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Abstract
Given the sharp increase in agricultural and infrastructure development and the pau-
city of widespread data available to support conservation management decisions, a 
more rapid and accurate tool for identifying fish fauna in the world's largest freshwa-
ter ecosystem, the Amazon, is needed. Current strategies for identification of fresh-
water fishes require high levels of training and taxonomic expertise for morphological 
identification or genetic testing for species recognition at a molecular level. To over-
come these challenges, we built an image masking model (U-Net) and a convolutional 
neural net (CNN) to classify Amazonian fish in photographs. Fish used to generate 
training data were collected and photographed in tributaries in seasonally flooded 
forests of the upper Morona River valley in Loreto, Peru in 2018 and 2019. Species 
identifications in the training images (n = 3068) were verified by expert ichthyologists. 
These images were supplemented with photographs taken of additional Amazonian 
fish specimens housed in the ichthyological collection of the Smithsonian's National 
Museum of Natural History. We generated a CNN model that identified 33 genera of 
fishes with a mean accuracy of 97.9%. Wider availability of accurate freshwater fish 
image recognition tools, such as the one described here, will enable fishermen, local 
communities, and citizen scientists to more effectively participate in collecting and 
sharing data from their territories to inform policy and management decisions that 
impact them directly.
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1  |  INTRODUC TION

The Amazon basin is home to over 2700 species of freshwater fishes 
(Dagosta & De Pinna, 2019; Junk et al., 2007), many of which are of 
conservation concern (Albert et al., 2011; García-Dávila et al., 2018; 
Pelicice et al., 2021). Freshwater fishes provide one of the few reli-
able sources of protein for Amazonian communities and represent 
an important economic opportunity through the aquarium trade 
(Coomes et al., 2010; Moreau & Coomes, 2007). This unique ichthy-
ofauna is facing unprecedented threats, such as deforestation (Junk 
et al., 2007; Lobón-Cerviá et al., 2015), construction of hydropower 
dams (Winemiller et al., 2016), mining (Azevedo-Santos et al., 2021), 
climate change (Bodmer et al., 2017), and in some cases, over ex-
ploitation (Moreau & Coomes, 2007). While advances in sampling 
poorly explored areas and describing the diversity of Amazonian 
fish have been made over the last decade (e.g., Alofs et al., 2014; de 
Santana et al., 2019, 2021), the sub-drainages of the Marañón river 
remain among the most under sampled regions in South America 
(Jézéquel et al., 2020). Freshwater fishes provide one of the few 
reliable sources of protein for Amazonian communities (Coomes 
et al., 2010; Moreau & Coomes, 2007). In less populated areas of 
the Amazon, subsistence fishing, for both consumption and the 
pet trade, can be essential to sustaining life (Coomes et al., 2010; 
Moreau & Coomes, 2007). Due to the urgency of these economic 
and ecological threats, efficient data collection and long-term mon-
itoring are needed to better inform mitigation strategies and policy.

Traditional ichthyological sampling methods include focused 
netting and fishing efforts, followed by extensive manual sorting, 
documentation, and identification. Although effective, and neces-
sary in the Amazon where a countless number of fishes remain to 
be described (Reis et al., 2016), these methods are time consuming 
and raise the potential for misidentification bias (Kirsch et al., 2018). 
As a result, many have turned to the assistance of community scien-
tists to aid in catch effort and identification of individual landings, 
yet accurate species identification remains a challenge (Gardiner 
et al., 2012; Swanson et al., 2016). Genetic approaches have also 
been implemented to identify many of the fish species inhabiting 
the Amazon (de Santana et al., 2021; García-Dávila et al., 2017), but 
these approaches also rely on well-identified and vouchered genetic 
libraries that are still missing for Amazonian fishes. These techniques 
require expensive storage and sample processing technology, which 
are not readily available in most institutions within the Amazon (de 
Santana et al., 2021). In order to address the ever-growing need for 
data and cost-effective solutions, contemporary fisheries research 
has called for the development and application of a rapid solution, 
namely by way of machine learning models, such as Convolutional 
Neural Networks (CNNs, e.g., Perdigão et al.,  2020). CNNs have 
the potential to enable rapid identification of fish to monitor fish-
ery stocks, diversity, bycatch, and to combat illegal fishing (Marini 
et al., 2018; Perdigão et al., 2020).

Machine learning techniques have been successfully implemented 
in niche modeling, prediction of mass mortality events, and the devel-
opment of non-linear ecological time-series models (Crisci et al., 2012; 

Miller-Coleman et al., 2012; Recknagel, 2001). Image classification 
deep learning models show promise in being applied to highly diverse 
taxa and collections (Borowiec et al., 2021; Norouzzadeh et al., 2018; 
Sullivan et al.,  2018; Wäldchen & Mäder,  2018; Schuettpelz 
et al.,  2017; Weinstein,  2017). Past attempts to identify fish taxa 
using computer vision have had varying degrees of success across a 
wide breadth of ichthyological data sets. For example, early attempts 
by Alsmadi et al.  (2010) were able to identify 20 families of marine 
fish from 610 images with an accuracy of 84%. More recent work im-
proved accuracy to 90% (Alsmadi et al., 2019). Hernández-Serna and 
Jiménez-Segura (2014) used seven museum collections that included 
both marine and Amazonian freshwater fish (images per collection 
ranged from 422 to 2392) and obtained accuracies between 72% and 
92%. Sun et al.  (2016) obtained a species identification accuracy of 
77.27% from 9160 AUV images of fish. A study by Qin et al. (2015) 
was able to identify 23 deep sea fish species with an accuracy of 98% 
using a substantial number of training images (n = 22,370).

In this study, we developed two deep learning computer vision 
models: one that segments fish pixels from background pixels, and 
one that classifies images of Amazonian fishes to the genus level. As 
the first image classifier for ichthyological monitoring in the mega-
diverse Peruvian Amazon basin, we hope this case study will act as 
a primer for further development of deep learning models, as tools 
for conservation stakeholders. Deep learning for taxonomic image 
classification has proven to be efficient and highly accurate, demon-
strating promise for improving participatory monitoring initiatives 
(Norouzzadeh et al., 2018; Sullivan et al., 2018). Specifically, these 
tools will enable communities involved in participatory monitoring 
to fill knowledge gaps and improve data reliability. These models can 
also provide a basis on which to build new models for other spe-
cies of conservation concern and public health interest. Our data 
and pipeline are publicly available, which will enable others to apply 
these techniques to other taxa.

2  |  METHODS

In July 2018, we sampled freshwater fishes in small white-water riv-
ers, and black and white-water streams in seasonally flooded forests 
of the upper Morona River valley in Achuar native territory, Loreto, 
Peru. Sites were resampled in November 2018 and November 2019. 
Fish were identified by specialists with the aid of dichotomous taxo-
nomic keys considering morphological, meristic, and morphometric 
characteristics. Taxonomic nomenclature follows Fricke et al. (2018). 
A total of 141 fish species belonging to 89 genera and 29 families 
across all sites and seasons were identified (M. Ruiz-Tafur, unpub-
lished data). Captured fish (n = 1967) were placed on a 1 cm grid or a 
neutral background (leaves, hands, ground, etc.) and photographed 
using a Nikon D3500 camera, prior to preservation. Specimens 
were deposited in the ichthyology collection at the Instituto de 
Investigaciones de la Amazonia Peruana (IIAP) in Iquitos, Peru. Due 
to the limited number of images we had per species, we restricted 
our analysis to genera (n = 33), using a minimum threshold of 20 field 
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images per genus (n = 1615). To supplement field images, we incor-
porated additional images (n = 1453) taken of specimens housed at 
the Smithsonian National Museum of Natural History Department 
of Vertebrate Zoology, Division of Fishes collection (USNM) using 
both a Nikon B500 and W100. Fish specimens were photographed 
on both blank and 1 cm grid backgrounds from multiple angles. In 
total, our dataset consists of 3068 images prior to processing.

2.1  |  Preprocessing steps

To build a training dataset, we first removed all incidentally taken/
non-fish and unidentified fish images. We then built a U-Net 
(Ronneberger et al., 2015) segmentation model to classify pixels in 
images as fish or background using the methods similar to White 
et al.  (2020). Specifically, we manually masked a subset of images 
(n = 66; 2 images from each genus), using the methods of White 
et al. (2020), to use as a training set to build a U-Net. Our generated 
masks zeroed out (blacked) background pixels, while retaining fish 
pixels. The model was built on a resnet-34 architecture pretrained 
on the ImageNet dataset (Deng et al., 2009). All field and museum 
images were then masked by our trained U-Net. Images which were 
unsuccessfully masked, where no component of the original input 
image remained within the photo, were removed from the dataset. 
The remaining images, which had at least some component of the 
target object with no background, were then subdivided for training 
and validation of the genus identification model.

2.2  |  Identification model architecture, 
training, and validation

We trained our image classifier to distinguish between 33 fish genera 
based on masked images. The classifier was developed using a Nvidia 
GeForce (V100; 32GB VRAM) GPU implementing the Fast.ai library 
(Howard & Gugger, 2020) in PyTorch (Paszke et al., 2019). The model 
was built on a resnet-101 architecture pretrained on the ImageNet 
dataset (Deng et al., 2009). To develop our image classifier model, 
masked images were randomly divided into training (n = 2387) and 
validation (n = 596) sets, split 80/20 respectively, to maximize accuracy 
(Hernández-Serna & Jiménez-Segura, 2014). All images were resized 
by ‘squishing’ them into 300 × 300 pixels. We trained our model over 

60 epochs with 1 training session of random transformations making 
up 6/60 epochs. Ichthyological field work in Peru was approved by the 
Smithsonian National Zoological Park Institutional Animal Care and 
Use Committee (NZP-IACUC Protocol #18-25) (Figure 1).

3  |  RESULTS

The U-Net masking model was trained over 20 epochs, at which point 
the training loss and validation loss were minimized. Our U-Net was 
able to successfully mask 97.23% (n = 2983) of our images. Images 
which were not successfully masked (n = 85) were removed from 
training and validation. Our Amazonian fish image classifier trained 
in 50 epochs at which point the training loss and validation loss were 
minimized. The validation set results, predicted class versus actual 
class, are summarized in a confusion matrix (Figure 2). Of the 596 
validation images, the image classifier predicted 97.99% of them cor-
rectly. Accuracy by genus is summarized in Table  1. The range of 
accuracy by genus ranged from 88.89% to 100%. The models, and 
associated metadata are available at the Smithsonian Figshare re-
pository (https://doi.org/10.25573/​data.17315126). The application 
for both models is available online (https://sidat​ascie​ncelab.github.
io/Amazo​nian_Fish_ML_Class​ifier/).

4  |  DISCUSSION

We were able to efficiently build a state-of-the-art model which can 
rapidly identify standardized Amazonian fish images to the genus 
level (n = 33) with 97.99% accuracy, in line with the results of other 
deep learning fish studies implementing image classifiers (Alsmadi 
et al., 2019; Qin et al., 2015). Of the 12 incorrectly classified im-
ages in our validation set, 7 were misclassified outside of their fam-
ily, while 2 images were misclassified outside of their order. Results 
demonstrate the importance of image quality, image quantity, and 
taxonomic specificity to generating image classification models that 
will prove useful for identifying diverse taxa in remote geographic 
settings.

In this study, we attempted to control image quality by using 
masking as a way to standardize images. After visually examining the 
incorrectly classified images, it was evident that some of them were 
likely more difficult to classify because of bisection from incidentally 

F I G U R E  1 Example of unmasked (left) 
and masked (right) images of a fish (Bario 
steindachneri).
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masked fish pixels. In short, we believe our masking rendered a few 
of our images unidentifiable and is arguably an artifact of the data 
pipeline rather than a source of true error on the image classifier. 
One way to improve the final classification accuracy is to capture 
multiple clear images of individual fish to ensure at least one is suc-
cessfully masked prior to inference for identification. While the 
original images used in the study were taken at high resolution of 
varying sizes, they were ultimately resized to just 300 × 300 pixels. 
The rapid advancement of mobile phone photography (Rasmusson 
et al., 2004) and availability of mobile phones with cameras capable 
of capturing images even higher in resolution that those used here 
(González & Pozo, 2019) will contribute to the ever-growing quan-
tity of high-quality image data available to enable generation of even 
more robust and more accurate models. Standardized protocols for 

collecting photographic data in both field and museum settings will 
be key to bolstering future modeling efforts.

The remoteness of the localities sampled as part of this study and 
the cryptic nature of the species endemic to these sites significantly 
limited the number of images, we were able to acquire from the field. 
We combatted the limitation of image quantity by photographing 
museum specimens available to us. Utilizing a hybrid approach—a 
combination of field images and digitized museum collection speci-
mens—we were able to double the amount of data available to gen-
erate the model. Combining both museum and field collected images 
to generate a classification model can enable novel insights that may 
not have been found by building separate museum and field mod-
els (Lendemer et al., 2020). The use of multiple data sources, and 
willingness to make these publicly available, will provide a robust 

F I G U R E  2 Confusion matrix visualization of computer vision model validation results. The x-axis depicts the genus predicted by the 
model. The y-axis depicts the actual genus to which the image belongs, organized by taxonomic class, family and genus according to Fricke 
et al. (2018). Correct identifications are depicted in the left-to-right diagonal, with a darker color indicating more correct identifications, and 
blank yellow squares indicating zeros. Masked image examples on y-axis are as follows: (a) Bryconops, (b) Tetragonopterus, (c) Astyanax, (d) 
Moenkhausia, (e) Gymnotus, (f) Ancistrus, (g) Corydoras, and (h) Bujurquina.
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framework for future image classification models with limited avail-
able training data.

Most misidentifications in our model involved tetras, small 
characids that are the dominant fish fauna in Amazonian small rivers 
and streams (de Oliveira et al., 2009). Historically, species-rich and 
closely-related tetras have been difficult to identify due to cryptic 
species diversity – where more than one nominal species may be 
several undescribed species – and the lack of exclusive morpholog-
ical characters to identify some genera (e.g., Astyanax > 170 species 
and Hyphessobrycon > 130 species; Barreto et al.,  2017; Escobar-
Camacho et al., 2015; Oliveira et al., 2011). In addition, an estimated 
40% of species in the region have yet to be described (e.g., Reis 

et al., 2016). Thus, species misidentifications due to taxonomically 
complex groups, such as tetras and other cryptic assemblages, are 
common problems in manual morphological as well as with genetic 
identification approaches (e.g., de Santana et al.,  2021) and this 
must be considered when building an image classifier for Amazonian 
fishes. In short, the output given by an image classification model is 
only as good as the label given to each class during training. If the 
target class is not well defined, as it may be in the case of tetras, 
this may disrupt the classification accuracy of the classification for 
those genera.

Collection of accurate, reliable biodiversity data is vital for mon-
itoring ecosystem health and co-benefits for human well-being. The 

TA B L E  1 Summary of validation set (n = 596) results by genus.

Order Family Genus Correct Incorrect Total Accuracy (%)

Characiformes Iguanodectidae Bryconops 14 0 14 100

Characiformes Characidae Charax 23 0 23 100

Characiformes Characidae Tetragonopterus 10 0 10 100

Characiformes Characidae Astyanax 29 1 30 96.67

Characiformes Characidae Bario 14 0 14 100

Characiformes Characidae Hemmigrammus 61 1 62 98.39

Characiformes Characidae Hyphessobrycon 16 1 17 94.12

Characiformes Characidae Moenkhausia 73 1 74 98.65

Characiformes Characidae Creagrutus 13 1 14 92.86

Characiformes Characidae Knodus 16 0 16 100

Characiformes Characidae Tyttocharax 3 0 3 100

Characiformes Characidae Phenacogaster 15 0 15 100

Characiformes Crenuchidae Characidium 12 1 13 92.31

Characiformes Curimatidae Curimata 15 0 15 100

Characiformes Erythrinidae Erythrinus 16 0 16 100

Characiformes Gasteropelecidae Gasteropelecus 10 0 10 100

Characiformes Lebiasinidae Copella 10 0 10 100

Characiformes Lebiasinidae Pyrrhulina 25 0 25 100

Characiformes Prochilodontidae Prochilodus 19 1 20 95

Characiformes Serrasalimidae Pygocentrus 13 0 13 100

Gymnotiformes Gymnotidae Gymnotus 11 0 11 100

Siluriformes Aspredinidae Bunocephalus 24 1 25 96

Siluriformes Auchenipteridae Tatia 12 0 12 100

Siluriformes Callichthyidae Corydoras 21 0 21 100

Siluriformes Doradidae Doras 15 0 15 100

Siluriformes Heptapteridae Pimelodella 24 3 27 88.89

Siluriformes Loricariidae Otocinclus 19 0 19 100

Siluriformes Loricariidae Oxyropsis 3 0 3 100

Siluriformes Loricariidae Ancistrus 15 0 15 100

Siluriformes Loricariidae Rineloricaria 4 1 5 80

Siluriformes Pimelodidae Sorubim 6 0 6 100

Cichliformes Cichlidae Apistogramma 11 0 11 100

Cichliformes Cichlidae Bujurquina 12 0 12 100

Total 584 12 596 97.99
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emergence of new technologies such as mobile applications, wire-
less sensor networks, augmented/virtual reality and high through-
put computing are already advancing scientific research by enabling 
community scientists to bridge the training gap through instant “ex-
pert” verification (Newman et al., 2012). Although previous efforts 
have applied image classification to citizen science data (Van Horn 
et al., 2018), none have targeted freshwater fish in such highly bio-
logically and culturally diverse sites as the upper Morona River val-
ley. Given the importance of fish as key indicators of water quality 
and ecosystem health (Harris, 1995), as well as the dependence of 
many indigenous Amazonian communities on fish as a reliable source 
of protein (Swierk & Madigosky, 2014), there is great need for tools 
that increase the accessibility of taxonomic identification required 
for accurate monitoring of fishes (Gardiner et al., 2012; Newman 
et al., 2012). When deployed in the field, our model will empower 
community-led initiatives to monitor fish in the Amazon River basin 
to collect more accurate information and identify ecological trends 
about this integral source of food and income (Finer et al., 2008). 
While the model presented here is accurate at identifying fish to the 
genus level, we expect this to be a first step toward increased dig-
itization and image generation to support training a model at the 
species level.

Past field efforts have applied image classification to citizen sci-
ence data taken from the field (Van Horn et al., 2018), but none have 
targeted freshwater fish in such highly diverse sites as the upper 
Morona River valley. Image classification models such as the model 
presented here increase the accessibility of taxonomic identifica-
tion needed to accurately monitor ecosystem health and natural 
resources (Gardiner et al., 2012; Newman et al., 2012). In such an 
incredibly diverse ecosystem, a model accurately identifying fish to 
the genus level is a first step which will provide motivation for in-
creased digitization efforts to obtain sufficient images for training a 
model at the species level.

5  |  CONCLUSIONS

We present an application that can be used to rapidly and accurately 
classify freshwater fish from the upper Morona River valley in the 
northwest Amazon to genus for scientific research. Although able 
to classify 33 genera present in the current study area, the model 
described here provides a solid foundation for future projects. The 
application, which can be used to classify single images to genus, 
is accessible to the community online. The model's application to 
images taken from geographic areas outside of the northwestern 
Amazon has yet to be explored.

AUTHOR CONTRIBUTIONS
Alexander J. Robillard: Conceptualization (supporting); data 
curation (equal); formal analysis (lead); investigation (equal); 
methodology (lead); validation (lead); visualization (lead); writ-
ing –  original draft (lead); writing –  review and editing (equal). 

Michael G. Trizna: Conceptualization (supporting); data curation 
(supporting); formal analysis (supporting); funding acquisition 
(supporting); investigation (supporting); methodology (support-
ing); resources (supporting); software (equal); supervision (equal); 
validation (equal); visualization (equal); writing – review and edit-
ing (supporting). Morgan Ruiz-Tafur: Data curation (supporting); 
investigation (supporting); methodology (supporting); resources 
(supporting); writing –  original draft (supporting); writing –  re-
view and editing (supporting). Edgard Leonardo Dávila Panduro: 
Data curation (supporting); investigation (supporting); methodol-
ogy (supporting); resources (supporting); writing –  original draft 
(supporting); writing –  review and editing (supporting). C. David 
de Santana: Resources (supporting); validation (supporting); visu-
alization (supporting); writing –  original draft (supporting); writ-
ing – review and editing (supporting). Alexander E. White: Formal 
analysis (supporting); investigation (supporting); methodology 
(supporting); software (supporting); supervision (supporting); 
validation (supporting); writing –  review and editing (support-
ing). Rebecca B. Dikow: Conceptualization (equal); data curation 
(supporting); formal analysis (equal); funding acquisition (equal); 
investigation (equal); methodology (equal); project administration 
(equal); resources (lead); software (lead); supervision (lead); vali-
dation (equal); visualization (supporting); writing –  original draft 
(supporting); writing – review and editing (supporting). Jessica L. 
Deichmann: Conceptualization (lead); data curation (supporting); 
formal analysis (supporting); funding acquisition (lead); investiga-
tion (supporting); methodology (supporting); project administra-
tion (lead); resources (lead); software (equal); supervision (lead); 
validation (supporting); visualization (supporting); writing – origi-
nal draft (equal); writing – review and editing (equal).

ACKNOWLEDG MENTS
The authors thank the people of the Achuar native community of 
Brasilia for access to their territory and their interest and contribu-
tion to the project. We thank the Indigenous Socio-Environmental 
Monitors (MOSAI) and local indigenous community experts from 
the Wampis and Achuar nations for invaluable help with data col-
lection in the field including Sem Flores Bautista, Antonio Dias 
Pinedo, Persiles Dias Espinar, Wilson Chichipe Villega and Peas 
Mukuik Tsunki. We are grateful to Diego Balbuena, Diana Vásquez, 
Ernesto Yallico and the GeoPark Perú HSE team for logistical sup-
port in the field. Homero Sánchez Riveiro and James Garcia Ayala 
contributed to species identifications. We would like to thank Lynne 
Parenti, Sandra Raredon, Kris Murphy and the entire Smithsonian 
Museum Support Center staff for granting us access to and ena-
bling us to successfully traverse the USNM ichthyological collec-
tions. Additional thanks go to Julianna Hazera, Erika Ali, Shauna 
Rasband and Guillem Millan for assistance photographing USNM 
specimens. We sincerely appreciate feedback on the manuscript 
provided by Helen Bailey, Vyacheslav Lyubchich, Chris Rowe and 
Jeffrey Seminoff. This project was funded by GeoPark Perú. Fish 
sampling in Peru in 2018 and 2019 was conducted under permits RD 

 20457758, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9987 by C

ochrane Peru, W
iley O

nline L
ibrary on [13/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  7 of 9ROBILLARD et al.

N264-2018-PRODUCE-DGPCHDI and RD N358-2019-PRODUCE-
DGPCHDI. CDS was funded by FAPESP (#2016/19075-9) and 
Smithsonian's Global Genome Initiative (GGI-Rolling-2019-2020; 
2019-242). This is contribution #65 of the Peru Biodiversity Program 
of the Smithsonian's Center for Conservation and Sustainability. 
Computation was performed on the Smithsonian High-Performance 
Computing Cluster (SI-HPC; https://doi.org/10.25572/​SIHPC).

CONFLIC T OF INTERE S T S TATEMENT
The authors have no conflicts of interest.

DATA AVAIL ABILIT Y S TATEMENT
Image masks, masked training data data, associated metadata 
used for model generation, and both models are available on the 
Smithsonian Figshare (https://doi.org/10.25573/​data.c.5761097). 
The web-application is available here (https://sidat​ascie​ncelab.
github.io/Amazo​nian_Fish_ML_Class​ifier/), and on Github (https://
github.com/MikeT​rizna/​strea​mlit_fish_masking).

ORCID
Alexander J. Robillard   https://orcid.org/0000-0001-9782-5313 
C. David de Santana   https://orcid.org/0000-0002-7886-8569 
Jessica L. Deichmann   https://orcid.org/0000-0002-2198-3515 

R E FE R E N C E S
Albert, J. S., Carvalho, T. P., Petry, P., Holder, M. A., Maxime, E. L., Espino, 

J., Corahua, I., Quispe, R., Rengifo, B., Ortega, H., & Reis, R. E. 
(2011). Aquatic biodiversity in the Amazon: Habitat specialization 
and geographic isolation promote species richness. Animals, 1(2), 
205–241. https://doi.org/10.3390/ani10​20205

Alofs, K. M., Liverpool, E. A., Taphorn, D. C., Bernard, C. R., & López-
Fernández, H. (2014). Mind the (information) gap: The importance 
of exploration and discovery for assessing conservation priorities 
for freshwater fish. Diversity and Distributions, 20(1), 107–113. 
https://doi.org/10.1111/ddi.12127

Alsmadi, M. K., Omar, K. B., Noah, S. A., & Almarashdeh, I. (2010). Fish 
recognition based on robust features extraction from color tex-
ture measurements using back-propagation classifier. Journal of 
Theoretical and Applied Information Technology, 18(1), 11–18.

Alsmadi, M. K., Tayfour, M., Alkhasawneh, R. A., Badawi, U., Almarashdeh, 
I., & Haddad, F. (2019). Robust feature extraction methods for gen-
eral fish classification. International Journal of Electrical & Computer 
Engineering, 9, 2088–8708. https://doi.org/10.11591/​ijece.v9i6.
pp519​2-5204

Azevedo-Santos, V. M., Arcifa, M. S., Brito, M. F., Agostinho, A. 
A., Hughes, R. M., Vitule, J. R., Simberloff, D., Olden, J. D., & 
Pelicice, F. M. (2021). Negative impacts of mining on Neotropical 
freshwater fishes. Neotropical Ichthyology, 19. https://doi.
org/10.1590/1982-0224-2021-0001

Barreto, C. A. V., Granja, M. M. C., Vidigal, P. M. P., Carmo, A. O., & 
Dergam, J. A. (2017). Complete mitochondrial genome sequence 
of neotropical fish Astyanax giton Eigenmann 1908 (Ostariophysi; 
Characidae). Mitochondrial DNA Part B, 2(2), 839–840. https://doi.
org/10.1080/23802​359.2017.1403869

Bodmer, R., Fang, T., Antunez, M., Puertas, P., Chota, K., Pittet, M., 
Kirkland, M., Walkey, M., Rios, C., Perez-Peña, P., & Mayor, P. 
(2017). Impact of recent climate fluctuations on biodiversity and 
people in flooded forests of the Peruvian Amazon. CBD Technical 
Series, 89, 81–90.

Borowiec, M. L., Frandsen, P., Dikow, R., McKeeken, A., Valentini, G., & 
White, A. E. (2021). Deep learning as a tool for ecology and evolu-
tion. EcoEvoRxiv, 1–30. https://doi.org/10.32942/​osf.io/nt3as

Coomes, O. T., Takasaki, Y., Abizaid, C., & Barham, B. L. (2010). 
Floodplain fisheries as natural insurance for the rural poor 
in tropical forest environments: Evidence from Amazonia. 
Fisheries Management and Ecology, 17(6), 513–521. https://doi.
org/10.1111/j.1365-2400.2010.00750.x

Crisci, C., Ghattas, B., & Perera, G. (2012). A review of supervised ma-
chine learning algorithms and their applications to ecological data. 
Ecological Modelling, 240, 113–122. https://doi.org/10.1016/j.
ecolm​odel.2012.03.001

Dagosta, F. C., & De Pinna, M. (2019). The fishes of the Amazon: 
Distribution and biogeographical patterns, with a comprehensive 
list of species. Bulletin of the American Museum of Natural History, 
431, 1–163. https://doi.org/10.1206/0003-0090.431.1.1

de Oliveira, R. R., Rocha, M. S., dos Anjos, M. B., Zuanon, J., & Py-Daniel, 
L. H. R. (2009). Fish fauna of small streams of the Catua-Ipixuna 
extractive reserve, state of Amazonas, Brazil. Check List, 5(2), 154–
172. https://doi.org/10.15560/​5.2.154

de Santana, C. D., Crampton, W. G., Dillman, C. B., Frederico, R. G., Sabaj, 
M. H., Covain, R., Ready, J., Zuanon, J., de Oliveira, R. R., Mendes-
Júnior, R. N., & Bastos, D. A. (2019). Unexpected species diversity 
in electric eels with a description of the strongest living bioelec-
tricity generator. Nature Communications, 10(1), 1–10. https://doi.
org/10.1038/s4146​7-019-11690​-z

de Santana, C. D., Parenti, L. R., Dillman, C. B., Coddington, J. A., 
Bastos, D. A., Baldwin, C. C., Zuanon, J., Torrente-Vilara, G., 
Covain, R., Menezes, N. A., & Datovo, A. (2021). The critical role 
of natural history museums in advancing eDNA for biodiversity 
studies: A case study with Amazonian fishes. bioRxiv. https://doi.
org/10.1101/2021.04.18.440157

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). 
ImageNet: A large-scale hierarchical image database. In: IEEE con-
ference on computer vision and pattern recognition (pp. 248–255). 
https://doi.org/10.1109/CVPR.2009.5206848

Escobar-Camacho, D., Barriga, R., & Ron, S. R. (2015). Discovering hidden 
diversity of characins (Teleostei: Characiformes) in Ecuador's Yasuní 
National Park. PLoS One, 10(8), e0135569. https://doi.org/10.1371/
journ​al.pone.0135569

Finer, M., Jenkins, C. N., Pimm, S. L., Keane, B., & Ross, C. (2008). Oil and 
gas projects in the western Amazon: Threats to wilderness, biodi-
versity, and indigenous peoples. PLoS One, 3(8), e2932. https://doi.
org/10.1371/journ​al.pone.0002932

Fricke, R., Eschmeyer, W. N., & Van der Laan, R. (2018). Catalog of fishes: 
Genera, species, references. California Academy of Sciences. http://
resea​rchar​chive.calac​ademy.org/resea​rch/ichth​yolog​y/catal​og/
fishc​atmain.asp

García-Dávila, C., Sánchez Riveiro, H., Flores Silva, M. A., Mejía de 
Loayza, E., Angulo Chávez, C., Castro Ruiz, D., Estivals, G., García 
Vásquez, A., Nolorbe Payahua, C., Vargas Dávila, G., Núñez, J., 
Mariac, C., Duponchelle, F., & Renno, J. F. (2018). Peces de Consumo 
de la Amazonía Peruana. Instituto de Investigaciones de la Amazonía 
Peruana (IIAP), 218.

García-Dávila, C. R., Flores, M., Pinedo, L., Loyola, R., Castro-Ruiz, D., 
Angulo, C., Mejia, E., Sánchez, H., García, A., Chota, W., Estivals, 
G., Panduro, H., Nolorbe, C., Chuquipiondo, C., Duponchelle, 
F., & Renno, J. F. (2017). Aplicación del Barcoding al Manejo y 
Conservación de Peces y sus Subproductos en la Amazonía Peruana. 
Folia Amazónica, 26(2), 195–204. https://doi.org/10.24841/​
fa.v26i2.329

Gardiner, M. M., Allee, L. L., Brown, P. M., Losey, J. E., Roy, H. E., & Smyth, 
R. R. (2012). Lessons from lady beetles: Accuracy of monitoring data 
from US and UK citizen-science programs. Frontiers in Ecology and 
the Environment, 10(9), 471–476. https://doi.org/10.1890/110185

 20457758, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9987 by C

ochrane Peru, W
iley O

nline L
ibrary on [13/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.25572/SIHPC
https://doi.org/10.25573/data.c.5761097
https://sidatasciencelab.github.io/Amazonian_Fish_ML_Classifier/
https://sidatasciencelab.github.io/Amazonian_Fish_ML_Classifier/
https://github.com/MikeTrizna/streamlit_fish_masking
https://github.com/MikeTrizna/streamlit_fish_masking
https://orcid.org/0000-0001-9782-5313
https://orcid.org/0000-0001-9782-5313
https://orcid.org/0000-0002-7886-8569
https://orcid.org/0000-0002-7886-8569
https://orcid.org/0000-0002-2198-3515
https://orcid.org/0000-0002-2198-3515
https://doi.org/10.3390/ani1020205
https://doi.org/10.1111/ddi.12127
https://doi.org/10.11591/ijece.v9i6.pp5192-5204
https://doi.org/10.11591/ijece.v9i6.pp5192-5204
https://doi.org/10.1590/1982-0224-2021-0001
https://doi.org/10.1590/1982-0224-2021-0001
https://doi.org/10.1080/23802359.2017.1403869
https://doi.org/10.1080/23802359.2017.1403869
https://doi.org/10.32942/osf.io/nt3as
https://doi.org/10.1111/j.1365-2400.2010.00750.x
https://doi.org/10.1111/j.1365-2400.2010.00750.x
https://doi.org/10.1016/j.ecolmodel.2012.03.001
https://doi.org/10.1016/j.ecolmodel.2012.03.001
https://doi.org/10.1206/0003-0090.431.1.1
https://doi.org/10.15560/5.2.154
https://doi.org/10.1038/s41467-019-11690-z
https://doi.org/10.1038/s41467-019-11690-z
https://doi.org/10.1101/2021.04.18.440157
https://doi.org/10.1101/2021.04.18.440157
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1371/journal.pone.0135569
https://doi.org/10.1371/journal.pone.0135569
https://doi.org/10.1371/journal.pone.0002932
https://doi.org/10.1371/journal.pone.0002932
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp
https://doi.org/10.24841/fa.v26i2.329
https://doi.org/10.24841/fa.v26i2.329
https://doi.org/10.1890/110185


8 of 9  |     ROBILLARD et al.

González, A. B., & Pozo, J. (2019). The industrial camera modules market: 
Market review and forecast until 2022. PhotonicsViews, 16(2), 24–
26. https://doi.org/10.1002/phvs.20197​0207

Harris, J. H. (1995). The use of fish in ecological assessments. Australian 
Journal of Ecology, 20(1), 65–80. https://doi.org/10.1111/
j.1442-9993.1995.tb005​23.x

Hernández-Serna, A., & Jiménez-Segura, L. F. (2014). Automatic identifi-
cation of species with neural networks. PeerJ, 2, e563. https://doi.
org/10.7717/peerj.563

Howard, J., & Gugger, S. (2020). Fastai: A layered API for deep learning. 
Information, 11(2), 108. https://doi.org/10.3390/info1​1020108

Jézéquel, C., Tedesco, P. A., Darwall, W., Dias, M. S., Frederico, R. G., 
Hidalgo, M., Hugueny, B., Maldonado-Ocampo, J., Martens, K., 
Ortega, H., & Torrente-Vilara, G. (2020). Freshwater fish diver-
sity hotspots for conservation priorities in the Amazon Basin. 
Conservation Biology, 34(4), 956–965. https://doi.org/10.1111/
cobi.13466

Junk, W. J., Soares, M. G. M., & Bayley, P. B. (2007). Freshwater fishes of 
the Amazon River basin: Their biodiversity, fisheries, and habitats. 
Aquatic Ecosystem Health & Management, 10(2), 153–173. https://
doi.org/10.1080/14634​98070​1351023

Kirsch, J. E., Day, J. L., Peterson, J. T., & Fullerton, D. K. (2018). Fish 
misidentification and potential implications to monitoring within 
the San Francisco Estuary, California. Journal of Fish and Wildlife 
Management, 9(2), 467–485. https://doi.org/10.3996/03201​
8-JFWM-020

Lendemer, J., Thiers, B., Monfils, A. K., Zaspel, J., Ellwood, E. R., Bentley, 
A., LeVan, K., Bates, J., Jennings, D., Contreras, D., & Lagomarsino, 
L. (2020). The extended specimen network: A strategy to enhance 
US biodiversity collections, promote research and education. 
Bioscience, 70(1), 23–30. https://doi.org/10.1093/biosc​i/biz165

Lobón-Cerviá, J., Hess, L. L., Melack, J. M., & Araujo-Lima, C. A. (2015). 
The importance of forest cover for fish richness and abundance on 
the Amazon floodplain. Hydrobiologia, 750(1), 245–255. https://doi.
org/10.1007/s1075​0-014-2040-0

Marini, S., Fanelli, E., Sbragaglia, V., Azzurro, E., Fernandez, J. D. R., & 
Aguzzi, J. (2018). Tracking fish abundance by underwater image 
recognition. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/
s4159​8-018-32089​-8

Miller-Coleman, R. L., Dodsworth, J. A., Ross, C. A., Shock, E. L., Williams, 
A. J., Hartnett, H. E., McDonald, A. I., Havig, J. R., & Hedlund, B. 
P. (2012). Korarchaeota diversity, biogeography, and abundance in 
Yellowstone and Great Basin hot springs and ecological niche mod-
eling based on machine learning. PLoS One, 7(5), e35964. https://
doi.org/10.1371/journ​al.pone.0035964

Moreau, M. A., & Coomes, O. T. (2007). Aquarium fish exploitation in 
western Amazonia: Conservation issues in Peru. Environmental 
Conservation, 34(1), 12–22. https://doi.org/10.1017/S0376​89290​
7003566

Newman, G., Wiggins, A., Crall, A., Graham, E., Newman, S., & Crowston, 
K. (2012). The future of citizen science: Emerging technologies and 
shifting paradigms. Frontiers in Ecology and the Environment, 10(6), 
298–304. https://doi.org/10.1890/110294

Norouzzadeh, M. S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M. S., 
Packer, C., & Clune, J. (2018). Automatically identifying, counting, 
and describing wild animals in camera-trap images with deep learn-
ing. Proceedings of the National Academy of Sciences of the United 
States of America, 115(25), E5716–E5725. https://doi.org/10.1073/
pnas.17193​67115

Oliveira, C., Avelino, G. S., Abe, K. T., Mariguela, T. C., Benine, R. C., Ortí, 
G., Vari, R. P., & Castro, R. M. C. (2011). Phylogenetic relationships 
within the speciose family Characidae (Teleostei: Ostariophysi: 
Characiformes) based on multilocus analysis and extensive in-
group sampling. BMC Evolutionary Biology, 11(1), 1–25. https://doi.
org/10.1186/1471-2148-11-275

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., 
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., & Desmaison, A. 
(2019). Pytorch: An imperative style, high-performance deep learn-
ing library. Advances in Neural Information Processing Systems, 32, 
8026–8037.

Pelicice, F. M., Bialetzki, A., Camelier, P., Carvalho, F. R., García-
Berthou, E., Pompeu, P. S., Mello, F. T. D., & Pavanelli, C. S. 
(2021). Human impacts and the loss of Neotropical fresh-
water fish diversity. Neotropical Ichthyology, 19. https://doi.
org/10.1590/1982-0224-2021-0134

Perdigão, P., Lousã, P., Ascenso, J., & Pereira, F. (2020). Visual monitor-
ing of High-Sea fishing activities using deep learning-based image 
processing. Multimedia Tools and Applications, 79, 22131–22156. 
https://doi.org/10.1007/s1104​2-020-08949​-9

Qin, H., Li, X., Liang, J., Peng, Y., & Zhang, C. (2015). DeepFish: 
Accurate underwater live fish recognition with a deep architec-
ture. Neurocomputing, 187, 49–58. https://doi.org/10.1016/j.
neucom.2015.10.122

Rasmusson, J., Dahlgren, F., Gustafsson, H., & Nilsson, T. (2004). 
Multimedia in mobile phones –  The ongoing revolution. Ericsson 
Review, 2, 98–107.

Recknagel, F. (2001). Applications of machine learning to ecological 
modelling. Ecological Modelling, 146(1–3), 303–310. https://doi.
org/10.1016/S0304​-3800(01)00316​-7

Reis, R. E., Albert, J. S., Di Dario, F., Mincarone, M. M., Petry, P., & Rocha, L. 
A. (2016). Fish biodiversity and conservation in South America. Journal 
of Fish Biology, 89(1), 12–47. https://doi.org/10.1111/jfb.13016

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional net-
works for biomedical image segmentation. In: International confer-
ence on medical image computing and computer-assisted intervention 
(pp. 234–241). https://doi.org/10.1007/978-3-319-24574​-4_28

Schuettpelz, E., Frandsen, P. B., Dikow, R. B., Brown, A., Orli, S., Peters, 
M., Metallo, A., Funk, V. A., & Dorr, L. J. (2017). Applications of 
deep convolutional neural networks to digitized natural history 
collections. Biodiversity Data Journal, 1(5), e21139. https://doi.
org/10.3897/BDJ.5.e21139

Sullivan, D. P., Winsnes, C. F., Åkesson, L., Hjelmare, M., Wiking, M., 
Schutten, R., Campbell, L., Leifsson, H., Rhodes, S., Nordgren, 
A., & Smith, K. (2018). Deep learning is combined with massive-
scale citizen science to improve large-scale image classification. 
Nature Biotechnology, 36(9), 820–828. https://doi.org/10.1038/
nbt.4225

Sun, X., Shi, J., Dong, J., & Wang, X. (2016). Fish recognition from low-
resolution underwater images. In: 9th International congress on image 
and signal processing, biomedical engineering and informatics (CISP-BMEI) 
(pp. 471–476). https://doi.org/10.1109/CISP-BMEI.2016.7852757

Swanson, A., Kosmala, M., Lintott, C., & Packer, C. (2016). A generalized 
approach for producing, quantifying, and validating citizen science 
data from wildlife images. Conservation Biology, 30(3), 520–531. 
https://doi.org/10.1111/cobi.12695

Swierk, L., & Madigosky, S. R. (2014). Environmental perceptions and re-
source use in rural communities of the Peruvian Amazon (Iquitos 
and vicinity, Maynas Province). Tropical Conservation Science, 7(3), 
382–402. https://doi.org/10.1177/19400​82914​00700303

Van Horn, G., Mac Aodha, O., Song, Y., Cui, Y., Sun, C., Shepard, A., Adam, 
H., Perona, P., & Belongie, S. (2018). The inaturalist species classifi-
cation and detection dataset. In: Proceedings of the IEEE conference 
on computer vision and pattern recognition (pp. 8769–8778). https://
doi.org/10.1109/CVPR.2018.00914

Wäldchen, J., & Mäder, P. (2018). Machine learning for image based spe-
cies identification. Methods in Ecology and Evolution, 9(11), 2216–
2225. https://doi.org/10.1111/2041-210X.13075

Weinstein, B. G. (2017). A computer vision for animal ecol-
ogy. Journal of Animal Ecology, 87(3), 533–545. https://doi.
org/10.1111/1365-2656.12780

 20457758, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9987 by C

ochrane Peru, W
iley O

nline L
ibrary on [13/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/phvs.201970207
https://doi.org/10.1111/j.1442-9993.1995.tb00523.x
https://doi.org/10.1111/j.1442-9993.1995.tb00523.x
https://doi.org/10.7717/peerj.563
https://doi.org/10.7717/peerj.563
https://doi.org/10.3390/info11020108
https://doi.org/10.1111/cobi.13466
https://doi.org/10.1111/cobi.13466
https://doi.org/10.1080/14634980701351023
https://doi.org/10.1080/14634980701351023
https://doi.org/10.3996/032018-JFWM-020
https://doi.org/10.3996/032018-JFWM-020
https://doi.org/10.1093/biosci/biz165
https://doi.org/10.1007/s10750-014-2040-0
https://doi.org/10.1007/s10750-014-2040-0
https://doi.org/10.1038/s41598-018-32089-8
https://doi.org/10.1038/s41598-018-32089-8
https://doi.org/10.1371/journal.pone.0035964
https://doi.org/10.1371/journal.pone.0035964
https://doi.org/10.1017/S0376892907003566
https://doi.org/10.1017/S0376892907003566
https://doi.org/10.1890/110294
https://doi.org/10.1073/pnas.1719367115
https://doi.org/10.1073/pnas.1719367115
https://doi.org/10.1186/1471-2148-11-275
https://doi.org/10.1186/1471-2148-11-275
https://doi.org/10.1590/1982-0224-2021-0134
https://doi.org/10.1590/1982-0224-2021-0134
https://doi.org/10.1007/s11042-020-08949-9
https://doi.org/10.1016/j.neucom.2015.10.122
https://doi.org/10.1016/j.neucom.2015.10.122
https://doi.org/10.1016/S0304-3800(01)00316-7
https://doi.org/10.1016/S0304-3800(01)00316-7
https://doi.org/10.1111/jfb.13016
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.3897/BDJ.5.e21139
https://doi.org/10.3897/BDJ.5.e21139
https://doi.org/10.1038/nbt.4225
https://doi.org/10.1038/nbt.4225
https://doi.org/10.1109/CISP-BMEI.2016.7852757
https://doi.org/10.1111/cobi.12695
https://doi.org/10.1177/194008291400700303
https://doi.org/10.1109/CVPR.2018.00914
https://doi.org/10.1109/CVPR.2018.00914
https://doi.org/10.1111/2041-210X.13075
https://doi.org/10.1111/1365-2656.12780
https://doi.org/10.1111/1365-2656.12780


    |  9 of 9ROBILLARD et al.

White, A. E., Dikow, R. B., Baugh, M., Jenkins, A., & Frandsen, P. B. 
(2020). Generating segmentation masks of herbarium speci-
mens and a data set for training segmentation models using deep 
learning. Applications in Plant Sciences, 8(6), e11352. https://doi.
org/10.1002/aps3.11352

Winemiller, K. O., McIntyre, P. B., Castello, L., Fluet-Chouinard, E., 
Giarrizzo, T., Nam, S., Baird, I. G., Darwall, W., Lujan, N. K., Harrison, 
I., & Stiassny, M. L. J. (2016). Balancing hydropower and biodiversity 
in the Amazon, Congo, and Mekong. Science, 351(6269), 128–129. 
https://doi.org/10.1126/scien​ce.aac7082

How to cite this article: Robillard, A. J., Trizna, M. G., 
Ruiz-Tafur, M., Dávila Panduro, E. L., de Santana, C. D., 
White, A. E., Dikow, R. B., & Deichmann, J. L. (2023). 
Application of a deep learning image classifier for 
identification of Amazonian fishes. Ecology and Evolution, 13, 
e9987. https://doi.org/10.1002/ece3.9987

 20457758, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9987 by C

ochrane Peru, W
iley O

nline L
ibrary on [13/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/aps3.11352
https://doi.org/10.1002/aps3.11352
https://doi.org/10.1126/science.aac7082
https://doi.org/10.1002/ece3.9987

	Application of a deep learning image classifier for identification of Amazonian fishes
	Abstract
	1|INTRODUCTION
	2|METHODS
	2.1|Preprocessing steps
	2.2|Identification model architecture, training, and validation

	3|RESULTS
	4|DISCUSSION
	5|CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


