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Abstract

It is a well-known property of the integers, that given any nonzero a ∈ Z, where a is not a unit,

we are able to write a as a unique product of prime numbers. This is because the Fundamental

Theorem of Arithmetic (FTA) holds in the integers and guarantees (1) that such a factorization

exists and (2) that it is unique. As we look at other domains, however, specifically those of the

form O(
√
D) = {a+ b

√
D | a, b ∈ Z, D a negative, squarefree integer}, we find that the FTA

does not always hold. For example, in the domain O(
√
−5), 6 = 2 · 3 and

6 = (1 +
√
−5)(1−

√
−5) are two valid factorizations of 6, with 2, 3, 1 +

√
−5, 1−

√
−5 all

irreducible elements in O(
√
−5). This paper discusses the history and development of the

problem of discerning which fields of the form O(
√
D) are unique factorization domains (UFDs),

and concludes by constructing a method of proving unique factorization in some domain using

results concerning Euclidean domains and principal ideal domains.
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Unique Factorization in the Rings of Integers of Quadratic Fields

A Method of Proof

Introduction

Overview and Statement of Purpose

The purpose of this work is to provide an investigation into the question of which

quadratic fields have rings of integers that possess unique factorization. We will first trace the

history and development of this question, we will then establish necessary definitions of the

concepts and terms involved, and we will conclude by illustrating a process for proving unique

factorization in some field O(
√
D).

What is a Unique Factorization Domain?

Before we can begin this exploration, it is important to first answer a few preliminary

questions and provide several examples to ensure a proper understanding of the topic. Firstly, we

may begin with the question: What is a unique factorization domain? While a more precise

definition will be provided later in this work, for now a helpful illustration of this structure can be

found by simply looking at the integers.

It is a very important and well-known property of the integers that every integer that is not

0, 1, or −1 can be factored into a product of prime numbers. This fact is familiar even for middle

and high-school students, who often utilize the property for problems such as finding the greatest

common divisor of two integers. But while some may find it trivial or unremarkable that this is

the case, the property has been deemed to be so important that the theorem which states it has

merited the lofty designation “The Fundamental Theorem of Arithmetic” (FTA).
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Theorem 1. For any nonzero x ∈ Z ∃ irreducibles p1, p2, ..., pn ∈ Z such that x = p1p2 · · · pn,

and this factorization into irreducible elements is unique up to ordering.

A proof of this theorem may be found in Rosen (2010). It may be pointed out that the FTA

uses the term irreducible where we may be used to seeing the term prime. Further on, we will

provide definitions that will clarify the distinction, but for now, while we are referring to the

integers, we may use the terms interchangeably. Notice that the FTA guarantees two important

facts about every integer. First, that a factorization of any integer into a product of irreducible

elements does exist. Second, there is only one such factorization for every integer. That is, prime

factorization in the integers is unique.

Are There Examples of Nonunique Factorization?

The fact that this relatively mundane observation about the integers has been assigned so

much importance may cause one to wonder: Is there ever an instance where unique factorization

would not be the case? To address this question, we must step outside of the integers and into the

more general category of integral domains. Integral domains will be dealt with more thoroughly

in following sections, but there is one example that most students have encountered at some point,

the Gaussian integers. Gaussian integers are numbers that are formed by conjoining the imaginary

number i =
√
−1 to the ordinary integers. Thus, some examples of Gaussian integers would be

1 + 2i, 5− 6i, or 0 + 67i. The Gaussian integers have many interesting qualities that make them

useful in the study of mathematics, and they share many properties with the integers (including, in

fact, unique factorization). Suppose, however, that we were to replace −1 in the examples above

with another value, perhaps −5. We would then have formed a new integral domain which is
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notated as O(
√
−5) = {a+ b

√
−5 | a, b ∈ Z} and which contains elements such as 5− 14

√
−5

and 20 + 4
√
−5. Since elements of any integral domain having this form can be referred to as

integers, from this point on to avoid confusion we will use the term rational integers to refer to

elements of Z. Elements of the domain O(
√
−5) , like the rational integers, can ultimately be

factored into irreducibles, but in this particular domain, it can be shown that the factorizations are

not guaranteed to be unique. To demonstrate this, first note that any rational integer, such as 6, is

contained within O(
√
−5) since we could write it as 6− 0

√
−5. Now, we can note that 6 = 2 · 3

is a valid factorization in this domain. However, 6 = (1 +
√
−5)(1−

√
−5) is also a factorization

of 6 in O(
√
−5). Thus, since it can be shown that 2, 3, (1 +

√
−5), and (1−

√
−5) are all

irreducible elements in O(
√
−5), we can conclude that the FTA does not hold in this domain.

Is Unique or Nonunique Factorization More Common?

Now that we have demonstrated examples of domains both with and without unique

factorization, one may wonder how common a phenomenon these unique factorization domains

really are. Is nonunique factorization simply a rare exception, while unique factorization is the

norm? Or is the converse true? This question turns out to be a fascinating one that has occupied

many mathematicians’ minds over the past two centuries, and this work will undertake to shed

light on some of the things they have concluded.

Why Should We Care About Unique Factorization?

Before commencing an investigation into the topic of unique factorization, one closing

anecdote may help to illustrate what may motivate a mathematician to devote time and attention

to this issue. In 1637, renowned mathematician Pierre de Fermat recorded a note in the margins of
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a book he was reading that would later become one of the most famously frustrating theorems in

the history of mathematics. He stated that he had found a method of proving that there are no

solutions to a certain form of equation, but noted “the margin was too narrow to contain” the

proof (Gallian, 2016). After his death in 1665, the statement became known as Fermat’s Last

Theorem, and for hundreds of years mathematicians worked to discover what proof Fermat could

have had in mind. Attempt after attempt was made to solve the problem, but each attempt was

met with failure, leading some to question whether Fermat’s alleged proof might have contained

errors that he had failed to notice. Finally, almost 200 years after Fermat’s death, a mathematician

named Gabriel Lamé excitedly reported that he had finally found a proof of Fermat’s Last

Theorem. He presented his method at a meeting of the Paris Academy on March 1, 1847.

However, it was soon pointed out that Lamé’s method rested on assumptions about factorization

within a certain ring of numbers, and it had only recently been proven by mathematician Ernest

Kummer that in that ring, unique factorization does not hold. This unfortunately invalidated the

entire proof, sending a disappointed Lamé back to the drawing board, and painfully illustrating

that taking for granted the property of unique factorization in rings of integers can lead to

unfortunately flawed results. Fermat’s Last Theorem remained an open question for another 150

years until a solution was finally published in 1995 (Fraleigh, 2002).

Preliminaries

What is a Domain?

We will now begin by defining a few terms that will be the basis for our discussion of the

issue of unique factorization. The first term we will define is the algebraic structure of a domain.
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The most straightforward example of a domain may be found in the rational integers. Without

backtracking too deeply into the fundamentals of algebra, we may define a domain as follows:

Definition 1. A domain R is a collection of numbers along with two operations, “addition” and

“multiplication,” where the following axioms hold (axioms are adapted from Weintraub, 2008):

1. If a, b ∈ R, then a+ b ∈ R also.

2. If a, b ∈ R, a+ b = b+ a.

3. If a, b, c ∈ R, a+ (b+ c) = (a+ b) + c.

4. There is some element 0 in R such that for any a ∈ R, 0 + a = a+ 0 = a.

5. For every element a ∈ R there exists some element (−a) such that

a+ (−a) = (−a) + a = 0.

6. If a, b ∈ R, then ab ∈ R also.

7. If a, b ∈ R, ab = ba.

8. If a, b, c ∈ R, a(bc) = (ab)c.

9. There is some element 1 in R such that for any a ∈ R, 1a = a1 = a.

10. If a, b, c ∈ R, a(b+ c) = ab+ ac and (a+ b)c = ac+ bc.

11. If a, b ∈ R and ab = 0, then a = 0 or b = 0.
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This last axiom establishes the fact that there are no zero divisors in a domain. In other

words, the product of two nonzero elements of a domain will always be nonzero as well. This

makes it possible to prove a very useful property of domains known as the cancellation property.

Theorem 2. If a, b, c ∈ R for some domain R with a ̸= 0, and we have ab = ac, then we may

conclude that b = c.

Proof. Suppose we have ab = bc with a, b, c ∈ R and a ̸= 0. Then we know ∃a−1 ∈ R, so we

have a−1(ab) = a−1(ac) =⇒ (a−1a)b = (a−1a)c =⇒ b = c.

As we observed above, the rational integers possess all of these properties, and they are

therefore the most familiar instance of a domain. For this reason, the terms domain and integral

domain are both used to describe this structure.

What is a Field?

If we were to add one more axiom to the sequence we have listed above, the result would

be a slightly more restricted structure known as a field. That axiom is

1. For every nonzero element a ∈ R, there exists some element a−1 such that

a(a−1) = (a−1)(a) = 1.

Note that, while the rational integers do not meet the qualifications to be labeled as a field,

there is another familiar set of numbers that do. The rational numbers, denoted as

Q = {a
b
| a, b ∈ Z, b ̸= 0}, make up a field, where the multiplicative inverse of some nonzero

number a is simply its reciprocal, 1
a
. It is the case that every integral domain can be used to

construct a field that is related to the initial domain in the same way that Z is related to Q
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(Fraleigh, 2002). As indicated in the beginning of this work, we will be concerned with one

specific kind of field, known as quadratic fields.

What is a Quadratic Field?

A quadratic field is a type of field in which every element is of the form a+ b
√
D where a

and b are rational numbers and D is some squarefree integer, meaning that it does not possess a

perfect square as any of its factors. These fields are denoted Q(
√
D) and are known as quadratic

fields because every element will be the solution to some quadratic equation of the form

a0x
2 + a1x+ a2 = 0, where a0, a1, and a2 are integers. Note that depending on whether or not D

is a positive value, elements of a quadratic field may be either real or complex. For example,

earlier it was demonstrated that 6 possessed two distinct factorizations in the field Q(
√
−5),

which would be an imaginary quadratic field, or complex quadratic field. However, the field

Q(
√
7) would be an example of a real quadratic field.

What is a Ring of Integers?

Note that this paper is not concerned directly with quadratic fields, but with their rings of

integers. The ring of integers of some quadratic field Q(
√
D) is denoted by O(

√
D), and it will be

related to Q(
√
D) in the same way that the rational integers are related to the rational numbers.

Definition 2. The ring of integers of some quadratic field Q(
√
D) is

O(
√
D) = {a+ b

√
D | a, b ∈ Z} if D ≡ 2 or 3 (mod 4) and O(

√
D) = {a+b

√
D

2
| a, b ∈ Z and

a, b are both even or both odd} if D ≡ 1 (mod 4) (Weintraub, 2008).

Explaining the rationale for the modular portion of this definition would require a

significant detour into the theory of algebraic integers, so, for the purpose of this work, we will
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accept it without justification. However, a detailed explanation can be found in Hardy and

Wright’s (1979) An Introduction to the Theory of Numbers.

Just as we may find prime factorizations for rational integers, we can find analogous

factorizations for the ring of integers of any quadratic field. However, now that we are dealing

with more general cases, it will be helpful to explicitly define what we mean by the terms

factoring and unique factorization in these domains.

What is Factorization?

Every student will be familiar with the process of finding prime factorizations in the

rational integers. The process involves beginning with a number and breaking it down into its

factors until we are left only with a set of prime numbers that are not able to be broken down any

farther. This problem is simple enough to be taught to students in middle school. However, when

we begin dealing with other integral domains, a few questions arise that require us to define some

of our terms carefully. For example, what does it mean for a number in the domain O(
√
−3) to be

prime? The purpose of this section will be to establish enough of a description of factorization to

be helpful for the following proofs and discussions, but not to give an exhaustive investigation

into the methods or process of finding factorizations.

The following definitions may be used for any general integral domain R (adapted from

Weintraub, 2008):

Definition 3. Given two elements α, β ∈ R, we say α divides β (written α|β) if there exists some

γ ∈ R such that αγ = β.

Definition 4. An element α ∈ R is called a unit of R if there exists some element α′ ∈ R such
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that α(α′) = 1.

(Note that by the definitions given above, this means that α′ is a multiplicative inverse of

α. Thus another definition of a field is an integral domain in which every element is a unit).

Definition 5. Two elements α1, α2 ∈ R are called associates if (α1)β = (α2) for some unit

β ∈ R.

Definition 6. An element α ∈ R is called irreducible in R if α = βγ implies that β or γ is a unit.

Definition 7. An element α ∈ R is called a prime in R if α|βγ implies α|β or α|γ.

To demonstrate the process of factorization in some ring of integers O(
√
D), we will first

make an observation from the rational integers. When we say that elements of Z may be factored

into a unique product of primes, we must note that there are a couple of qualifications on this

statement. For example, if we were to begin with the integer 10, a valid factorization would be

(2)(5). However, (−2)(−5) would be another perfectly valid factorization, as would

(1)(−1)(−1)(5)(2). We may recognize that all of these factorizations are essentially the same,

but it is still obvious that they are at least different in form, so what exactly do we mean when we

talk of the unique factorization of rational integers? Notice that all of the factorizations listed

above only differ in the order in which factors are listed and by the number of times the factors

(1) and (−1) appear. Also, notice that from definition (2) above, 1 and −1 are the only elements

of the integers that can be called units (since 1(1) = (−1)(−1) = 1 ). Thus when we say that the

rational integers may be factored into a unique product of prime factors, we really mean the

factorizations are unique up to multiplication by a unit. Thus, when working within a different

integral domain, we must note which elements are units in that domain.
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History

Gauss’ Introduction of the Class Number One Problem

The problem that this thesis is concerned with has come to be known as the Gauss class

number one problem. This is because the question of which quadratic fields contain rings of

integers that may be broken into unique factorizations of irreducibles was first formulated by Carl

Friedrich Gauss in 1801. Gauss was a German mathematician born in 1777 in Brunswick,

Germany (Gray, 2022). He showed incredible ability in mathematics from a very young age, and

began making significant contributions to his field beginning at the age of 15 (Gray, 2022). Over

the course of his lifetime he made novel discoveries in number theory, astronomy, geometry,

geodesy, and other areas that continue to make a significant impact on the progression of the

study of mathematics to this day. In 1801, he published an impressive work in Latin entitled

Disquisitiones Arithmeticae (Mathematical Inquiries). In articles 303-305 of this publication,

Gauss is concerned with the problem of finding the class number of some algebraic number field

K, that is, the order of the quotient group (JK)/(PK), where JK is the group of fractional ideals

of K and PK is its subgroup of principal ideals (Gauss, 1801). So if a field has class number one,

the order of its quotient group (JK)/(PK) must be one, so the groups JK and PK must be

isomorphic to each other. It has been shown that the problem of finding the quadratic fields

Q(
√
D) that have class number one, and the problem of determining which quadratic fields

Q(
√
D) possess unique factorization are equivalent.

Gauss provided a list of nine negative values of D such that Q(
√
D) has class number one

(and thus unique factorization), namely −1,−2,−3,−7,−11,−19,−43,−67,−163. He
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speculated without proof that this comprised a complete list. However, it was not until much later

that this speculation could be proved. He also asserted that it was likely that as D approached

negative infinity, the class number of Q(
√
D) approaches infinity, and that there were possibly an

infinite number of positive values for D such that Q(
√
D) would possess unique factorization.

Hans Heilbronn’s Work on the Problem

These speculations of Gauss remained conjectures for more than a century. However, in a

1934 publication entitled On the Class Number in Imaginary Quadratic Fields, a mathematician

by the name of Hans Heilbronn was able to prove Gauss’ conjecture that for any class number h,

there are only finitely many fields of the form Q(
√
D), where D is a negative squarefree integer,

such that the class number of Q(
√
D) = h. This implied that even if Gauss had not been able to

list all values of D that result in unique factorization for O(
√
D), his list only required a finite

number of additions to become complete. In the same year, Heilbronn, working together with

mathematician Edward Linfoot, was able to demonstrate that there was at most one number that

Gauss had missed in his possible solution of the class number one problem. This discovery

represented significant headway into the problem, but the question of whether or not Gauss’ list

was complete remained a mystery that Heilbronn ultimately did not solve.

Kurt Heegner’s Work on the Problem

In 1952, the problem was picked back up by a radio engineer named Kurt Heegner who

worked with mathematical problems as a hobby (Propp, 2019). In an article titled Diophantische

Analysis und Modulfunktionen (Diophantine Analysis and Modular Functions), Heegner (1952)

claimed to prove that Gauss’ list was, in fact, complete. Consequently, there were no other
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quadratic fields whose domains of integers would have unique factorization. At the time of its

publication, though, it was thought that Heegner’s proof contained holes and was incomplete.

Harold Stark’s Work on the Problem

Finally in 1963, the problem was settled decisively by Harold Stark and Alan Baker, who

determined conclusively that Heegner’s conclusion had been correct, that there could be no tenth

value for D such that Q(
√
D) had class number one (Stark, 1967). Stark and Baker were working

on the problem independently, but they found their separate solutions the same year. Stark then

undertook to show that Heegner’s proof needed only to have a couple of holes filled in order to be

a completely valid proof (Stark, 1969).

Coining of the Term Heegner Number

In The Book of Numbers, published in 1996, authors John Horton Conway and Richard K.

Guy were the first to refer to these nine numbers which yielded quadratic fields with class number

one as Heegner Numbers (Conway & Guy, 1996). This designation has come to be widely used,

even though, as one author notes ironically, “naming this set after Heegner is like naming a

species not after the naturalist who discovered them, but after the scientist who declared the

species extinct!” (Propp, 2019, p. 20).

Proofs

Overview of Section

At this point, we have established the groundwork that is necessary to trace a method

through which one might prove that O(
√
D) is a unique factorization domain for some squarefree

integer D. Detailing this method will involve several steps. First, we will give the definition of
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two different types of domains, Euclidean domains and principal ideal domains. Once we have

established the definitions, we will be able to supply a proof that every Euclidean domain is a

principal ideal domain. We will then undertake to prove that every principal ideal domain is a

unique factorization domain. Thus, once we have finished these proofs, we will have reduced the

task of proving that O(
√
D) is a unique factorization domain to the task of proving that it is a

Euclidean domain. We will conclude by illustrating this process using O(
√
−1), the Gaussian

integers.

Definitions

Euclidean Domain

Roughly speaking, a Euclidean domain is one in which we can always divide one element

by another and end up with a quotient and a remainder that is either 0 or strictly less than the

divisor. Note that, however, if we are dealing with any domain outside of the rational integers, it

quickly becomes apparent that the usual sense of “greater than” and “less than” may no longer

carry meaning. For example, what does it mean to say ρ < β if ρ = 3 + 4i and β = 6− 2i? Thus,

in whatever domain we are working with we must establish a definition of what it means for some

elements in the domain to be “greater than” or “less than” others. To supply this definition, we

will use the mathematical concept of a norm. The first two properties come from Weintraub

(2008), the third is commonly used in the definition of a norm.

Definition 8. “Let R be an integral domain. Then N is a norm on R if:

1. for every nonzero element α of R, N(α) is a nonnegative integer;

2. for every two nonzero elements α and β of R, N(α) ≤ N(αβ)” (p. 20);
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3. N(α) = 0 if and only if α = 0.

Thus a norm is simply a mapping from a domain R into the nonnegative integers. So to

compare the “size” of two different elements of R, we simply compare the norm of each element

using the familiar definitions of < and >.

Note that we can find an example of a norm by looking at the absolute value function on

the rational integers.

Theorem 3. The absolute value function is a norm on Z.

Proof. The absolute value function is defined as

|x| =


x x ≥ 0

−x x < 0

. We can clearly see that if we input any element of Z the output will be a nonnegative integer. To

demonstrate the second condition, we will take advantage of the fact that |ab| = |a||b|. Let a and b

be two nonzero integers, then |ab| = |a||b| = |a|z for some z ∈ Z+. So

|a||b| = |a|z ≥ |a|

To show that a domain R is a Euclidean domain, one must first define a norm N on R and

then demonstrate that given any two elements α and β of R, there exist elements γ and ρ such that

α = βγ + ρ where ρ = 0 or 0 < N(ρ) < N(β). This gives us the following definition of a

Euclidean domain.
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Definition 9. We say a domain R, along with some norm N , is a Euclidean domain if, given any

two elements α and β in R with β ̸= 0, one can write that α = βγ + ρ for some elements γ and ρ

in R where ρ = 0 or 0 < N(ρ) < N(β).

Principal Ideal Domain

To begin our discussion of the second type of domain we will be concerned with, we must

first define the algebraic term of an ideal. Gallian (2016) gives the following definition of an ideal.

Definition 10. “A subring A of a ring R is called a (two-sided) ideal of R if for every r in R and

every a in A both ra and ar are in A” (p. 249).

Put slightly differently, a collection A of elements of R is an ideal if it is closed under

addition, and if it is closed under multiplication by any element of R.

A helpful example can be found once again in the rational integers. If we let R = Z40, the

set of all nonnegative integers less than 40, we may show that the set A of all multiples of 5 less

than 40 makes up an ideal of R under addition modulo 40. To show this, we first note that A is

closed under addition modulo 40 we have 5x1 + 5x2 = 5(x1 + x2) = 5y, where x1, x2 ∈ R and

y = x1 + x2. Also, we can see that A is closed under multiplication by any element of R, since,

for any r in R and any a = 5x in A, we have ra = r(5x) = 5(rx). Thus A is an ideal of the

domain Z40.

Notice that by the same argument shown above, the set of all multiples of 3 would also be

an ideal. So, in fact, would the set of multiples of any number in Z. This is true in general, that is,

the set A of multiples of any element α of a domain R forms an ideal of R. The proof of this

statement would look identical to the proof above that the set of all multiples of 5 is an ideal.
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If A is an ideal of R containing only the multiples of some element α, we say that A is a

principal ideal, generated by α, and we write A = ⟨α⟩. Thus ⟨5⟩ = {0, 5, 10, 15, ..., 35} and

⟨8⟩ = {0, 8, 16, 24, 32} would be principal ideals of Z40. At this point, it would possibly be

helpful to demonstrate from the rational integers an example of a non-principal ideal, one that is

not simply generated by a single element. However, this turns out to be impossible, since there is

actually no such ideal in Z (Fraleigh, 2002). If we were to choose a different domain, such as

O(
√
−3), we could show an example of a non-principal ideal, but that does not lie within the

scope of this work.

In fact, this observation about the integers gives the opportunity to introduce a vital new

definition.

Definition 11. A domain R is a called a principal ideal domain (or PID) if every ideal A in R

contains some element α such that A is generated by α.

Now that we have this definition, we may restate our observation about the rational

integers in the following theorem.

Theorem 4. The integers are a principal ideal domain.

It will be helpful to briefly note that we have now observed that the rational integers are

both a Euclidean domain and a principal ideal domain. Over the next few steps, we will

demonstrate that it will always be the case that, if R is a Euclidean domain, R will also be a PID.
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Unique Factorization Domain

Recall from earlier definitions that we say that an element α ∈ R is a unit if there exists

some α−1 ∈ R such that α(α−1) = 1. We call two element α, β ∈ R associates if α = βε where ε

is some unit in R. Additionally, we call an element π ∈ R an irreducible in R if for π = αβ

implies that either α or β is a unit (Gallian, 2016). Finally, we must give a formal definition of a

unique factorization domain, or UFD.

Definition 12. A domain D is called a unique factorization domain if the fundamental theorem of

arithmetic holds in D. That is, it satisfies the following two conditions:

1. “Every element of D that is neither 0 nor a unit can be factored into a product of a finite

number of irreducibles.

2. “If π1 · · · πr and ρ1 · · · ρs are two factorizations of the same element of D into irreducibles,

then r = s and the ρj can be renumbered so that πi and ρi are associates” (Gallian, 2016,

p. 312).

Proof That Every Euclidean Domain is a PID

Now that we have formally stated all of the necessary definitions, we will begin to prove

that every Euclidean domain is a UFD. We will begin with the following theorem.

Theorem 5. Every Euclidean domain is a PID.

Proof. Suppose R is a Euclidean domain with norm N , and let A be an ideal in R such that

A ̸= {0}. We define N(A) = {N(α) | α ∈ A}. By the well-ordering principle, there exists some

element k ∈ Z such that k is the least element in N(A). Let α be an element in A such that
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N(α) = k. Then consider an arbitrary element κ ∈ A. Since R is a Euclidean domain, ∃γ, ρ ∈ R

such that κ = αγ + ρ with ρ = 0 or 0 < N(ρ) < N(α). Suppose ρ ̸= 0. Then note that

ρ = κ− αγ. Since A is an ideal, and α ∈ A, κ− αγ = ρ ∈ A. But then we have ρ ∈ A with

0 < N(ρ) < N(α) which contradicts the fact that N(α) was the least element of N(A). Thus we

must have ρ = 0, so κ = αγ for an arbitrary κ ∈ A, and therefore A = ⟨α⟩.

Proof That Every PID is a Unique Factorization Domain

Recall that to prove some domain R is a UFD we must show it satisfies two conditions:

1. For any nonzero element of R that is not a unit, a factorization into a finite number of

irreducibles exists, and

2. This factorization into irreducibles is essentially unique.

Proof of the Existence of a Factorization

We will first prove that every PID satisfies the first condition. We will begin with a lemma

demonstrating that in a PID R, if A1, A2, A3, ... is an arbitrary, possibly infinite, collection of

ideals with A1 ⊆ A2 ⊆ A3 ⊆ · · ·, then the union A = A1 ∪ A2 ∪ A3 ∪ · · · is also an ideal.

Lemma 1. If R is a PID and A1 ⊆ A2 ⊆ A3 ⊆ · · · with A1, A2, A3, ... ideals in R, the union of

A1, A2, A3, ... is also an ideal.

Proof. Let A1, A2, A3, ... be ideals in a PID R, and suppose A1 ⊆ A2 ⊆ A3 ⊆ · · ·. Let

A = A1 ∪A2 ∪A3 ∪ · · ·. Suppose α, β ∈ A. Then, α ∈ Ai and β ∈ Aj for some i, j ∈ Z, and we

may suppose without loss of generality that 0 < i ≤ j. Now Ai ⊆ Aj , since i ≤ j, so we have

α + β ∈ Aj , which implies that α + β ∈ A. Also, given α ∈ A, the fact that α is in some ideal Ai
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implies that αε ∈ Ai for all ε ∈ R, so αε ∈ A for all ε ∈ R. Thus A = A1 ∪ A2 ∪ A3 ∪ · · · is an

ideal.

This proof enables us to prove another result for PIDs known as the Ascending Chain

Condition, or ACC. Suppose we have A1 ⊂ A2 ⊂ · · ·, for ideals A1, A2, ... in R, a PID. We now

claim that this chain can only have a finite number of ideals.

Lemma 2. Any ascending chain of ideals in a PID R contains a finite number of ideals.

Proof. Let A1 ⊂ A2 ⊂ · · · be an ascending chain of ideals in a PID R. First observe from above

that A = A1 ∪ A2 ∪ · · · is an ideal. Since R is a PID, there exists some γ ∈ R such that A is

generated by γ, that is A = ⟨γ⟩. Since A = A1 ∪A2 ∪ · · ·, we know that γ ∈ Ai for some i ∈ Z+,

so every element of ⟨γ⟩ will also be in Ai, giving us ⟨γ⟩ ⊆ Ai ⊆ A = ⟨γ⟩. Therefore, there exists

some i ∈ Z+ such that Ai = A, where A is the union of all the ideals in the chain, so the chain of

strictly ascending ideals must terminate at or before i.

Finally, having proved these two results, we may now prove the following

Lemma 3. Given any element α ∈ R, a PID, there exists a factorization of α into irreducibles.

Proof. We first prove that given any element α ∈ R, α has at least one irreducible factor. If α is

an irreducible then we are done, so we suppose not. Then α = α1β1 for some α1, β1 ∈ R with

neither α1 nor β1 a unit. Thus ⟨α⟩ ⊂ ⟨α1⟩. If we assume α1 is not an irreducible, then α1 = α2β2

for some α2, β2 ∈ R with neither α2 nor β2 a unit. So ⟨α⟩ ⊂ ⟨α1⟩ ⊂ ⟨α2⟩. We observe that if we

continue this procedure, we will gain a chain of strictly ascending ideals. Thus, by ACC, there

must exist some αn such that ⟨α⟩ ⊂ ⟨α1⟩ ⊂ ⟨α2⟩ · ·· ⊂ ⟨αn⟩, where ⟨αn⟩ is the last ideal in the
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chain. If αn is not an irreducible, then we could write αn = αn+1βn+1, hence

⟨α⟩ ⊂ ⟨α1⟩ ⊂ ⟨α2⟩ · ·· ⊂ ⟨αn⟩ ⊂ ⟨αn+1⟩. This clearly contradicts the fact that ⟨αn⟩ is the last

ideal in the chain, so αn must be an irreducible (Gallian, 2016).

Now, given any α ∈ R, we know that we can write α = π1β1 where π1 is an irreducible.

Now consider β1. If β1 is not an irreducible, then we know from above that we can write

β1 = π2β3 where π2 is an irreducible. So we have ⟨α⟩ ⊂ ⟨β1⟩ ⊂ ⟨β2⟩. If this procedure continues,

we can again see that we will gain a chain of strictly ascending ideals, so by the same reasoning

as we used above, there must exist some βm such that ⟨α⟩ ⊂ ⟨β1⟩ ⊂ ⟨β2⟩ · ·· ⊂ ⟨βm⟩, where ⟨βm⟩

is the last ideal in the chain. Again, if βm is not an irreducible, then we could write

βm = πn+1βn+1, hence ⟨α⟩ ⊂ ⟨β1⟩ ⊂ ⟨β2⟩ · ·· ⊂ ⟨βm⟩ ⊂ ⟨βm+1⟩. Therefore, βm is an irreducible,

and we may write α = π1π2 · · · βm where each factor of α is an irreducible (Gallian, 2016).

Proof of the Uniqueness of a Factorization

Finally, we must prove the following result.

Lemma 4. Any factorization of an element α into irreducibles in a PID is unique.

Proof. Suppose that α = π1π2 · · · πr and α = ρ1ρ2 · · · ρs are two factorizations of α ∈ R, a PID,

into irreducibles. We must show that it is possible to reorder the ρj such that πi = ρi or πi and ρi

are associates, that is πi = ρiε for some unit ε ∈ R. Then we will see that the factorizations are

unique up to multiplication by a unit. First, note that we have α = π1π2 · · · πr = ρ1ρ2 · · · ρs. So

we have π1|(ρ1ρ2 · · · ρs). At this point, we must state without proving that any irreducible

element in a PID R is also a prime element in R (Gallian, 2016). Thus, by the definition of a

prime, π1|(ρ1ρ2 · · · ρs) implies that π1|ρi for some i ∈ Z, 0 < i ≤ s. Therefore, we have that
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ρi = π1ε1 for some ε1 ∈ R, and ε1 must be a unit, since we have assumed ρi is an irreducible for

every ρi. This gives us π1π2 · · · πr = (ε1π1)ρ1ρ2 · · · ρi−1ρi+1 · · · ρs. Since R is a domain, we may

cancel and gain π2 · · · πr = (ε1)ρ1ρ2 · · · ρi−1ρi+1 · · · ρs. Now we can continue this process,

observing that π2|(ε1ρ1ρ2 · · · ρi−1ρi+1 · · · ρs).

We may suppose without loss of generality that r ≤ s. So, once we have completed this r

times, we will have 1 = (ε1ε2 · · · εr)ρr+1ρr+2 · · · ρs. But then we ρi|1 for each ρi where

r < i < s, so each remaining ρi is by definition a unit. However, this contradicts our assumption

that each ρi was an irreducible, so we must have r = s. Therefore, we have shown that we must

have π1π2 · · · πr = ρ1ρ2 · · · ρr where each ρi = πiεi for some unit εi. Therefore, factorizations

into irreducibles in a PID are unique (Gallian, 2016).

Combining the previous two theorems we obtain:

Theorem 6. Every PID is a UFD.

Demonstrating Uniqueness of Factorization in O(
√
D)

At this point, we have completed a set of proofs that lead us to the following conclusion.

Theorem 7. For any domain R, if R is Euclidean, then it is a UFD.

Thus, one possible way of proving that the FTA holds in the nine fields O(
√
−1),

O(
√
−2), O(

√
−3), O(

√
−7), O(

√
−11), O(

√
−19), O(

√
−43), O(

√
−67), and O(

√
−163) is to

identify a valid norm for each domain and describe a method for satisfying the division algorithm

given any two elements from the domain. Interestingly, though, this cannot be done for all nine of

these fields. It has been demonstrated that there are some negative values of D for which O(
√
D)
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is a UFD but is not a Euclidean domain. Thus, being a Euclidean domain is a sufficient condition

for being a UFD, but it is not a necessary condition (Hardy & Wright, 1979).

However, we will conclude this work by demonstrating that, using the results we have

obtained at this point, we may prove that O(
√
−1) and O(

√
−2) are Euclidean domains and thus

UFDs. With slight modifications, the same method could be used to demonstrate the same for

O(
√
−3), O(

√
−7), and O(

√
−11).

We begin by considering O(
√
D) for a negative, squarefree value of D with

D ≡ 2, 3 (mod 4). Recall that by definition 2, elements of such domains are of the form

O(
√
D) = {a+ b

√
D | a, b ∈ Z}. Suppose we define the mapping N on O(

√
D) by

N(a+ b
√
D) = (a+ b

√
D)(a− b

√
D) = a2 −Db2

We will prove that N is a norm on O(
√
D) after proving the following helpful result.

Theorem 8. If α = a+ b
√
D and β = c+ d

√
D for some a, b, c, d ∈ Z then

N(αβ) = N(α)N(β).

Proof. N(αβ) = N((a+ b
√
D)(c+ d

√
D)) = N((ac+ bdD) + (ad+ bc)

√
D) =

(ac+Dbd)2 −D(ad+ bc)2 = a2c2 −Da2d2 +D2b2d2 −Db2c2 =

a2(c2 −Dd2)−Db2(c2 −Dd2) = (a2 −Db2)(c2 −Dd2) = N(α)N(β)
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Theorem 9. N is a norm on O(
√
D).

Proof. First, note that since x2 ≥ 0 ∀x ∈ Z, we have ∀α ∈ O(
√
D), N(α) ≥ 0. Now suppose

α, β ∈ O(
√
D) with α = a+ b

√
D, β = c+ d

√
D ̸= 0 for some a, b, c, d ∈ Z. So

N(αβ) = N(α)N(β) = (a2 −Db2)(c2 −Dd2)

Since D < 0, and since (c2 −Dd2) ∈ Z with c, b not both zero, we have N(αβ) ≥ N(α).

Finally, note that N(0) = 0. Therefore N satisfies every necessary condition of a norm.

Having now defined a norm for this domain, we must prove the following theorem.

Theorem 10. Given any two elements α, β ∈ O(
√
−1), β ̸= 0, there exists γ, ρ ∈ O(

√
−1) such

that α = βγ + ρ with 0 ≤ N(ρ) < N(β).

Proof. First consider α
β
∈ Q(

√
−1) defined as

a+ b
√
−1

c+ d
√
−1

=
(a+ b

√
−1)(c− d

√
−1)

(c+ d
√
−1)(c− d

√
−1)

=
ac+ bd

c2 + d2
+

bc− ad

c2 + d2
√
−1 = x+ y

√
−1

for some x, y ∈ Q. We choose r, s ∈ Z such that |x− r| ≤ 1
2

and |y − s| ≤ 1
2
, and we let

γ = r + s
√
−1. Finally, we let m = (x− r), n = (y − s).

Now consider ρ = α− βγ. Note that ρ is in O(
√
−1) by closure, and

ρ = β(
α

β
− γ) = β((x+ y

√
−1)− (r + s

√
−1)) = β(m+ n

√
−1)

Thus it follows that

N(ρ) = N(β(m+ n
√
−1)) = N(β)N(m+ n

√
−1) = N(β)(m2 −Dn2) ≤ N(β)(

1

4
− D

4
)

. So if D = −1 or D = −2, we have α = βγ + ρ with ρ = 0 or 0 < N(ρ) < N(β).
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Conclusion

It will be helpful now to review what we have proven in this work. We began by defining

all of the necessary terms to understand the nature of rings of integers of quadratic fields. We

observed that not all domains of the form O(
√
D) have unique factorization. We then claimed

that we would begin a series of proofs that could reduce the problem of proving O(
√
D) was a

UFD, to the problem of proving it was a Euclidean domain. After defining all relevant terms, we

first proved that all Euclidean domains are PIDs by showing that any ideal in a Euclidean domain

is generated by the element in the ideal whose norm has the smallest value. We then used the

properties of ideals to demonstrate that every element in a PID possesses a unique factorization

into irreducibles. Thus every Euclidean domain is a PID, and every PID is a UFD. We concluded

by using these proofs to demonstrate that O(
√
D) is a UFD for D = −1 and D = −2, and we

observed that a similar method could be used to show that this is also the case for

D ∈ {−3,−7,−11}.
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