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Impact of intravenous fluid administration 
on cardiac output and oxygenation 
during cardiopulmonary resuscitation
Jennifer Lutz1,2, Yosef Levenbrown1,2*  , Md Jobayer Hossain3,4, Anne Hesek3, Kelly E. Massa5, 
James P. Keith5 and Thomas H. Shaffer2,6,7 

Abstract 

Background: The effect of intravenous fluid (IVF) administration during cardiopulmo-
nary resuscitation (CPR) is an unexplored factor that may improve cardiac output (CO) 
during CPR. The aim of this study was to determine the effect of IVF administration on 
CO and oxygenation during CPR.

Methods: This experimental animal study was performed in a critical care animal labo-
ratory. Twenty-two Landrace-Yorkshire female piglets weighing 27–37 kg were anes-
thetized, intubated, and placed on positive pressure ventilation. Irreversible cardiac 
arrest was induced with bupivacaine. CPR was performed with a LUCAS 3 mechanical 
compression device. Pigs were randomized into IVF or no-IVF groups. Pigs in the IVF 
group were given 20 mL/kg of Plasma-Lyte (Baxter International, Deerfield, IL USA), 
infused from 15 to 35 min of CPR. CPR was maintained for 50 min with serial measure-
ments of CO obtained using ultrasound dilution technology and partial pressure of 
oxygen  (PaO2).

Results: A mixed-effects repeated measures analysis of variance was used to compare 
within-group, and between-group mean changes in CO and  PaO2 over time. CO and 
 PaO2 for the piglets were measured at 10-min intervals during the 50 min of CPR. CO 
was greater in the IVF compared with the control group at all time points during and 
after the infusion of the IVF. Mean  PaO2 decreased with time; however, at no time was 
there a significant difference in  PaO2 between the IVF and control groups.

Conclusions: Administration of IVF during CPR resulted in a significant increase in CO 
during CPR both during and after the IVF infusion. There was no statistically significant 
decrease in  PaO2 between the IVF and control groups.

Keywords: Advanced cardiac life support, Basic cardiac life support, Cardiac arrest, 
Out-of-hospital cardiac arrest, Cardiac output

Background
Cardiopulmonary resuscitation (CPR) is the cornerstone of resuscitation in cardiac 
arrest. However, it is imperfect, with a survival rate of less than 15% [1]. Cardiopulmo-
nary resuscitation generates 15 to 20% of native cardiac output (CO) [1]. In addition, 
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perfusion and oxygen delivery to the organs during cardiac arrest is further limited by 
the body undergoing a systemic inflammatory response with a loss of vascular tone. As 
the duration of CPR progresses, this can result in loss of central blood volume and a 
drop in CO [2].

Globally, out-of-hospital cardiac arrest (OHCA) ranges from 20 to 40 per 100,000 peo-
ple, with a survival rate of only 2–11%. In the United States alone, half a million peo-
ple, including children, have a cardiac arrest, and less than 10% survive, making cardiac 
arrest the most lethal public health problem in the United States. Survival rates from car-
diac arrest have not improved in many years, as methods to promote greater blood flow 
have been elusive [3]. Some providers administer intravenous fluids (IVF) during CPR 
to increase circulating blood volume and improve CO. However, variability in practice 
regarding the use of IVF during CPR persists, as there is a paucity of evidence regard-
ing its use [4]. Pediatric OHCA is less common than in adults; however, the incidence 
of pediatric cardiac arrest in the United States is still 8.3 per 100,000 people, with just 
under 10% of these children surviving to hospital discharge [1]. In addition, the CO dur-
ing CPR is less than 20% of its native CO at best, resulting in severely diminished oxy-
gen delivery to the organs [1]. The current Advanced Cardiac Life Support and Pediatric 
Advanced Life Support Guidelines do not make recommendations regarding the use of 
IVF during CPR [5–7]. Even if the administration of IVF during CPR does augment CO, 
many providers are hesitant to administer IVF, with a concern that fluids administered 
during CPR can result in pulmonary edema secondary to the poor CO seen with CPR, 
which may hamper oxygen delivery during CPR. With OHCA survival being less than 
10%, it is critical to assess what modifiable factors contribute to this dismal outcome. 
One area that remains unclear is the effect of IVF administration during CPR [3].

The primary aim of this study was to determine whether the administration of IVF has 
a favorable impact on CO and oxygenation during CPR using a porcine model of cardiac 
arrest. There have been no prior studies that have directly measured the effect of IVF on 
CO and arterial oxygenation during CPR.

Methods
Anesthesia and monitoring

This study was performed with 22 Landrace-Yorkshire juvenile pigs weighing 27–37 kg. 
The animals were purchased from the same supplier and provided to our laboratory on 
the day of the experiment and were not housed within our facility prior to the experi-
ment. The Nemours Institutional Animal Care and Use Committee approved the experi-
mental protocol. The care and handling of the animals were in accordance with National 
Institutes of Health guidelines. Female (due to availability) Landrace-Yorkshire juvenile 
pigs were chosen because their cardiovascular physiology is similar to humans mak-
ing for a good CPR model. The body habitus is also accommodating for the LUCAS 3 
mechanical compression device (Stryker, Kalamazoo, MI, USA). The animals underwent 
full health assessment and certification before transfer to our laboratory. Allocation of 
the animals to the IVF group or the control group was via a lottery system, using a paper 
lottery.

Each pig received initial sedation with two intramuscular injections of 1 mL/kg of an 
anesthetic cocktail composed of ketamine 23 mg/mL, acepromazine 0.58 mg/mL, and 
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xylazine 0.8 mg/mL, administered 10 min apart. The pigs were then given a 5 mL intra-
venous injection of ketamine 10 mg/mL and propofol 10 mg/mL. Additional doses were 
administered as needed for signs of discomfort during the procedures. Dosing these 
medications was based on a protocol used in our laboratory in previous studies [8]. After 
adequately sedating the pigs, they underwent tracheal intubation via tracheostomy, 
using a 7.0–7.5 cuffed endotracheal tube. They were connected to a mechanical ventila-
tor (Servo-I, Getinge, Wayne, NJ USA) and ventilated using a volume control mode of 
ventilation. The ventilator was set to a tidal volume of 8 mL/kg, initial respiratory rate of 
20 breaths per minute, positive end-expiratory pressure (PEEP) 5  cmH2O, and the frac-
tion of inspired oxygen  (FiO2) 1.0, with subsequent adjustments to respiratory rate to 
maintain pH at 7.35–7.45. A PEEP of 5  cmH2O was maintained throughout the study, 
as this level of PEEP has been shown in prior studies in our laboratory to provide opti-
mal CO and oxygenation during CPR [8]. Following intubation, an intra-arterial catheter 
was placed into the left carotid artery, and a central venous catheter was placed into the 
right internal jugular vein. Continuous infusions of propofol 7  mg/kg/h and ketamine 
15 mg/kg/h were initiated. These infusions were increased if the pig demonstrated signs 
of pain (such as flinching or an increase in heart rate or blood pressure of 10% or greater 
to a painful stimulus). Sedation was also increased if needed for ventilator desynchrony. 
Dosing of the intravenous anesthetics was based upon recommendations from previous 
studies [8, 9]. After sedation was deemed adequate, pigs were given a 30-min stabiliza-
tion period with ongoing monitoring of vital signs, including heart rate, blood pressure, 
respiratory rate, and end-tidal carbon dioxide.

Experimental protocol

The COstatus CO monitor (Transonic Systems, Ithaca, NY USA) was used to measure 
CO via ultrasound dilution technology and has been validated for measurement of CO in 
both human and pig subjects when compared with the gold standard of thermodilution 
[10–14]. Baseline measurements of CO, blood pressure, and heart rate were obtained. In 
addition, baseline arterial blood gas measurements were obtained before cardiac arrest 
was induced using an iStat1 analyzer (Abbott Medical, Abbott Park, IL, USA). Nine mg/
kg of bupivacaine was administered intravenously to induce cardiac arrest. This has been 
shown to cause irreversible cardiac arrest in previous porcine studies [2, 15]. Cardiac 
arrest was confirmed by asystole on the cardiac monitor, loss of end-tidal carbon dioxide 
reading, loss of pulse oximetry measurement, and loss of a pulsatile waveform on the 
arterial line tracing. When these were noted, the pig was left for 1 min to ensure that it 
did not return to a perfusing rhythm. After 1 min of cardiac arrest, a LUCAS 3 mechani-
cal compression device (Stryker) was placed on the pig to provide compressions at a rate 
of 102. The performance of high-quality CPR was monitored by ensuring that end-tidal 
carbon dioxide was over 10 mmHg at all times.

The pigs assigned to the IVF group received a 20 mL/kg infusion of isotonic fluid with 
Plasma-Lyte (Baxter International, Inc., Deerfield, IL, USA). The IVF infusion began 
15  min after chest compressions were initiated and infused over 20  min. The 15-min 
delay until the initiation of IVF was meant to simulate actual life circumstances. If fluid 
is given during CPR, the fluid administration would likely be delayed for a few minutes 
following the cardiac arrest and initiation of CPR. Plasma-Lyte was chosen, given its 
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relatively neutral effect on pH compared with 0.9% normal saline. Cardiac output and 
arterial blood gases were measured every 10 min following the initiation of chest com-
pressions for a total of 50 min for both the IVF and the control groups.

This study was powered for the primary outcome, which is the effect of IVF on CO 
during CPR. Assuming normal CO of 2.3 L/min for pigs this age [16] and assuming CPR 
yields 20% of normal CO resulting in an expected CO of 0.46 L/min ± 0.2 during CPR 
using an alpha of 0.05, a power of 0.8, and looking for a greater than 50% increase in CO 
in the group that received IVF compared with the group that did not receive IVF (which 
would increase the CO from 0.46 to 0.7 L/min), we calculated that a total of 22 subjects 
were needed for this study.

The experimental protocol is summarized in Fig. 1.

Statistical analysis

Baseline characteristics, including CO, partial pressure of oxygen  (PaO2), systolic blood 
pressure, diastolic blood pressure, and heart rate, were summarized using mean and 
standard error of mean by study groups. A two-sample t-test was used to compare 
the mean baseline characteristics of piglets between the two groups. A mixed-effects 
repeated measures analysis of variance was used to compare within-group, and between-
group mean changes in CO and  PaO2 over time after adjustment for the baseline values. 
Cardiac output and  PaO2 were used as the response variables; piglets were used as the 
random effect; and intervention group, measurement time points, and corresponding 
baseline values were used as fixed effects in each model. The least significant difference 
test was used to conduct pairwise comparisons of least squared means between two 

Fig. 1 Flow diagram demonstrating summary of the experimental protocol
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study groups at different time points and within-group two-time points. Model assump-
tions were checked before analysis. All tests were two-tailed at an overall level of sig-
nificance of 0.05. Statistical software SAS version 9.4 (Cary, NC, USA) was used for the 
analysis.

Results
As shown in Table  1, summarized baseline mean blood pressure and heart rate were 
similar between the IVF group (n = 11) and the control group (n = 11). Table 2 demon-
strates no significant difference in height and weight between the two groups (with the 
height measured from outstretched snout to outstretched foot). There was a difference 
in baseline CO, with the mean CO in the IVF group being 2.57 L/min and the mean CO 
in the control group 3.48 L/min (p-value = 0.04). This difference persisted at the 10-min 
measurement. However, because IVF was not started until 15 min into the study, this 
difference at 10 min reflects the baseline difference between the two groups.

Figure  2 and Table  3 both demonstrate the effect of IVF on CO during CPR after 
adjusting for baseline (including the 10 min) difference in CO between the two groups. 
As seen in Fig.  2, once the IVF was started (at 15  min post-cardiac arrest), CO was 
greater in the IVF group compared with the control group at all time points. In addition, 
the pairwise differences in CO between the IVF group and the control group at 30, 40, 
and 50 min were statistically significant.

Figure 3 and Table 3 demonstrate the summarized effects of IVF on  PaO2 during CPR. 
As shown in the figure, although the  PaO2 decreased with time, at no time point was 
there a significant difference in  PaO2 between the IVF group and the control group. 

Table 1 Between-group comparison of physiologic parameters at baseline and at 10 min

IVF intravenous fluid, SEM standard error of mean

Variables Time (min) Control
Mean (SEM)

IVF
Mean (SEM)

P-value

Cardiac output (L/min) Baseline 3.48 (0.35) 2.57 (0.20) 0.04

Partial pressure of oxygen (mmHg) Baseline 422.80 (35.93) 460.90 (18.23) 0.36

Cardiac output (L/min) 10 min post-arrest 1.01 (0.12) 0.68 (0.08) 0.03

Partial pressure of oxygen (mmHg) 10 min post-arrest 167.90 (43.95) 159.60 (30.56) 0.88

Systolic blood pressure (mmHg) Baseline 81.45 (2.83) 79.64 (3.34) 0.68

Diastolic blood pressure (mmHg) Baseline 54.45 (3.41) 52.82 (2.95) 0.66

Heart rate (beats/min) Baseline 93.64 (7.30) 82.36 (5.31) 0.23

Table 2 Baseline height and weight of control and IVF groups

IVF  intravenous fluid, SEM  standard error of mean

Variable Control IVF P-value

IVF height

Mean (SEM) 120 (1.6) 120 (1.2) 0.8971

Median (min, max) 120 (120, 130) 120 (120, 130)

IVF weight

Mean (SEM) 36 (0.23) 36 (0.27) 0.8003

Median (min, max) 36 (34, 37) 36 (34, 37)
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Fig. 2 Mean values ± standard error of cardiac output for control and IVF groups as a function of time. As 
shown, p values demonstrate differences as a function of group and time after adjustment for baseline 
differences

Table 3 Between-group comparison of cardiac output and partial pressure of oxygen following 
initiation of intravenous fluid infusion

IVF  intravenous fluid, SEM  standard error of mean

Variable Time (min) Control
Mean (SEM)

IVF
Mean (SEM)

P-value

Cardiac output (L/min) 20.00 0.91 (0.04) 1.00 (0.04) 0.0899

Cardiac output (L/min) 30.00 0.83 (0.04) 1.06 (0.04) 0.0001

Cardiac output (L/min) 40.00 0.83 (0.04) 1.00 (0.04) 0.0030

Cardiac output (L/min) 50.00 0.81 (0.04) 0.96 (0.04) 0.0051

Partial pressure of oxygen (mmHg) 20.00 151.09 (14.48) 144.55 (14.48) 0.7502

Partial pressure of oxygen (mmHg) 30.00 131.54 (14.48) 128.27 (14.48) 0.8735

Partial pressure of oxygen (mmHg) 40.00 112.54 (14.48) 105.82 (14.48) 0.7435

Partial pressure of oxygen (mmHg) 50.00 107.64 (14.48) 98.73 (14.48) 0.6649

Fig. 3 Mean values ± standard error of partial pressure of oxygen for control and IVF groups as a function 
of time. As shown, p values demonstrate differences as a function of group and time after adjustment for 
baseline differences
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Additionally, at all time points, the  PaO2 was above 100 mmHg in both groups, except 
for the measurement at 50 min in the IVF group, where the  PaO2 was 98.7 mmHg.

Adverse events included data from one animal that was disqualified due to the devel-
opment of a massive pericardial effusion during CPR. In addition, data from four other 
animals were disqualified due to equipment malfunction during the study. Therefore, 
data from these animals are not included in the results of this study.

Discussion
The aim of this study was to determine the effect of IVF administration during CPR on 
CO and  PaO2 in the blood as a marker of oxygen delivery. The hypothesis of this study 
group was that administration of IVF during CPR will augment CO. The results of this 
study demonstrated that, from the time the IVF administration was started, there was an 
increase in CO at all time points in the group that received IVF during CPR compared 
with the control group. This difference was significant at 15, 25, and 35 min after initi-
ating the IVF infusion. Although there was a decline in  PaO2 with time during CPR, at 
none of the time points was there a significant difference in  PaO2 between the IVF group 
and the control group. Changes in  PaO2 between the two groups at a magnitude this 
study was powered to detect were likely not present between the two groups.

The increase in CO attributed in this study to IVF administration during CPR is 
likely due to the fluid’s effect on the mean systemic filling pressure and subsequently on 
venous return. Cardiac output requires adequate filling of the ventricles, which during 
CPR occurs during the relaxation phase, followed by compression of the ventricles to 
expel the blood out of the ventricles. Typically, under physiologic conditions, the driv-
ing force for blood to return to the heart (preload) is the pressure difference between the 
mean systemic filling pressure (MSFP), which is the pressure that the blood exerts on the 
large veins in a static, no-flow state, and the right atrial pressure (Pra) [8, 17, 18]. In addi-
tion, the elastic recoil of the venous system contributes to the forward flow of blood [15]. 
Venous return, and secondarily CO, can be augmented by increasing the stressed vol-
ume of venous blood, which is the volume of blood that puts pressure on and stretches 
the walls of the venous system, which contributes to the MSFP. It has been postulated 
that in a state of low sympathetic tone, such as what could be expected in a cardiac arrest 
patient, only 25 to 30% of the intravascular volume will constitute the stressed volume 
[15]. The stressed volume of blood can be increased either by increasing the total blood 
volume or decreasing the diameter of the vessels in the venous system [19–22].

In a series of classic experiments looking at cardiovascular physiology, Guyton and col-
leagues demonstrated that lowering the right atrial pressure produces a linear increase 
in venous return [15, 21, 23, 24]. However, venous return is limited when the pressure 
in the great veins is lower than the pressure outside their walls due to the collapse of the 
vessels under those conditions [2, 15]. When venous collapse occurs, further lowering 
of the right atrial pressure does not increase venous return [25]. Thus, the best the heart 
can do to augment venous return is to reduce the Pra to zero, at which point further 
lowering of the Pra will not lead to increased venous return due to the collapse of the 
large veins. Because vessel collapse and flow limitations occur at atmospheric and even 
at supra-atmospheric pressures [26] in patients ventilated with positive pressure ventila-
tion, there is a significant risk that venous return and CO will be limited during CPR 
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secondary to vessel collapse. When the venous return is limited this way, CO can only 
be augmented by increasing the MSFP, which can be done most effectively by a volume 
infusion during CPR (although MSFP can also be increased by decreasing vessel diam-
eter, this may be hard to accomplish during a cardiac arrest if there is a loss of vasomotor 
tone). By demonstrating an increase in CO during CPR with IVF administration, this 
study demonstrates that increasing the stressed blood volume can augment CO during 
CPR, as postulated above. Thus, this study confirms that these basic principles of cardio-
vascular physiology will hold true in cardiac arrest during CPR.

There are also potential downsides of IVF administration during CPR. Since the CO 
during CPR is approximately 15 to 20% of native CO, it is possible that administering 
additional fluids can elevate the right atrial pressure, further impeding right ventricular 
filling and thereby decreasing CO. However, this outcome was not encountered in our 
study. In addition, IVF administration during CPR can lead to the development of car-
diogenic pulmonary edema, potentially detrimental to the diffusion of oxygen into the 
blood and negatively affecting oxygen delivery. However, as seen in Fig. 3 and Table 3, 
 PaO2 levels were not significantly different between the two groups, suggesting that the 
volume of fluid administered in this study positively impacted the cardiac output gener-
ated with CPR without negatively affecting oxygen diffusion.

Prior studies examining the effect of IVF during CPR have yet to answer the ques-
tions addressed in this study directly. Harris et al. [27] demonstrated that administering 
IVF during CPR increased carotid blood flow and arterial pressure generated by external 
chest compressions. Ditchey et  al. reported that coronary blood flow during CPR is a 
function of the pressure difference generated across the arterial and venous vessels of 
the coronary system and occurs primarily during the relaxation (recoil) phase of each 
chest compression, with blood flowing passively into the coronary circulation at that 
point. The generation of a pressure differential during CPR necessary for blood to flow 
into the coronary circulation depends on a net transfer of blood from the venous to the 
arterial circulation [28]. Using the LUCAS 3 mechanical CPR device to deliver compres-
sions allowed us to ensure that the compressions were delivered equally to all subjects in 
this study. This enabled any changes in the described pressure differential to be attrib-
uted to intravascular volume rather than variability in compression delivery within or 
across subjects. In hypovolemia, when both venous and arterial beds are highly compli-
ant, CPR results in a small increase in transmural arterial pressure and a slight decrease 
in transmural venous pressure. Since vessel compliance decreases as a function of vol-
ume, a greater intravascular volume may be needed to create a more significant coronary 
arterial-to-venous pressure differential, thereby promoting greater coronary blood flow 
[22]. The impact of IVF on CO could be objectively measured by the COstatus—a device 
commonly used in many pediatric intensive care units for cardiovascular monitoring. 
This study technique is easily replicable in children who have suffered a cardiac arrest.

There are a few limitations in this study. For ethical reasons, it is challenging to per-
form CPR studies on humans, so most CPR studies are performed on animal or cadaver 
models. Inherent to any animal study is whether the results can be extrapolated to 
humans. The porcine model is often used due to the similarity in its physiology to 
human physiology and is a well-accepted model to study cardiac arrest physiology. A 
human study to answer the questions addressed in this study would not be possible, as 
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the sophisticated hemodynamic monitoring performed in this study would not be pos-
sible in a cardiac arrest situation. Secondly, with the more convex shape of the thoracic 
cavity in pigs compared with humans, the compressions on a porcine CPR model may be 
suboptimal. However, we felt confident that high-quality CPR was maintained by ensur-
ing that the end-tidal carbon dioxide measurement was consistently above 10  mmHg 
throughout the study. Thirdly, the volume of IVF administered during CPR may not 
have been the optimal volume for this purpose, and using more or less IVF could have 
resulted in better outcomes. The volume of IVF used in this study of 20 mL/kg was cho-
sen because this is a widely used volume of IVF in resuscitative efforts and is generally 
adequate to improve stroke volume. Fourth of all, this CPR model does not precisely 
mimic how a cardiac arrest is managed, being that epinephrine was not administered. 
However, for this study, all factors were kept the same except for the intervention being 
evaluated; specifically, the use of IVF during CPR and its effect on CO. Administration of 
epinephrine during the CPR could have altered the CO, thereby confounding the results 
of this study, whether any change in CO was due to the IVF or due to the administration 
of an epinephrine dose. In addition, because the subjects were juvenile pigs, a ventila-
tion rate of one breath every 3 s was used, consistent with the current Pediatric Advance 
Life Support guidelines [29]. Furthermore, there were some baseline differences between 
the two groups; most importantly, the CO was higher in the control group compared 
with the IVF group. The range we measured for baseline cardiac output measurements 
was consistent with prior studies on similarly sized and aged pigs. In a previous study 
performed in our laboratory, the baseline range of cardiac output in pigs of similar size 
and age was 1.4 to 5.2 L/min [8]. We attribute the difference in the baseline CO to an 
imbalance in the randomization resulting in more of the pigs at the higher end of the CO 
range being in the no-IVF group compared with the IVF group. However, we are confi-
dent in the results of this study since appropriate adjustments were made for differences 
in baseline variables. In addition, from the onset of the IVF administration, all the CO 
measurements in the IVF group were greater than those in the no-IVF group, resulting 
in a statistically significant augmentation in CO in the IVF group compared with the 
control group, from the effect of the IVF. Had there not been a baseline difference in CO 
between the two groups favoring the control group, we expect that the difference in CO 
between the IVF group and the control group seen during and after the IVF adminis-
tration would likely have been even more significant. Lastly, it is unknown whether the 
improvement in cardiac output seen in this study will translate into improved patient-
centered outcomes, including survival to hospital discharge and survival to hospital dis-
charge with favorable neurological outcomes.

Conclusions
This study demonstrated that the effect of IVF on CO and systemic oxygenation dur-
ing CPR resulted in an increased CO after the initiation of IVF administration with 
statistically significant higher CO at 30-, 40-, and 50-min time points. In addition, 
systemic arterial oxygenation  (PaO2) did not decrease as a result of the administration 
of IVF at any time point and remained above 100  mmHg in both groups through-
out the study. Further studies should be conducted to determine if these outcomes 
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translate into improved patient-centered outcomes in cardiac arrest patients and the 
optimal amount of fluid to administer during CPR.
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PEEP  Positive end-expiratory pressure
Pra  Right atrial pressure
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