
Medical Text Simplification: Bridging the Gap between Medical Research and Public
Understanding

by

Atharva Phatak

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science

in

Computer Science

in the

Faculty of Science and Environmental Studies

of

Lakehead University, Thunder Bay

Committee in charge:

Dr. Vijay Mago (Principal Supervisor)

Dr. Ameeta Agrawal (External Examiner)
Dr. Garima Bajwa (Internal Examiner)

Winter 2023



The thesis of Atharva Phatak, titled Medical Text Simplification: Bridging the Gap between

Medical Research and Public Understanding, is approved:

Chair Date

Date

Date

Lakehead University, Thunder Bay



3

DECLARATION

I certify that,

• The work contained in this thesis is original and has been done by myself and under

the general supervision of my supervisor(s).

• The work reported herein has not been submitted to any other Institute for any degree

or diploma.

• Whenever I have used materials (concepts, ideas, text, expressions, data, graphs, dia-

grams, theoretical analysis, results, etc.) from other sources, I have given due credit by

citing them in the text of the thesis and giving their details in the references. Elaborate

sentences used verbatim from published work have been clearly identified and quoted.

• I also affirm that no part of this thesis can be considered plagiarism to the best of my

knowledge and understanding and take complete responsibility if any complaint arises.

• I am fully aware that my thesis supervisor(s) are not in a position to check for any

possible instance of plagiarism within this submitted work.



Medical Text Simplification: Bridging the Gap between Medical Research and Public

Understanding

Copyright 2023

by

Atharva Phatak



1

Abstract

MEDICAL TEXT SIMPLIFICATION: BRIDGING THE GAP BETWEEN MEDICAL

RESEARCH AND PUBLIC UNDERSTANDING

Text Simplification is a subdomain of Natural Language Processing that focuses on applying

computational techniques to modify the content and structure of the text to make it inter-

pretable while retaining the main idea. The advancements in text simplification research

have provided valuable benefits to a wide range of readers, including those with learning

disabilities and non-native speakers. Moreover, even regular readers who are not experts in

fields such as medicine or finance have found text simplification techniques to be useful in

accessing scientific literature and research. This thesis aims to create a text simplification

approach that can effectively simplify complex biomedical literature. Chapter 2 provides an

insightful overview of the datasets, methods, and evaluation techniques used in text simpli-

fication. Chapter 3 conducts an extensive bibliometric analysis of literature in the field of

text simplification to understand research trends, find important research and application

topics of text simplification research, and understand shortcomings in the field. Based on

the findings in Chapter 3, we found that the advancements in text simplification research

can have a positive impact on the medical domain. The research in the field of medicine is

constantly developing and contains important information about drugs and treatments for

various life threatening diseases. Although this information is accessible to the public, it is

very complex in nature, thus making it difficult to understand. To address this problem,

chapter 4 proposes an Automatic Text Simplification approach called “TESLEA”, which is

capable of simplifying text related to the medical domain. The proposed approach employs
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a transformer-based model and leverages reinforcement learning to train the model in opti-

mizing rewards that are tailored to text simplification. The proposed method outperformed

previous baselines on Flesch-Kincaid scores (11.84) and achieved comparable performance

with other baselines when measured using ROUGE-1 (0.39), ROUGE-2 (0.11), and SARI

scores (0.40). The analysis of human annotated data revealed a percentage agreement of

over 70% among human annotators when evaluated factors such as fluency, coherence, and

adequacy. While having proposed an approach for simplifying medical text, this research

also identifies potential avenues for future investigation, specifically the development of mul-

tilingual text simplification systems catering to diverse domains.
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Chapter 1

Introduction

In recent years, Natural Language Processing (NLP) has experienced noteworthy advance-

ments, primarily attributable to the introduction of transformer-based models. These models

have demonstrated remarkable success in accomplishing state-of-the-art performance on nu-

merous Natural Language Generation (NLG) tasks like Text summarization and Question

Answering. One of the most researched tasks in NLP is Text Simplification (TS), which aims

to employ various computational techniques to transform the contents of complex text into a

simplified version, thereby facilitating ease of comprehension and ensuring that the core idea

of the original text is retained. The field of text simplification has made significant progress

in recent years, bringing about a multitude of benefits for a diverse range of readers. These

advancements have proven particularly valuable for individuals who are non-native speak-

ers of a language or dialect, as well as those who have learning disabilities. However, even

regular readers who lack expertise in fields such as finance or medicine have also benefited

greatly from the application of text simplification techniques.

The objective of this thesis is as follows

• To conduct a comprehensive analysis of existing research on Text Simplification (TS)
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using Bibliometric analysis techniques to understand the contribution of authors and

organizations to specific topics, influential studies in the field and the connections

between them, and the trends of a particular research field.

• To develop an approach that leverages state-of-the-art Language Models (LMs) to

develop an automatic TS solution capable of simplifying complex medical vocabulary

found in research articles related to healthcare.

In Chapter 2 of the thesis, readers will gain valuable knowledge on key components that

are essential for understanding the subsequent chapters. This chapter delves into three main

areas: datasets, evaluation metrics, and language models. Specifically, it provides insights

on how standard datasets in the field of TS are constructed and highlights the properties

and training approaches of various state-of-the-art language models. Additionally, readers

will be introduced to the most commonly used evaluation metrics in the field of TS. Overall,

Chapter 2 is a crucial resource for readers seeking a deeper understanding of the foundations

of TS research.

The Chapter 3 of this thesis, we conduct an extensive analysis of Text Simplification

literature via the help of Bibliometric analysis. This analysis is designed to answer six

research questions that aim to analyze the progress of research in the field of TS, important

persona in the field of TS, the collaboration between the authors and how it has evolved

with time and finally important research and application topics in the field of TS. The

dataset for this analysis was collected from Google Scholar (GS) with the help of “Publish

Perish” software and Scholarly API. Articles having “Text Simplification” in their titles were

selected from years 2001-2022, resulting in a dataset of 656 articles and additional metadata

associated with articles was also collected. Collaboration and Temporal Analysis was applied

to understand collaborations and the evolution of collaborations in the field. Topic Modeling
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and Word Frequency analysis was done to uncover important research and application topics.

The findings from Chapter 3 revealed that text simplification techniques are being utilized in

the field of bio-medicine. More specifically, the research articles within the medical domain

are available to the public. However, even though these articles are accessible to everyone,

they are often difficult to understand for a broader audience due to the complex medical

terminology used in them. As a result, simplifying these complex abstracts is crucial to

ensure that medical research is comprehensible to the general public.

To tackle the problem of medical text simplification, Chapter 4 proposes a novel deep

learning based text simplification approach that converts complex medical text to a simpler

version while maintaining the quality of the generated text. This approach uses a trans-

former based language model called BART as a text generator and trains the model using a

combination of standard finetuning (domain adaptation) and Reinforcement Learning (RL)

to optimize TS specific rewards that capture the properties of simplicity and relevance. In

addition, the training process of both standard fine-tuning and reinforcement learning pro-

vides a universal framework. This is because the framework is not specific to any particular

model, meaning that any autoregressive language model can be substituted for BART. Ad-

ditionally, the framework can be modified to work with other datasets by making minor

changes to the reward functions. Based on comprehensive analysis conducted to evaluate

the models performance, it was observed that the proposed method outperformed previous

baselines on Flesch Kincaid Scores (11.84) and achieved comparable performance to other

baselines when measured using ROUGE-1 (0.39), ROUGE-2 (0.11) and SARI scores (0.40).

According to the results of manual evaluation, when factors such as fluency, coherence, and

adequacy were taken into account, the percent agreement between human annotators was

found to be more than 70%. This suggests that the human annotators generally agreed with

each other when assessing these factors in the content being evaluated.
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The Chapter 5 of this thesis concludes by highlighting the shortcomings of text simplifi-

cation models and the persisting challenges that confront the domain of text simplification.

The primary contribution of this thesis

• An extensive bibliometric analysis of Text Simplification literature was conducted along

with development of a website 1 that highlights the analysis done to answer six research

questions.

• A universal approach that combines finetuning and reinforcement learning based train-

ing to train a cutting edge language model (BART) to optimize TS specific rewards so

that the model is capable of simplifying complex medical text data.

The research conducted during this work is open-sourced and readily available in a Github

Repository 2.

1https://bblts.datalab.science/
2https://github.com/Atharva-Phatak/TESLEA
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Chapter 2

Literature Review: Text

Simplification

2.1 Introduction

The field of Natural Language Processing (NLP) has seen a significant rise in recent years

due to the progress in the field of Deep Learning (DL). In recent years sub-fields of NLP

like text summarization, text simplification, semantic similarity [51], etc, have progressed

significantly in research leading to the development of various applications which leverage

NLP at scale. Text Simplification aims to convert a difficult-to-understand text in such a

way that it becomes more readable, easy to understand, and retains the main idea of the

text. In the early days, TS research focused on Lexical Simplification (LS) [10, 48]. A lexical

simplification system typically involves identifying and replacing complex words with their

simpler alternatives [71]. Recent research defines TS as a sequence-to-sequence (Seq2Seq)

task and has tackled it by leveraging model architectures from other text generation do-

mains like machine translation or text summarization. Moreover, TS is a field with diverse
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applications catering to audiences of various domains. The most prominent target audiences

for TS are non-native readers/foreign language learners for whom various applications for

simplifying text have been developed [72, 33]. This is all possible because of the development

of Automatic Text Simplification approaches (ATS), which leverage modern seq2seq model

architectures. The goal of this chapter is to provide background about text simplification

datasets, evaluation metrics and current models.

2.2 Text Simplification Datasets

The latest techniques in TS are heavily data-driven, taking advantage of recent approaches

in NLG. Most of the techniques for ATS require a parallel dataset consisting of complex text

and simple text. Most of the datasets used in the field of TS are sentence-level datasets (i.e.,

each pair in the dataset consists of a complex sentence and a simple sentence), whereas the

recent research in the field of TS has been focusing on the construction of paragraphs or doc-

ument level datasets, multilingual datasets, domain-specific datasets and datasets designed

for evaluation purposes. This section will provide brief introductions about commonly used

datasets in the field of TS.

Sentence Level Datasets

Most of the sentence-level datasets have been extracted from majorly two data sources 1)

Simple English Wikipedia (SEW) and 2) Newsela Corpus.

• EW-SEW [15]: This dataset was created by aligning sentences from the paired articles

extracted from English Wikipedia(EW) and Simple English Wikipedia(SEW). The first

step was pairing articles from EW and SEW which was done with the help of titles. A
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Figure 2.1: Standard Datasets used in the field of TS.

cleaning step was done to remove noisy articles which involved removing articles which

contained only a single line, articles marked as disambiguation or articles which were

flagged as stub. After the filtering process, 10588 articles pairs remained. These article

pairs were then used to extract paired paragraphs based on the formatting information.

Every normal paragraph was aligned to its corresponding simple paragraph where the

TF-IDF cosine-similarity was above the threshold of 0.5. Finally to extract aligned

sentences from the paired simplex-complex paragraphs a dynamic programming-based

approach proposed by Barzilay and Elhadad was used which resulted in extraction

of 137K aligned sentence pairs. The aligned sentence pairs cover main simplification

operations of rewording, reordering, insertion and deletion. This dataset is one of the

most widely used datasets in TS tasks. [15]
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• Parallel Wikipedia Simplification (PKWP) [86]: The PKWP dataset was also

extracted from EW and SEW but the methodology used to extract article pairs and

align sentences was different than Coster and Kauchak. The EW and SEW article

pairs were aligned by using “language link” available in wikimedia dump files. A text

extraction procedure called JWPL [81] was used on these articles to extract plain text

from these article pairs. Further, preprocessing steps like sentence boundary detection,

tokenization and lemmatization were also used. Finally, to align sentence pairs from

these articles three similarity measures were used namely, sentence level TF-IDF [44],

Word Overlap [5] and Word based edit distance. To evaluate the effectiveness of

these methods Zhu, Bernhard, and Gurevych manually annotated 120 sentence pairs

from article pairs and found that sentence level TF-IDF outperformed other similarity

methods. After application of TF-IDF based similarity, Zhu, Bernhard, and Gurevych

were able to align 108K complex-simple sentence pairs. [86]

• NEWSELA [77]: This dataset was created because Xu, Callison-Burch, and Napoles

found that Wikipedia is substandard data corpus for the following reasons: 1) Sentence

extracted are prone to errors due to some drawbacks for sentence alignment methods

2) The data corpus has poor quality of simplifications. A manual analysis conducted

by Xu, Callison-Burch, and Napoles on the widely used PKWP dataset [86] revealed

that 50% of aligned sentence pairs are not simplifications. To overcome these problems

Xu, Callison-Burch, and Napoles proposed a new corpus for Text Simplification called

”NEWSELA”. NEWSELA was created using news articles, specifically, 1130 news

articles were collected and each of these articles was re-written 4 times by news editors

on different grade level with Simp-4 denoting the most simplified level and Simp-1

denoting the least simplified level. These news articles were then used to extract
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aligned sentence pairs by using Jaccard Similary measure [77].

There are many variants of these datasets available which are generated by using different

text processing, text alignment techniques, etc.

Document level datasets

Most of the unstructured text data available on the internet(ex: research articles, news

articles, etc) are documents or consist of multiple paragraphs. The TS models trained on

sentence level TS tasks usually fail in such scenarios. Hence, the recent research has focused

on the creation of documents of paragraph level datasets which can help in developement of

ATS models which work on paragraph/document level data.

• D-Wikipedia [68]: The D-wikipedia dataset was created by aligning articles from

EW and SEW. To create the dataset Sun, Jin, and Wan first downloaded dumps from

official Wikipedia website and created over 170,000 article pairs. The authors removed

articles which had more than 1000 words resulting in a dataset of 143,546 article pairs.

The D-wikipedia dataset is further split into a training set containing 132K article

pairs, a validation set containing 3K article pairs and remaining 8k article pairs for

test set. [68]

• 20m Dataset [25]: Similar to D-wikipedia dataset, 20m is also a document level

dataset but it is designed for german language. Gonzales et al. extracted the dataset

from Swiss news magazine 20 Minuten that consists of full articles paired with short-

ened, simplified summaries. The dataset does not have different simplification levels

which were available similar to newsela. The corpus contains a total of 18,305 articles

published since 2020. [25]
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Evaluation Datasets

The datasets mentioned in earlier subsections are primarily used to finetune the models,

but none of them provide a standard benchmark test set. To resolve this issue Xu et al.

pioneered the first benchmark test set for TS models. This subsection gives details about

the standard benchmark test sets used in the field of TS.

• Turk Corpus [78]: Xu et al. defined a novel metric called “SARI” and also curated

a dataset (Turk Corpus) to calculate the SARI metric. To create Turk Corpus, the

authors selected sentence pairs from PKWP dataset of similar length and were para-

phrased only simplifications. Eight workers were hired from Amazon Mechanical Turk

to write simplifications for selected normal English Wikipedia sentences without split-

ting and conserving information content as well as meaning. After the crowdsourcing

operation the authors were able to gather a corpus 2350 sentences out of which 2000

sentences for tuning and 350 sentences for evaluation of models. In TS literature, Turk

Corpus is a standard dataset used for evaluation of simplification models. [78]

• Abstractive Sentence Simplification Evaluation and Tuning (ASSET) [4]:

Text Simplification involves several rewriting operations like replacing complex words,

sentence splitting, removing irrelevant information, etc but the widely used Turk Cor-

pus focuses on simplifications mostly created by paraphrasing. To address this issue,

Alva-Manchego et al. curated a new dataset called ASSET which is made of several

rewriting operations and can be used to evaluate TS models. To create ASSET, Alva-

Manchego et al. used the same complex sentences from Turk Corpus [78] but crowd-

sourced the manual simplifications that encompass a broader set of rewriting opera-

tions. To accomplish this, Alva-Manchego et al. hired participants from Amazon Me-

chanical Turk. The participants were asked to solve Human Intelligence Tasks(HITs)
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where each HIT had 4 normal sentences which needed to be simplified. Additionally,

the participants were instructed to rate their simplifications on a Likert scale of 1-5.

The authors finalized 10 simplifications per sentence resulting in a total 23950 human

simplified sentences for the corresponding 2359 original sentences. [4]

2.3 Evaluation of Text Simplification Systems

Different evaluation strategies are suggested for evaluating outputs generated by text sim-

plification systems. Broadly, they fall into two categories 1) Automatic Evaluation and 2)

Human Evaluation. Most often, TS studies combine both evaluation strategies for output

evaluation. This section highlights the methods used for automatic evaluations and human

evaluations.

Human Evaluation

Due to the subjective nature of TS, especially when new text is generated, it has been rec-

ommended that human evaluations are the best approach to follow. The outputs are usually

evaluated on three aspects: fluency, adequacy, and informativeness [69]. Fluency measures

how well the text reads and ensures that there are no grammatical errors; adequacy measures

whether the outputs convey the same meaning as the original text, and informativeness mea-

sures whether the outputs are able to capture important ideas present in the original text.

These aspects are measured using the Likert scale, with a 1-5 scale or a 1-3 scale where a

higher score denotes better simplification. Human evaluation has some disadvantages, with

the major one being the requirement of native speakers with linguistic knowledge the evaluate

the outputs generated by the TS system. In addition, humans are not consistent and have

different opinion from one another, resulting in problems when comparing the outputs of
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different systems. Moreover, human evaluation is very time-consuming and expensive. Thus

researchers in the TS field are moving towards exploring and designing automatic evaluation

metrics for TS systems.

Automatic Evaluations

One of the ways of performing automatic evaluations is via the help of readability indices

and metrics used in Natural Language Generation (NLG) tasks. Readability indices tell how

difficult is a piece of text to read. Some of the most commonly used readability indices are

Flesch Kincaid Grade Level (FKGL) and Automatic Readability Index (ARI), while NLG

metrics like SARI, ROUGE-1, ROUGE-2, etc are also widely adopted. This section gives a

brief discussion on the mentioned metrics.

• Flesch Kincaid Grade Level (FKGL): Kincaid et al. [32] proposed the Flesch Kincaid

Grade Level (FKGL), which gives a score that indicates a certain level that must be

obtained to understand a particular text. A lower value of the FKGL score indicates

that a particular text is simpler to read, and a higher score indicates that the text is

complex [32]. FKGL is the most adopted measure of readability in text simplification

literature. The FKGL for a text (S) is calculated using equation 2.1 [32]:

FKGL(S) = 0.38× total words

total sentences
+ 11.8× total syllables

total words
− 15.59 (2.1)

• Automatic Readability Index (ARI): Senter and Smith [62] developed ARI, which also

measures readability just like FKGL. Just like FKGL, a lower ARI scores indicates

that the text is easier to read and vice versa. For a text (S), the ARI score is denoted

in the equation below



2.3. EVALUATION OF TEXT SIMPLIFICATION SYSTEMS 20

ARI(S) = 4.71× total characters

total words
+ 0.5× total words

total sentences
− 21.43 (2.2)

• ROUGE: Lin [37] proposed an automatic metric called “Recall Oriented Understudy

for Gisting Evaluation” (ROUGE) for the task of evaluating text summarization mod-

els. Rouge scores are recall-based metrics and are computed by measuring the n-gram

overlap between generated summary and the target summary. There are various vari-

ants of ROUGE scores like ROUGE-N, ROUGE-L, etc but the most used is ROUGE-N

where N denotes the n-gram overlap between the reference and candidate summaries.

[37]. ROUGE-N is given in the equation

ROUGE-N =

∑
S∈Reference Summaries

∑
gramn∈S Countmatch(gramn)∑

S∈Reference Summaries

∑
gramn∈S Count(gramn)

(2.3)

• SARI: Xu et al. [78] proposed an automatic metric for evaluations of text simplification

called “SARI” which uses F1-score of n-gram operations to measure simplicity. It

computes an average of F1-scores for three n-gram operations: additions, keeps, and

deletions, which are calculated based on the recall R(n) and precision P (n), based

on the intersections of the input, output, and reference sets [78]. For each operation

(i.e., add, keep, and deletion) F1-score is computed and SARI is the average of all the

F1-scores as shown in Equation below:
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operation ∈ {add, keep, deletion}

Poperation =
1

k

∑
n=[1,···,k]

poperation(n)

Roperation =
1

k

∑
n=[1,···,k]

roperation(n)

Foperation =
2× Poperation ×Roperation

Poperation +Roperation

(2.4)

2.4 Language Models

Understanding important properties of text data using numerical representations is a chal-

lenging task and with the recent progress in research, language models have learned to do

NLG tasks [55] like text summarization, simplification, question answering and semantic

similarity [11, 12] quite efficiently. Initial research in the field of NLP leveraged standard

seq2seq models like Long Short Term Memories (LSTM), Gated Recurrent Units (GRU),

and Recurrent Neural Networks (RNN) due to their impressive performance on NLG tasks,

but the recent focus has shifted to the applications of transformer [35] based language mod-

els to NLG tasks. The research in the field of TS has also benefited from the adaptation

of transformer-based models. This section highlights a few important transformer-based

models used in the field of TS.

Generative pre-training

The amount of large unlabelled text corpora is abundant as compared to the amount of

labelled corpora for downstream tasks. Radford et al. demonstrated impressive results on

downstream tasks by generative pre-training of language model on diverse text corpora, then
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finetuning the model on downstream tasks. Their pre-training process consists of two stages

which are as follows:

• Unsupervised pre-training: Given a corpus of tokens U = {u1, u2, · · ·, un}, the model

is trained using standard language modeling objective to maximize the likelihood of

generating the next token given the previous tokens and is calculated as depicted in

equation

L(U) =
∑
i

logP (ui|ui−k, · · ·, ui−1; θ) (2.5)

where k is the context window size, and P is the conditional probability modeled using

a neural network with parameters θ. [57]

• Supervised finetuning: Once the model is pre-trained in an unsupervised fashion, it

is then finetuned on a downstream task via the help of a labeled dataset. The down-

stream task could be any standard NLG tasks, for example, text classification, text

summarization, sentiment analysis, etc.

Unlike the standard transformer encoder-decoder architecture which is generally used of NLG

tasks, Radford et al. used only the decoder portion of the transformer model. Specifically,

their architecture consisted on 12 transformer decoder layers followed by a linear head whose

architecture is dependent on the downstream task. Radford et al. trained the model on

diverse unlabeled corpora and later finetuned the model for downstream tasks achieving

state-of-the-art results on Natural Language Inference (NLI) and Question Answering Tasks

(QA). Additional details about the model architecture and adaptation to other tasks is

available in [57].
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BART: Denoising Sequence-to-Sequence Pre-training for Natural

Language Generation, Translation, and Comprehension

Lewis et al. introduced BART, a sequence-to-sequence model based on the transformer-based

NMT architecture. BART is pre-trained using two methods 1) text corruption via the help

of a noising function and 2) learning a model to generate the original text from the corrupted

text. This pre-training scheme has allowed the model to achieve state-of-the-art results on

many NLG tasks, including text summarization and machine translation [35]. BART has

a sequence-to-sequence architecture, with both the encoder and decoder having six layers

each. The model is pre-trained using various noising schemes, which are mentioned below.

• Token Masking: Similar to BERT [31], random tokens are selected and replaced with

<MASK> token.

• Token Deletion: Random tokens are deleted from the inputs.

• Text infilling: Random number of text spans are selected and replaced with <MASK>

token similar to SpanBERT [29].

• Sentence Permutation: A document is divided into sentences by splitting it on full

stop. Then these sentences are shuffled randomly.

• Document Rotation: A token is chosen randomly from the document and then the

document is rotated so that the selected token is the start token. This task aims to

teach the model how to identify the start of documents.

BART models which are pretrained using text infilling tasks have shown better perfor-

mance on various standard NLG benchmarks like SQUAD, XSUM, CONVAI as compared
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to other pre-training regimes. For more information about results, training process and

abalation studies, the readers are suggested to refer to [35].

PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive

Summarization

Zhang et al. proposed PEGASUS, a transformer-based language model for the purpose of

text summarization with a specific focus on abstractive summarization. PEGASUS was pre-

trained using a novel training method called “Gap Sentence Generation” (GSG). GSG works

by masking whole sentences from the document and forces the model to generate the masked

sentences from the rest of the documents. The authors used three strategies to select the

gap sentences (i.e., the sentences that will be replaced by a <MASK> token). The strategies

used are as follows.

• Random: Select m sentences as random.

• Lead: Select first m sentences.

• Principal: Select top −m scored sentences via some importance scores. Zhang et al.

used the ROUGE-1 score as the importance metric, where the rouge score is calculated

between the sentence and the remaining document.

The experiments conducted by Zhang et al. revealed that pre-training using the GSG

method helped them achieve state-of-the-art or similar results on 12 benchmark abstractive

summarization datasets. Additional details about the benchmarks used for testing can be

found in [82].
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Chapter 3

Bibliometric Analysis of the Text

Simplification Literature

All of this chapter is submitted at a reputed journal as:
• Phatak, A., Liyanege, R., & Mago, V. (2022). Bibliometric Analysis of the Text

Simplification Literature

Over the course of my degree, I researched topics related to TS to expand my knowledge
in the field. As a result, I performed Biblometric analysis to understand and analyze
different research techniques and research applications of TS.
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3.1 Introduction

Text Simplification (TS) is a subdomain of natural language processing (NLP) that applies

computational techniques to convert complex text into a simpler version, thus making it read-

able and understandable to a wider audience ranging from people with learning disabilities

to making research accessible to general audience [70, 47, 77, 63]. With all of these applica-

tions, TS has become a significant research area that warrants a thorough investigation of

the literature to reveal the domain’s emerging trends and research constituents.

Reviewing the academic literature is important primarily to gather existing findings and

identify gaps within a research context. Nevertheless, the investigation of the internal struc-

ture of the scientific literature, which consists of entities such as papers, topics, authors,

publishers, and affiliations, is also advantageous for researchers to understand the develop-

ment of a particular research direction [19, 36]. This structural exploration of the litera-

ture can be accomplished through a quantitative approach called Bibliometric Analysis [19].

Moreover, performing bibliometric analysis over other common literature review techniques,

such as systematic review and meta-analysis, is important as it analyzes the relationships

between these different entities of publications [19]. This relational analysis helps to uncover

useful information, for example, the contribution of authors and organizations to specific

topics, influential studies in a domain and the connections between them, and the trends of

a particular research field [19, 56, 1]. Based on these considerations, this study conducts a

bibliometric analysis of the papers and meta-data collected from the area of text simplifica-

tion from 2012 to 2022. Specifically, we constructed our work toward answering six research

questions which are as follows:

• RQ1: How has the domain of TS evolved over years?
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• RQ2: Which authors contribute most to the research in the field of TS?

• RQ3. Which countries contribute most to the TS research?

• RQ4. How have researchers collaborated within the field of TS?

• RQ5. How have the collaborations developed over time?

• RQ6. What are the trends of TS research?

By addressing RQ1, we evaluate the progress of the field of TS. The next two research

questions uncover the leading authors and countries contributing to the domain. While

RQ4 identifies the collaborations between the authors of the network, RQ5 demonstrates

how those collaborations have evolved over years. Finally, RQ6 reveals the emerging topics

within the TS context.

The rest of the paper is organized as follows: the Related works section, provides a

brief review of the literature on TS and bibliometric analysis in the field of NLP. Next,

the methodology section explains the techniques and approaches we used to perform the

bibliometric analysis, including how the data collection and analysis were performed. The

results of the study and further discussion are presented in the Results section. Finally, we

conclude and remark on future research directions.1

3.2 Related Work

Although the main purpose of this study is to perform a bibliometric analysis in the field of

text simplification, it is also worthwhile to familiarize with the background of the domain.

Hence, in this section, we will briefly discuss the context of TS, including its applications

1The data and code is available on github

https://github.com/Atharva-Phatak/BBLTs-Code
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and potential techniques. Moreover, we will discuss techniques and findings retrieved from

the literature on the bibliometric analysis of both NLP and TS.

Text Simplification

The process of text simplification is comprised of a few other techniques, such as complex

word replacement to identify and replace difficult words with their simpler forms [30], elabo-

rative simplification to expand upon the main ideas of text [66], and text summarization to

make the content of the text concise [64]. These techniques are proven to be very effective

and are usually used in conjunction with other techniques to improve comprehensibility for

readers.

Early studies in the field of TS have mainly focused on the lexical simplification technique.

A lexical simplification system works on replacing complex words with simpler alternatives

taken from lexical databases, such as Paraphrase Database (PPDB) [22] and WordNet [71].

More recently, the current research has progressed from lexical simplification to building

Automated Text Simplification (ATS), an approach pioneered by Nisioi et al. [45] to leverage

the essence of deep learning-based NLP techniques in automating the process. Although most

of the research in the field of ATS is supervised in nature, which requires paired datasets

of complex and simple text, the development of self-supervised or similarly unsupervised

techniques is also significant. Currently, transformer-based supervised methods, including

Deep Memory Augmented Sentence Simplification (DMASS) [84], and AudienCe-CEntric

Sentence Simplification (ACCESS) [40] have achieved state-of-the-art results on standard

TS datasets.

The applicability of TS has evolved remarkably among diverse target audiences with

specific application focuses [6]. One of the most prominent beneficiaries has been second
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language learners, for whom various approaches to simplifying text have been proposed.

These approaches often focus on sentence-level simplification [38]. Moreover, TS also assists

people with learning disorders such as dyslexia [60] and autism [20] or linguistic impairments

by reducing the syntactic complexity of natural languages. Novice readers (both children

and adults) have also benefited from TS through both syntactic and lexical simplification

[16].

Biblometric Analysis

Bibliometric analysis is a method for analyzing and exploring large amounts of scientific data

available in academic literature [19]. This analysis reveals emerging areas in a specific field

and enables researchers to understand how a particular field is evolving over time.

Chen et al. [14] investigated publications that applied NLP in the medical domain. They

collected data from PubMed between 2007 and 2016 and used bibliometric techniques to

analyze and understand important medical research topics, scientific collaborations between

affiliations and authors, and how NLP-empowered medical research has been growing over

the years. Another study conducted a bibliometric analysis of research publications retrieved

from the Association of Computational Linguistics (ACL) and Empirical Method in Natural

Language Processing (EMNLP) conferences [24]. The analysis of papers across two decades

revealed significant topics from both conferences, as well as how the topical focus of both

conferences differed and evolved over time. Similarly, Radev et al. [56] conducted a thorough

bibliometric and network analysis of papers published in ACL. They extracted paper and

author citation data from publications and analyzed them through networks to identify the

most central papers and authors. The researchers also quantified the analysis with network

statistics.
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Studies on Bibliometric Analysis of TS were extremely rare in the literature, with the

exception of Özcan and Batur [47] who explored eight research questions. However, their

dataset was bound to journal articles published on Scopus databases under the social science

domain. As a result, although they collected data from 1975 to 2020, the size of their dataset

was limited to 194 articles. Therefore, a comprehensive bibliometric study on TS, performed

on a considerable amount of data that is not restricted to a specific application domain

or database, is necessary. Considering the importance of the field and the lack of existing

knowledge on bibliometric information, this study conducted further investigations on the

TS domain. Our findings will enrich the bibliometric information and help to assess the

research networks and directions in the field of TS.

3.3 Methodology

Data Collection

Google Scholar (GS) is the largest web search engine for academic literature. Using GS,

researchers can access metadata associated with a research article, such as citation counts,

authors, years, and venues of publications. Additionally, information about the researchers

themselves is also available, including their papers, h-index, and citations, as well as other

researchers with whom they have published. Due to this richness of data, we were able

to collect both articles and their associated metadata from GS using the Publish-or-Perish

software [27], focusing on articles published between 2001 and 2022. We used the keyword

“Text Simplification” to search research article titles, which resulted in 656 articles. We also

extracted authors’ h-indexes, total citations, and affiliations from their GS profiles using

Scholarly API.
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Network Graph Generation

Investigation of social structures can be conducted through Social Network Analysis, a tech-

nique that constructs graphs to represent the underlying associations between entities of

a social network [23]. This approach can be used in bibliometric analysis to denote the

relationships between several types of networks, including co-authorships, affiliations and ci-

tations [56, 14]. In this study, we generated network graphs to understand how the research

community collaborates in the field of TS.

Collaboration Analysis

The analysis of collaborations reveals how members of the research community are sharing

their expertise to advance research in the field of TS. A co-authorship network is a common

type of collaboration network, where the nodes in the network graph represent the researchers

and the edges between them represent the strength of collaborations among them [21]. For

this study, we generated a network graph that depicts author-author collaboration and the

data required to understand these collaborations; authors and their co-authors were extracted

from GS.

Algorithm 1: Collaboration Generation

Input: D: Dataset
Output: G: Author network
Variables: Authors : The unique authors in dataset, CoAuthorData : The

collected co-authors for all unique authors in the dataset.
/* Method to extract unique authors in dataset. */

1 Authors← ExtractUniqueAuthors(D) ;
/* Method collects all co-authors */

2 CoAuthorData← CollectCoAuthors(Authors) ;
/* Method builds collaboration graph from using the Authors and

Co-Authors. */

3 G← BuildCollaborationGraph(Authors, CoAuthorData) return G ;
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As illustrated in Algorithm 1, the following steps were performed to create the network

graphs representing the collaboration between authors. First, the function ExtractUniqueAu-

thors extracts all the unique authors available in the dataset (D). Next, the CollectCoAuthors

function was developed to find the co-authors from the extracted unique authors’ GS profiles

using Scholarly API. Finally, these collected data were used to create a network graph using

the BuildCollaborationGraph function, which is further described in Algorithm 2. This func-

tion requires two arguments – the unique authors in the dataset (Authors) and co-authors

of all the unique authors (CoAuthorData). CoAuthorData is a hashmap with author as

keys and their corresponding coauthors as values. As the output, an undirected network is

generated using the networkX module in Python and it is visualized using the d3js library

in Javascript.

Algorithm 2: Build Collaboration Graph

Input: Authors: The unique authors in dataset, CoAuthorData: The collected
co-authors for all unique authors in the dataset.

Output: G:Author network
1 Function BuildCollaborationGraph(Authors, CoAuthorData)

/* Create empty graph using networkx(nx) module in python. */

2 G← nx.Graph() ;
3 for author in Author do

/* Lookup coauthors in CoAuthorData dictionary */

4 coauthors← CoAuthorData[author] ;
5 for coauthor in coauthors do
6 G← G.AddEdge(author, coauthor)
7 end

8 end
9 return G
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Temporal Analysis

While collaboration analysis gives us insight into how authors are collaborating, the temporal

analysis highlights how these collaborations have been developed over the years. However,

as the GS does not provide year-wise information about the association between authors and

co-authors, it is unknown when a particular author has collaborated with another author. To

overcome this limitation, we performed a temporal analysis by creating citation networks be-

tween authors. Considering a span of five years, this study generated these citation networks

for each year segment from <<2012-2017>> to <<2016-2021>> to understand the evolution

of collaborations in the field of TS during the years 2012 to 2021.

The process of data collection for temporal analysis consists of two important steps: 1)

root paper selection and 2) cited paper collection. The root paper selection filters the most

cited paper from the dataset for a particular base year from 2012 to 2016. The cited paper

collection involves collecting the cited papers within the relevant five-year segment using

Publish-Perish software. We collected these cited papers in two sets, where the first set

consisted of papers that have cited the selected root paper (say S1), and the second set

included the papers that have cited the papers in the first set. The data collected for each

year segment were separately stored in JSON files; for example, all the data for the year

2015 that was collected through <<2015-2020>> can be viewed github.

The dataset in the JSON file is structured as key-value pairs, where the keys are the

titles of papers in S1. The values are represented in a nested list of sublists, where for each

key, the first level of sublists contains the papers that cited it and the second level of sublists

consists of the authors of each of these cited papers. Finally, this collected dataset was used

to generate the citation networks using the strategy described in Algorithm 3.

The function readJson first reads the JSON data (CitationDataset) and stores them in a

https://github.com/Atharva-Phatak/BBLTs-Code
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variable (citationData). The next steps (line 2 - line 9) iterate over these data to extract the

authors who cited a particular author (citedAuthors) and add them to an empty dictionary

(AuthorList) with the author as a key and the cited authors as the values. Finally, this

AuthorList is used to generate the undirected citation graph using the networkX module.

We followed this method to find the connections of all unique authors in the CitationDataset

and this resulted in an undirected graph where the authors and collaborations are represented

by nodes and their edges respectively. The size of the node was decided by the number of

collaborations associated with it. By following the same mechanism for each five-year span,

we were able to discover how the collaborations of authors in TS developed over the years.

Topic Modelling and Word Frequency Analysis

Word Cloud is a way of visually representing text data in the form of unigrams or tags

where the importance of single words is indicated by their size and color [14]. Similarly,

topic modeling is a technique to extract the thematic structure of documents by analyzing

the words from the original sources [39]. We developed word clouds for the abstracts of

publications to collect essential keywords in the domain of TS and to gain a fundamental

understanding of how TS research has been applied. Moreover, we conducted topic modeling

on the abstracts to generate a detailed overview of the field of TS by discovering its important

themes as described in Algorithm 4.

In Algorithm 4, the function CleanAndTokenizeData first cleans the input abstracts (D)

by removing all non-alphabets (punctuation, numbers, new-line characters, and extra spaces)

and URLs, and then uses Natural Langauge ToolKit (NLTK) tokenizer to tokenize the data.

Next, the function RemoveStopWords removes the stopwords from D based on the identified

STOPWORD list. The cleaned data is then used to train the BERTTopic model (T),

which is a topic modeling technique that clusters the keywords into different topics using



3.3. METHODOLOGY 35

Algorithm 3: Citation Graph Generation

Input: citationDataset: JSON output from publish-perish software for a particular
year.

Output: G: Author network
Variables: citationData: Dictionary containing papers with authors and their

cited papers, AuthorList: An empty dictionary that will store author
and their corresponding co-authors

// Method to read json file

1 citationData← readJson(citationDataset) /* Iterate over the json data and

store the authors and the co-authors */

2 for paperT itle in citationData do
3 paperData← citationData[paperT itle] ;
4 for (citedPaper, citedAuthors) in paperData do
5 for author in citedAuthors do
6 AuthorList[author].add(citedAuthors)
7 end

8 end

9 end
// Create empty networkx(nx) graph.

10 G← nx.Graph() ;
/* Iterate over adjacency list and add edges to the graph. */

11 for author in AuthorList do
12 citingAuthors← AuthorList[author] ;
13 for citingAuthor in citingAuthors do
14 G← G.AddEdge(author, citingAuthor);
15 end

16 end
17 return G;

Algorithm 4: Topic Modelling Steps

Input: D: Paper Abstracts, STOPWORD: list of stopwords, T : Topic Model
Output: Ttrained : Trained Topic Model

1 D ← CleanAndTokenizeData(D) ;
2 D ← RemoveStopWords(D,STOPWORD) ;
3 Ttrained ← TrainBertTopic(D) ;
4 clusters← getTopics(Ttrained) ;
5 return clusters
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transformers and c-TF-IDF [26]. Next, the function getTopics outputs the set of keywords

for each topic. Finally, with the help of domain experts, the keywords grouped under each

topic were used to assign a suitable title for the cluster.

3.4 Results and Discussion

In this section, we present the findings for each research question along with further discussion

for knowledge extraction.

RQ1: How has the domain of TS evolved over years?

The development of the TS field is represented by the number of papers published per year

from 2001 to 2022; these findings are shown in Figure 3.1. Overall, the number of publications

has increased over time, particularly since 2010. Significantly, approximately 25 percent of

total publications occurred in 2020 and 2021, with the highest number of publications in

2021 (about 85).

Meanwhile, it is noteworthy that this overall upward trend has been interrupted by

several declines in publication counts during 2015, 2017, 2019, and 2022 when compared

to the preceding years. A possible reason for this pattern could be that the prominent

conferences in this area occur only once every two years. Additionally, this decrement can

be ignored in 2022 as the data collection period ended in November, and several papers could

have been under review by this point. The overall trend can be further described by the

average number of papers published in different noticeable groups of years; <<2001-2009>>,

<<2010-2015>>, and <<2016-2022>> where it is 7, 27, and 60 respectively. In conclusion,

the total growth in the number of publications indicates that, over time, the field of TS has

gained traction in the research community.
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Figure 3.1: Distribution of the number of publications in the field of TS over the years
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RQ2: Which authors contribute most to the research in the field

of TS?

We analyzed publications based on the engagement of authors in TS research, where the most

influential authors were determined by a citation count. The ten most influential authors

and their details are recorded in Table 3.1. From these recorded data, the top author, Qiang

Yang, has more than 85k citations while all other authors have citation counts between 30k-

65k. Moreover, although seven out of ten authors are from universities, the most influential

author represents a Chinese company called WeBank. Additionally, 32 percent of the total

top-10 citations are from authors in industry. This finding highlights the fact that the field

of TS has equally grasped the attention of authors from both industry and academia.

Rank Author Citations Affiliation
1 Qiang Yang 86146 WeBank
2 David N. Kennedy 62767 University of Massachusetts
3 Ricardo Baeza-Yates 53154 University of Pompeu Fabra
4 Cathy Wu 51981 University of Delaware
5 Allan Peter Davis 44228 North Carolina State University
6 Xindong Wu 39291 Hefei University of Technology
7 Danielle McNamara 38123 Arizona State University
8 Marti A Hearst 37344 University of California
9 Antoine Bordes 35481 Meta-AI
10 Kevin Knight 31861 DiDi Labs

Table 3.1: Top 10 influential authors with their citations and affiliations

RQ3: Which countries contribute most to the research?

Awareness of the country-wise contribution to the research context is important for re-

searchers to identify the locations where TS research is prominent. The country-wise influ-
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Rank Country Number of Publications
1 USA 94
2 UK 47
3 Germany 34
4 Spain 20
5 France 18
6 India 16
7 Belgium 16
8 Canada 14
9 Japan 14
10 Italy 13
11 China 12
12 Brazil 12
13 Switzerland 11

Table 3.2: Top 10 influential countries with their corresponding number of publications

ence on TS was investigated by determining the location (country) of the first authors in

publications. However, as GS does not provide this information, we have manually extracted

it from the authors’ affiliations indicated in papers collected from 2001 to 2022.

Table 3.2 shows the top countries with more than 10 publications in TS. According to

these findings, the United States of America is the prominent contributor with around 33

percent of the total papers published by the top-ten countries. However, the majority of the

individual contributors are from Europe, with England, Germany, France, and Spain as next

four highly ranked countries.

RQ4: How have researchers collaborated in the field of TS?

The study investigated the extent of cooperation among researchers in the field of TS by

constructing an author-author network graph. Figure 2 depicts a sub-network that showcases

the connections of Ricardo Baeza-Yates from the University of Pompeu Fabra in Spain who
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has collaborated with the highest number of authors in the field of TS, with a count of

177. He has diverse collaborations with authors from both academia and industry, such as

Facebook, Amazon, and Spotify, emphasizing the multidisciplinary nature of cooperation

in the field. The overall network comprises 3,945 nodes that represent the authors who

have made significant contributions to the field of TS from 2001 to 2022. The connecting

links signify the co-authorship collaborations that have facilitated the advancement of the

field. For those interested in further exploration, higher resolution graphs are available at

https://bblts.datalab.science/.

RQ5: How have the collaborations developed over time?

We performed a temporal analysis to evaluate the evolution of the collaboration among

authors in the TS context. This collaboration analysis was conducted based on the extracted

citation relationships within different five-year segments from 2012 to 2021; we did not

include citations from 2001 to 2011 as the total number of publications during that period

is not significant. For each of the included time segments, we generated a network graph

representing the citation connections between authors and two bar plots displaying the top

five ‘author-citation’ and ‘author-affiliation’ distributions. Figure 3.3 shows these bar plots

for the first and last year segments, <<2012-2017>> and<<2016-2021>>. Overall, the number

of authors and citations has increased significantly, with the highest number of authors

and citation counts in the period from <<2016-2021>>. Moreover, it is noteworthy that

the top-five-most reputed affiliations representing authors have changed with time, where

in <<2012-2017>> all were universities, and in <<2016-2021>> four out of five are from

industry. Among the reputed industrial affiliations engaged with TS research, Google and

Microsoft ranked at the top for many years. In addition, Amazon, IBM, and Facebook are

https://bblts.datalab.science/
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Figure 3.2: Network graph for author with the highest number of connections. Higher
resolution graphs are available here

recognized as significant IT companies in the TS domain.

https://bblts.datalab.science/
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Figure 3.3: Citations of influential authors and the number of authors in dominant affiliations
for the year segment <<2012-2017>> and <<2016-2021>>

RQ6: What are the trends of TS research?

The research trends in the domain of TS are represented in Figure 3.4, which visualizes the

results of word cloud analysis conducted on the publication abstracts. This investigation

revealed some important keywords related to different application domains, such as “med-

ical”, “lexical”, “readability”, “linguistic”, “Spanish” and “summarization”. This finding

indicates that TS research has been applied in various domains ranging from medicine to

computer science and literacy.

Additionally, the set of keywords extracted from these abstracts was used in topic mod-

eling. As shown in Table 3.3, we identified important groups of topics based on the list of
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Figure 3.4: Wordcloud Analysis of Abstracts

keywords classified under them, with the first keyword of each topic being assigned with

higher confidence. According to this analysis, application of the research conducted on TS

has been most popular within medical, multilingual, and NLP areas.

Topics Keywords
Text simplification applications in healthcare medical, biomedical, health, patient
Multilingual text simplification for non-native readers Spanish, Italian, adaptation, sup-

port, production
Text simplification applications in NLP lexical, readability, translation, sum-

marization, linguistic

Table 3.3: Topics of TS research and the common set of keywords
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3.5 Conclusion

Text Simplification is a widely applied NLP technique that improves text comprehensibility

for people with limited literacy. Due to the high demand and vast applicability of the field,

researchers can benefit from a thorough analysis and understanding of the development of

research in TS. In this paper, we investigated the bibliometric information of TS literature

from 2001 to 2022 by addressing six research questions. First, we explored the evolution of

the domain of TS over the years. The increasing number of publications in the community

indicated the increasing interest in the field. Second, we determined the most influential

authors within this domain, which revealed the equal engagement of both industry and

academia in TS research. Third, we identified the United States and numerous European

countries as the most significant contributors to the TS literature. Fourth, we investigated

the collaboration among researchers in the field of TS through a network of authorships.

Fifth, the evolution of collaborations among researchers was extracted through citation trees

developed for different year spans. These connections provide further evidence of how the

contribution of industry and academia in the TS domain has changed over time. Finally, we

investigated the directions of TS research through wordcloud and topic modeling techniques

performed on publication abstracts. This analysis indicated that the main applications of TS

research occur in healthcare, multilingual TS for non-native readers, and NLP. The outcomes

of this study are useful for gaining familiarity with the structural relationships and trends

within the literature of the TS field.
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Limitations

The main constraints in this study were the size of the dataset and the amount of manual

work performed during the extraction of some data. This study could be further expanded

by inculcating other data sources, such as the Web of Science and Semantic Scholar. More-

over, the papers can be further analyzed by extracting more textual information to uncover

additional insights about research being conducted in the field of TS.
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Chapter 4

Medical Text Simplification Using

Reinforcement Learning (TESLEA):

Deep Learning–Based Text

Simplification Approach

All of this chapter was published in the following peer-reviewed journal [52]:
• Phatak A, Savage D, Ohle R, Smith J, Mago V Medical Text Simplification Using Re-
inforcement Learning (TESLEA): Deep Learning–Based Text Simplification Approach.
JMIR Med Inform 2022;10(11):e38095.

Using the advancements in the field of Natural Language Processing, this chapter pro-
poses an approach to automate Text Simplification for medical text data.
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4.1 Introduction

Bio-medicine research is a vital source of information on new clinical trials for drugs and

treatments for a wide range of diseases. This information is publicly available but it is

often filled with complex medical terminologies, making it hard for the general public to

comprehend. To solve this issue, one solution is to manually simplify the language used

in biomedical texts so that it can be understood by a wider audience. Although manual

text simplification is effective, it cannot cope with the rapidly expanding volume of biomed-

ical literature. Therefore, there is a pressing need to develop NLP approaches that can

automatically simplify biomedical texts, making them more accessible to the public.

The aim of this study is to develop an automatic TS approach that is capable of simplify-

ing medical text data at a paragraph level, with the goal of providing greater accessibility of

biomedical research. This paper uses RL-based training to directly optimize 2 properties of

simplified text: relevance and simplicity. Relevance is defined as simplified text that retains

salient and semantic information from the original article. Simplicity is defined as simplified

text that is easy to understand and lexically simple. These 2 properties are optimized using

TS-specific rewards, resulting in a system that outperforms previous baselines on Flesch-

Kincaid scores. Extensive human evaluations are conducted with the help of domain experts

to judge the quality of the generated text.

The remainder of the paper is organized as follows: The “Related Works” section pro-

vides brief information on models, datasets and evaluation metrics in TS. The “Methods”

section provides details on the data set, the training procedure, and the proposed model,

and describes how automatic and human evaluations were conducted to analyze the outputs

generated by the proposed model (TESLEA). The “Results” section provides a brief descrip-

tion of the baseline models and the results obtained by conducting automatic and manual
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evaluation of the generated text. Finally under the “Discussion” section, we highlight the

limitations, future work, and draw conclusions. 1

4.2 Related Work

Text Simplification Approaches

Initial research in the field of TS focused on lexical simplification (LS) [10, 48]. An LS sys-

tem typically involves replacing complex words with their simpler alternatives using lexical

databases, such as the Paraphrase Database [22], WordNet [71], or using language mod-

els, such as bidirectional encoder representations from transformers (BERT) [54]. Recent

research defines TS as a sequence-to-sequence (seq2seq) task and has approached it by lever-

aging model architectures from other seq2seq tasks such as machine translation and text

summarization [86, 76, 18]. Nisioi et al. [45] proposed a neural seq2seq model, which used

long short-term memories (LSTMs) for automatic TS. It was trained on simple-complex sen-

tence pairs and showed through human evaluations that the TS system–generated outputs

ultimately preserved meaning and were grammatically correct [45]. Afzal et al. [2] incorpo-

rated LSTMs to create a quality-aware text summarization system for medical data. Zhang

and Lapata [83] developed an LSTM-based neural encoder-decoder TS model and trained

it using reinforcement learning (RL) to optimize SARI directly [78] scores along with a few

other rewards. SARI is a widely used metric for the automatic evaluation of TS.

With the recent progress in natural language processing research, LSTM-based models

were outperformed by transformer-based language models [73, 35, 57]. Transformers follow

an encoder-decoder structure with both the encoder and decoder made up of L identical

1The data and code is available on github

https://github.com/Atharva-Phatak/TESLEA
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layers. Each layer consists of 2 sublayers, one being a feed-forward layer and the other a multi-

head attention layer. Transformer-based language models, such as BART [35], generative

pretraining transformer (GPT) [57], and text-to-text-transfer-transformer [58], have achieved

strong performance on natural language generation tasks such as text summarization and

machine translation.

Building on the success of transformer-based language models, recently Martin et al.

[41] introduced multilingual unsupervised sentence simplification (MUSS) [41], a BART [35]

based language model, which achieved state-of-the-art performance on TS benchmarks by

training on paraphrases mined from CCNet [74] corpus. Zhao et al. [85] proposed a semisu-

pervised approach that incorporated the back-translation architecture along with denoising

autoencoders for the purpose of automatic TS. Unsupervised TS is also an active area of

research but has been primarily limited to LS. However, in a recent study, Surya et al. [69]

proposed an unsupervised approach to perform TS at both the lexical and syntactic levels. In

general, research in the field of TS has been focused mostly on sentence-level simplification.

However, Sun, Jin, and Wan [68] proposed a document-level data set (D-wikipedia) and

baseline models to perform document-level simplification. Similarly, Devaraj et al. [18] pro-

posed a BART [35]-based model that was trained using unlikelihood loss for the purpose of

paragraph-level medical TS. Although their training regime penalizes the terms considered

“jargon” and increases the readability, the generated text has lower quality and diversity

[18]. Thus, the lack of document or paragraph-level simplification makes this an essential

work in the advancement of the field.
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Text Simplification Datasets

The majority of TS research uses data extracted from Wikipedia and news articles [83, 15,

28]. These data sets are paired sentence-level data sets (i.e., for each complex sentence,

there is a corresponding simple sentence). TS systems have heavily relied on sentence-level

data sets, extracted from regular and simple English Wikipedia, such as WikiLarge [83],

because they are publicly available. It was later shown by Xu, Callison-Burch, and Napoles

[77] that there are data quality issues in the data sets extracted from Wikipedia. They

proposed the Newsela corpus, which was created by educators who rewrote news articles

for different school-grade levels. Recent work has focused on the construction of document-

level simplification data sets [41, 68, 34]. Sun, Jin, and Wan [68] constructed a document-

level data set, called D-Wikipedia, by aligning the English Wikipedia and Simple English

Wikipedia spanning 143,546 article pairs. Although there are many data sets available for

sentence-level TS, data sets for domain-specific paragraph-level TS are lacking. In the field

of medical TS, Štajner [67] constructed a sentence-level simplification data set using sentence

alignment methods. Recently, Devaraj et al. [18] proposed the first paragraph-level medical

simplification data set, containing 4459 simple-complex pairs of text, and this is the data set

used for the analysis and baseline training in this study. A snippet of a complex paragraph

and its simplified version from the data set proposed by Devaraj et al. [18] is shown in Figure

4.1. The data set is open-sourced and publicly available [18].

Text Simplification Evaluation

The evaluation of TS usually falls into two categories: automatic evaluations and manual

(i.e., human) evaluations. Because of the subjective nature of TS, human evaluations is still

considered the best option for evaluating TS systems [69]. Automatic evaluation metrics
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Figure 4.1: Complex medical paragraph and the corresponding simple medical paragraph
from the dataset [17]
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most commonly used include readability indices such as Flesch-Kincaid Reading Ease [32],

Flesch-Kincaid Grade Level (FKGL) [32], Automated Readability Index (ARI), Coleman-

Liau index, and metrics for natural language generation tasks such as SARI [78] and BLEU

[49].

Readability indices are used to assign a grade level to text signifying its simplicity. All the

readability indices are calculated using some combination of word weighting, syllable, letter,

or word counts, and are shown to measure some level of simplicity. Automatic evaluation

metrics, such as BLEU [49] and SARI [78], are widely used in TS research, with SARI

[78] having specifically been developed for TS tasks. SARI is computed by comparing the

generated simplifications with both the source and target references. It computes an average

of F1-score for 3 n-gram overlap operations: additions, keeps, and deletions. Both BLEU

[49] and SARI [78] are n-gram–based metrics, which may fail to capture the semantics of the

generated text.

4.3 Methodology

Given a complex medical paragraph, the goal of this work is to generate a simplified para-

graph that is concise and captures the salient information expressed in the complex text.

To accomplish this, an RL-based simplification model is proposed, which optimizes multiple

rewards during training, and is tuned using a paragraph-level medical TS data set.

Dataset

The Cochrane Database of Scientific Reviews is a health care database with information on a

wide range of clinical topics. Each review includes a plain language summary (PLS) written

by the authors who follow guidelines to structure the summaries. PLSs are supposed to be
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clear, understandable, and accessible, especially for a general audience not familiar with the

field of medicine. PLSs are highly heterogeneous in nature, and are not paired (i.e., for every

complex sentence there may not be a corresponding simpler version). However, Devaraj et

al. [18] used the Cochrane Database of Scientific Reviews data to produce a paired data set,

which has 4459 pairs of complex-simple text, with each text containing less than 1024 tokens

so that it can be fed into the BART [35] model for the purpose of TS. The pioneering data

set developed by Devaraj et al. is used in this study for training the models and is publicly

available [18].

TESLEA – Text Simplification Using Reinforcement Learning

The TS solution proposed for the task of simplifying complex medical text uses an RL-

based simplification model, which optimizes multiple rewards (relevance reward, Flesch-

Kincaid Grade rewards, and lexical simplicity rewards) to achieve a more complete and

concise simplification. The following subsections introduce the computation of these rewards,

along with the training procedure.

Relevance Reward

Relevance reward measures how well the semantics of the target text is captured in its

simplified version. This is calculated by computing the cosine similarity between the target

text embedding (ET ) and the generated text embedding (EG). BioSentVec [13], a text

embedding model trained on medical documents, is used to generate the text embeddings.

The steps to calculate the relevance score are depicted in Algorithm 5.

The RelevanceReward function takes 3 arguments as input, namely, target text (T ),

generated text (G), and the embedding model (M). The function ComputeEmbedding
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Algorithm 5: Relevance Reward

Input: T: Target text, G: Generated text, M : Embedding Model
Output: Rcosine : Relevance Reward
Variables: ET : Target sentence embedding, EG : Generated sentence embedding

1 Function RelevanceReward(T ,G,M)

/* Compute sentence embedding for Target sentence. */

2 ET ← ComputeEmbedding(T , M)
/* Compute sentence embedding for generated sentence. */

3 EG ← ComputeEmbedding(G , M)
/* Compute Cosine Similarty. */

4 Rcosine ← ET ·EG

∥ET ∥·∥EG∥
5 return Rcosine

takes the input text and embedding model (M) as input and generates the relevant text

embedding. Finally, cosine similarity between generated text embedding (EG) and target

text embedding (ET ) is calculated to get the reward (Algorithm 5, line 4).

Flesch-Kincaid Grade Reward

FKGL refers to the grade level that must be attained to comprehend the presented infor-

mation. A higher FKGL score indicates that the text is more complex, and a lower score

indicates that the text is simpler. The FKGL for a text (S) is calculated using equation 4.1

[32]:

FKGL(S) = 0.38× total words

total sentences
+ 11.8× total syllables

total words
− 15.59 (4.1)

The FKGL reward (RFlesch) is designed to reduce the complexity of generated text

and is calculated as presented in Algorithm 6. In Algorithm 6, the function FleschKin-

caidReward takes 2 arguments as inputs, namely, generated text (G) and target text (T ).

The FKGLScore function calculates the FKGL for the given text. Once the FKGL for T and

G is calculated, the Flesch-Kincaid reward (RFlesch) is calculated as the relative difference
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Algorithm 6: Flesch Kincaid Reward

Input: T: Target text, G: Generated text
Output: Rflesch: Flesch Kincaid Reward
Variables: r(T): Target text flesch kincaid grade level, r(G): generated text flesch

kincaid grade level.
1 Function FleschKincaidReward(T ,G)

2 r(T )← FKGLScore(T) ;
3 r(G)← FKGLScore(G) ;
4 Rflesch ← (r(T )− r(G))/r(T ) ;
5 return Rflesch

between r(T ) and r(G) (Algorithm 6, line 4), where r(T ) and r(G) denote the FKGL of the

target and generated text.

Lexical Simplicity Reward

Lexical simplicity is used to measure whether the words in the generated text (G) are simpler

than the words in the source text (S). Laban et al. [34] proposed a lexical simplicity reward

that uses the correlation between word difficulty and word frequency [8]. As word frequency

follows zipf law, Laban et al. [34] used it to design the reward function, which involves

calculating zipf frequency of newly inserted words, that is, Z(G–S), and deleted words, that

is, Z(S–G). The lexical simplicity reward is defined in the same way as proposed by Laban

et al. [34] and is described in Algorithm 7. The analysis of the data set proposed by Devaraj

et al. [18] revealed that 87% of simple and complex pairs have a value of ∆Z(S,G) ≈ 0.4,

where ∆Z(S,G) = Z(G–S)–Z(S–G) is the difference between the zipf frequency of inserted

words and deleted words, with the value of lexical reward (Rlexical) scaled between 0 and 1.

In Algorithm 3, LexicalSimplicityReward requires the source text (S) and the generated

text (G) as the inputs. Functions ZIPFInserted [7] and ZIPFDeleted [7] calculate the zipf

frequency of newly inserted words and the deleted words. Finally, the lexical reward (Rlexical)
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Algorithm 7: Lexical Simplicity Reward

Input: S: Source Text, G: Generated Text
Output: Rlexical: Lexical Simplicity Reward
Variables: Z(G− S): Zipf frequncy of inserted words, Z(S −G) : Zipf frequncy of

deleted words, ∆Z(S,G) : Difference between Zipf frequency of inserted
and Zipf frequency of deleted words

1 Function LexicalSimplicityReward(S,G)

/* Compute Zipf frequency of inserted words. */

2 Z(G− S)← ZIPFInserted(G,S) ;
/* Compute Zipf frequency of deleted words. */

3 Z(S −G)← ZIPFDeleted(G,S) ;
4 ∆Z(S,G)← Z(G− S)− Z(S −G) ;

5 Rlexical ← 1− ∆Z(S,G)−0.4
0.4

;
6 return Rlexical

is calculated and normalized, as described in line 5.

Training Procedure and Baseline Model

Pretrained BART

The baseline language model used in this study for performing simplification was BART [35],

which is a transformer based encoder-decoder model that was pretrained using a denoising

objective function. The decoder part of the model is autoregressive in nature, making it

more suitable for sentence-generation tasks. Furthermore, the BART model achieves strong

performance on natural language generation tasks such as summarization, which was demon-

strated on XSum [43] and CNN/Daily Mail [42] data sets. In this case, a version of BART

fine-tuned on XSUM [43] data set is being used.
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Language Model Fine Tuning

Transformer based language models are pre-trained on large corpus of text and later finetuned

on a downstream task by minimizing the maximum likelihoood loss (Lml) function. Consider

a paired dataset C, where each instance consists of a source sentence containing n tokens

x = {x1, ···, xn} and target sequence containingm tokens y = {y1, ···, ym}, then the maximum

likelihood loss (Lml) function is given in Equation 2 with the computation described in

Algorithm 8.

Lml = −
m∑
t=1

logpθ(yt|y<t, x) (4.2)

where θ are the model parameters and y<t denotes preceding tokens before the position t

[53].

Algorithm 8: MLE Update

Input: D: Dictionary, θ: Language Model
Output: Lml: Maximum Likelihood Loss
Variables: logits: Output of the model

1 Function MLEUpdate(θ,D)

/* FORWARD function returns the output of the model. */

2 logits← FORWARD(θ, D) ;
/* Calculating maximum likelihood loss using logits and D */

3 Lml← MLELoss(logits, D) ;
4 return Lml;

However, the results obtained by minimizing Lml are not always the best. There are

two main reasons for degradation of results, the first is called “exposure bias” [59], which is

when the model expects gold standard data at each step of training, but it does not receive

such supervision during testing, which can result in accumulating errors during prediction.

The second is called as “representation collapse” [3] which is degradation of pre-trained

language model representations during fine-tuning. Ranzato et al. [59] avoided the problem

of exposure bias by directly optimizing the specific discrete metric instead of minimzing the
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maximum likelihood loss(Lml) via the help of reinforcement learning based algorithm called

REINFORCE [75]. We use a variant of REINFORCE [75] called as “Self Critical Sequence

Training(SCST)”[61] to directly optimize certain rewards specifically designed for TS, more

information is provided in the following section.

Self-critical Sequence Training

Text simplification can be formulated as an reinforcement learning problem, where the

“agent”(Language Model) interacts with the environment to take “action”(next word pre-

diction) based on a learned “policy”(pθ) defined by model parameters θ while observing some

rewards (R). In this work, we use BART [35] as the language model. To learn an optimal

policy that maximizes rewards, the REINFORCE [75] algorithm is used. Specifically we use

REINFORCE with a baseline to stabilise the training procedure by using objective function

Lpg with a baseline reward b given by:

Lpg = −(r(ys)− b)
n∑

i=1

logpθ(y
s
i |ys1, ...., ysi−1, S) (4.3)

where pθ(y
s
i |..) denotes the probability of i-th word conditioned on a previously generated

sampled sequence by the model; r(ys) denotes the reward computed for a sentence generated

using sampling; S denotes the source sentence and n is the length of the generated sentence.

Rewards are computed as weighted sum of Relevance Reward (Rcosine), Flesch Kincaid Grade

Reward (Rflesch) and Lexical Simplicity Reward (Rlexical) is given in Equation 4.4 and shown

in Figure 4.2:

r(ys) = α ·Rcosine + β ·Rflesch + δ ·Rlexical (4.4)

where α, β, δ are the weights associated with the respective rewards. To approximate the

baseline reward (b), Self Critical Sequence Training Strategy [61] is used. The baseline reward
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(b) is calculated by computing reward values for a sentence which has been generated using

greedy decoding r(y∗) by the current model.

Algorithm 9: Self Critical Update

Input: D: Dictionary, M : Language Model
Output: Lpg: Policy Gradient Loss
Variables: ys: Sampled Sentence, y∗: Greedy Sentence , n: length of generated

sequence, r(y∗): Reward for greedy sentence, r(ys): Reward for sampled
sentence

Function SelfCriticalUpdate(θ,D)

/* Generate sentence using multinomial Sampling. */

ys ← GenerateSampleSentence(M , D) ;
/* Generate sentence using Greedy Decoding. */

y∗ ← GenerateGreedySentence(M , D) ;
/* Compute reward for greedy sentence. */

r(y∗)← ComputeRewards(y∗, D) ;
/* Compute reward for sampled sentence. */

r(ys)← ComputeRewards(ys, D) ;
Lpg = −(r(ys)− r(y∗))

∑n
i=1 logpθ(y

s
i |ys1, ..., ysi−1);

return Lpg;

The loss function is defined in Equation 4.5 [61] and the way it is computed is described

in Algorithm 9:

Lpg = −(r(ys)− r(y∗))
n∑

i=1

logpθ(y
s
i |ys1, · · ·, ysi−1, S) (4.5)

where y∗ denotes the sentence generated using greedy decoding.

Intuitively, by minimizing the loss described in equation 4.5, the likelihood of choosing

the samples sequence (ys) is promoted if the reward obtained for sampled sequence, r(ys), is

greater than the reward obtained for the baseline rewards (i.e., the samples that return higher

reward than r(y∗)). The samples that obtain a lower reward are subsequently suppressed.

The model is trained using a combination of Lml and policy gradient loss similar to [50].
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Figure 4.2: Compute Rewards function calculates a weighted sum of three rewards

The model is trained using a combination of maximum likelihood loss and policy gradient

loss similar to [50]. The overall loss is given by:

L = γLpg + (1− γ)Lml (4.6)

where γ is a scaling factor that can finetuned.

Summary of Training Process

Overall, the training procedure follows a 2-step approach. As the pretrained BART [35] was

not trained on the medical domain–related text, it was first fine-tuned on the document-

level paired data set [18] by minimizing the Lml (maximum likelihood estimation (MLE)

4.2). In the second part, the fine-tuned BART model was trained further using RL. The

RL procedure of TESLEA involves 2 steps: (1) the RL step and (2) the MLE optimization

step, which are both shown in Figure 4.3 and further described in Algorithm 6. The given
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simple-complex text pairs are converted to tokens as required by the BART model. In the

MLE step, these tokens are used to compute logits from the model, and then finally MLE

loss is computed. In the RL step, the model generates simplified text using 2 decoding

strategies: (1) greedy decoding and (2) multinomial sampling. Rewards are computed as

weighted sums (Figure 4.3) for sentences generated using both decoding strategies. These

rewards are then used to calculate the loss for the RL step. Finally, a weighted sum of losses

is computed that is used to estimate the gradients and update model parameters. All the

hyperparameter settings used are included in Appendix B.

Algorithm 10: Training of Simplification System

Input: Dpair : Paired Dataset, N: Iterations, γ : weight, M : Language Model, Mf :
Finetuned Language Model on paired Dataset(Dpair)

Output: M : Language Model
1 M ←Mf

2 for i = 1 to N do
3 for batch ∈ Dpair do
4 D ← TOKENIZE(batch) ;

/* Calculate maximum likelihood loss. */

5 Lml← MLEUpdate(M, D) ;
/* Calculate policy gradient loss. */

6 Lpg ← SelfCriticalUpdate(M,D) ;
/* Weighted sum of losses. */

7 L = γ · Lpg + (1− γ) · Lml ;
8 Update model pararmeters with L ;

9 end

10 end
11 return Language Model θ

Automatic Metrics

Two readability indices were used to perform automatic evaluations of the generated text,

namely, FKGL and Automatic Readability Indices (ARIs). The SARI score is a standard
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Figure 4.3: Reinforcement learning–based training procedure for TESLEA
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metric for TS. The F-1 versions of ROUGE-1 and ROUGE-2 [37] scores were also reported.

To measure the quality of the generated text, the criteria proposed by Yuan, Neubig, and

Liu [80] were used, which are mentioned in the “Automatic Evaluation Metrics” section in

Appendix-B. The criteria proposed by Yuan, Neubig, and Liu [80] can be automatically

computed using a language model–based metric called “BARTScore.” Further details on

how to use BARTScore to measure the quality of the generated text are also mentioned in

Appendix-B

Human Evaluations

In this study, 3-domain experts judge the quality of the generated text based on the factors

mentioned in the previous section. The evaluators rate the text on a Likert scale from 1 to 5.

First, simplified test data were generated using TESLEA, and then 51 generated paragraphs

were randomly selected, creating 3 subsets containing 17 paragraphs each. Every evaluator

was presented with 2 subsets, that is, a total of 34 complex-simple TESLEA-generated

paragraphs. The evaluations were conducted via Google Forms, and the human annotators

were asked to measure the quality of simplification for informativeness (INFO), fluency

(FLU), coherence (COH), factuality (FAC), and adequacy (ADE) (Figure 4.4). All the data

collected were stored in CSV files for statistical analysis.

4.4 Results

This section consists of 3 subsections, namely,

• Baseline Models

• Automatic Evaluations
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Figure 4.4: A sample question seen by the human annotator.
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• Human Evaluations.

The first section highlights the baseline models used for comparison and analysis. The second

section discusses the results obtained by performing automatic evaluations of the model. The

third and final section discusses the results obtained from human assessments and analyzes

the relationship between human annotations and automatic metrics.

Baseline Models

TESLEA is compared with other strong baseline models and their details are discussed

below:

• BART-Fine-tuned: BART-Fine-tuned is a BART-large model fine-tuned using a

maximum likelihood loss on the data set proposed by Devaraj et al. [18]. Studies have

shown that large pretrained models often perform competitively when fine-tuned for

downstream tasks, thus making this a strong competitor.

• BART-UL: Devaraj et al. [18] also proposed BART-UL for paragraph-level medical

TS. It is the first model to perform paragraph-level medical TS and has achieved strong

results on automated metrics. BART-UL was trained using an unlikelihood objective

function that penalizes the model for generating technical words (i.e., complex words).

Further details on the training procedure of BART-UL are described in Appendix-A

• MUSS: MUSS [41] is a BART-based language model that was trained by mining

paraphrases from the CCNet corpus [74]. MUSS was trained on a data set consisting

of 1 million paraphrases, helping it achieve a strong SARI score. Although MUSS is

trained on a sentence-level data set, it still serves as a strong baseline for comparison.

Further details on the training procedure for MUSS are discussed in Appendix-A
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• Keep it Simple (KIS): Laban et al. [34] proposed an unsupervised approach for

paragraph-level TS. KIS is trained using RL and uses the GPT-2 model as a back-

bone. KIS has shown strong performance on SARI scores beating many supervised

and unsupervised TS approaches. Additional details on the training procedure for KIS

are described in Appendix-A

• PEGASUS models: PEGASUS is a transformer-based encoder-decoder model that

has achieved state-of-the-art results on many text-summarization data sets. It was

specifically designed for the task of text summarization. In our analysis, we used two

variants of PEGASUS models, namely,

– PEGASUS-large (PL), the large variant of Pegasus model

– PEGASUS-pubmed-large (PPL), the large variant of the PEGASUS model that

was pretrained on a PubMed data set.

Both the PEGASUS models were fine-tuned using maximum likelihood loss on the data

set proposed by Devaraj et al. [18]. For more information regarding the PEGASUS

model, the readers are suggested to refer to [82].

Results of Automatic Metrics

The metrics used for automatic evaluation are FKGL, ARI, ROUGE-1, ROUGE-2, SARI,

and BARTScore. The mean readability indices scores (i.e., FKGL and ARI) obtained by

various models are reported in Table 4.1. ROUGE-1, ROUGE-2, and SARI scores are

reported in Table 4.2 and BARTScore is reported in Table 4.3.
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Readability Indices, ROUGE, and SARI Scores

The readability indices scores reported in Table 4.1 suggest that the FKGL scores obtained

by TESLEA are better (i.e., a lower score) when compared with the FKGL scores obtained

by comparing technical abstracts (i.e., complex medical paragraphs available in the data

set) with the gold-standard references (i.e., simple medical paragraphs corresponding to the

complex medical paragraphs). Moreover, TESLEA achieves the lowest FKGL score (11.84)

when compared with baseline models, indicating significant improvement in the TS. The

results suggest that

• BART-based transformer models are capable of performing simplification at the para-

graph level such that the outputs are at a reduced reading level (FKGL) when compared

with technical abstracts, gold-standard references, and baseline models.

• The proposed method to optimize TS-specific rewards allows the generation of text

with greater readability than even the gold-standard references, as indicated by the

FKGL scores in Table 4.1.

• The reduction in FKGL scores can be explained by the fact that FKGL was a part of

a reward (RFlesch) that was directly being optimized.

In addition, we report the SARI [78] and ROUGE scores [37] as shown in Table 4.2. SARI

is a standard automatic metric used in sentence-level TS tasks. The ROUGE score is another

standard metric in text summarization tasks. The findings indicate that TESLEA is capable

of performing at the same level as the baseline models on ROUGE scores. Furthermore,

TESLEA has been observed to attain a similar level of performance as BART-UL on SARI

score, which suggests that the generated outputs by TESLEA are simplified and consistent

with the previous baselines. Although the models are achieveing the same SARI scores, there



4.4. RESULTS 68

FKGL ARI
Baseline Text Technical Abstracts 14.42 15.58

Gold References 13.11 15.08
Model Generated BART-Finetuned 13.45 15.32

BART-UL 11.97 13.73
TESLEA 11.84 13.82
MUSS 14.29 17.29
KIS 14.15 17.05
PL 14.53 17.55
PPL 16.35 19.8

Table 4.1: Flesch Kincaid Grade Level (FKGL), Automatic Readability Index (ARI) for the
generated text. TESLEA significantly reduces FKGL and ARI scores when compared to
plain language summaries. Bold indicates best scores.

are differences in the quality of text generated by these models and these are explained in

the subsequent subsection subsection.

Model ROUGE-1 ROUGE-2 SARI
BART-Finetuned 0.40 0.11 0.39
BART-UL 0.38 0.14 0.40
TESLEA 0.39 0.11 0.40
MUSS 0.23 0.03 0.34
KIS 0.23 0.03 0.32
PL 0.44 0.18 0.40
PPL 0.42 0.16 0.40

Table 4.2: ROUGE-1, ROUGE-2 and SARI scores for the generated text. TESLEA achieves
similar performance to other models. Higher scores of ROUGE-1, ROUGE-2, and SARI are
desirable.

Text Quality Measure

There has been significant progress in designing automatic metrics that are able to capture

linguistic quality of the text generated by language models. One such metric that is able
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to measure the quality of generated text is BARTScore [80]. BARTScore has shown strong

correlation with human assessments on various tasks ranging from machine translation to

text summarization. BARTScore has 4 different metrics (i.e., Faithfulness Score, Precision,

Recall, F-score), which can be used to measure different qualities of generated text. Further

details on how to use BARTScore are mentioned in Appendix B. According to the analysis

Models Faithfulness-Score F-Score
BART-Finetuned 0.137 0.078
BART-UL 0.242 0.061
TESLEA 0.366 0.097
MUSS 0.031 0.029
KIS 0.030 0.028
PL 0.197 0.073
PPL 0.29 0.063

Table 4.3: Faithfulness-Score and F-score for the generated text by the models. TESLEA
achieves the highest faithfulness score and F-score. Higher scores of Faithfulness and F-score
are desirable.

conducted by Yuan, Neubig, and Liu [80], Faithfulness Score measures 3 aspects of generated

text via COH, FLU, and FAC. The F-score measures 2 aspects of generated text (INFO and

ADE). In our analysis, we use these 2 variants of BARTScore to measure COH, FLU, FAC,

INFO, and ADE. TESLEA achieves the highest values (Table 4.3) of Faithfulness Score

(0.366) and F-score (0.097), indicating that the rewards designed for the purpose of TS not

only help the model in generating simplified text but also on some level preserve the quality

of generated text. The F-scores of all the models are relatively poor (i.e., scores closer to 1 are

desirable). One of the reasons for low F-scores could be the introduction of misinformation

or hallucinations in the generated text, a common problem for language models, which could

be addressed by adapting training strategies that focus on INFO via the help of rewards or

objective functions. For qualitative analysis we randomly selected 50 sentences from the test
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data and calculated the average number of tokens based on BART model vocabulary. For the

readability measure, we calculated the FKGL scores of these generated texts and noted any

textual inconsistencies such as misinformation. The analysis revealed that the text generated

by most models was significantly smaller than the gold-standard references (Table 4.4).

Furthermore, TESLEA- and BART-UL–generated texts were significantly shorter compared

with other baseline models and TESLEA had the lowest FKGL score among all the models

as depicted in Table 4.4. From a qualitative point of view, the sentences generated by most

Model Number of Tokens FKGL
Technical Abstracts 498.11 14.37
Gold References 269.74 12.77
BART-Finetuned 143.70 12.58
TESLEA 131.37 12.34
BART-UL 145.08 12.66
KIS 187.59 13.78
MUSS 193.07 13.86
PL 272.04 13.93
PPL 150.00 15.09

Table 4.4: Average Number of tokens and Average FKGL scores for selected samples.

baseline models involve significant duplication of text from the original complex medical

paragraph. The outputs generated by the KIS model were incomplete and appear “noisy”

in nature. One of the reasons for the noise generation could be because of unstable training

due to lack of a huge corpus of domain-specific data. BART-UL–generated paragraphs are

simplified as indicated by the FKGL and ARI scores, but they are extractive in nature

(ie, the model learns to select simplified sentences from the original medical paragraph and

combines them to form a simplification). PEGASUS-pubmed- large–generated paragraphs

are also extractive in nature and similar to BART-UL–generated paragraphs, but it was

observed that they were grammatically inconsistent. In contrast to baseline models, the text
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generated by TESLEA was concise, semantically relevant, and simple, without involving

any medical domain–related complex vocabulary. Figures 4.5 and 4.6 shows an example of

text generated by all the models, with blue text indicating the copied text. In addition

to the duplicated text, the models also induced misinformation in the generated text. The

most common form of induced misinformation observed was “The evidence is current up to

[date],” as shown in Figure 4.7. This text error occurred due to the structure of the data

(i.e., PLS contains statements related to this research, but these statements were not in

the original text; thus, the model attempted to add these statements to the generated text

although it is not factually correct). Thus considerable attention should be paid to including

FAC measures in the training regime of these models. For a more complete assessment of

the quality of simplification, human evaluation was conducted using domain experts for the

text generated by TESLEA.
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Figure 4.5: Comparison of Text Generated by all the models.
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Figure 4.6: Comparison of Text Generated by all the models.
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Figure 4.7: Example of misinformation found in Generated text

Human Evaluations

For this research, 3 domain experts assessed the quality of generated text, based on factors

of INFO, FLU, COH, FAC, and ADE, as proposed by Yuan, Neubig, and Liu [80], which

are discussed in Appendix B. To measure inter-rater reliability, the percentage agreement

between the annotators is calculated, and the results are shown in Table 4.5. The average

percentage agreement for the factors of FLU, COH, FAC, and ADE is the highest, indicating

that annotators agree among their evaluations. The average Likert score for each factor is

also reported by each rater (Table 4.6). From the data mentioned in Table 4.6, the raters

think that the COH and FLU have the highest quality, with the ADE, FAC, and INFO also

rated reasonably high. To further assess whether results obtained by automated metrics

truly signify an improvement in the quality of generated text by TESLEA, the Spearman

rank correlation coefficient was calculated between human ratings and the automatic metrics

for all 51 generated paragraphs (text), with the results shown in Table 4.7. The BARTScore

has the highest correlation with human ratings for FLU, FAC, COH, and ADE compared

with other metrics.
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INFO FLU FAC COH ADE
A1 and A2 82.35 82.35 82.35 70.59 82.35
A1 and A3 70.59 58.82 70.59 70.59 70.59
A3 and A2 52.94 70.59 74.51 74.51 64.71
Average (% agreement) 68.63 70.59 74.51 74.51 72.55

Table 4.5: Average percent inter-rater agreement where A1 stands for Annotator 1, A2
indicates Annotator 2 and A3 indicates Annotator 3.

INFO FLU FAC COH ADE
A1 3.82 4.12 3.91 3.97 3.76
A2 3.50 4.97 3.59 4.82 3.68
A3 4.06 3.94 3.85 3.94 3.85
ALS 3.79 4.34 3.78 4.24 3.76

Table 4.6: Average Likert score by each rater for INFO, FLU, COH, ADE. ALS stands for
average Likert score.

Metric INFO FLU FAC COH ADE
ROUGE-1 0.18 -0.04 -0.01 -0.05 0.06
ROUGE-2 0.08 -0.01 -0.05 -0.04 0.05
SARI 0.09 -0.66 -0.13 -0.01 0.01
BARTScore 0.08 0.32 0.38 0.22 0.07

Table 4.7: Spearman’s Rank correlation coefficient between automatic metrics and human
ratings for text generated by TESLEA. Bold indicates the best result.

4.5 Discussion

Principal Findings

The most up-to-date research about biomedicine is often inaccessible to the general public

due to the domain-specific medical terminology. A way to address this problem is by creat-

ing a system that converts complex medical information into a simpler form, thus making



4.5. DISCUSSION 76

it accessible to everyone. In this study, a TS approach was developed that can automati-

cally simplify complex medical paragraphs while maintaining the quality of the generated

text. The proposed approach trains the transformer-based BART model to optimize re-

wards specific for TS, resulting in increased simplicity. The BART model is trained using

the proposed RL method to optimize certain rewards that help generate simpler text while

maintaining the quality of generated text. As a result, the trained model generates simplified

text that reduces the complexity of the original text by 2-grade points, when measured using

the FKGL [32]. From the results obtained, it can be concluded that TESLEA is effective

in generating simpler text compared with technical abstracts, the gold-standard references

(i.e., simple medical paragraphs corresponding to complex medical paragraphs), and the

baseline models. Although previous work [18] developed baseline models for this task, to the

best of our knowledge, this is the first time RL is being applied to the field of medical TS.

Moreover, previous studies failed to analyze the quality of the generated text, which this

study measures via the factors of FLU, FAC, COH, ADE, and INFO. Manual evaluations of

TESLEA-generated text were conducted with the help of domain experts using the aforesaid

factors and further research was conducted to analyze which automatic metrics agree with

manual annotations using the Spearman rank correlation coefficient. The analysis revealed

that BARTScore [80] best correlates with the human annotations when evaluated for a text

generated by TESLEA, indicating that TESLEA learns to generate semantically relevant

and fluent text, which conveys the essential information mentioned in the complex medical

paragraph. These results suggest that (1) TESLEA can perform TS of medical paragraphs

such that outputs are simple and maintain the quality, (2) the rewards optimized by TESLEA

help the model capture syntactic and semantic information, increasing the FLU and COH of

outputs, as witnessed when the outputs are evaluated by BARTScore and human annotators.
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Limitations and Future Work

Although this research is a significant contribution to the literature on medical TS, the

proposed approach does have a few limitations, addressing which can result in even better

outputs. TESLEA can generate simpler versions of the text, but in some instances, it induces

misinformation, resulting in reduced FAC and INFO of the generated text. Therefore, there

is a need to design rewards that consider the FAC and INFO of the generated text. We

also plan to conduct extensive human evaluations on a large scale for the text generated

by various models (eg, KIS, BART-UL) using domain experts (i.e., physicians and medical

students). Transformer-based language models are sensitive to the pretraining regime, so a

possible next step is to pretrain a language model on domain-specific raw data sets such as

PubMed [65], which will help develop domain-specific vocabulary for the model. Including

these strategies may help in increasing the simplicity of the generated text.

Conclusion

The interest in and need for TS in the medical domain are of growing interest as the quantity

of data is continuously increasing. Automated systems, such as the one proposed in this

paper, can dramatically increase accessibility to information for the general public. This

work not only provides a technical solution for automated TS but also lays out and addresses

the challenges of evaluating the outputs of such systems, which can be highly subjective. It

is the author’s sincere hope that this work allows other researchers to build on and improve

the quality of similar efforts.
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Chapter 5

Conclusion

In this thesis, at first, Chapter 2 offers a comprehensive and informative overview of the

most commonly used datasets, methods, and evaluation techniques in the field of text sim-

plification, providing valuable context and understanding for the reader. Chapter 3 presents

a detailed bibliometric analysis of the TS literature collected from 2001 to 2022, addressing

six research questions that shed light on the evolution of TS over the years, important re-

searchers in the field, country-wise research output, the evolution of research collaborations

over the years, and trends in the field of TS. This analysis guided us to apply text simplifica-

tion to the field of medicine. In Chapter 4, a unique approach called TESLEA is proposed,

which leverages a high-performing transformer-based language model and a reinforcement

learning training procedure to perform medical text simplification. TESLEA can simplify

paragraph-level medical text data and outperforms standard approaches in TS based on au-

tomatic metrics. TESLEA can simplify medical text data by more than 2-grade points when

measured on the FKGL scale. Human evaluation of TESLEA’s output is also conducted

with the help of domain experts (i.e., medical health professionals) via various factors high-

lighted in Chapter 4. The research presented in this thesis aims to encourage further analysis
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and development of approaches and applications of TS. Research articles from various fields

often use complicated language, which can be hard for non-experts to understand. More-

over, these articles may be available in different languages like French, Spanish, German,

etc. Simplifying such technical language manually can be costly and time-consuming. How-

ever, with the advent of Large Language Models (LLMs) like InstructGPT [46], GPT3 [9],

etc, there is a strong potential for building domain-specific multilingual text simplification

solutions. By leveraging LLMs, we can develop scalable and efficient Automatic Text Sim-

plification (ATS) systems. These systems are especially crucial in fields like medicine and

finance, where understanding research is essential for making informed decisions. To build

better ATS systems, developing large text simplification corpora would also be helpful. By

combining this corpus with LLMs, can lead to building more accurate and comprehensive

models for simplifying technical language.
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Appendix A

Training Procedures and Decoding

Methods

A.1 BART-UL

Devaraj et al. [18] proposed BART-UL, a model which uses the BART model as the back-

bone for paragraph-level medical text simplification. To ensure that the model does not

generate technical words, Devaraj et al. [18] adapted the concept of unlikelihood training

to penalize the model whenever it generated technical words. The proposed unlikelihood

training objective (i.e., unlikelihood loss (UL)) [80] is calculated as follows and is shown in

Equation A.1 [18]

UL = −
y∑

t=1

S∑
j=1

1sj ,twjlog(1− pθ(sj|y<t, x)) (A.1)

where S is a set of candidate tokens, x is the complex medical paragraph as the input, y<t

is the prefix of simple medical paragraph y,and pθ(sj|yt, x) is the probability assigned to the

token sj in the distribution output by BART with model parameters at time t [18]. The set
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of candidate tokens (S) is calculated by collecting tokens with negative weights using a bag

of word logistic regression which is trained to classify whether the given paragraph is simple

or complex. The unlikelihood loss mentioned in equation A.1 is only applied for a given

token sj with learned logistic regression weight wj if the output probability distribution of

the BART model for the token indicates that it should be in the generated output. The

final loss function for training BART-UL is the weighted sum of unlikelihood loss and the

standard maximum likelihood loss. The proposed training method by Devaraj et al. [18]

helped them perform paragraph-level simplification on medical text data.

A.2 MUSS: Multilingual Unsupervised Sentence

Simplification by Mining Paraphrases

Martin et al. [41] recently introduced MUSS, a BART [14] based language model which

achieved state-of-the-art results on TS benchmarks. MUSS was trained on a data set created

by mining paraphrases from the CCNET corpus. This data set is a sentence-level data set i.e.,

data set contains complex sentences and corresponding simple sentences. During the training

time, MUSS uses control tokens that tell the model about important properties of the target

sentence. The control tokens used by MUSS are character length ratio (NumChar), replace-

only Levenshtein similarity (LevSim), Word frequency ratio (WordFreq), Dependency Tree

Depth Ratio (DepTreeDepth). These control tokens were first proposed by Martin et al. [40]

and their importance is given below:

• Character Length Ratio: This control token measures compression and content deletion

between source and target sentence. [40]

• Levenshtein Similarity: Levenshtein similarity measures the amount of modifications
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done on source sentences via deletion, addition or replacement. In case MUSS they

have only considered replacement as paraphrases often do not involve heavy deletion

or addition operations. [40]

• Word Frequency Ratio: Word Frequency are shown to be good indicators of word

complexity and hence word frequency ratio between source and target sentences serves

as a proxy to measure lexical similarity. [40]

• Dependency Tree Depth Ratio (DepTreeDepth): Dependency Tree Depth Ratio is

measured as maximum depth of dependency tree of the source sentence divided by

that of the target sentence. DepTreeDepth serves as a proxy to syntactic simplicity.

[40]

These four tokens are prepended to every source sentence while training the MUSS model.

Overall, MUSS is trained on a data set consisting of one million paraphrases. In our exper-

iments we did not further fine-tune the MUSS model as the control tokens designed are for

sentence level simplification tasks whereas the data set proposed by Devaraj et al. [18] is a

paragraph level text simplification data set and designing the oracle tokens for a paragraph

level task is out of the scope for the current paper. Although MUSS is trained on sentence

level data, it still serves as a strong baseline because of the huge corpus data that was used

to train the model. Due to this reason, we have included the MUSS model as a baseline.
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A.3 Keep it Simple: Unsupervised Simplification of

Multi-Paragraph Text

Laban et al. [34] proposed Keep it Simple (KIS) an unsupervised reinforcement learning-

based approach to simplify paragraph-level text. They propose a variant of SCST [65]

called K-SCST in which instead of proposing one candidate simplification, the model pro-

poses multiple candidate simplifications, computes the reward for candidates and encourages

simplification which outperforms the mean reward. More formally in K-SCST, k sampled

sentences are generated and rewards are computed for each candidate RS1 , · · ·, RSk and the

baseline is approximated as the mean of these rewards (RS). The loss function is defined as

follows and shown in Equation A.2 [7]

L =
k∑

j=1

(RS −RSj)
N∑
i=0

logp(w
Sj

i |w
Sj

i · · · w
Sj

i−1, P ) (A.2)

Where P is the input sentence and L is the resulting loss function and k is the number

of sampled sentences. The rewards used by KIS are Salience Rewards, Lexical Simplicity

Rewards, Syntactic Simplicity Rewards, and Language model-based Fluency Reward. All the

rewards are unsupervised i.e., they do not require any reference sentence and only require the

source and generated sentences. They also have introduced guardrails to maintain length and

accuracy of generated text. A GPT2 model is trained using KIS procedure on an unreleased

data set of 7 million news articles. For our experiments, we fine-tuned the GPT2 model using

KIS procedure on the data set proposed by Devaraj et al. [18]. Since KIS is an unsupervised

TS approach, it requires a lot of data to reach an optimal score. Unfortunately, the data

set released by Devaraj et al. [18] has only 3568 training instances and hence is not enough

to ensure that model can be trained properly. We believe that having a large corpus of
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paragraph level medical text can help in stabilizing the training procedure. For more details

about the rewards, data sets used in KIS procedure readers are suggested to refer to [34].

A.4 Decoding Strategies

Greedy Decoding

The transformer based language models which are used in sequence to sequence tasks usually

follow an encoder-decoder structure. The encoder side takes an input sequence and outputs

a continuous sequence of representations ). The decoder takes these continuous represen-

tations as input and outputs a generated sequence . At each generation step the model

is autoregressive, i.e., it consumes previously generated tokens and outputs the probability

scores to select next tokens. In greedy decoding, the token with maximal probability is

always selected. In general, greedy decoding step at time t is denoted as follows

ŵt = argmax
wt

(p(wt|zt)) (A.3)

Where denotes the next generated token, denotes previous generated token and denotes

representation of input tokens obtained from encoder [79].
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Appendix B

Hyperparameters and Evaluation

Metrics

B.1 TESLEA: Hyper-Parameter Settings

The data-split used is the same as proposed by Devaraj et al. [18] with 3568 reviews in the

training set, 411 in the validation set, and 480 in the test set. The pretrained BART model is

initialized from a checkpoint trained on the XSum data set [42]. The model parameters are

updated using AdamW [82], with a learning rate of 2e-5 for both initial fine-tuning and RL

training. The model was first fine-tuned for 10 epochs and then trained for 30 epochs using

RL training. From experiments performed on the validation set, we found that the optimal

value for the scaling factor is 0.95. We equally weighted all the rewards as they encapsulate

all the properties required for a good simplification. All experiments were performed on a

single NVIDIA A-100 GPU with a memory size of 40GB. We mainly experimented with 3

variants of the BART-model, namely BART-base, BART-large and BART-large-Xsum. The

variants differed in the model size, pre-training data and Batch Size every other parameter
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was kept constant to stabilize the training regime. Table B.1 describes the variants of

BART model along with model size, pre-training data, batch size, Time to train (reported

in days), Inference speed per sample on Test Data set (reported in seconds) and the FKGL

score obtained by each model. One can observe from Table B.1 that the BART-large-xsum

variant performs the best on FKGL score.

Model Model Size Pre-Training
Data

Batch Size Time to
Train

Inference
Speed

FGKL
Score

Bart-
Base

139 M English Wikipedia
+ Book Corpus

2 4 days 1.3s 13.23

Bart-
Large

406 M English Wikipedia
+ Book Corpus

1 7 days 1.75s 13.48

Bart-
Large-
Xsum

406 M English Wikipedia
+ Book Corpus +
Xsum

1 7 days 1.75s 11.84

Table B.1: Information about BART-variants and parameters. Time to train is measured in
days and Inference speed is measured in seconds.

B.2 Automatic Evaluation Metrics

BARTScore

Yuan, Neubig, and Liu [80] framed the problem of evaluating generated text as a text gener-

ation problem. BARTScore helps to assess the quality of the generated text. They evaluate

generated text via the probability of it being generated from other text (ie, source texts or

reference texts) or vice versa. The BART [35] model is used to estimate the probabilities

required to calculate the given scores. Given one text y and another text x, BARTScore is
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calculated using weighted probability and is calculated by Equation B.1 below [80]:

BARTScore =
m∑
i=1

wtlogp(yt|y<t, x, θ) (B.1)

where m is the length of y; denotes preceding tokens before the position t; are model pa-

rameters and are the weights associated with different tokens, however Yuan, Neubig, and

Liu [80] weigh each token equally. The criteria proposed by Yuan, Neubig, and Liu [80] to

measure the quality of the generated text is given below :

• Informativeness (INFO): Does the generated text capture the important ideas of the

source text [80].

• Fluency (FLU): Does the generated text has no formatting problems or grammatical

errors that increase the difficulty to read the text. [80].

• Coherence (COH): Whether the generated text relates from sentence to sentence in a

logically consistent order to present information about a topic [80].

• Factuality (FAC): Whether the generated text contains only statements supported by

the source text (i.e., no new information is being introduced) [80].

• Adequacy (ADE): Whether the generated text conveys the same meaning as the source

text, and none of the important information is missing or added or misreported [80].

Yuan, Neubig, and Liu [80] also introduced four different settings for the evaluation of the

criteria mentioned above. For a given source text (s), generated text (h), and reference text

(r), the settings are defined as follows:

• Faithfulness Score (s→ h): This score measures how likely it is that generated text can

be obtained given the source text. Faithfulness score can be used to measure factors

of coherence, fluency, factuality, and relevance.
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• Precision (r → h): This score measures how likely generated text can be obtained from

reference texts.

• Recall (h → r): This score measures how likely generated reference texts can be

obtained from the generated text.

• F-score (r →): F-score is the average of precision and recall scores and can be used to

measure adequacy and informativeness.

B.3 Abbreviations

Description Abbreviation
Text Simplification TS
Reinforcement Learning RL
Self Critical Sequence Training SCST
Flesch-Kincaid Grade Level FKGL
Recall-Oriented Understudy for Gisting Evaluation ROUGE
Fluency FLU
Coherence COH
Factuality FAC
Informativeness INFO
Adequacy ADE
Average Likert Scores ALS
Google Scholar GS
Natural Language Generation NLG
Natural Language Processing NLP

Table B.2: List of Abbreviations
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B.4 Code

All the code is open sourced. The code for TESLEA can be found here and code for Biblo-

metric analysis can be found here.

https://github.com/Atharva-Phatak/TESLEA
https://github.com/Atharva-Phatak/BBLTs-Code
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