THRESH detected 372 road artefacts when analyzing the data from the smartphone 

on the same road fragment, and 92.31% of detections were included in the detections from 

the Edge-processing variant. 

Finally, for cross-validation of the results, the geographical locations of the detected road 

artefacts have been plotted onto a satellite images of a resolution ranging from 10 to 15 

centimeters per pixel, as presented in Figure 5 and 6. Such images were used as a basis for 

a manual checkout where the authors visited the marked locations and visually confirmed 

the potholes (the three presented in Figure 5) and asphalt discontinuity (Figure 6). Thus, the 

satellite image may be a useful asset when presenting the road artefact report to the road 

operator or road work crew. 
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Fig. 4. Locations of the known road artefacts (red) and detected artefacts (green) 

4.3. Data transfer limitation 

The final amount of data, consisting only of locations of the detected road artefacts, 

current date and time, classification values and GNSS system local accuracy, for detected 

557 artefacts, measured only 194 bytes per single artefact and 108,058 bytes in total. The 

measurement of raw data amounted to 4,183,538 bytes, so the data volume to be transmitted 

to the central processing system was only 2.5% of the original, making it more accessible to 

sending over the M2M (Machine to Machine) GSM systems. 

During the experimental phase, the authors also calculated the average horizontal dilution 

of position (HDOP) as reported by the GNSS device, which was 1.068. This result is roughly 

calculated to be equal to 4.27 meters based on the device manufacturer’s specification. 
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Fig. 5. Locations of the detected road artefacts (green) on a satellite imagery 

 

Fig. 6. Locations of the detected road artefacts (green) on a satellite imagery 
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5. SUMMARY AND CONCLUSIONS 

The experiment confirmed that Edge variants of the algorithms are able to detect as many 

road artefacts as their non-Edge variants, thus making the implementation of the algorithms 

directly on the IoT device possible. 

The system is not perfect. For the time being, the presented solution used three algorithms 

already in use, with a low acquisition frequency. The higher frequency must be analyzed in 

the further experiments. The data that is saved as a result of Edge processing is also a 

limitation. In the presented research, the authors were saving only the final positions of the 

found road artefacts. However, in a real implementation, it is worth saving and transferring 

through the network the pure acceleration values of the road fragment where the artefacts 

were detected, in order to use the Edge processing as a first filter before applying more 

advanced algorithms in the cloud computing system. 

In the next phase of experiments, the authors want to implement the presented IoT 

solution to a new problem, which is the measurement of passenger comfort while cycling. 

While detection of road artefacts by car drivers is an interesting solution, the smartphone is 

quite useful in the car for other purposes. However, in case of bike, the usage of the small 

and cheap IoT device could be more useful, as it could be mounted without thinking about 

losing an expensive smartphone device. 
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