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A B S T R A C T

Flow shop scheduling deals with the determination of the optimal sequence of jobs processing on machines in
a fixed order with the main objective consisting of minimizing the completion time of all jobs (makespan).
This type of scheduling problem appears in many industrial and production planning applications. This
study proposes a new bi-objective mixed-integer programming model for solving the synchronous flow shop
scheduling problems with completion time. The objective functions are the total makespan and the sum
of tardiness and earliness cost of blocks. At the same time, jobs are moved among machines through a
synchronous transportation system with synchronized processing cycles. In each cycle, the existing jobs begin
simultaneously, each on one of the machines, and after completion, wait until the last job is completed.
Subsequently, all the jobs are moved concurrently to the next machine. Four algorithms, including non-
dominated sorting genetic algorithm (NSGA II), multi-objective simulated annealing (MOSA), multi-objective
particle swarm optimization (MOPSO), and multi-objective hybrid vibration-damping optimization (MOHVDO),
are used to find a near-optimal solution for this NP-hard problem. In particular, the proposed hybrid VDO
algorithm is based on the imperialist competitive algorithm (ICA) and the integration of a neighborhood
creation technique. MOHVDO and MOSA show the best performance among the other algorithms regarding
objective functions and CPU Time, respectively. Thus, the results from running small-scale and medium-
scale problems in MOHVDO and MOSA are compared with the solutions obtained from the epsilon-constraint
method. In particular, the error percentage of MOHVDO’s objective functions is less than 2% compared to the
epsilon-constraint method for all solved problems. Besides the specific results obtained in terms of performance
and, hence, practical applicability, the proposed approach fills a considerable gap in the literature. Indeed,
even though variants of the aforementioned meta-heuristic algorithms have been largely introduced in multi-
objective environments, a simultaneous implementation of these algorithms as well as a compared study of
their performance when solving flow shop scheduling problems has been so far overlooked.

1. Introduction

Scheduling problems involve optimizing specified objectives and
allocating limited resources to jobs within an explicit time. The re-
sources generally include the workforce, machines, raw materials, and
service points, among others. The jobs can comprise serving clients,
manufacturing processes, or delivering goods. The objectives could be
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maximizing the number of orders that satisfy the delivery date, mini-
mizing the completion time of jobs (Cmax or makespan), minimizing
the maximum tardiness of jobs, or minimizing the mean service time.

In a flow shop manufacturing environment, there are m machines,
and all jobs are processed according to a common processing flow. Each
machine can only process one job at a time, and an unlimited capacity
for intermediate buffers is usually assumed; that is, a job can be kept
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for a limitless amount of time. The problem is deciding each machine’s
processing order (Huang, 2008).

More precisely, the permutation flow shop problem with n jobs and
m machines is generally described as follows. Each one of the n given
jobs is to be consecutively processed on machines 1 to m, whereas
the processing time (𝑝𝑗,𝑖) of job j on machine i is predetermined. The
sequence in which the jobs are to be processed is the same for all the
machines, while the objective function is to obtain a permutation of
jobs that minimizes the makespan, 𝐶max = max𝑗=1,…,𝑛 𝐶𝑗 , where 𝐶𝑗 is
the finishing time of processing job j (the finishing time of the last
operation of job j on machine m). (Huang, 2008).

The material handling system can be conveyors, robots, rotary
tables, cranes, automated guided vehicles, and carriers (Huang, 2008).
The rotary table is encompassed through the processing machines and
loading/unloading station, whereas jobs should be loaded up on the
table before being processed (Milacron, 1989; Waldherr & Knust, 2014,
2016).

1.1. Aim and challenges

This study aims at designing a suitable formulation and effective so-
lution method for the flow shop scheduling problem with synchronous
material transfer considering makespan and the sum of tardiness and
earliness cost as two objectives.

As mentioned above, the necessity of formulating and solving this
kind of problems can easily arise in robotic cells or machining centers.
In such an environment, a job can block a machine while waiting for
the robot to pick it up and transfer it to the following step (Ribas &
Companys, 2015). In particular, one can consider the case where, in
each cycle, the start time of all the jobs on the corresponding machines
is synchronous, and after being processed, all of them must stay until
when the final job is completed. Subsequently, all jobs are shifted to the
succeeding machine simultaneously (Kampmeyer et al., 2016; Waldherr
& Knust, 2016).

Thus, the flow shop scheduling problem can be interpreted as a
permutation flow shop without preemption, which transmits a job
from one machine to another at a time. The following machine’s job
processing starts when processing the whole job on the current machine
is over. If the required time of processing a job on a machine is less than
the maximum processing time, this machine will be unoccupied up to
the next transfer.

We are also assuming blocking. Thus, there are no buffers among
the machines and intermediate queues of jobs waiting in the production
system for their following operations are not permitted (Grabowski &
Pempera, 2007).

For a better and intuitive understanding of the proposed problem,
an example of flow shop with synchronous movement is provided
below.

Example: Consider a flow shop with three machines and five jobs
where the processing time (𝑝𝑗,𝑖) of job j on machine i is predetermined
and assigned according to the following matrix:

job

𝑗
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1 2 3 4 5

processing time
𝑝𝑗,𝑖

on machine 𝑖

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑝𝑗,1

𝑝𝑗,2

𝑝𝑗,3

⎡

⎢

⎢

⎢

⎢

⎣

3 1 3 5 2

1 3 2 1 4

1 1 5 5 4

⎤

⎥

⎥

⎥

⎥

⎦

Consider the job sequence (3, 4, 2, 1, 5). A scheduled for this sequence
is represented in Fig. 1. As the figure shows, the third operation of
job 3 cannot start immediately after the second operation is completed
since job 3 is transferred to machine M3 only after the first operation
of job 4 is completed on machine M1. Another large idle time is on
machine M1 after completing job 2: in fact, all transfers are blocked
till the completion of job 3 on machine M3.

Fig. 1. Schedule for the job sequence (3, 4, 2, 1, 5) in a synchronous flow shop.

1.2. Contribution

We define a bi-objective mathematical model for the synchronous
flow shop scheduling problem whose objective is to optimize the total
makespan and the sum of tardiness and earliness cost, simultaneously,
while accounting for synchronous material transfer.

To solve the resulting NP-hard problem, a multi-objective hybrid
vibration-damping optimization (MOHVDO) algorithm is presented
and compared with well-developed Pareto-based approaches, including
non-dominated sorting genetic algorithm (NSGA II), multi-objective
simulated annealing (MOSA), and multi-objective particle swarm op-
timization (MOPSO). The key feature of the proposed hybrid VDO
algorithm is the integration of a neighborhood creation technique based
on the imperialist competitive algorithm (ICA).

The performance of the algorithms is compared on a set of test
problems using a series of measures based on non-dominant solutions,
that is, Spacing metric, Diversification matrix (DM), Number of Pareto
solution (NOS) metric, and CPU time. MOHVDO is shown to be the
most effective solution technique.

This study is organized into seven sections. Section 2 elaborates
on the state-of-the-art approaches and gaps in the literature. Section 3
presents the model description and its mathematical formalization.
The solution approach is provided in Section 4. Section 5 describes
the model implementation through test problem generation, parameter
tuning, and performance measurements. A discussion of the outputs of
the algorithms on the test problems is provided in Section 6. Finally,
conclusions and future research are stated in Section 7.

2. Related works and gaps in the literature

Many researchers have focused on synchronous or blocking schedul-
ing in the flow shop environments. Soylu et al. (2007) studied syn-
chronous conveying among stations on a permutation flow
shop-sequencing problem to minimize the makespan. Huang and Ven-
tura (2013) proposed a flow shop scheduling problem with synchronous
material movement. Waldherr and Knust (2014) investigated a modi-
fied non-preemptive permutation flow shop with synchronous move-
ment. Kampmeyer et al. (2016) studied synchronous flow shop prob-
lems with two dominating machines. Waldherr and Knust (2016)
offered decomposition algorithms for synchronous flow shop problems
and extra setup times and resources. Waldherr et al. (2017) presented
the consequences of considering voluntary idle times for various ob-
jective functions such as total accomplishment time, minimization
of makespan, and minimizing the maximum tardiness. Wang et al.
(2010) investigated blocking flow shop scheduling problems. Ribas and
Companys (2015) suggest a discrete artificial bee colony algorithm
to solve the blocking flow shop scheduling problem with the total
flowtime criterion. Ribas and Companys (2015) developed two con-
structive heuristics, including HPF1 and HPF2, for the blocking flow
shop problem.

Han, Gong, Li et al. (2016) suggested an improved fruit fly optimiza-
tion algorithm to solve the blocking flow shop scheduling problem to
minimize makespan. Han, Gong, Jin et al. (2016) formulated a multi-
objective optimization problem (MOOP) for a blocking lot-streaming
flow shop scheduling problem with interval processing time. Shao
et al. (2017) presented the blocking flow shop scheduling problem
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Table 1
A classification of related research results in the recent literature.

Study Problem (flow shop) Objective (Min) Solution method

Synchronous Permutation Makespan Earliness Tardiness Exact Heuristic GA NSGA II PSO SA HVDO TS Other

Companys and Mateo (2007) ✓ ✓ ✓ ✓

Soylu et al. (2007) ✓ ✓ ✓ ✓

Wang et al. (2010) ✓ ✓ ✓

Bautista et al. (2012) ✓ ✓ ✓ ✓

Moslehi and Khorasanian (2013) ✓ ✓ ✓ ✓

Huang and Ventura (2013) ✓ ✓ ✓ ✓

Waldherr and Knust (2014) ✓ ✓ ✓ ✓ ✓

Ribas and Companys (2015) ✓ ✓

Ribas and Companys (2015) ✓ ✓

Kampmeyer et al. (2016) ✓ ✓ ✓

Waldherr and Knust (2016) ✓ ✓ ✓

Han, Gong, Li et al. (2016) ✓ ✓ ✓

Han, Gong, Jin et al. (2016) ✓ ✓ ✓ ✓

Shao et al. (2017) ✓ ✓ ✓

Waldherr et al. (2017) ✓ ✓ ✓ ✓ ✓

Gong et al. (2018) ✓ ✓ ✓ ✓

Schaller and Valente (2019) ✓ ✓ ✓ ✓

Han et al. (2020) ✓ ✓ ✓ ✓

Hamzadayı (2020) ✓ ✓ ✓

Kurdi (2020) ✓ ✓ ✓ ✓ ✓

Perez-Gonzalez et al. (2020) ✓ ✓ ✓ ✓

Luo (2020) ✓ ✓

Lang et al. (2021) ✓ ✓

Nazif (2021) ✓ ✓

Doush et al. (2022) ✓ ✓ ✓

Chen et al. (2021) ✓ ✓ ✓

Ribas et al. (2021) ✓ ✓ ✓ ✓ ✓

Safari et al. (2022) ✓ ✓ ✓

An et al. (2022) ✓ ✓

Brammer et al. (2022) ✓ ✓

Ferreira et al. (2022) ✓ ✓

He et al. (2022) ✓ ✓

Koulamas and Kyparisis (2022) ✓ ✓ ✓

This study ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

to decrease the total. Gong et al. (2018) studied the blocking lot-
streaming flow shop scheduling problem. Branch-and-bound algorithms
were developed by Schaller and Valente (2019) to minimize total
earliness and tardiness in a two-machine permutation flow shop. Miy-
ata and Nagano (2019) presented a comprehensive review of the m-
machine flow shop scheduling problem with blocking situations. An
effective benders decomposition algorithm to solve the distributed per-
mutation flow shop scheduling problem was proposed by Hamzadayı
(2020). Kurdi (2020) proposed a memetic algorithm with novel semi-
constructive crossover and mutation operators to minimize makespan
in the permutation flow shop scheduling problem. Perez-Gonzalez et al.
(2020) addressed the permutation flow shop scheduling problem with
availability constraints.

A few exact methods have also been developed for blocking flow
shop scheduling problems with makespan and tardiness criteria
(Bautista et al., 2012; Companys & Mateo, 2007; Moslehi & Khorasa-
nian, 2013).

Among the most recent work addressing permutation flow shop
scheduling problems we find: models focusing on the sustainable as-
pects of blocking flow shop scheduling problems such as the one
defined by Han et al. (2020), where a multi-objective optimization
problem is formalized based on makespan and energy consumption
criteria; models assuming that the setup time of machines depends not
only on the jobs to be processed but also on the previously processed
ones like the parallel flow shop configuration analyzed by Ribas et al.
(2021) under the blocking constraint: models proposing hybrid tech-
niques, such as island neighboring heuristics harmony search algorithm
(INHS) developed by Doush et al. (2022); models of simultaneous
minimization of the mean and variation of job waiting times within a
blocking (synchronous) setting like the one of Koulamas and Kyparisis
(2022); models exploiting the parallel algorithms idea to enhance the
quality of the results, such as the parallel ant colony optimization algo-
rithm developed by of Nazif (2021); models that attempt to address the

problem of predicting the dynamic production status of flow shops and
estimating jobs’ makespan, such as the bilevel interactive optimization
(BIO) approaches proposed by Chen et al. (2021) and Safari et al.
(2022); models of adaptive flexible job-shop rescheduling such as the
one based on real-time order acceptance and condition-based preven-
tive maintenance developed by An et al. (2022); models where machine
learning techniques are combined with domain problem reasoning for
scheduling such as the guided empirical learning process introduced by
Ferreira et al. (2022) to adjust the algorithm search space and enhance
the dispatching rules; models of the reinforcement learning such as the
one with multiple lines and demand plans presented by Brammer et al.
(2022), the Neural Network approaches used by Luo (2020) and Lang
et al. (2021), and the improved Q-learning algorithm developed by He
et al. (2022).

Table 1 summarizes the research work described above and pro-
vides a classification of the results achieved in the recent literature
on flow shop scheduling. The use of multi-objective formulations and
population-based meta-heuristics solution methods is in line with those
proposed in this paper. As it can be understood from the last line in
Table 1, the goal of the proposed approach is to fill a considerable gap
in the literature. Indeed, despite the fact that meta-heuristic solution
methods are the most used ones to solve MOOPs, and that variants
of the algorithms considered and compared in this paper have been
largely introduced in multi-objective environments, a simultaneous
implementation of these algorithms to solve flow shop scheduling
problems has been so far overlooked. A concurrent implementation of
different algorithms allows for a compared study able to identify the
main differences among the algorithms and their effectiveness in terms
of performance measures.

3. Problem description

Consider the flow shop problem with m machine (𝑀1, . . . , 𝑀𝑚),
and n job (𝑗 = 1, 2,. . . , n), each job being characterized by m activity,

3
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Table 2
Parameters and indices.

Indices Notations

j Indices for jobs where j ∈{1, 2, . . . , 𝑛}
i Indices for machines where i ∈{1, 2, . . . , 𝑚}
k Indices for blocks where k ∈{1, 2, . . . , 𝑛 + 𝑚-1}
𝑝𝑗,𝑖 Processing time of job 𝑗 on machine 𝑖
𝑑𝑘 Due date of block k
𝐶𝐸𝑘 Earliness cost of block k
𝐶𝑇𝑘 Tardiness cost of block k

which must be done in the order, that is, 𝑂𝑗1 → 𝑂𝑗2 →... → 𝑂𝑗𝑚. The
𝑂𝑗𝑖 activity must be processed continuously at time 𝑝𝑗,𝑖 on the machine
𝑀𝑖. All jobs and machines are accessible at zero time.

All jobs must be processed in the same order on all machines, and no
preemption is allowed. In one cycle, the start time of all current jobs on
their machines is synchronous. In this case, all the processed jobs will
stay until the last job is completed. Then all the jobs are transmitted to
the following machine simultaneously. In other words, since there are
no intermediate buffers, if machine i+1 is not empty, machine i will be
blocked by a certain job j (in a certain block k). As a result, the cycle
time is defined by the maximum processing time of its operation. This
synchronous transfer becomes more critical when the space between
stations is limited or the job’s size is large.

The goal is to define the sequence of the operations so that the
makespan and the total tardiness and earliness cost are minimized. The
parameters and indices are outlined in Table 2.

The following variables are determined in the model:
𝑋𝑗,𝑘: Binary variable taking value 1 if job j is processed in block k,

and 0 otherwise (𝑘 = 1, 2,… , 𝑛).
𝐹𝑘: Continuous variable for the completion time of block k (𝑘 =

1, 2,… , 𝑛 + 𝑚 − 1).
𝑇𝑘: Continuous variable for the tardiness of block k (𝑘 = 1, 2,… , 𝑛+

𝑚 − 1).
𝐸𝑘: Continuous variable for the earliness of block k (𝑘 = 1, 2,… , 𝑛+

𝑚 − 1).
The bi-objective synchronous flow shop scheduling problem can be

expressed as the following:

𝑍1 = min𝐶max (1)

𝑍2 = min
𝑛+𝑚−1
∑

𝑘=1
(𝐶𝐸𝑘 ⋅ 𝐸𝑘 + 𝐶𝑇𝑘 ⋅ 𝑇𝑘) (2)

s.t.
𝑛
∑

𝑘=1
𝑋𝑗,𝑘 = 1 ∀𝑗 = 1, 2,… , 𝑛; (3)

𝑛
∑

𝑗=1
𝑋𝑗,𝑘 = 1 ∀𝑘 = 1, 2,… , 𝑛; (4)

𝐹1 ≥
𝑛
∑

𝑗=1
𝑋𝑗,1.𝑝𝑗,1 ∀𝑗 = 1, 2,… , 𝑛; (5)

𝐹𝑘 ≥ 𝐹𝑘−1 +
𝑛
∑

𝑗=1
𝑋𝑗,𝑘−𝑖+1.𝑝𝑗,𝑖

∀1 < 𝑘 < 𝑛 + 𝑚,max{1, 𝑘 − 𝑛 + 1} ≤ 𝑖 ≤ min{𝑘, 𝑚};
(6)

𝐹𝑘 −
𝑛
∑

𝑗=1
𝑑𝑘 ⋅𝑋𝑗,𝑘 = 𝑇𝑘 − 𝐸𝑘 ∀𝑘 = 1, 2,… , 𝑛; (7)

𝐶max ≥ 𝐹𝑘+𝑚−1 (8)

𝑇𝑘 = max{𝐹𝑘 − 𝑑𝑘, 0} ∀𝑘 = 1, 2,… , 𝑛 + 𝑚 − 1; (9)

𝐸𝑘 = max{𝑑𝑘 − 𝐹𝑘, 0} ∀𝑘 = 1, 2,… , 𝑛 + 𝑚 − 1; (10)

𝑇𝑘 ≥ 0 ∀𝑘 = 1, 2,… , 𝑛 + 𝑚 − 1; (11)

𝐹𝑘 ≥ 0 ∀𝑘 = 1, 2,… , 𝑛 + 𝑚 − 1; (12)

𝑋𝑗,𝑘 ∈ {0, 1} ∀𝑗, 𝑘 = 1, 2,… , 𝑛 (13)

The objectives are to minimize the total makespan and total tardiness
cost plus earliness, Eqs. (1) and (2), respectively. Constraints (3) and
(4) confirm that each job is allocated to precisely one position, and
each position is occupied by exactly one job, respectively. Constraints
(5) and (6) state that the completion times of blocks are determined.
Constraint (8) indicates the domains of makespan.

Constraint (7) calculates the tardiness and earliness in block k using
the accomplishment time on the machine m and the delivery time d. If
the work is delayed in position k, the left side of the Constraint (7)
is strictly positive (𝑇𝑘 > 0, 𝐸𝑘 = 0), and if the work in position k is
processed early, the left side of the Constraint (7) is strictly negative
(𝑇𝑘 = 0, 𝐸𝑘 > 0). When the work in position k is on time, the left
side will be zero (𝑇𝑘 = 𝐸𝑘 = 0). Constraints (9) and (10) represent the
tardiness and earliness of the blocks, respectively. Finally, constraints
(11) to (13) describe the domains of the variables.

4. Solution approach

4.1. Multi-objective optimization problem (MOOP)

The MOOP refers to problems with two or more goals that must
be satisfied simultaneously. These kinds of problems do not normally
admit a unique solution but a group of solutions named Pareto’s opti-
mal or non-dominant solutions. The general MOOP model is defined as
follows (Ahmed & Deb, 2013):
𝑀𝑖𝑛 𝑦 = 𝑓 (𝑥) = [𝑓1(𝑥), 𝑓2(𝑥),… , 𝑓𝐿(𝑥)]

s.t.
𝑔𝑠(𝑥) ≤ 0,∀𝑠 = 1, 2,… , 𝑆;

ℎ𝑡(𝑥) = 0,∀𝑡 = 1, 2,… , 𝑇 .

(14)

Here x is the vector of decision variables, f (x) represents the vector of
objective functions, and (𝑔𝑠(𝑥))𝑠=1,…,𝑆 and (ℎ𝑡(𝑥))𝑡=1,…,𝑇 are the vectors
of constraints. In the vector of the objective functions f (x), often, a
few functions conflict with each other, with some functions being Min
objectives and others Max objectives.

In a minimization problem for all objectives, 𝑥1 dominates 𝑥2(𝑥1 ≻
𝑥2) if and only if two of the following situations are true:

a) For the whole objectives, 𝑥1 is not worse than 𝑥2, that is: 𝑓𝑙(𝑥1) ≤
𝑓𝑙(𝑥2),∀𝑙 = 1, 2,… , 𝐿.

b) For at least one objective, 𝑥1 is strongly better than 𝑥2, that is:
𝑓𝑙(𝑥1) < 𝑓𝑙(𝑥2),∃𝑙 = 1, 2,… , 𝐿.

Pareto optimal solutions are employed in the Pareto set in the archive.
The archive solutions can be updated with more appropriate solutions
with the repeat process.

Academics have established various methods to solve the MOOP
(Amin-Tahmasbi & Tavakkoli-Moghaddam, 2011; Khalili & Tavakoli-
Moghadam, 2012; Zeng et al., 2013), which are generally divided into
five categories: (1) Scalar methods; (2) Interactive methods; (3) Fuzzy
methods; (4) Meta-heuristic methods; (5) Decision methods. Among
these categories, the meta-heuristic methods are the ones that have
been used more (Collette & Siarry, 2003). Among these methods,
the population-based ones have been frequently applied in the liter-
ature showing their general superior performances (Pasandideh et al.,
2011). In particular, NSGA II algorithms (Reddy et al., 2017), simulated
annealing (SA) (Pasandideh et al., 2013), particle swarm optimiza-
tion (PSO) (Tsai et al., 2014), and vibration damping optimization
(VDO) (Mehdizadeh et al., 2016) have been used and compared in
multi-objective environments. Following this line of thought, in this
study, we solve the proposed model using an epsilon-constraint method
and multi-objective meta-heuristic algorithms (i.e., NSGA II, MOSA,
MOPSO, and MOHVDO).

The rest of this section is dedicated to introducing how we define
the chromosome, crossover, and mutation operators for implement-
ing the meta-heuristic algorithms and describing the meta-heuristics
employed.
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Table 3
The processing time assignment of each job (Jj) to each machine (Mi).

M1 M2 M3 M4 M5

J1 0.8003 0.0357 0.6555 0.8235 0.7655
J2 0.1419 0.8491 0.1712 0.6948 0.7952
J3 0.4218 0.9340 0.7060 0.3171 0.1869
J4 0.9157 0.6787 0.0318 0.9502 0.4898
J5 0.7922 0.7577 0.2769 0.0344 0.4456
J6 0.9595 0.7431 0.0462 0.4387 0.6463
J7 0.6557 0.3922 0.0971 0.3816 0.7094

4.2. Chromosome, crossover, and mutation

In our model, the chromosomes have three parts: the sequence
of jobs, the assignment of a job to the machine, and the machine’s
allocation to the block. To begin with, we want to know which job
should be processed first. For example, consider the situation where
there are seven jobs, five machines, and six blocks. Create a randomized
matrix (array) of length seven (as the number of jobs) between 0 and
1 as follows:

0.5469 0.9575 0.9649 0.1576 0.9706 0.9572 0.4854

Then write the generated matrix in descending order based on their
priority number as follows:

4 7 1 6 2 3 5

In this first stage, the sequence according to which the jobs should be
processed is determined.

The second part of the chromosome allows to know which job
should be assigned to each machine. To do this, we need to create a
matrix with seven rows (jobs) and five columns (machines). Table 3
shows an example of randomized matrix accounting for the processing
time assignments of seven jobs to five machines. In this matrix, we
select the largest number for each row, thus assigning job 1 to machine
4, job 2 to machine 2, and so on until the end.

The third part of the chromosome yields each machine’s assign-
ment to each block and is characterized by a matrix with five rows
(machines) and six columns (blocks). Table 4 shows an example of
randomized matrix for the assignment of five machines to six blocks.
This matrix selects the largest number in each row, indicating each
machine’s allocation to a block. As a result, machine 1 is assigned to
block 6, machine 2 to block 4, and so on until the end.

Regarding the other operators, crossover operators are single-point
and two-point. Mutation operators are uniform, swap, and reversion.

A penalty policy is employed to control infeasible solutions. In the
proposed algorithm, the penalty is specified as a positive and known
coefficient of constraint violation. The larger is the coefficient, the
larger is the penalty. If a chromosome is feasible, its penalty is zero.
Finally, a chromosome’s fitness function is described as the total of its
objective function and penalty (Pasandideh & Niaki, 2012).

4.3. Multi-objective hybrid vibration damping optimization (MOHVDO)
algorithm

Mehdizadeh et al. (2015) introduced VDO for single-objective opti-
mization problems based on the idea of vibration damping in mechan-
ical vibration. Then, Hajipour et al. (2014) introduced multi-objective
VDO (MOVDO) for solving the MOOP.

In this study, we propose a multi-objective hybrid VDO (MOHVDO).
The key and new feature of this algorithm compared to MOVDO is
the incorporation of a neighborhood creation technique based on the
imperialist competitive algorithm (ICA) (Nabipoor Afruzi et al., 2014).

The implementation of neighborhood creation in the MOVDO al-
gorithm has already been considered in previous research works. See

Table 4
The assignment of each machine (Mi) to each block (Bk).

B1 B2 B3 B4 B5 B6

M1 0.7547 0.119 0.2238 0.8909 0.2575 0.9293
M2 0.2760 0.4984 0.7513 0.9593 0.8407 0.3500
M3 0.6797 0.9597 0.2551 0.5472 0.2543 0.1966
M4 0.6551 0.3404 0.506 0.1386 0.8143 0.2511
M5 0.1626 0.5853 0.6991 0.1493 0.2435 0.6160

Mehdizadeh et al. (2016) and Nobari et al. (2018), among others.
However, to the best our knowledge, none of the techniques em-
ployed so far was developed using the ICA approach. As we will show
later, the performance of the proposed algorithm is enhanced with a
hybridization of MOVDO with ICA.

The neighborhood process in ICA is conducted by producing a
random variable (x) that operates as uniform distribution, that is,
𝑥 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝛽 × 𝑑); 𝛽 > 1. Parameter d designates the distance
linking a colony and an imperialist. Another characteristic specified in
the literature of ICA to search for variations across an imperialist is
the deviation of a path (𝜃). This is introduced by defining a uniform
distribution 𝜃 ∼ 𝑈 (−𝛾, 𝛾). Parameter 𝛾 is described as a deviation
from the original direction (for details, please see Alaghebandha and
Hajipour (2013)).

The VDO algorithm commences by determining population size
(nPop), preliminary amplitude (𝐴0), the greatest number of iterations at
each amplitude (L), standard deviation (𝜎), damping coefficient (𝛾), and
generating random solutions in the search space. These solutions are
appraised through the objective function value (E). Hence, comparing,
sorting, and ranking of the current population (P) is performed using
the fast non-dominated sorting (FNDS) and the crowding distance (CD)
function of the NSGA II algorithm. As a result, all the non-dominant
chromosomes of the first iteration are found. The primary loop pro-
duces a solution randomly, and then, utilizing neighborhood structure,
a fresh solution in the new population (S) is obtained, and the best one
is selected. This population is evaluated and sorted using FNDS and CD,
selecting the best ones.

The new solution is admitted if (Mehdizadeh et al., 2015):

𝛥 = 𝐸(new solution) − 𝐸(current solution) < 0 (15)

If 𝛥 > 0, a random number r between (0, 1) is produced. The present
solution is picked on the following criterion (Mehdizadeh et al., 2015):

𝑟 < 1 − exp
(

− 𝐴2

2𝜎2

)

(16)

So, the results are compared using Eq. (16) and the CD operator.
Suppose that two solutions, x and y, are considered in the population. If
𝑟𝑥 < 𝑟𝑦 or (if 𝑟𝑥 = 𝑟𝑦 and 𝑑𝑥 < 𝑑𝑦), where 𝑑x and 𝑑𝑦 are CDs, then 𝑥 ≻ 𝑦.
After this step, the second loop that regulates the amplitude is applied
for dropping amplitude at each iteration. The algorithm is finished once
the following stopping criterion is met (Mehdizadeh et al., 2015):

𝐴𝑡 = 𝐴0 exp
(

− 𝑡
𝑄

)

(17)

If the algorithm is not stopped, a new population (Q) is created using
the tournament operator. Through the elitism process, two populations
P and Q are combined and produce a new population 𝑅 = 𝑃 ∪ 𝑄.
The population R is sorted by implementing FNDS and CD. Afterward,
the following iteration population, as big as popsize is selected. Finally,
a group of the next iteration population P+1 is designated to have a
prearranged size. The next iteration happens consistently with the last
population P obtained, and the primary and secondary loops are carried
on for all the following iterations until the last one. The complete
pseudo-code of the MOHVDO is shown in Fig. 2.
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Fig. 2. Pseudo-code of MOHVDO algorithm.

4.4. Non-dominated Sorting Genetic Algorithm II (NSGA II)

Non-dominated Sorting Genetic Algorithm (NSGA II) was intro-
duced by Srinivas and Deb (1994) and has been developed up to
2000 (Collette & Siarry, 2003). To solve the MOOP, NSGA II is one
of the most effective evolutionary algorithms (Khalkhali et al., 2016).
In place of an enhanced GA, the NSGA II solution is comparable to the
common GA (Liu et al., 2019). The main concept of NSGA II is to apply
both CD and the non-dominated sorting (NDS) algorithm to compute
the individual’s fitness value in a population (Zitzler & Thiele, 1998).
After that, the following population can be produced based on all the
individuals’ achieved fitness values. The correct fitness values are very
significant for the quick convergence of the NSGA II algorithm (Liu
et al., 2019). For more details about the algorithm steps and NSGA II
pseudo-code process, see Moslemi et al. (2017).

4.5. Multi-objective simulated annealing (MOSA)

The heuristic technique entitled ‘‘Simulated Annealing’’ (Kirkpatrick
et al., 1983) was initially considered for solving the single-objective
optimization problem and soon confirmed to be convergent and robust
if the annealing is adequately and gradually performed (Mitra et al.,
1986). The multi-objective simulated annealing (MOSA) applies the
domination idea and the annealing structure for well-organized ex-
ploration (Nam & Park, 2000). MOSA approaches that integrate the

Pareto set have also been developed quite soon after its introduction
(Czyzak & Jaszkiewicz, 1998; Nam & Park, 2000; Suppapitnarm et al.,
2000; Ulungu et al., 1999). The acceptance criteria of these methods
are all based on the degree of difference between the new and current
solutions. Overall, the MOSA should produce Pareto optimal solutions
with a fine level of variation (Zidi et al., 2012). In this research, we
follow the method of Zidi et al. (2012).

4.6. Multi-objective particle swarm optimization (MOPSO)

The multi-objective particle swarm optimization (MOPSO) algo-
rithm, primarily suggested by Coello et al. (2004), is derived from the
traditional PSO. MOPSO needs to combine Pareto dominance and PSO
to solve the MOOP. In addition, this algorithm employs a constraint-
handling procedure and a distinctive mutation operator that signif-
icantly enhances the exploratory capabilities. For more information
about the main steps of this algorithm, see Khalkhali et al. (2016).

4.7. Epsilon-constraint method

Optimization is to find one or more feasible solutions consistent
with the ultimate values of one or more goals. Finding such opti-
mal points can be related to minimizing costs or maximizing profits.
One common method for obtaining an effective boundary is to add a
constraint or epsilon-constraint.
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Table 5
Ten different problems for 12 different combinations.

Problem size Small Medium Large

Machine 5 10 15 20 30 40

Job 50 50 200 200 400 400
100 100 300 300 500 500

In this technique, one of the objective functions is considered the
key objective function, while all the other objective functions are
assigned an 𝜀 limit. The epsilon-constraint method can be used to obtain
the Pareto frontier. The limit of 𝜀 may differ for different objectives for
the Pareto solution set. The following model is used to find the optimal
points (Narendra & Liang, 2008):

𝑀𝑖𝑛𝑓1(𝑥)

s.t.
𝑥 ∈ 𝑋;

𝑓2(𝑥) ≤ 𝜀2;

⋅

⋅

𝑓𝐿(𝑥) ≤ 𝜀𝐿.

(18)

5. Implementation of the model: Test problems, performance mea-
sures, fine-tuning

The implementation of the model and algorithms is similar to
the one presented by Waldherr and Knust (2016). For the ease of
reading, this section is organized in four subsections each one of them
addressing the main phases that the implementation comprises.

After describing the test problems, the metrics used to compare
the performance of the algorithms are introduced. Hence, the com-
putational performance of the algorithms on the set of test problems
is analyzed. The parameters of the proposed algorithms are tuned
according to the Taguchi method.

5.1. Test problem generation

We considered random examples for three sizes of problems, i.e.,
small size, medium size, and large size problems. We generated twelve
different test problems obtained by considering combinations of 5, 10,
15, 20, 30, and 40 machines and 50, 100, 200, 300, 400, and 500
jobs. Table 5 shows the 12 combinations of machine and jobs for
which random data were generated. The data generated for each test
problem are randomized arrays and randomized matrices similar to
those used in Section 4.2 as an example to explain the composition
of the chromosomes. That is, for each problem an array of importance
weights of the jobs was generated as well as two assignment matrices
similar to those reported in Tables 3 and 4. For instance, keeping in
mind that the maximum number of blocks is 𝑛+𝑚−1, with n = number
of jobs and m = number of machines (see Table 2), in the case of the
small size problem with 5 machines and 50 jobs, the two assignment
matrices had dimension 50 × 5 (jobs × machines) and 5 × 54 (machine
× blocks). The assignment matrices elaborated for the medium size
problem with 15 machines and 200 jobs had dimension 200 × 15 (jobs
× machines) and 15 × 214 (machine × blocks), while those of the large
size problem of 30 machines and 400 jobs were of dimension 400 × 30
(jobs × machines) and 30 × 429 (machine × blocks).

Each problem was executed 10 times, and their averages used for
the calculation and comparison of the algorithms. The numerical testing
was performed on a laptop with a Core i7 (2.5 GHz) processor and one
GB of RAM. The algorithms were coded in MATLAB (Version R2016a).

5.2. Performances measures

Since multi-objective problems produce non-dominant solutions, for
comparing algorithms, we need criteria that are designed based on
non-dominant solutions (Coello Coello et al., 2002). In this paper, the
following performance metrics are used for the comparison.

I. Spacing metric The spacing metric allows us to determine the
uniformity of the point spread inside the solution set. The definition of
this metric is given below:

𝑆 =

∑𝑁−1
𝑖=1

|

|

|

𝑑𝑖 − 𝑑||
|

(𝑁 − 1) ⋅ 𝑑
, with 𝑑𝑖 = min

𝑘=1,…,𝑁
𝑘≠𝑖

𝐿
∑

𝑗=1
|𝑓 𝑖

𝑗 − 𝑓𝑘
𝑗 | and

−
𝑑 =

𝑁
∑

𝑖=1

𝑑𝑖
𝑁

(19)

Here 𝑓 𝑖
𝑙 (𝑙 = 1, . . . , L and 𝑖 = 1, . . . , N) are the solutions in the set of

non-dominant solutions to objective function 𝑓𝑙(𝑥). L is the number of
objectives.

II. Diversification Matrix (DM) This performance criterion provides
a clue of the diversity of solutions gotten from a given algorithm and
is computed by Eq. (20):

𝐷 =

√

√

√

√

𝐿
∑

𝑙=1

(

max
𝑖

𝑓 𝑖
𝑙 − min

𝑖
𝑓 𝑖
𝑙

)2
(20)

In this criterion, the length of the diameter of the cubic space is
calculated using the most distant values of non-dominant solutions.
L is the number of objectives. This distance is obtained by using
the Euclidean distance between two solutions in the goal space. A
larger DM value signifies a superior performance of the corresponding
algorithm.

III. Number of Pareto solution (NOS) metrics
This performance measure counts the total number of non-dominated

solutions generated by the compared algorithms. A larger NOS value
indicates a superior performance of the corresponding algorithm.

IV. CPU time (or processing time) This is the amount of time
for which a central processing unit (CPU) was used for processing
instructions of a computer program or operating system. The CPU time
is measured in clock ticks or seconds and it includes only the time
during which the program actually uses the CPU to perform tasks such
as doing arithmetic and logic operations. For example, waiting for
input/output (I/O) operations or entering low-power (idle) mode are
not CPU time.

5.3. Meta-heuristics calibration

Because all meta-heuristic algorithms depend highly on their param-
eters, the Taguchi method (Afzalirad & Rezaeian, 2016) has been per-
formed to improve the performance of the algorithms. As the smaller-
the-better rule categorizes objective functions in our model, it is con-
sistent with using Signal-To-Noise Ratio (SNR) calculations:

𝑆𝑁𝑅 = −10 log10 (𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑟𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒

𝑃 𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡)2 (21)

Furthermore, the formula computing the relative deviation index (RDI)
is given by:

𝑅𝐷𝐼 =
𝑂𝐵𝑥 − 𝑂𝐵𝑏𝑒𝑠𝑡

𝑂𝐵𝑤𝑜𝑟𝑠𝑡 − 𝑂𝐵𝑏𝑒𝑠𝑡
× 100 (22)

where 𝑂𝐵𝑥 is the value of the performance measure obtained by each
algorithm for a given problem and 𝑂𝐵𝑏𝑒𝑠𝑡 is the best (𝑂𝐵𝑤𝑜𝑟𝑠𝑡 is the
worst) value of the performance measure gained by algorithms for the
associated problem.

To execute the Taguchi method, all parameters’ levels must be
defined. Table 6 shows the levels of all the parameters defined for the
simulations with the test problems using MOHVDO, NSGA II, MOSA,
and MOPSO. In connection with the outputs of MINITAB software,
optimal values of the algorithm’s parameters, along with the maximum
SNR and minimum RDI rules (Alaghebandha & Hajipour, 2013; Choi &
Kim, 2009), are determined.
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Table 6
Parameters levels in MOHVDO, NSGA II, MOSA, and MOPSO.

Factor Symbol Problem Level (1) Level (2) Level (3)

MOHVDO

𝛽 A
Small 1 1 1.1
Medium 1 1.1 1.15
Large 1.1 1.15 1.25

𝐴0 B
Small 3 5 7
Medium 5 7 9
Large 6 8 10

L C
Small 30 40 50
Medium 40 50 60
Large 30 40 50

𝜎 D
Small 1 1.1 1.2
Medium 1.2 1.3 1.4
Large 1.4 1.5 1.5

𝛾 E
Small 0.04 0.05 0.05
Medium 0.7 0.9 1
Large 1 1.3 1.5

NSGA II

Pc A
Small 0.5 0.6 0.7
Medium 0.6 0.7 0.8
Large 0.7 0.8 0.9

Pm B
Small 0.1 0.2 0.3
Medium 0.2 0.3 0.4
Large 0.2 0.3 0.4

Pop_size C
Small 40 70 100
Medium 60 70 80
Large 80 90 100

Max_iteration D
Small 30 40 50
Medium 50 70 90
Large 100 200 250

MOSA

Initial temperature
(T 0)

A
Small 200 300 400
Medium 500 600 700
Large 800 900 1000

Temperature
reduction multiplier B

Small 0.7 0.8 0.9
Medium 0.75 0.85 0.95
Large 0.9 0.95 0.99

Pop_size C
Small 20 30 40
Medium 30 40 50
Large 35 45 55

Max_iteration D
Small 10 15 20
Medium 20 25 30
Large 40 50 60

MOPSO

number of
particle A

Small 100 130 160
Medium 140 150 170
Large 150 170 190

Cognitive
factor B

Small 0.5 0.6 0.7
Medium 0.7 0.8 0.9
Large 0.8 0.9 1

Social factor C
Small 0.5 0.6 0.7
Medium 0.7 0.8 0.9
Large 0.8 0.9 1

Max_iteration D
Small 20 30 40
Medium 30 40 50
Large 40 50 60

5.4. Algorithm performance outputs

The algorithms’ outputs are compared with each other according to
performance measurements. Table 7 reports the performance outputs
of the algorithms for all the criteria and for all the test problems.

Fig. 3 provides a graphical comparison of the NOS evaluated for
different test problems and different algorithms. We use the Tukey
statistical analysis method at a 95% confidence level and Relative
percentage deviation (RPD) to compare the algorithms. RPD is obtained
as Eq. (23)

𝑅𝑃𝐷 = [(𝑀𝐼𝑁𝑠𝑡𝑎𝑔𝑒 −𝑀𝐼𝑁𝑡𝑜𝑡𝑎𝑙)∕𝑀𝐼𝑁𝑡𝑜𝑡𝑎𝑙] × 100%. (23)

Fig. 4 provides a comparison of the performance of all the algo-
rithms. The MOHVDO algorithm is better than the other algorithms
concerning all the performance measures except the CPU TIME index.

That is, the MOHVDO algorithm gives higher NOS and MD, lower
spacing, and Min objectives. Finally, MOSA shows the best results in
terms of CPU TIME index.

6. Discussion

Considering that the MOHVDO algorithm and MOSA algorithm
show the best performance with respect to the other algorithms in
terms of objective functions and CPU Time, respectively, they have
been compared with the epsilon-constraint method. The comparison of
the results obtained from applying MOHVDO and the epsilon-constraint
method and that of the results from MOSA and the epsilon-constraint
method are described in Table 8. On average, the problem-solving
time through the epsilon-constraint method is 3021.31 s. This value is
12.52 s for MOSA, representing a very good time for a meta-heuristic

8
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Table 7
Computational result of the algorithms for all problems.

Size Problem Job Machine Objective 1 Objective 2

MOPSO NSGA II MOHVDO MOSA MOPSO NSGA II MOHVDO MOSA

Small

1 5 50 351 356 314 388 914 912 694 1162
2 5 100 785 834 750 834 1414 2221 2147 2852
3 10 50 184 222 207 261 572 896 674 966
4 10 100 409 403 363 495 1626 2188 1620 2286

Medium

5 15 200 655 643 578 818 4236 6397 4579 5230
6 15 300 965 1029 945 1198 7916 9793 8346 9427
7 20 200 704 664 705 928 6465 7440 4072 8600
8 20 300 769 754 831 1013 10980 10714 8029 9676

Large

9 30 400 764 761 695 977 12978 15605 9641 16517
10 30 500 918 942 877 1122 16389 19735 10728 22263
11 40 400 784 697 618 851 11939 12616 10680 16975
12 40 500 807 752 768 943 14754 18457 10412 21107

Size Problem Job Machine CPU Time Spacing

MOPSO NSGA II MOHVDO MOSA MOPSO NSGA II MOHVDO MOSA

Small

1 5 50 12.19 11.17 12.28 6.39 0.8922 0.9591 1.2711 0.9025
2 5 100 15.33 13.68 15.31 7.04 0.8552 0.8441 0.7096 1.4178
3 10 50 13.31 17.65 16.66 6.55 0.9195 0.8797 0.8403 0.9527
4 10 100 14.04 13.16 15.21 7.19 1.2599 0.7099 0.7651 1.0231

Medium

5 15 200 18.38 19.88 22.31 23.03 1.1051 0.7837 1.0222 0.8431
6 15 300 22.97 25.66 28.96 15.69 0.8742 0.8625 0.6574 1.1076
7 20 200 24.61 28.42 30.27 16.82 0.9916 1.0048 0.8205 0.8877
8 20 300 23.45 28.15 30.43 17.42 1.055 0.8969 0.954 1.0694

Large

9 30 400 29.93 36.59 42.25 23.21 0.9486 1.1533 0.8313 1.1782
10 30 500 35.26 45.06 49.95 27.62 0.9389 1.3299 1.018 1.0939
11 40 400 40.61 50.96 55.53 34.48 0.4741 1.0503 0.9443 1.015
12 40 500 38.32 48.68 53.15 34.41 0.9681 1.0663 1.0243 0.9474

Size Problem Job Machine NOS MD

MOPSO NSGA II MOHVDO MOSA MOPSO NSGA II MOHVDO MOSA

Small

1 5 50 7 7 8 9 25.658 23.252 23.821 46.827
2 5 100 9 8 6 5 38.967 39.48 17.843 50.047
3 10 50 7 6 7 9 32.849 24.242 23.959 46.505
4 10 100 6 5 5 5 25.513 18.726 18.787 34.984

Medium

5 15 200 13 6 7 6 84.229 50.701 44.783 70.057
6 15 300 5 10 4 6 65.651 96.696 29.578 96.82
7 20 200 12 8 5 10 89.463 42.079 48.268 141.14
8 20 300 6 16 6 9 53.838 135.96 45.118 144.8

Large

9 30 400 8 13 5 14 90.81 112.91 53.477 226.92
10 30 500 9 9 10 10 103.67 86.47 107.8 224.35
11 40 400 3 11 8 14 16.816 88.901 76.773 222.86
12 40 500 6 10 8 10 88.266 114.19 109.64 203.96

Table 8
Comparison of MOHVDO and MOSA algorithms with the epsilon-constraint method.

Size Problem Epsilon-constraint method MOHVDO MOSA Error (%) MOHVDO

Obj 1 Obj 2 Time Obj 1 Obj 2 Time Obj 1 Obj 2 Time Obj 1 Obj 2

Small

1 314 694 134.19 314 694 12.28 388 1162 6.39 0 0
2 750 2147 295.68 750 2147 15.31 834 2852 7.04 0 0
3 206 672 602.59 207 674 16.66 261 966 6.55 0.48 0.29
4 359 1606 1078.12 363 1620 15.21 495 2286 7.19 1.11 0.87

Medium

5 571 4535 4559.94 578 4579 22.31 818 5230 23.03 1.22 0.96
6 938 8291 4597.17 945 8346 28.96 1198 9427 15.69 0.74 0.66
7 701 4038 5533.78 705 4072 30.27 928 8600 16.82 0.57 0.84
8 823 7963 7368.66 831 8029 30.43 1013 9676 17.42 0.97 0.82

Average 582.7 3743.2 3021.31 586.62 3770.1 23.41 741.8 5024.7 12.52 0.64 0.56

algorithm. The solution quality in the MOHVDO algorithm is acceptable
regarding the best answer for each objective function. The mean error
for objective functions 1 and 2 using this algorithm is 0.64% and
0.56%, respectively.

Fig. 5 shows interval plots of the simultaneous confidence inter-
vals for Tukey’s pairwise differences between algorithms. We have
used MINITAB software to display these interval plots. The grouping
information reported in Table 9 is based on the confidence intervals
displayed in the interval plots and reveals groups of factor level means
that are not significantly different. In Table 9, groups are listed in

descending order of their fitted means for performance indices. Groups
that share a letter, such as MOHVDO and MOPSO in MIN objective 1
are not significantly different (NSGA II vs. MOPSO). Conversely, groups
that do not share a letter have very different means. Therefore, MOSA
differs considerably from MOHVDO (NSGA II vs. MOHVDO, MOSA vs.
MOPSO, and NSGA II vs. MOSA).

Here, we examine the interval plots to assess the simultaneous con-
fidence intervals. If an interval does not include zero, the corresponding
means are meaningfully dissimilar. The six confidence intervals in each
plot of Fig. 5 compare all possible combinations of algorithms. Because
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Fig. 3. Example of NOS for different test problems and algorithms.

Table 9
Tukey pairwise comparisons for performance indices.
Objective 1 Objective 2

Algorithms N Mean Grouping Algorithms N Mean Grouping

MOSA 12 0.9912 A MOSA 12 1.3969 A
NSGA-II 12 0.6925 B NSGA-II 12 1.1826 B
MOPSO 12 0.6703 B,C MOPSO 12 0.7496 B
MOHVDO 12 0.5799 C MOHVDO 12 0.6186 B

Time Spacing

Algorithms N Mean Grouping Algorithms N Mean Grouping

MOHVDO 12 1.0913 A MOSA 12 0.7441 A
NSGA-II 12 0.9191 B NSGA-II 12 0.6566 A
MOPSO 12 0.7079 A,B MOPSO 12 0.5567 A
MOSA 12 0.3310 B MOHVDO 12 0.5300 A

NOS MD

Algorithms N Mean Grouping Algorithms N Mean Grouping

MOHVDO 12 0.4601 A MOHVDO 12 0.6352 A
NSGA-II 12 0.3892 A NSGA-II 12 0.5164 A
MOPSO 12 0.2949 A MOPSO 12 0.4889 A
MOSA 12 0.2935 A MOSA 12 0.1199 B

these are simultaneous confidence intervals, we have 95% confidence
that all the intervals include the true difference.

A benefit of confidence intervals is that they make the scale of
the changes among the means understandable. For example, the first
interval in the interval plot of MIN Objective 1, i.e., MOPSO-MOHVDO,

is a confidence interval that contains zero. The same is true for the
confidence interval of NSGA II vs. MOPSO. Thus, there is no evidence at
𝛼 = 0.05 for a difference in the mean. However, all other pairs of means
(MOSA vs. MOHVDO, NSGA II vs. MOHVDO, MOSA vs. MOPSO, and
NSGA II vs. MOSA) are significantly different because the confidence
intervals do not enclose zero. Analogous considerations apply to all the
other interval plots represented in Fig. 5.

7. Conclusions and recommendations for future research

This study developed a bi-objective mathematical model for the
synchronous flow shop scheduling problem. The objectives were to
decrease the total makespan and sum of tardiness and earliness costs.
The completion times of blocks were assumed to be determined to make
the model more applicable.

Four algorithms, including NSGA II, MOSA, MOPSO, and MOHVDO,
were used to find a near-optimal solution for the proposed NP-hard
problem. Among these algorithms, the MOHVDO was utilized to solve
the problem because of the proposed mathematical model’s complexity.
More precisely, we proposed a hybrid variant of MOVDO based on
ICA and the integration of the neighborhood creation technique in the
MOVDO algorithm.

The algorithms’ performance was evaluated using different mea-
sures comprising diversification, number of Pareto optimal solutions,
spacing, and CPU time. The most effective solution technique resulted
in MOHVDO. Furthermore, interval plots and grouping information
tables were applied to determine the differences among algorithms.

10
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Fig. 4. Graphical comparison among the algorithms: performance indices for all test problems.

Finally, the best algorithm with respect to each performance measure
was identified.

MOHVDO and MOSA showed the best performance with respect to
the other algorithms in terms of objective functions and CPU Time,
respectively, and were compared with the epsilon-constraint method.

The results from running small-scale and medium-scale problems in
MOHVDO and MOSA were compared with the solutions obtained from
the epsilon-constraint method. In particular, the error percentage of
MOHVDO’s objective functions was less than 2% compared to the
epsilon-constraint method for all solved problems.

11
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Fig. 4. (continued).

For future research, one can develop the problem within a fuzzy
environment. An interesting extension would be to develop the prob-
lem within a dynamic environment through the design of a real-time
order acceptance and analytical scheduling framework able to predict
the dynamic production status of flow shops and the corresponding
makespan.
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