PNAS www.pnas.org

Supplementary Information for

Starvation sensing by mycobacterial ReIA/SpoT homologue through constitutive surveillance of translation

Yunlong Li ${ }^{1 \#}$, Soneya Majumdar ${ }^{2 \#}$, Ryan Treen ${ }^{1,3 \#}$, Manjuli R. Sharma², Jamie Corro ${ }^{1,3}$, Howard B. Gamper ${ }^{4}$, Swati R. Manjari ${ }^{2}$, Jerome Prusa ${ }^{5}$, Nilesh K. Banavali ${ }^{2}$, Christina L. Stallings ${ }^{5}$, YaMing Hou ${ }^{4}$, Rajendra K. Agrawal ${ }^{2,3^{*}}$, Anil K. Ojha ${ }^{1,3^{*}}$
*Corresponding authors:
anil.ojha@health.ny.gov
rajendra.agrawal@health.ny.gov
This PDF file includes:
Supplementary text
Figs. S1 to S11
Tables S1, S2 and S3
References for SI reference citations

Supplemental Text (Materials and Methods)

Bacterial growth medium

Mycobacterium smegmatis ($\mathrm{mc}^{2} 155$) and its variant strains were grown shaking at 200 rpm at 37 ${ }^{\circ} \mathrm{C}$ in Middlebrook 7H9 with ADC enrichment (5\% albumin, 2% dextrose, 0.85% sodium chloride and 0.003% catalase) and $0.05 \%(\mathrm{v} / \mathrm{v})$ Tween80. For ribosome purification, cells from saturated cultures were washed with PBS $+0.05 \%(\mathrm{v} / \mathrm{v})$ Tween80 for three times and then inoculated at 1:100 dilution in Sauton's medium with either $1 \mathrm{mM} \mathrm{ZnSO}_{4}$ for high-zinc condition or $1 \mu \mathrm{M}$ zincchelator (TPEN, N,N,N', N'-Tetrakis(2-pyridylmethyl)ethylenediamine) for low-zinc condition. 7H10ADC agar plate was used for selection of recombinants and colony growth (M. smegmatis). Escherichia coli (GC5 or BL21) was grown in LB broth or LB agar at $37^{\circ} \mathrm{C}$. Zeocin $(25 \mu \mathrm{~g} / \mathrm{mL})$, kanamycin $(20 \mu \mathrm{~g} / \mathrm{mL})$, hygromycin ($150 \mu \mathrm{~g} / \mathrm{mL}$ for M. smegmatis and E. coli, carbenicillin (50 $\mu \mathrm{g} / \mathrm{mL}$), and apramycin ($5 \mu \mathrm{~g} / \mathrm{mL}$) were used for selection as necessary. For recombinant strain harboring acetamide-inducible promoter, cells were cultured in high- or low -zinc Sauton's medium with 0.2% sodium succinate and induced with 0.2% acetamide.

Construction of recombinant plasmids and strains

A list of plasmids, bacterial strains used in this study is provided in Table S1. A list of oligonucleotides used in this study is provided in Table S2. For construction of $\Delta r s h$ in M. smegmatis, the gene was replaced with a zeocin-resistance marker using a PCR-based modified version of the recombineering strategy as previously described (1). For creating $\mathrm{C}_{666} G, D_{691} R$ and $\mathrm{C}_{692} \mathrm{~F}$ variants of Rsh, the Rsh ORF with 500 bp of upstream sequence was PCR-amplified and cloned between Kpnl and Xbal sites of the integrative vector pMH94 (2), resulting in the recombinant plasmid pYL238. Mutations at the respective sites were introduced using pYL238 as a template by PCR-based mutagenesis using the primer pairs listed in Table S2, resulting in pYL240 ($\mathrm{C}_{666} \mathrm{G}$), pYL241 ($\mathrm{D}_{691} \mathrm{R}$) and pYL242 ($\mathrm{C}_{692} \mathrm{~F}$). Mutations were sequence-confirmed and
the plasmids pYL238, pYL240, pYL241 and pYL242 were electroporated into the $\mathrm{mc}^{2} 155: \Delta r s h$ strain of M. smegmatis. Cells expressing the mutant variants were cultured in nutrient-rich medium and analyzed for Rsh levels by immunoblotting. The integrative plasmid with anhydrotetracycline(ATc)-inducible CRISPRi-dCas9 system targeting the clpP1 expression was constructed and donated by Dr. Keith Derbyshire as a part of the Mycobacterium Systems Resources (MSR)(3). The M. smegmatis strain (YL9) harboring the plasmid was cultured in highand low-zinc and ClpP1 depletion was induced by ATc as described previously (2).

Recombinant protein expression and purification

 N-terminal His tag fusion were subcloned in pET21b vector using Ndel and HindIII. The plasmids were introduced into BL21 (DE3) pLysS cells for Rsh expression and purification. Briefly, the cells were grown in LB medium to log phase $\left(\mathrm{OD}_{600}\right.$ of 0.7$)$ at $37^{\circ} \mathrm{C}$, when Rsh expression was induced with 0.5 mM IPTG for 4 hours at $37^{\circ} \mathrm{C}$. Induced cells were harvested ($8000 \mathrm{rpm}, 20$ minutes at 4 ${ }^{\circ} \mathrm{C}$ in Thermo Scientific ${ }^{\text {TM }}$ Fiberlite ${ }^{T M}$ F12-6 $\times 500$ Fixed-Angle Rotor) and then resuspended in N I buffer (50 mM Tris (pH 8.0), $300 \mathrm{mM} \mathrm{NaCl}, 5 \%$ glycerol, 10 mM imidazole, 1 mM PMSF). The cells were further sonicated (Amplitude 30\%, 6 cycles of 10 sec on and 60 sec off for) at $4^{\circ} \mathrm{C}$ and the soluble protein in the supernatant was separated from the debris by centrifugation (13000 rpm, 20 minutes, $4^{\circ} \mathrm{C}$ in Thermo Scientific ${ }^{\text {TM }}$ Fiberlite $^{\text {TM }}$ F12-6 $\times 500$ Fixed-Angle Rotor) and incubated with pre-equilibrated Ni-NTA resin for 1 hour at $4^{\circ} \mathrm{C}$. After incubation, Ni-NTA resin was washed three times with N -II buffer [50 mM Tris (pH 8.0), $300 \mathrm{mM} \mathrm{NaCl}, 5 \%(\mathrm{v} / \mathrm{v})$ glycerol, 30 mM imidazole]. Rsh was then eluted with stepwise increments of imidazole (from 60 mM , to 100 mM and to 250 mM) in a buffer containing 50 mM Tris (pH 8.0), 300 mM NaCl and $5 \%(\mathrm{v} / \mathrm{v})$ glycerol. Peak fractions with were pooled and imidazole was removed by dialysis in the buffer containing 50 mM Tris (pH 8.0), 300 mM NaCl and $30 \%(\mathrm{v} / \mathrm{v})$ glycerol. For recombinant IF2
(MSMEG_2628) with N-terminal $\mathrm{His}_{6 x}$ tag, the full-length codon optimized gene with N-terminal 6x-His-sequnce and Ndel-Xhol sites was synthesized (IDT DNA Inc.) (Table S2). The synthetic fragment was cloned into a pET21a vector. Recombinant protein was expressed in BL21-DE3 (pLysS) and purified on Ni-NTA matrix as detailed for His_{6}-Rsh above.

Ribosome purification

Rsh bound ribosomes were purified with a few modifications from the previously described protocol (1). M. smegmatis cells were grown for the specified time in 500 mL of Sauton's media containing 0.05% Tween 80 and either $1 \mathrm{mM} \mathrm{ZnSO}_{4}$ or $1 \mu \mathrm{M}$ TPEN. Cells were harvested (8000 rpm for 20 minutes in a Thermo Scientific ${ }^{\text {TM }}$ Fiberlite $^{\text {TM }}$ F12-6 $\times 500$ Fixed-Angle Rotor) and pulverized 6 times at 15 Hz for 3 minutes in a mixer mill (Retsch MM400). The lysates were mixed with 20 mL of HMA-10 buffer (20 mM HEPES-K pH7.5, $30 \mathrm{mM} \mathrm{NH}_{4} \mathrm{Cl}, 10 \mathrm{mM} \mathrm{MgCl}_{2}, 5 \mathrm{mM} \beta-$ mercaptoethanol) and centrifuged for 30 minutes at $30,000 \mathrm{~g}$ in Thermo Scientific ${ }^{\mathrm{TM}}$ Fiberlite $^{\mathrm{TM}}$ F12-8 $\times 50$ Fixed-Angle Rotor. The supernatants were collected in the Beckman PC ultracentrifuge tubes and further centrifuged for 2 hours and 15 minutes at 42800 rpm in a Beckman rotor Type 70Ti. Pellets were soaked in 4 mL of HMA-10 buffer in an ice water bath overnight, and then homogenized for 30 minutes. The homogenized pellets were treated with 3 units $/ \mathrm{mL}$ Rnase-free Dnase (Ambion) for two hours at $4^{\circ} \mathrm{C}$. The contents were transferred to Beckman PA tubes and centrifuged at $22,000 \mathrm{~g}$ for 15 minutes in Thermo Scientific ${ }^{\text {TM }}$ Fiberlite $^{\text {TM }}$ F12-8 $\times 50$ Fixed-Angle Rotor. The supernatants were collected into Beckman ultracentrifuge PC tubes and centrifuged for 2 hours and 15 minutes at $42,800 \mathrm{rpm}$ in a Beckman rotor Type 70 Ti . The pellets were dissolved in 1 mL HMA-10 buffer and centrifuged for 10 minutes at 10,000 g . The supernatants containing the crude ribosomes were collected and quantified by measuring their optical density at 260 nm . The crude ribosome preparations were then layered on top of 37 mL sucrose density gradients (10\%-40\%) and centrifuged for 16 hours at $24,000 \mathrm{rpm}$ in a Beckman rotor SW 28. The 70S ribosome fractions were collected after fractionating the sucrose
gradient in a 260 nm Brandel gradient analyzer as previously described (4). The pooled 70S ribosome fractions pelleted by ultracentrifugation at 42,800 rpm for 3 hours in a Beckman rotor Type 70Ti were suspended in HMA-10 buffer (20 mM HEPES-K pH7.5, $30 \mathrm{mM} \mathrm{NH}_{4} \mathrm{Cl}, 10 \mathrm{mM}$ $\mathrm{MgCl}_{2}, 5 \mathrm{mM} \beta$-mercaptoethanol) and quantified by measuring absorbance at 260 nm .

MPY-bound ribosomes and other high-salt washed ribosomes were purified exactly as described previously (1, 2). The steps up to homogenization were same as described above. After homogenization, 4 mL of the homogenized suspension was treated with 3 units $/ \mathrm{mL}$ Rnase-free Dnase (Ambion) for one hour at $4{ }^{\circ} \mathrm{C}$, then 4 mL of HMA- 0.06 buffer (20 mM HEPES-K pH 7.5 , $600 \mathrm{mM} \mathrm{NH} 44 \mathrm{Cl}, 10 \mathrm{mM} \mathrm{MgCl} 2,5 \mathrm{mM} \beta$-mercaptoethanol) was added to the suspension, which was further incubated at $4{ }^{\circ} \mathrm{C}$ for 2 hours. The content was transferred to Beckman PA tubes and centrifuged at $22,000 \mathrm{~g}$ for 15 minutes in Thermo Scientific ${ }^{\text {TM }}$ Fiberlite $^{\text {TM }} \mathrm{F} 12-8 \times 50$ Fixed-Angle Rotor. Supernatants were collected and layered on top of $8 \mathrm{~mL} 32 \%$ sucrose solution in HMA-10 buffer and centrifuged for 16 hours at 37000 rpm in a Beckman rotor Type 70Ti. The supernatant was discarded, and the pellet was rinsed with HMA-10 buffer to remove the brownish material. The crude ribosome was resuspended in 1 mL HMA-10 buffer and centrifuged for 10 minutes at $10,000 \mathrm{~g}$. Supernatant containing the crude ribosome was collected and quantified by measuring optical density at 260 nm . 70 S ribosome from the crude ribosome was further separated on a $10-$ 40% sucrose density gradient and fractionated as indicated above.

In vitro reconstitution of Rsh with 70S initiation complex

Co-sedimentation of Rsh with the ribosomal subunits: 70S ribosomes were purified from low-zinc culture of isogenic $\Delta r s h / \Delta m p y / \Delta m r f$ triple mutant of M. smegmatis. Subunits were dissociated from the purified 70 S ribosomes by incubation at $37^{\circ} \mathrm{C}$ for thirty minutes in HMA-1 buffer (20 mM HEPES-K pH7.5, $30 \mathrm{mM} \mathrm{NH} 44 \mathrm{Cl}, 1 \mathrm{mM} \mathrm{MgCl} 2,5 \mathrm{mM} \beta$-mercaptoethanol. The resulting subunits
were then purified from a 10-40\% sucrose density gradient. Individual subunits equivalent to A_{260} of 0.3 (7.2 pmol) were mixed with 1.8 pmol of purified recombinant Rsh in $100 \mu \mathrm{~L}$ binding buffer (20 mM HEPES-K pH7.5, $100 \mathrm{mM} \mathrm{NH} 4 \mathrm{Cl}, 10 \mathrm{mM} \mathrm{MgCl} 2,5 \mathrm{mM} \beta$-mercaptoethanol, 50 mM KCl), and the mixture was incubated for thirty minutes at $37^{\circ} \mathrm{C}$. The reactions were then layered on 100 $\mu \mathrm{L}$ of 32% sucrose cushion and centrifuged at $42,800 \mathrm{rpm}$ for 3 hours in a Beckman TLA 100 rotor using the Optima-Max TL ultracentrifuge (Beckman Coulter). After centrifugation, the supernatant was discarded, and the ribosome pellet was resuspended in $20 \mu \mathrm{~L}$ HMA-10 buffer. The abundance of Rsh was further determined by immunoblotting using the protocol described below Rsh, and S13, and L33.

Preparation of fMet-tRNA ${ }^{\text {Met. }}$: An E. coli culture containing a plasmid borne expression vector for $t R N A_{i}^{\text {Met }}$ under control of the Lacl repressor was grown to an optical density at 600 nm of 0.4 0.6 at which time IPTG was added to induce expression of the tRNA. After 8 h the cells were harvested, lysed by phenol, and total tRNA isolated using a series of differential precipitation steps (5). Approximately half of the recovered tRNA was a substrate for charging by MetRS. The charging reaction (2 mL) contained approximately 200 nmoles of total tRNA and 10 nmoles of MetRS in the presence of 1 mM methionine, $2 \mathrm{mM} \mathrm{ATP}, 10 \mathrm{mM} \mathrm{MgCl} 2,20 \mathrm{mM} \mathrm{KCl}, 4 \mathrm{mM}$ DTT, $50 \mu \mathrm{~g} / \mathrm{mL}$ BSA, and 50 mM Tris- HCl pH 7.5 . After 10 min at $37^{\circ} \mathrm{C}$ a $4.0 \mu \mathrm{~L}$ aliquot of the reaction was removed for determination of the charging efficiency as described by Gamper et al (6). The remaining reaction was incubated for 10 min at $37^{\circ} \mathrm{C}$ with 1.7μ moles of $10-$ formyltetrahydrofolate and 20 nmoles of methionyl formyl transferase to convert Met-tRNA $A_{i}^{\text {Met }}$ to f Met-tRNA $\mathrm{i}^{\text {Met }}$. The reaction was quenched by adding a 0.1 volume of 2.5 M NaOAc pH 5.0 . Following an equal volume pH 5 phenol-chloroform-isoamyl alcohol extraction (80:17:3), the tRNA was ethanol precipitated, dissolved in $300 \mu \mathrm{~L} 25 \mathrm{mM} \mathrm{NaOAc} \mathrm{pH} 5.0$, and stored at $-70^{\circ} \mathrm{C}$. Approximately 200 nmoles of tRNA was recovered, of which 45% was $f M e t-t R N A_{i}{ }^{\text {Met }}$.

Reconstitution of Rsh-bound 70S initiation complex: 70S ribosomes prepared from a low-zinc culture of isogenic $\Delta r s h / \Delta m p y / \Delta m r f$ triple mutant of M. smegmatis were dialyzed at $4^{\circ} \mathrm{C}$ with lowmagnesium buffer (20 mM HEPES-K pH7.5, $30 \mathrm{mM} \mathrm{NH}_{4} \mathrm{Cl}, 0.5 \mathrm{mM} \mathrm{MgCl} 2,5 \mathrm{mM} \beta-$ mercaptoethanol) to dissociate the 30 S and 50 S subunits. Two rounds of dialysis were performed, with fresh buffer change every four hours. Subunit dissociation was confirmed by loading 2.4 picomoles of the dialyzed ribosomes onto a 10-40\% sucrose density gradient. Another 2.4 pmoles of dissociated ribosomes were mixed with five-fold molar excess of fMettRNA ${ }_{i}^{\text {fMet }}$, a synthetic mRNA template (GGCAAGGAGGUAAAAAUGUUCAAAAAA-Flour) (IDT, USA), recombinant His ${ }_{6}$-IF2, recombinant His_{6}-Rsh, and either GTP or GMP-PNP (SigmaAldrich) in a $100 \mu \mathrm{~L}$ reaction in buffer I (20 mM HEPES-K pH 7.5, $30 \mathrm{mM} \mathrm{NH} 4 \mathrm{Cl}^{2}, 1 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 5$ $\mathrm{mM} \beta$-mercaptoethanol), and the mixture was incubated at $37^{\circ} \mathrm{C}$ for 15 minutes to allow formation of the initiation complex on the 30 S subunit. Then $25 \mu \mathrm{~L}$ of buffer II (20 mM HEPES-K $\mathrm{pH} 7.5,30 \mathrm{mM} \mathrm{NH} 4 \mathrm{Cl}, 50 \mathrm{mM} \mathrm{MgCl} 2,5 \mathrm{mM} \beta$-mercaptoethanol, 600 mM KCl) was added to the mixture, thereby bringing the final concentration of MgCl_{2} and KCl to 10 mM and 120 mM , respectively. The reaction was then incubated for an additional 30 minutes at $37^{\circ} \mathrm{C}$ to allow joining of the 50S subunit. Resulting complexes were either used for structural analysis or resolved on a 15 mL 10-40\% sucrose density gradient centrifuged at 35000 rpm for 135 minutes using SW41 rotor on an Optima L-90K ultracentrifuge (Beckman Coulter), and the resolved particles were fractionated as previously described (4). For immunoblotting analysis, content of the indicated fractions were precipitated using Methanol-chloroform extraction as previously described (2). Briefly, each fraction was vortexed with $4 X$ volume of methanol for 5-10 seconds and centrifuged for 10 seconds at $13,200 \mathrm{rpm}$ on a benchtop centrifuge before adding one volume of chloroform. The mixture was further centrifuged at $13,200 \mathrm{rpm}$ for 60 seconds, after which $3 X$ volume of water was added and the mixture was vortexed before further centrifugation at $13,200 \mathrm{rpm}$ for 60 seconds. The upper aqueous layer was discarded while retaining the interface and the organic layer, which was mixed with $3 X$ volume of methanol, vortexed and
centrifuged at 13,200 rpm for 2 minutes. The supernatant was discarded, and the resulting pellet was dried and resuspended in 0.1 M Tris containing 8 M urea for further analysis of proteins by immunoblotting.

Immunoblotting

Total cell lysates $(10 \mu \mathrm{~g})$ or purified 70 S ribosomes (2.4 pmoles) were used for detecting S13, MPY, Mrf-FLAG, and S14c., while 24 pmoles ribosome were used for detecting Rsh. Samples were resolved on 8\% SDS-PAGE (for FLAG, Rsh and GroEL analysis) or 12% SDS-PAGE (for MPY, S14c-and S13), and proteins were probed with anti-FLAG (1:5000, Genescript), anti-GroEL (1:5000, Enzo), anti-Rsh of M. tuberculosis (1:5000), anti-S13 of E. coli (1:100, The Developmental Studies Hybridoma Bank), endogenously raised anti-MPY (1:5000) and anti-S14c(1:2000) antibodies.

ppGpp extraction and analysis

Cells of specified M. smegmatis strains were grown in Sauton's medium with either 1 mM Zn or $1 \mu \mathrm{M}$ TPEN for 96 hours, after which 1 mL of the culture was labelled with $100 \mu \mathrm{Ci} / \mathrm{mL}$ of ${ }^{32} \mathrm{P}$ $\mathrm{KH}_{2} \mathrm{PO}_{4}$ (Perkin Elmer, $900-1100 \mathrm{mCi} / \mathrm{mmol}$) for 6 hours on a shaker at $37^{\circ} \mathrm{C}$. Labeled cells were washed once with TBST (20 mM Tris pH7.6 $+150 \mathrm{mM} \mathrm{NaCl}+0.05 \%$ Tween 80). Half of the cells $(0.5 \mathrm{~mL})$ were pelleted and resuspended in $25 \mu \mathrm{~L}$ of 4 M formic acid and kept frozen at $-20^{\circ} \mathrm{C}$ until ready for extraction. Remaining 0.5 mL cells were starved for 3 hours in TBST, or metal-chelated TBST, or zinc-supplemented TBST as specified. Following treatment, both pre- and post-starved cells were pelleted and resuspended in $25 \mu \mathrm{~L}$ of 4 M formic acid and incubated on ice for 10 minutes. Cell suspensions were frozen on dry ice for 10 minutes and thawed at $37{ }^{\circ} \mathrm{C}$ for 10 minutes. The freeze-thaw cycle was repeated 5 times, after which the cell lysates were centrifuged at $13,500 \mathrm{rpm}$ for 5 minutes at $4{ }^{\circ} \mathrm{C}$, and $5 \mu \mathrm{~L}$ of the supernatants containing ${ }^{32} \mathrm{P}$
labeled intracellular nucleotides were resolved on a $20 \times 20 \mathrm{~cm}$ plastic PEI cellulose F TLC plate (Millipore) using $1.5 \mathrm{M} \mathrm{KH}_{2} \mathrm{PO}_{4} \mathrm{pH} 3.4$ as a solvent. When the solvent front reached the top of the plate, the plate was dried and exposed to X-ray film. $5 \mu \mathrm{~L}$ of 100 mM nonradioactive nucleotides [ppGpp (Trilink), ATP, GDP and GTP (Thermo Fisher)] were also resolved as positional markers, which were visualized by handheld UV lamp (Stuart, Cole Palmer). For quantitative analysis, pixel density of ppGpp spot were determined from densitometric scan of radiographs using Fiji (ImageJ). Using the counts from low-zinc culture of wild-type strain in a radiograph as the common denominator, relative counts in other samples from the same radiograph were calculated.

Cryo-electron microscopy and image processing

Quantifoil holey carbon copper grids R 1.2/1.3 were coated with a continuous layer of carbon ($\sim 50 \AA$ thick). After glow discharge for 30 s on a plasma sterilizer, $4 \mu \mathrm{~L}$ of the 200 nM Rshbound 70 S initiation complex sample was placed on the grids. The sample was incubated on the grids for 15 s at $4^{\circ} \mathrm{C}$ and 100% humidity, followed by blotting for 4 s before flash-freezing into the liquid ethane using a Vitrobot IV (FEI). Data were collected on a Titan Krios electron microscope at 300 keV using a K3 direct electron-detecting camera (Gatan). -1.50 to $-2.50 \mu \mathrm{~m}$ defocus range was used at a magnification of $81,000 \times$, yielding a pixel size of $0.846 \AA$. The dose rate of 23.3 electrons/pixel/second with a 2.05 second exposure time, with 41 frames of 0.05 second duration each, resulted in a total dose of $66.59 \mathrm{e} / \AA$ - 2 . RELION 4.0 (7) was used for data processing. Image stacks were gain-corrected, dose-weighted, and aligned using MotionCor2 (8) for 9,103 micrographs. The contrast transfer function of each aligned micrograph was estimated using CTFFIND-4.1 (9). A subset of micrographs was used for particle picking followed by 2D classification. Relevant 2D classes were used for referencebased particle picking on all micrographs yielding 1,928,609 particles. These particles were 2D classified and class-averages with obvious subunits (50S/30S) and noise were excluded
and only crisp monosome classes with 389,456 particles were selected (Fig. S7). The selected particles were 3D refined and followed by 3D classification. Classes corresponding to monosomes with 349,437 particles were selected for further processing. In order to resolve structural heterogeneity in the monosome particles, we performed 3D refinement using a large subunit mask followed by three rounds of fixed orientation 3D classification. In the first round of fixed orientation 3D classification, we used an SSU mask to resolve the SSU conformations into six classes. Class I with 158,489 particles showed density corresponding to P-site tRNA and Rsh, representing the Rsh-bound 70S initiation complex. We then performed the second round of fixed orientation 3D classification on this class using a mask encompassing the entire interribosomal subunit space such as the L7/L12-stalk, A-, P-, and E-site tRNA binding sites, and the L1-stalk regions. The second round of fixed orientation 3D classification resolved the conformational and particularly compositional heterogeneity in the masked region. We derived four classes with P-site tRNA density and two classes with P-site tRNA and Rsh densities. We performed the third round of fixed orientation 3D classification combining the two classes with Psite tRNA and Rsh densities, (49,058 particles) using a mask encompassing the P-site tRNA and Rsh. Two of the classes, one with 16,013 particle and another with 20,308 particles, showed densities corresponding to P-site tRNA and ZBD and ACT domains of Rsh. However, density corresponding to ACT domain was slightly better in the class with 16,013 particles and was refined to a global resolution of $2.98 \AA$ (Map I) and was used to generate the initial model of the Rsh-ACT domain. Since the densities corresponding to ZBD were very similar in both classes, they were merged. The combined class with a total of 36,321 particles showed significant density corresponding to P-site tRNA and Rsh-ZBD. CTF refinement and Bayesian polishing of the combined class with a total of 36,321 particles yielded a map with a global resolution of $2.7 \AA$ (Map II) and was used to generate the final model of the entire complex including both the Rsh-ZBD and Rsh-ACT domains.

Model building

Coordinates of the large and small subunits from our published $C-M$. smegmatis ribosome structure (PDB:6DZI) were docked as rigid bodies into the cryo-EM map (Map II) using Chimera 1.14 (10). To achieve optimal fitting, we adjusted the model based on the densities in Coot (11). The model was subsequently refined using PHENIX 1.14 (12). A predicted structure of M. smegmatis Rsh is available in the Alphafold Protein Structure database (13). This structure was docked into the corresponding density in the cryo-EM map using Chimera 1.14 (10) and subsequently refined with Coot (11) and PHENIX 1.14 (12). A validation report for the model was obtained from PHENIX 1.14 (12). The overall statistics of EM reconstruction and molecular modeling are listed in Table S3. ChimeraX-1.0 (14) and Chimera 1.14 (10) were used to generate the structural figures in the manuscript.

References

1. Y. Li et al., Zinc depletion induces ribosome hibernation in mycobacteria. Proc Natl Acad Sci U S A 115, 8191-8196 (2018).
2. Y. Li, J. H. Corro, C. D. Palmer, A. K. Ojha, Progression from remodeling to hibernation of ribosomes in zinc-starved mycobacteria. Proc Natl Acad Sci U S A 117, 19528-19537 (2020).
3. J. A. Judd et al., A Mycobacterial Systems Resource for the Research Community. mBio 12 (2021).
4. Y. Li et al., Purification of Hibernating and Active C- Ribosomes from Zinc-Starved Mycobacteria. Methods Mol Biol 2314, 151-166 (2021).
5. v. Ehrenstein, Isolation of sRNA from intact Escherichia coli cells. Methods in Enzymology 12A, 588-596 (1967).
6. H. Gamper, Y. M. Hou, A Label-Free Assay for Aminoacylation of tRNA. Genes (Basel) 11 (2020).
7. S. H. Scheres, RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180, 519-530 (2012).
8. S. Q. Zheng et al., MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14, 331-332 (2017).
9. A. Rohou, N. Grigorieff, CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J Struct Biol 192, 216-221 (2015).
10. E. F. Pettersen et al., UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25, 1605-1612 (2004).
11. P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486-501 (2010).
12. P. D. Adams et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213-221 (2010).
13. J. Jumper et al., Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589 (2021).
14. E. F. Pettersen et al., UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci 30, 70-82 (2021).

Figure S1: A full-gel immunoblot image of cells lysates from WT and $\Delta r s h$ strains cultured in high- (1 mM ZnSO 4 ; abbreviated as Zn) and low-zinc Sauton's medium ($1 \mu \mathrm{M}$ TPEN; abbreviated as T) and probed with anti-Rsh antibody. Data shows lack of any Rsh-derived smaller product in the low-zinc culture. GroEL from the lysate was probed as a loading control.

Figure S2: Ribosome remodeling has no effect on Rsh-ribosome interaction. Immunoblot analysis of Rsh bound to 70 S ribosomes from 96 -hour old high-zinc cultures of WT M. smegmatis and its two recombinant strains, $\Delta z u r$ and Δc-:pYL53, which constitutively expressed the remodeled (C-) ribosomes. Low-zinc culture of WT was used as control.

Figure S3: Levels of Mpy in 70S ribosomes purified from high- and low-zinc cultures of WT and $\Delta r s h$. 114_{c} - and S 13 were probed as controls as indicated.

A

B

Figure S4: Level of Rsh-bound ribosomes (A) and ppGpp (B) in M. smegmatis before and after exposure to starvation (TBST) from high- or low-zinc culture conditions after 28 hours of growth.

Figure S5: Purified recombinant 6xHis-tagged Rsh proteins expressed from an IPTGinducible T7 promoter in the E. coli BL21 strain and visualized by SDS-PAGE and the Coomassie Blue stain. Each recombinant protein was purified from the same volume of starting cells using the same method, and equal volume of each sample was loaded on the gel.

Figure S6: Sucrose density gradient profile of dissociated ribosomes used in the reconstitution experiments described in figures 4 B and C . The reconstituted ribosome complex in figure 4C was used for structural studies.

Figure S7: Image processing of \boldsymbol{M}. smegmatis 70S-Rsh-fMet-tRNAiMet complex. A. representative micrograph from the M. smegmatis 70S-Rsh-fMet-tRNA ${ }_{i}{ }^{\text {Met }}$ complex dataset. B. Representative 2D class averages used for the 3D reconstructions. C. Flowchart showing the details of 3D classifications and refinements. The 3D map used for model building and functional interpretation is encircled in blue dashes. D. The Euler angle heat map for 36,321 particles comprising Map II. E. Gold-standard FSC of Map II (black) overlaid with the map-to-model FSC (red).

Figure S8: Local resolution of the cryo-EM map (Map II) of \boldsymbol{M}. smegmatis 70S-fMet-tRNA ${ }_{i}{ }^{\text {Met_ }}$ Rsh Complex. A cutting plane has been applied to show the core of the ribosome (left), and the same map without a cutting plane to include the Rsh density and its binding site (right). The inset displays local resolution of the two Rsh domains, ZBD and ACT.

Figure S9: Modeling of the ZB- and ACT domains into corresponding cryo-EM densities. Two different density threshold values were used for modeling the two domains, as density for the main anchoring ZBD (pink) was stronger than that for the ACT domain.

Figure S10: Species-specific differences in Rsh/RelA-ZBD interaction with uS19, uS13, and ASF. Top- Multiple sequence alignment of a short stretch in the ZBD domain of M. smegmatis (Ms) Rsh, B. subtilis (Bs) Rsh, and E. coli (Ec) RelA. Amino acid substitutions at four regions (indicated by red arrows) that result in species-specific differences in interactions (i1-i4) of the ZBD domain with ribosomal components. Bottom left- Superimposition of Ms 70S-Rsh (ZBD, magenta) and Bs 70S-Rsh (ZBD, light pink). Interactions of Bs-Rsh-ZBD with the ribosome that are absent in the case of Ms-Rsh-ZBD are displayed: two with uS19 (i1 and i2), one with uS13 (i3), and one with ASF (i4). Bottom right- Superimposition of Ms 70S-Rsh (ZBD, magenta) and Ec 70S-RelA (ZBD, light purple). Ec ReIA-ZBD has two extra interactions with the ribosome, as compared to Ms Rsh-ZBD: One with uS19 (i2) and another with ASF (i4).

Figure S11: Rsh-binding induces rearrangement in the L7/L12-stalk base. Superimposition of the 70S-fMet-tRNA ${ }_{i}^{\text {fMet-Rsh (Map II) and 70S-fMet-tRNA }}{ }_{i}^{\text {fMet }}$ (Control) structures by aligning the 23 rRNA within their LSUs. H43 is shown in light blue and cyan. uL11 is shown in light pink and hot pink. The shifts in H43 and uL11 from control to Rsh bound state are indicated with red arrows.

Table S1: List of plasmids and strains

Plasmids	Remarks	Reference
pJl37	$P_{\text {hsp } 60-\text { based }}$ expression vector for mycobacteria; kan^{r}	[1]
pMH94	L5-attp-based integrative vector for mycobacteria; kan^{r}	[1]
pYUB854	Cosmid vector, hygr	[1]
pTTPla	Tweety-attp-based integrative vector for mycobacteria; kan^{r}	[1]
pLam12	$P_{\text {acatamidase-based }}$ expression vector for mycobacteria; $k a r^{r}$	[1]
pJV53-SacB	Sucrose-sensitive marker SacB cloned in pJV53 @ Spel site; kanr	[1]
pET21b	Vectors carry an N-terminal T7-Tag sequence plus an optional C-terminal His Tag sequence, $a m p^{r}$	[1]
pYL3	kan cassette in pMH94@EcoRV \& Notl sites is replaced by hygr cassette from pYUB854; hygr	[2]
pYL40	Msmeg_6069 internal deletion in pYL42 backbone @ Sacl \& Xbal, hygr	[1]
pYL53	MSMEG_6065-6070 cloned in pYL3 @ Sacl+Xbal under a constitutive promoter ($\left.P^{\text {const }}\right)$: mutant variant of $P^{z u r-b o x}$, hyg ${ }^{r}$	[1]
pYL155	C-terminally FLAG-tagged mrf with $P^{\text {zurbox }}$ cloned in pTTPla @ Sacl \& Xbal sites; kan^{r}	[1]
pYL181	C-terminally FLAG-tagged mrf with $P^{\text {zurbox }}$ cloned in pYL180 @ Sacl \& Xbal sites; apr	[1]
pYL206	L5-attp-based integrative vector carrying tet-inducible dCas9 and gRNA complementary to Clpp1; kan	[1]
pYL222	Msmeg_6069 with all six his/cys mutations (H to A, C to A) and Flag tag at C-terminal and $\mathrm{p}^{\text {zur-box }}$ cloned in plam12 @ Xbal \& HindIII sites; kan r	This Study
pYL238	MSMEG_2965 + 500 bp UPS cloned in pMH94 @ Kpnl \& Xbal; kan ${ }^{\text {r }}$	This Study
pYL240	MSMEG_2965 with C666G mutation + 500 bp UPS cloned in pMH94 @ Kpnl \& Xbal; kan ${ }^{r}$	This Study
pYL241	MSMEG_2965 with D691R mutation + 500 bp UPS cloned in pMH94 @ Kpnl \& Xbal; $k^{k} n^{r}$	This Study
pYL242	MSMEG_2965 with C692F mutation + 500 bp UPS cloned in pMH94 @ KpnI \& Xbal; $k^{\prime 2}{ }^{r}$	This study
pYL243	MSMEG_2965 with N-terminal His-tag cloned in pET21b @ Ndel \& HindIII; amp ${ }^{r}$	This study
pYL246	MSMEG_2965 (C666G) with N-terminal His-tag cloned in pET21b @ Ndel \& HindIII; ampr	This study
pYL247	MSMEG_2965 (D691R) with N-terminal His-tag cloned in pET21b @ Ndel \& HindIII; $a m p^{r}$	This study
pYL248	MSMEG_2965 (C692F) with N-terminal His-tag cloned in pET21b @ Ndel \& HindIII; $a m p^{r}$	This study
pYL259	MSMEG_2965 + 500 bp UPS cloned in pYL3 @ Kpnl \& Xbal; hygr	This study
pYL260	MSMEG_2965 (C666G)+ 500 bp UPS cloned in pYL3 @ Kpnl \& Xbal; hyg r	This study
pYL261	MSMEG_2965 (D691R)+ 500 bp UPS cloned in pYL3 @ Kpnl \& Xbal; hygr	This study
pYL262	MSMEG_2965 (C692F)+ 500 bp UPS cloned in PYL3 @ Kpnl \& Xbal; hyg $^{\text {r }}$	This study
Strains	Remarks	Reference
mc ${ }^{2} 155$ (WT)	High-Frequency Transformation strain of M. smegmatis as parent wild-type	[2]
$\Delta m s m_{c-}$	Unmarked Δ Msmeg_6065-6070 in $\mathrm{mc}^{2} 155$	[2]
$\Delta m r f(Y L 1)$	Unmarked Δc - operon harboring pYL40; hyg r	[1]
$\Delta m r f c o m p ~(Y L 2) ~$	Unmarked Δc - operon harboring pYL40 and pYL155; hyg r, kan r	[1]
$\Delta m p y$ (YL3)	Unmarked \triangle Msmeg_1878 in $\mathrm{mc}^{2} 155$	[2]
$\Delta m p y / \Delta m r f ~(Y L 4) ~$		[1]
$\Delta z u r$ (YL5)	Unmarked Δ Msmeg_4487 in mc²155	[2]
$\Delta z u r / \Delta \mathrm{mrf}$ (YL6)	Unmarked Δ Msmeg_6065-6070 I $\Delta z u r$ harboring pYL40; hygr $^{\text {r }}$	[1]
YL9	-zur harboring pYL181 and pYL206; apr', kan ${ }^{\text {r }}$	[1]
$\Delta r s h$	Δ Msmeg_2965 in mc²155, zeor	This Study

Table S2: List of oligonucleotides

Name	Sequence	Used in:
His1-R	GGTGCGGACGACGACAGCGCCGTCGAAGGTGGCGCTGACGAGCAGGGT	pYL222
His1-F	ACCCTGCTCGTCAGCGCCACCTTCGACGGCGCTGTCGTCGTCCGCACC	
His2-R	GGCCGAGACGGCTCCGGCCACCAGCTCAAGTAC	
His2-F	GTACTTGAGCTGGTGGCCGGAGCCGTCTCGGCC	
His3-R	CACGTCGGCGCGCCGGGCCAGACGGCGAAGCAGGAT	
His3-F	ATCCTGCTTCGCCGTCTGGCCCGGCGCGCCGACGTG	
p6069-CXXCR	ATCGTCACGCACGGTGGCCGAGACGGCTCCGTGCACCAGCTC	
p6069-CXXCF	GAGCTGGTGCACGGAGCCGTCTCGGCCACCGTGCGTGACGAT	
Pz ${ }^{\text {urbox }}$ 6069-XF	CGCGCCGTTCGTCTAGACGCTGCACCAGTTCTCGCC	
p6069-FLAGHR	GGCCGGAAGCTTTCACTTATCGTCGTCATCCTTGTAATCCGATTGCTCTCCTGT	
pRshMSup500KpnIF	CTTCCCCGAACCGGTACCCCAGTTCAAGGACCTCAC	$\begin{aligned} & \hline \text { pYL236,240,2 } \\ & 41,242,256,25 \\ & 9,260,261,262 \\ & \hline \end{aligned}$
pRshMS- XbalFLAGR	CGAACCTCTAGATTACTTATCGTCGTCATCCTTGTAATCGGCCGCGCTGGTGACGCG	
RshC666G-F	ACCAAGCTGGCCAAGGGCTGCACCCCGGTGCCG	$\begin{aligned} & \text { pYL240,246,2 } \\ & 60 \end{aligned}$
RshC666G-R	CGGCACCGGGGTGCAGCCCTTGGCCAGCTTGGT	
RshD691R-F	AGCGTGCACCGCACCCGTTGCACCAACGCCGAG	$\begin{aligned} & \text { pYL241,247,2 } \\ & 61 \end{aligned}$
RshD691R-R	CTCGGCGTTGGTGCAACGGGTGCGGTGCACGCT	
RshC692F-F	GTGCACCGCACCGACTTCACCAACGCCGAGTCG	$\begin{aligned} & \text { pYL242,248,2 } \\ & 62 \end{aligned}$
RshC692F-R	CGACTCGGCGTTGGTGAAGTCGGTGCGGTGCAC	
prsh-NdelHISF	TGACACATATGCACCACCACCACCACCACGTCGACGAGCCAGGCAAG	$\begin{aligned} & \hline \text { pYL243,246,2 } \\ & 47,248 \end{aligned}$
prsh-HindllItgaR	CGCCGAACCGCTAAGCTTTCAGGCCGCGCTGGTGACGCG	

Table S3: Data collection, Refinement and Model Validation parameters

	Map II
Data collection	
Microscope	FEI Titan Krios
Voltage (kV)	300
Pixel size (A)	0.846
Defocus range ($\mu \mathrm{m}$)	-1.50 to -2.50
Average e-dose per image ($\mathrm{e}^{-/} \AA^{2}$)	66.59
Particles (initial)	1,928,609
Particles (final)	36,321
FSC-threshold	0.143
Resolution ($\dot{\text { A }}$)	2.7
Map-sharpening B factor ($\dot{\text { ²}}^{2}$) overall	-44.3
Refinement	
RMS deviations	
Bonds (${ }^{\text {A }}$)	0.01
Angles (${ }^{\circ}$)	0.949
MolProbity score	1.63
Clash score	3.66
Rotamer outliers (\%)	0.06
Ramachandran plot	
Outliers (\%)	0.06
Allowed (\%)	7.55
Favored (\%)	92.39
RNA	
Correct sugar puckers (\%)	99.3
Angle outliers (\%)	0.00
Bond outliers (\%)	0.00
Good backbone conformations (\%)	78.77
Model composition	
RNA bases	4,843
Protein residues	6,299

> Sequence of codon optimized synthetic IF2:
ATACGAGAACCATatgCACCACCACCACCACCACCAGGCACCGGTCGTGGGAGGGGTAAGACTTCCTCA CGGTAACGGCGAGACGATCCGTCTGGCACGCGGCGCTTCATTATCAGATTTTGCTGAAAAGATAAATG CGAATCCGGCTTCACTTGTGCAGGCATTGTTCAATCTTGGAGAAATGGTTACTGCCACGCAAAGTGTCG GTGATGAAACACTTGAGCTGTTAGGGTCGGAGATGAATTACAATGTACAGGTCGTATCACCAGAAGACG AGGACCGTGAATTGCTTGAAAGCTTTGATTTAACCTACGGCGAAGACGCGGGTGACGAGGAGGACTTA GAGGTGCGTCCACCCGTTGTAACCGTTATGGGCCATGTCGATCATGGTAAGACTAGACTTCTGGACAC AATCCGGAAGGCAAATGTGAGAGAGGGCGAGGCCGGCGGTATAACGCAGCACATCGGGGCCTATCAG GTTGAGGTTGATTTGGACGGGACGGTGCGTCCCATAACTTTTATTGATACTCCCGGTCACGAGGCCTTT ACCGCAATGCGTGCCAGAGGTGCCAAGGCTACAGATATTGCTATTTTAGTGGTAGCCGCGGATGATGG CGTGATGCCTCAAACGGTTGAAGCGATTAACCACGCACAGGCCGCGGACGTTCCGATAGTGGTAGCA GTCAACAAAATTGATAAGGAAGGAGCGGACCCCGCTAAAATTCGTGGGCAGTTAACAGAATATGGATTA ATACCGGAAGAGTATGGCGGAGACACCATGTTTGTAGATATCAGTGCGAAACAGGGAACAAATATTGAA GCATTATTAGAAGCAGTGATTCTTACCGCAGACGCCTCTTTAGATTTGCGTGCAAACCCCGATATGGAA GCTCAGGGAGTCGCTATAGAAGCCCATCTTGACAGAGGTCGGGGTCCTGTTGCTACTGTATTGATACA GCGCGGCACCCTTCGGGTTGGTGATTCCGTTGTTGCGGGTGACGCTTATGGGAGAGTCCGGAGAATG ATCGATGAACATGGAGAGGACGTCGAAGAAGCATTGCCGTCTCGGCCGGTCCAGGTAGTTGGTTTCAC CTCGGTACCCGGCGCTGGGGACAATTTTTTAGTTGTAGATGAAGATCGGATCGCGCGTCAAATCGCGG ATCGCCGGTCAGCGCGTAAACGGAACGCCCTTGCTGCACGTAGTCGCAAACGGATCAGCTTGGAGGA CTTAGACTCCGCCCTTAAAGAGACGTCGCAATTAAACCTTATATTAAAAGGAGACAACGCGGGGACAGT TGAAGCACTGGAAGAGGCCTTAATGGGAATCCAGGTGGACGACGAGGTAGAACTGCGCGTCATCGAC CGCGGTGTCGGAGGCGTCACAGAAACGAATGTAAACTTAGCAAGTGCCTCGGACGCGATTATCATTGG TTTTAACGTCCGGGCTGAAGGAAAGGCGACTGAATTGGCTAATAGAGAAGGAGTTGAAATACGCTATTA TTCTGTAATCTACCAGGCGATTGATGAAATTGAAGCAGCACTTAAAGGAATGCTGAAGCCTGTATACGA AGAGAAGGAGCTTGGGCGTGCAGAAATACGTGCCATCTTCCGCAGTTCTAAGGTGGGCAATATAGCTG GCTGCCTTGTCACATCAGGAATAATGCGCCGCAACGCTAAGGCCCGTTTATTAAGAGACAATGTAGTAG TTGCACAGAATTTGACGGTAAGTAGTTTAAGACGCGAAAAGGATGACGTAACGGAAGTTCGTGATGGTT ACGAGTGCGGACTGACCTTAACCTATAATGACATCAAAGAAGGTGACGTAATTGAGACTTATGAATTAG TTGAAAAAGCGCGTACTtgaCTCGAGTGGCCGATCC

