

Department of Surgery Faculty Papers

Department of Surgery

12-15-2022

Adjuvant nab-Paclitaxel + Gemcitabine in Resected Pancreatic Ductal Adenocarcinoma: Results from a Randomized, Open-Label, Phase III Trial

Margaret A. Tempero

Uwe Pelzer

Eileen M. O'Reilly

Jordan Winter

Do-Youn Oh

See next page for additional authors

Follow this and additional works at: https://jdc.jefferson.edu/surgeryfp

Part of the Oncology Commons, and the Surgery Commons
<u>Let us know how access to this document benefits you</u>

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Surgery Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.

Authors

Margaret A. Tempero, Uwe Pelzer, Eileen M. O'Reilly, Jordan Winter, Do-Youn Oh, Chung-Pin Li, Giampaolo Tortora, Heung-Moon Chang, Charles D. Lopez, Tanios Bekaii-Saab, Andrew H. Ko, Armando Santoro, Joon Oh Park, Marcus S. Noel, Giovanni Luca Frassineti, Yan-Shen Shan, Andrew Dean, Hanno Riess, Eric Van Cutsem, Jordan Berlin, Philip Philip, Malcolm Moore, David Goldstein, Josep Tabernero, Mingyu Li, Stefano Ferrara, Yvan Le Bruchec, George Zhang, Brian Lu, Andrew V. Biankin, and Michele Reni bstract

Adjuvant *nab*-Paclitaxel + Gemcitabine in Aujuvant *nab*-Pacificaxer + Genicitabilie in Resected Pancreatic Ductal Adenocarcinoma: Results From a Randomized, Open-Label, Phas III Trial Margaret A. Tempero, MD¹; Uwe Pelzer, MD²; Eileen M. O'Reilly, MD³; Jordan Winter, MD⁴; Do-Youn Oh, MD^{5,6}; Chung-Pin Li, MD, PhD^{7,8,9}; Giampaolo Tortora, MD^{10,11}; Heung-Moon Chang, MD¹²; Charles D. Lopez, MD, PhD¹³; Tanios Bekaii-Saab, MD¹⁴; Andrew H. Ko, MD¹; Armando Santoro, MD^{15,16}; Joon Oh Park, MD, PhD¹⁷; Marcus S. Noel, MD¹⁸; **Results From a Randomized, Open-Label, Phase**

Tanios Bekaii-Saab, MD¹⁴; Andrew H. Ko, MD¹; Armando Santoro, MD^{15,16}; Joon Oh Park, MD, PhD¹⁷; Marcus S. Noel, MD¹⁸; Giovanni Luca Frassineti, MD¹⁹; Yan-Shen Shan, MD, PhD²⁰; Andrew Dean, MD²¹; Hanno Riess, MD²; Eric Van Cutsem, MD, PhD²²; Jordan Berlin, MD²³; Philip Philip, MD^{24,25}; Malcolm Moore, MD²⁶; David Goldstein, MD²⁷; Josep Tabernero, MD, PhD²⁸;

Mingyu Li, PhD²⁹; Stefano Ferrara, PharmD³⁰; Yvan Le Bruchec, MS³⁰; George Zhang, PhD²⁹; Brian Lu, MD, PhD²⁹;

Andrew V. Biankin, MD, PhD^{31,32,33}; and Michele Reni, MD³⁴; on behalf of the APACT Investigators

PURPOSE This randomized, open-label trial compared the efficacy and safety of adjuvant nabpaclitaxel + gemcitabine with those of gemcitabine for resected pancreatic ductal adenocarcinoma (ClinicalTrials.gov identifier: NCT01964430).

METHODS We assigned 866 treatment-naive patients with pancreatic ductal adenocarcinoma to nab-paclitaxel $(125 \text{ mg/m}^2) + \text{gemcitabine} (1,000 \text{ mg/m}^2)$ or gemcitabine alone to one 30-40 infusion on days 1, 8, and 15 of six 28-day cycles. The primary end point was independently assessed disease-free survival (DFS). Additional end points included investigator-assessed DFS, overall survival (OS), and safety.

RESULTS Two hundred eighty-seven of 432 patients and 310 of 434 patients completed nabpaclitaxel + gemcitabine and gemcitabine treatment, respectively. At primary data cutoff (December 31, 2018; median follow-up, 38.5 [interguartile range [IQR], 33.8-43 months), the median independently assessed DFS was 19.4 (*nab*-paclitaxel + gemcitabine) versus 18.8 months (gemcitabine; hazard ratio [HR], 0.88; 95% CI, 0.729 to 1.063; P = .18). The median investigator-assessed DFS was 16.6 (IQR, 8.4-47.0) and 13.7 (IQR, 8.3-44.1) months, respectively (HR, 0.82; 95% CI, 0.694 to 0.965; P = .02). The median OS (427 events; 68% mature) was 40.5 (IQR, 20.7 to not reached) and 36.2 (IQR, 17.7-53.3) months, respectively (HR, 0.82; 95% CI, 0.680 to 0.996; P = .045). At a 16-month follow-up (cutoff, April 3, 2020; median follow-up, 51.4 months [IQR, 47.0-57.0]), the median OS (511 events; 81% mature) was 41.8 (nab-paclitaxel + gemcitabine) versus 37.7 months (gemcitabine; HR, 0.82; 95% CI, 0.687 to 0.973; P = .0232). At the 5-year follow-up (cutoff, April 9, 2021; median follow-up, 63.2 months [IQR, 60.1-68.7]). the median OS (555 events; 88% mature) was 41.8 versus 37.7 months, respectively (HR, 0.80; 95% CI, 0.678 to 0.947; P = .0091). Eighty-six percent (*nab*-paclitaxel + gemcitabine) and 68% (gemcitabine) of patients experienced grade \geq 3 treatment-emergent adverse events. Two patients per study arm died of treatment-emergent adverse events.

CONCLUSION The primary end point (independently assessed DFS) was not met despite favorable OS seen with nab-paclitaxel + gemcitabine.

J Clin Oncol 41:2007-2019. © 2022 by American Society of Clinical Oncology

Creative Commons Attribution Non-Commercial No Derivatives 4.0 License @

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related deaths.¹⁻⁴ Even with potentially curative surgery, the 5-year survival rate is approximately 20%.^{2,5} Recent clinical trials in the adjuvant setting established survival benefits of gemcitabine + capecitabine and modified leucovorin

calcium (folinic acid), fluorouracil, irinotecan hydrochloride, oxaliplatin (FOLFIRINOX) over gemcitabine monotherapy in patients who initially presented with PDAC.^{6,7} Therefore, gemcitabine + capecitabine and modified FOLFIRINOX are preferred category 1 recommendations for resected PDAC according to National Comprehensive Cancer Network Guidelines.⁸

Journal of Clinical Oncology[®]

CONTENT See accompanying editorial on page 1972 Appendix **Data Supplement**

ASSOCIATED

Protocol

Author affiliations and support information (if applicable) appear at the end of this article.

Accepted on October 24. 2022 and published at

ascopubs.org/journal/ jco on December 15, 2022: DOI https://doi. org/10.1200/JC0.22. 01134

CONTEXT

Key Objective

Pancreatic ductal adenocarcinoma has a poor prognosis even after surgical resection. This phase III study compared the efficacy and safety of adjuvant *nab*-paclitaxel + gemcitabine with gemcitabine in patients with surgically resected pancreatic ductal adenocarcinoma.

Knowledge Generated

The primary end point of independently assessed disease-free survival was not met. However, overall survival favored *nab*-paclitaxel + gemcitabine versus gemcitabine (41.8 v 37.7 months) in the 5-year follow-up analysis.

Relevance (G.K. Schwartz)

This negative randomized phase III study fails to change the standard of care for patients with resected pancreatic cancer. Five-year overall survival data from this study suggest the use of *nab*-paclitaxel + gemcitabine as a treatment alternative for selected patients who cannot receive modified FOLFIRNOX.*

*Relevance section written by JCO Associate Editor Gary K. Schwartz, MD.

The phase III MPACT trial demonstrated superiority of firstline *nab*-paclitaxel + gemcitabine versus gemcitabine monotherapy in metastatic PDAC.^{9,10} The most common grade \geq 3 adverse events (AEs) were neutropenia, leukopenia, fatigue, and peripheral neuropathy. *Nab*paclitaxel + gemcitabine was hypothesized to extend disease-free survival (DFS) beyond the former gemcitabine standard in the adjuvant setting. The phase III APACT trial investigated efficacy and safety of adjuvant *nab*paclitaxel + gemcitabine compared with those of gemcitabine in patients who had undergone surgical resection for PDAC.

METHODS

Study Oversight

Steering committee members (Data Supplement, online only) and the sponsor designed this trial. Data were collected by investigators and analyzed by a sponsor-employed statistician. All aspects of the study were monitored by the sponsor.

Patients

Patients were age ≥ 18 years, with histologically confirmed ductal PDAC with macroscopic complete resection, an Eastern Cooperative Oncology Group performance status ≤ 1 , and no history of metastatic or locally recurrent disease. Patients were required to have serum carbohydrate antigen 19-9 < 100 U/mL and no recurrent disease (per computed tomography or magnetic resonance imaging scans) at screening (≤ 14 days of random assignment). Patients received no prior therapy (neoadjuvant, radiation, or systemic therapy) for PDAC. Patients were required to initiate adjuvant therapy ≤ 12 weeks of surgery (complete eligibility criteria, Data Supplement).

Study Design

APACT was a phase III, multicenter, open-label, randomized study conducted at 160 sites across 21 countries (EudraCT 2013-003398-91; ClinicalTrials.gov identifier: NCT01964430). Using a permuted-block random assignment method and interactive response technology, patients were randomly assigned 1:1 to receive *nab*paclitaxel + gemcitabine or gemcitabine and stratified on the basis of resection status (R0 [tumor-free margin] *v* R1 [microscopically positive margin]), nodal status (lymph node–positive *v* lymph node–negative), and region (non-Asian regions [North America, Europe, and Australia] *v* Asia; a full list of countries, site names, and investigators can be found in Appendix Table A1 [online only]).

The Protocol (online only) and informed consent forms were approved by each study site's independent ethics committee or institutional review board before study initiation. This study was conducted in accordance with Good Clinical Practice, as denoted in the International Council for Harmonisation E6 requirements, and with the ethical principles outlined in the Declaration of Helsinki. Written informed consent was obtained before any study-related procedure.

Treatment

Patients received *nab*-paclitaxel 125 mg/m² followed by gemcitabine 1,000 mg/m² or gemcitabine 1,000 mg/m² alone as one intravenous infusion over 30-40 minutes on days 1, 8, and 15 of every 28-day cycle. Patients received six treatment cycles unless there was radiologic evidence of disease recurrence and unacceptable toxicity on the basis of the expert clinical judgment of the investigators or patient/ physician decision otherwise. Supportive care could be administered per investigator's discretion. Two levels of dose modifications were permitted (Data Supplement).

End Points and Assessments

The primary end point, independently assessed DFS, was defined as time from random assignment to disease recurrence or death. DFS values were not censored by the cause of death, so it is possible that not all deaths were due to PDAC. Independently assessed DFS was determined by radiologists blinded to the treatment assignment. Independent reviewers assessed disease recurrence on the basis of radiologic review (computed tomography or magnetic resonance imaging). Evaluation of new lesions followed RECIST version 1.1. After random assignment, disease recurrence was assessed every 8 weeks for the first 24 weeks and then every 12 weeks for the next 2.5 years until 3 years after random assignment. After 3 years, disease recurrence was assessed every 24 weeks up to 5.5 years after random assignment.

Secondary end points were overall survival (OS) and safety. AEs were coded using Medical Dictionary for Regulatory Activities v21.0 and graded for intensity according to National Cancer Institute Common Terminology Criteria for Adverse Events v4.0. Investigators determined potential relationships between AEs and study treatments. Serious AEs were reported to the study sponsor's safety monitoring division.

Investigator-assessed DFS was evaluated in a prespecified sensitivity analysis; investigators determined recurrence using all available clinical information collected and evaluated using their expert judgment during the usual treatment of their patients. Independent review was not performed in real time or used to confirm investigator assessments (censoring rules provided in the Data Supplement). All patients were followed for survival. Initiation and types of new anticancer therapies were collected. Clinical assessments were made on days 1, 8, and 15 of each cycle (Data Supplement).

Statistical Analyses

Original assumptions about DFS were based on historical outcomes of investigator-assessed median DFS with adjuvant gemcitabine (range, 13.4-14.3 months).^{11,12} Contemporaneous phase III studies reported investigator-assessed median DFS with adjuvant gemcitabine ranging from 11.4 to 13.1 months.^{6,7,13} On the basis of an independent assessment, to achieve the median DFS of 13.5 months (gemcitabine) and 18.5 months (*nab*-paclitaxel + gemcitabine; equivalent to a hazard ratio [HR], 0.73), approximately 438 DFS events were required to allow 90% power to detect a 27% reduction of risk in disease recurrence or death at a two-sided significance threshold of .05.

All efficacy analyses were conducted in the intent-to-treat population. Distribution of DFS was estimated using the Kaplan-Meier method; medians and two-sided 95% Cls were provided. DFS was compared between arms using the stratified log-rank test, with stratification factors of resection and lymph node status. The associated HR and two-sided 95% Cl were provided using the stratified Cox proportional

hazards model. The same analyses were used for OS and investigator-assessed DFS. Percentage of protocol dose was calculated as percentage of dose intensity/protocol-specified weekly dose. All *P* values are descriptive and were not adjusted for multiplicity.

Concordance between independent and investigator review of disease recurrence was summarized. Patient data were censored in the independent review after the start of a new anticancer therapy or cancer-related surgery. Therefore, new lesions appearing afterward were not counted as recurrence. All statistical analyses were conducted using SAS v9.2 (SAS Institute, Cary, NC) or higher (Data Supplement).

RESULTS

Patients

One thousand two hundred twenty-six patients were screened, and 866 (71%) were enrolled between April 2014 and April 2016 in Europe (47%), North America (35%), Asia (12%), and Australia (6%), and randomly assigned to receive *nab*-paclitaxel + gemcitabine (n = 432) or gemcitabine (n = 434, Fig 1). Reasons for screen failure are given in the Data Supplement.

Demographic and baseline characteristics were balanced between arms (Table 1). The median age of patients was 64.0 years (interquartile range [IQR], 57.0-70.0). Most patients were men (56%) and had an Eastern Cooperative Oncology Group performance status of 0 (60%), R0 resection (76%), and lymph node involvement (72%).

All analyses were conducted using data collected at the primary data cutoff (December 31, 2018) except for OS analyses, which were conducted at the primary data cutoff, the 16-month follow-up analysis cutoff (April 3, 2020), and the 5-year follow-up analysis cutoff (April 9, 2021).

Treatment

One treatment cycle was defined as once-weekly administration of the study drug(s) for 3 weeks followed by 1 week without study treatment. In the treated population, six treatment cycles were administered to 69% (*nab*paclitaxel + gemcitabine) and 75% (gemcitabine) of patients. The median treatment duration was 24 weeks in each arm (overall IQR, 20.1-24.3; Data Supplement). The median percentages of protocol dose that patients in the *nab*-paclitaxel + gemcitabine arm received were 75% (*nab*-paclitaxel) and 80% (gemcitabine) versus 91% with gemcitabine. In the *nab*-paclitaxel + gemcitabine arm, 64% of patients had \geq 1 dose reduction; the corresponding rate in the gemcitabine arm was 50%. Dose omissions, delays, and intensity data are reported in the Data Supplement.

Efficacy

At primary data cutoff (December 31, 2018), the median follow-up was 38.5 (IQR, 33.8-43.0) months. For the

FIG 1. CONSORT diagram. Flow diagram results between treatment arms after primary data cutoff (December 31, 2018). ^aCompleted indicates patients who finished all six treatment cycles and received \geq 2 doses of the study medication during cycle 6. AE, adverse event; Gem, gemcitabine; ITT, intent-to-treat; *nab*-P, *nab*-paclitaxel.

primary end point of independently assessed DFS, 439 of all treated patients (51%) had progressed or died. The median independently assessed DFS was 19.4 months (95% CI, 16.62 to 21.91) with *nab*-paclitaxel + gemcitabine versus 18.8 months (95% CI, 13.83 to 20.30) with gemcitabine. The difference between arms was not statistically significant (HR, 0.88; 95% CI, 0.729 to 1.063; P = .18; Fig 2A).

For investigator-assessed DFS, 571 of all treated patients (66%) had experienced disease progression or died. The median investigator-assessed DFS was 16.6 months (95% CI, 14.55 to 19.29) with *nab*-paclitaxel + gemcitabine versus 13.7 months (95% CI, 11.24 to 16.00) with gemcitabine (HR, 0.82; 95% CI, 0.694 to 0.965; P = .02; Fig 2B). The concordance between independent and investigator-assessed DFS was 77% (*nab*-paclitaxel + gemcitabine, 78%; gemcitabine, 76%). A summary of censoring is provided in the Data Supplement. Patients with recurrence per investigator assessment who started subsequent therapy (n = 26 [*nab*-paclitaxel + gemcitabine] and n = 31 [gemcitabine]) were censored for the independently assessed DFS analysis at initiation of subsequent anticancer therapy.

OS data at the primary data cutoff were 68% mature (427 of 630 target events); 48% (*nab*-paclitaxel + gemcitabine) and 51% (gemcitabine) of patients had died. The median OS was 40.5 months (IQR, 20.7 to not estimable) with *nab*-paclitaxel + gemcitabine compared with 36.2 (IQR, 17.7-53.3) months with gemcitabine (HR, 0.82; 95% CI, 0.680 to 0.996; P = .045; Fig 2C).

A 16-month follow-up OS analysis was conducted (cutoff, April 3, 2020; median follow-up for survival, 51.4 [IQR, 47.0-57.0] months) on the basis of 511 events (81% mature); for *nab*-paclitaxel + gemcitabine versus gemcitabine, 57% versus 61% of patients had died. The median OS was 41.8 months (95% CI, 35.55 to 47.28) with *nab*-paclitaxel + gemcitabine versus 37.7 months (95% CI, 31.11 to 40.51) with gemcitabine (HR, 0.82; 95% CI, 0.687 to 0.973; P = .023; Fig 2D).

A 5-year follow-up OS analysis was also conducted. At the cutoff (April 9, 2021), patients had been followed for \geq 5 years or discontinued from the study. The overall median follow-up for OS was 63.2 (IQR, 60.1-68.7) months. A total of 268 and 287 events occurred in the *nab*-paclitaxel + gemcitabine and gemcitabine arms, respectively (88% mature); 62% versus 66% of patients had died. The median OS with *nab*-paclitaxel + gemcitabine was 41.8 months compared with 37.7 months with gemcitabine (HR, 0.80; 95% CI, 0.678 to 0.947; *P* = .0091; Fig 2E). At a 5-year follow-up, the estimates of OS rates for \geq 5 years were 38% with *nab*-paclitaxel + gemcitabine and 31% with gemcitabine.

Subsequent Therapy

Overall, 55% (*nab*-paclitaxel + gemcitabine) and 56% (gemcitabine) of patients received a subsequent new anticancer therapy or cancer-related surgery (Data Supplement). Fluorouracil-based regimens (fluoropyrimidine monotherapy or a non-FOLFIRINOX combination; 26% [*nab*-paclitaxel + gemcitabine] versus 24% [gemcitabine])

TABLE 1. Demographic and Baseline Clinical Characteristic Characteristic	s (intent-to-treat population) nab-Paclitaxel + Gemcitabine (n = 432)	Gemcitabine (n = 434)	Total (n = 866)
Age, years			
Median (range)	64.0 (34-83)	64.0 (38-86)	64.0 (34-86)
< 65, No. (%)	221 (51)	225 (52)	446 (52)
≥ 65, No. (%)	211 (49)	209 (48)	420 (48)
< 75, No. (%)	382 (88)	399 (92)	781 (90)
≥ 75, No. (%)	50 (12)	35 (8)	85 (10)
Sex, No. (%)			
Female	204 (47)	181 (42)	385 (44)
Male	228 (53)	253 (58)	481 (56)
Race, No. (%)			
White	333 (77)	339 (78)	672 (78)
Asian	60 (14)	56 (13)	116 (13)
Black or African American	4 (1)	8 (2)	12 (1)
Others ^a	11 (3)	9 (2)	20 (2)
Not collected or reported	24 (6)	22 (5)	46 (5)
Region, No. (%)			
North America	144 (33)	156 (36)	300 (35)
Europe	203 (47)	205 (47)	408 (47)
Australia	30 (7)	20 (5)	50 (6)
Asia Pacific	55 (13)	53 (12)	108 (12)
ECOG PS, No. (%)			
0	252 (58)	268 (62)	520 (60)
1	180 (42)	166 (38)	346 (40)
Distance from tumor to the closest margin, mm, No. (%)			
< 1	114 (26)	112 (26)	226 (26)
≥ 1	287 (66)	292 (67)	579 (67)
Missing	31 (7)	30 (7)	61 (7)
Pancreatic cancer primary location, No. (%) ^b			
Head	354 (82)	347 (80)	701 (81)
Body	53 (12)	55 (13)	108 (12)
Tail	50 (12)	62 (14)	112 (13)
TNM classification, No. (%)			
T category			
T1	16 (4)	13 (3)	29 (3)
T2	38 (9)	37 (9)	75 (9)
T3	377 (87)	384 (88)	761 (88)
Τ4	1 (< 1)	0	1 (< 1)
N category			
NO	121 (28)	122 (28)	243 (28)
N1	311 (72)	312 (72)	623 (72)
M category			
MO	432 (100)	433 (> 99)	865 (> 99)
M1	0	1 (< 1)	1 (< 1)

(continued on following page)

Journal of Clinical Oncology

Tempero et al

TABLE 1. Demographic and Baseline Clinical Characteristics (intent-to-treat population) (continued)

Characteristic	nab-Paclitaxel + Gemcitabine (n = 432)	Gemcitabine (n = 434)	Total (n = 866)
Nodal status, No. (%)			
Lymph node-negative	121 (28)	122 (28)	243 (28)
Lymph node-positive	311 (72)	312 (72)	623 (72)
Resection status, No. (%)			
R0 (tumor-free margin)	327 (76)	334 (77)	661 (76)
R1 (microscopically positive margin)	105 (24)	100 (23)	205 (24)
Tumor grade, No. (%)			
Well differentiated	49 (11)	55 (13)	104 (12)
Moderately differentiated	264 (61)	241 (56)	505 (58)
Poorly differentiated	101 (23)	115 (26)	216 (25)
Undifferentiated	1 (< 1)	2 (< 1)	3 (< 1)
Unknown	9 (2)	5 (1)	14 (2)
Others	8 (2)	16 (4)	24 (3)
CA19-9			
No.	423	429	852
U/mL, median (IQR, Q1-Q3)	14.3 (6.9-27.4)	12.9 (5.9-27.6)	13.6 (6.3-27.5)
Level of CA19-9, No. (%)			
WNL	351 (81)	345 (80)	696 (80)
ULN < 100 U/mL	70 (16)	81 (19)	151 (17)
$ULN \ge 100 \text{ U/mL}$	2 (< 1)	3 (1)	5 (1)
Missing	9 (2)	5 (1)	14 (2)

Abbreviations: CA19-9, carbohydrate antigen 19-9; ECOG PS, Eastern Cooperative Oncology Group performance status; IQR, interquartile range; M, metastasis; N, node; Q1, quartile 1; Q3, quartile 3; R, resection; T, tumor; ULN, upper limit of normal; WNL, within normal limits. ^aIncludes patients who are Native Hawaiian or other Pacific Islander, American Indian, or Alaska Native.

Includes patients who are Native Hawalian or other Pacific Islander, American India

^bPatients could have multiple pancreas positions.

and FOLFIRINOX (21% v 18%) were most common. Eight percent of patients in the *nab*-paclitaxel + gemcitabine group and 21% in the gemcitabine arm received a new *nab*-paclitaxel–based subsequent therapy.

Subgroup Efficacy Analyses

Results of the primary end point of independently assessed DFS in the primary analyses for prespecified subgroups are presented in Figure 3A. Subgroup analyses of investigator-assessed DFS and OS were also performed (primary data cutoff, Data Supplement and Fig 3B; 5-year follow-up data cutoff [OS only], Data Supplement). Patterns of independently assessed DFS (Fig 3A) and OS (Fig 3B) in the subgroups were generally consistent with observations from the intent-to-treat population.

Safety

Treatment-emergent adverse event (TEAE) data reported herein are from the primary analysis (cutoff, December 31, 2018). All treated patients in the *nab*-paclitaxel + gemcitabine arm and 99% of those in the gemcitabine arm had \geq 1 TEAE; grade \geq 3 TEAEs were reported in 86% and 68% of patients, respectively (Table 2). At least one serious TEAE occurred in 41% and 23% of patients, respectively. In the *nab*-paclitaxel + gemcitabine arm, 27% (*nab*-paclitaxel) and 17% (gemcitabine) of patients discontinued treatment because of TEAEs versus 10% in the gemcitabine arm. Two patients (< 1%) died in each arm because of TEAEs (*nab*paclitaxel + gemcitabine arm: pneumonia and sepsis [n = 1 patient each]; gemcitabine arm: drug-induced liver injury and hepatic failure [n = 1] and capillary leak syndrome [n = 1]).

The most frequent grade \geq 3 TEAEs with *nab*paclitaxel + gemcitabine versus gemcitabine were neutropenia (49% v 43%), anemia (15% v 8%), and fatigue (10% v 3%). The incidence of grade \geq 3 peripheral neuropathy was 15% (*nab*-paclitaxel + gemcitabine) versus 0% (gemcitabine). Among patients who experienced grade \geq 3 peripheral neuropathy, 17% improved by \geq 1 grade in a median of 195.0 days, whereas 16% improved to grade 1 or experienced resolution of peripheral neuropathy (median time to improvement, not reached). Of 77 treatmentemergent occurrences of grade \geq 3 peripheral neuropathy observed among 64 patients, the majority (62%) commenced during cycle 4 or later. At the primary analysis

FIG 2. Kaplan-Meier curves of DFS and OS. Kaplan-Meier curves of DFS by (A) independent assessment and (B) investigator assessment (primary data cutoff, December 31, 2018). OS at data cutoffs (continued on following page)

Tempero et al

FIG 2. (Continued). of the (C) primary analysis, (D) 16-month follow-up (April 3, 2020), and (E) 5-year follow-up (April 9, 2021). OS rates for \geq 5 years were 38% with *nab*-paclitaxel + Gem and 31% with Gem. DFS, disease-free survival; Gem, gemcitabine; HR, hazard ratio; *nab*-P, *nab*-paclitaxel; OS, overall survival.

cutoff, 61% of all grade \geq 3 peripheral neuropathy TEAEs were resolved. Additional grade \geq 3 TEAEs of special interest included gastrointestinal events (10% v2%), hepatic toxicity (6%, both arms), sepsis (5% v2%), and febrile neutropenia (5% v1%). White blood cell growth factor support was received by 153 (35%; *nab*-paclitaxel + gemcitabine) and 91 (21%; gemcitabine) patients.

DISCUSSION

The APACT trial did not meet the primary end point of independently assessed DFS. The prespecified sensitivity analysis of investigator-assessed DFS and the OS data suggested improved outcomes with *nab*-paclitaxel + gemcitabine versus gemcitabine; however, since the primary end point was not met, comparisons are considered descriptive. The safety profile with adjuvant *nab*-paclitaxel + gemcitabine was generally consistent with data reported previously.⁹ To our knowledge, APACT was the first trial of adjuvant treatment of PDAC to use blinded, centrally reviewed, independently assessed DFS as the primary end point, which was selected on the basis of an assumption that it would increase the scientific rigor of the trial and reduce possible unintentional investigator bias on survival outcomes. However, APACT was powered on the basis of investigator-assessed DFS data. This study offers a clinically important lesson for the field as radiographic

	nab-P + Gem	Gem		Disease Recurrence
Subgroup	Events, No./P	atients, No.		or Death, HR (95% CI)
All patients, years	226/432	213/434	H	0.88 (0.729 to 1.063)
Age, years				
< 65	111/221	113/225	⊢ ● <u>⊣</u>	0.80 (0.614 to 1.041)
≥65	115/211	100/209	H H	0.97 (0.739 to 1.270)
Sex				
Female	110/204	93/181	H-OH	0.88 (0.664 to 1.158)
Male	116/228	120/253	H-H	0.88 (0.680 to 1.136)
Region				
North America	75/144	78/156	⊢●┦	0.75 (0.546 to 1.041)
Europe	111/203	101/205	⊢●⊣	0.98 (0.746 to 1.283)
Australia	19/30	10/20		1.05 (0.477 to 2.305)
Asia Pacific	21/55	24/53		0.73 (0.405 to 1.331)
Baseline ECOG PS	,	, = =		
0	130/252	138/268	H	0.89 (0.699 to 1.131)
1	96/180	75/166	i i i i i i i i i i i i i i i i i i i	0.87 (0.635 to 1.185)
Microscopic distance from tumor to the closest margin mm	00/100	70/100		0.07 (0.000 to 1.100)
	79/114	61/112	⊢_	0.95 (0.674 to 1.327)
>1	134/287	136/292	i i i	0.85(0.665 to 1.074)
Pancreas position	10 1/207	100,202		
Head	193/354	179/347	H	0.87 (0.708 to 1.067)
Other	33/78	34/87		0.88 (0.541 to 1.425)
Tumor grade	00,70	04/07		0.00 (0.041 to 1.420)
Wall differentiated	24/40	21/55		1 10 /0 645 to 2 190)
Mederately differentiated	126/264	21/00	'	0.72 (0.540 to 2.180)
Noueralery unrerentiated	130/204	120/241		0.72 (0.559 (0 0.915)
Poorly differentiated and undifferentiated	61/102	50/11/		1.15 (0.798 to 1.670)
Resection status	450/007	450/004		0.00 (0.704 +
RU	156/327	156/334		0.90 (0.724 to 1.130)
R1	/0/105	57/100		0.75 (0.527 to 1.069)
Nodal status				
LN–	46/121	39/122		1.28 (0.837 to 1.970)
LN+	180/311	174/312	HEN	0.80 (0.649 to 0.986)
Level of CA19-9 at baseline				
WNL	170/351	173/345	Hen	0.80 (0.644 to 0.986)
ULN				
< 100 U/mL	48/70	39/81		1.14 (0.735 to 1.760)
≥ 100 U/mL	2/2	1/3		-
•	,			
				
			0.25 0.50 1.00 1.50	2.00

nab-P + Gem Better Gem Better

В

	nab-P + Gem	Gem		
Subgroup	Events, No./Pa	atients, No.		Death, HR (95% CI)
All patients	206/432	221/434	H	0.82 (0.680 to 0.996)
Age, years				
< 65	107/221	116/225	, Her	0.84 (0.644 to 1.092)
≥65	99/211	105/209	F●Ħ	0.80 (0.605 to 1.054)
Sex				
Female	97/204	92/181	H H	0.85 (0.641 to 1.139)
Male	109/228	129/253	⊢ − †	0.80 (0.621 to 1.037)
Region				
North America	69/144	79/156	H H	0.75 (0.539 to 1.037)
Europe	98/203	105/205	. 🍽 .	0.86 (0.650 to 1.129)
Australia	16/30	13/20		0.71 (0.327 to 1.549)
Asia Pacific	23/55	24/53		0.92 (0.517 to 1.635)
Baseline ECOG PS				
0	116/252	132/268		0.91 (0.708 to 1.170)
1	90/180	89/166	⊢ − ⊣	0.70 (0.518 to 0.943)
Microscopic distance from tumor to the closest margin, mm				
<1	63/114	66/112		0.78 (0.548 to 1.100)
≥1	128/287	141/292	F	0.84 (0.660 to 1.066)
Pancreas position	470/054	105/047		0.00 (0.000 + . 4.040)
Head	1/9/354	185/347		0.82 (0.669 to 1.012)
Others	27/78	36/87		0.79 (0.477 to 1.303)
lumor grade	00/40	04/55		
vveil differentiated	20/49	21/55		1.04 (0.547 to 1.974)
Moderately differentiated	120/264	131/241		0.69 (0.540 to 0.890)
Poorly differentiated and undifferentiated	58/102	59/11/		1.13 (0.788 to 1.635)
Resection status	4 45 /007	450/004		0.00 (0.000 + . 4.070)
RU	145/327	159/334		0.86 (0.682 to 1.072)
RI Na latata a	61/105	62/100	T T	0.73 (0.513 to 1.044)
Nodal status	00/404	40/400	, <u> </u>	0.00 (0.000 + . 4.540)
LIN-	39/121	42/122		0.99 (0.638 to 1.542)
	167/311	1/9/312	F-1	0.79 (0.637 to 0.971)
Level of CA 19-9 at baseline	154/051	171/045		0.00 (0.020 += 0.000)
VVINL	154/351	171/345		0.80 (0.639 to 0.990)
ULN	40/70	40/04		0.00 (0.500 + . 4.040)
< 100 U/mL	43/70	49/81	H-H	0.82 (0.538 to 1.243)
2 100 U/mL	2/2	1/3		—
				т
			0 25 0 50 1 00 2 00 4	00
		←		
		nab-P +	Gem Better Gem Be	etter

FIG 3. Forest plot subgroup analysis of DFS and OS. At the primary data cutoff (December 31, 2018), prespecified (A) blinded, independent, centrally reviewed DFS and (B) OS. CA19-9, carbohydrate antigen 19-9; DFS, disease-free survival; ECOG PS, Eastern Cooperative Oncology Group performance status, Gem, gemcitabine; HR, hazard ratio; LN, lymph node; *nab*-P, *nab*-paclitaxel; OS, overall survival; ULN, upper limit of normal; WNL, within normal limits.

postsurgical changes are sometimes difficult to distinguish from local recurrence.

A moderate concordance was observed between assessments of DFS. The discrepancy between the DFS analyses was likely due to the greater proportion of patients censored by independent assessments (48% [nab-paclitaxel + gemcitabine] and 51% [gemcitabine]) versus investigator assessments (35% [nab-paclitaxel + gemcitabine] and 33% [gemcitabine]) and the subsequent difference in number of DFS events (439 v 571 events, respectively). Per the investigator assessment, some patients were considered to have progressive disease and subsequent therapy was initiated. However, patients might not have met the formal radiologic criteria for progression: thus, their data were censored for central review at the time of initiation of subsequent therapy. Among patients who received gemcitabine monotherapy in APACT, the independently assessed median DFS (18.8 months) was longer than the investigator-assessed DFS (13.7 months), a discrepancy similar to those with investigator assessments in the gemcitabine arms of previous trials, including ESPAC-4 (13.4 months) and PRODIGE-24 (12.8 months).^{6,7,11-13} The results presented reflect complexities of accurately defining the recurrence time point. In addition, radiologic review in the absence of clinical context may be suboptimal for recurrence detection in resected PDAC, which represents a limitation of this study and could be considered in future trial designs in the adjuvant setting. Our findings suggest that radiologic data should be supported by clinical assessments (symptomatic deterioration, carbohydrate antigen 19-9 levels, pathology, and second-level diagnostic imaging such as positron-emission tomography). Furthermore, certain areas of recurrence,

TABLE 2.	Safety	(treated	population)
----------	--------	----------	-------------

Grade \geq 3 TEAE ^a	<i>nab</i> -Paclitaxel + Gemcitabine $(n = 429)$, No. (%)	Gemcitabine $(n = 423)$, No. (%)
Patients with ≥ 1 grade ≥ 3 TEAE	371 (86)	286 (68)
Hematologic		
Neutropenia	212 (49)	184 (43)
Anemia	63 (15)	33 (8)
Leukopenia	36 (8)	20 (5)
Febrile neutropenia	21 (5)	4 (1)
Nonhematologic		
Peripheral neuropathy (SMQ)	64 (15)	0
Fatigue	43 (10)	13 (3)
Asthenia	21 (5)	8 (2)
Diarrhea	22 (5)	4 (1)
Hypertension	17 (4)	27 (6)

Abbreviations: SMQ, Standardized Medical Dictionary for Regulatory Activities Queries; TEAE, treatment-emergent adverse event.

^aReported in \geq 5% of patients in either treatment arm by system organ class and preferred term.

such as in the surgical bed and mesenteric nodes, can be difficult to diagnose by imaging alone. These interpretations are consistent with an analysis of multiple ovarian cancer trials with similarly conflicting results.¹⁴ Possible variations in the determination of resection status of patients represent a limitation in this study. Since APACT enrolled patients globally, there was no central pathology review and there might have been regional differences in standards for defining R0 versus R1.

After the initiation of APACT, capecitabine + gemcitabine and modified FOLFIRINOX became category 1-preferred regimens according to National Comprehensive Cancer Network Guidelines.⁸ In the 16-month follow-up analysis, treatment with nab-paclitaxel + gemcitabine resulted in an effect on OS in APACT (HR, 0.82) similar to capecitabine + gemcitabine in ESPAC-4 (HR, 0.82)⁶ and a numerically higher 5-year survival rate (36% with nab-paclitaxel + gemcitabine in APACT and 28% with gemcitabine-capecitabine in ESPAC-4¹⁵); however, these observations are not comparable because of differences in patient selection and subsequent therapy. Interestingly, the secondary end point of the phase II SWOG S1505 trial of perioperative *nab*-paclitaxel + gemcitabine versus modified FOLFIRINOX revealed a greater complete or major pathologic response rate and numerically longer DFS with nab-paclitaxel + gemcitabine specifically in patients undergoing resection.¹⁶ Additional phase II data have suggested activity of perioperative nab-paclitaxel + gemcitabine.17-19 Future studies investigating the impact of metastatic disease on patient response may elucidate the difference seen in DFS and OS.

The safety profile with adjuvant *nab*-paclitaxel + gemcitabine was generally consistent with that established by the phase III MPACT trial and revealed no unexpected AEs; however, some exceptions were noted. In both arms, grade \geq 3 neutropenia was more frequent (49% with *nab*-paclitaxel + gemcitabine; 43% with gemcitabine) than in MPACT (38% with nabpaclitaxel + gemcitabine; 27% with gemcitabine). Although the 15% incidence of grade \geq 3 peripheral neuropathy reported here was consistent with MPACT (17%), peripheral neuropathy in most patients in APACT (84% of those who experienced grade \geq 3 peripheral neuropathy) had not improved to grade ≤ 1 as of the data cutoff for the primary analysis, an unexpected finding. However, 61% of all grade \geq 3 peripheral neuropathy events were resolved at the time of the primary analysis. Incidences of grade \geq 3 leukopenia, thrombocytopenia, and fatigue in the nabpaclitaxel + gemcitabine arm were numerically lower than what was observed in MPACT.⁹ The qualitative differences in safety outcomes may be the greater treatment exposure and duration of taxane-based therapy in APACT compared with the metastatic setting in MPACT. The median duration of treatment in both the nab-paclitaxel + gemcitabine and gemcitabine groups was 24 weeks (approximately 6 months in both groups), whereas the median duration of treatment

2016 © 2022 by American Society of Clinical Oncology

in the MPACT trial was 3.9 months in the *nab*paclitaxel + gemcitabine group and 2.8 months in the gemcitabine group.⁹ The median percentage of protocol doses of gemcitabine was 80% (*nab*-paclitaxel + gemcitabine arm) versus 91% (gemcitabine arm); despite the *nab*paclitaxel + gemcitabine arm receiving fewer doses of gemcitabine, the investigator-assessed DFS and the OS data still supported improved outcomes with *nab*paclitaxel + gemcitabine versus gemcitabine. This leaves two possible explanations: (1) the 11% difference had a negligible impact on outcomes and (2) the addition of *nab*paclitaxel to gemcitabine might have compensated for any potential loss in efficacy from the 11% lower dose of gemcitabine in the combination arm.

The trial did not meet the primary end point; nonetheless, the median OS results in the 5-year follow-up analysis (April

AFFILIATIONS

- ¹University of California, San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
- ²Charité-Universitätsmedizin Berlin. Freie Universität Berlin. Humboldt-
- Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- ³Memorial Sloan Kettering Cancer Center, New York, NY
- ⁴Thomas Jefferson University Hospital, Philadelphia, PA
- ⁵Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- ⁶Integrated Major in Innovative Medical Science, Seoul National
- University Graduate School, Seoul, South Korea
- ⁷Division of Clinical Skills Training, Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
- ⁸Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- ⁹School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- ¹⁰Azienda Ospedaliera Universitaria, Verona, Italy
- ¹¹Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy ¹²Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- ¹³Oregon Health & Science University, Knight Cancer Institute, Portland, OR
 ¹⁴Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, AZ
- ¹⁵Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- ¹⁶IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Rozzano, Milan, Italy
- ¹⁷Division of Hematology/Oncology, Samsung Medical Center,
- Sungkyunkwan University School of Medicine, Seoul, South Korea ¹⁸Division of Hematology/Oncology, Georgetown Lombardi Cancer Center, Washington, DC
- ¹⁹Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
- ²⁰Department of Surgery, Institute of Clinical Medicine, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan ²¹Department of Medical Oncology, St John of God Subiaco Hospital,
- Subiaco, Western Australia, Australia
- $^{\rm 22}{\rm University}$ Hospitals Gasthuisberg/Leuven and KU Leuven, Leuven, Belgium
- ²³Vanderbilt-Ingram Cancer Center, Nashville, TN
- ²⁴Karmanos Cancer Institute, Detroit, MI
- ²⁵Henry Ford Cancer Institute, Detroit, MI
- ²⁶Princess Margaret Hospital, Toronto, Ontario, Canada

9, 2021; 41.8 v 37.7 months [nab-paclitaxel + gemcitabine v gemcitabine, respectively]) provide valuable data pertinent to outcomes with adjuvant therapy in resected PDAC. Secondary analyses suggest that this regimen may provide insight when defining end points for future studies. Collectively, the data reflect the challenges of independent radiologic review without additional pertinent clinical data in this setting, particularly in a patient population highly selected for early-stage disease. Furthermore, nabpaclitaxel + gemcitabine represents an available treatment option for patients who cannot or prefer not to receive modified FOLFIRINOX or gemcitabine + capecitabine. Future analyses of the final OS, quality of life, and biomarker data may further inform management of patients with resected PDAC, particularly regarding the role of nabpaclitaxel + gemcitabine.

- ²⁷Nelune Cancer Center, Prince of Wales Hospital, University of New South Wales, Randwick, New South Wales, Australia
- ²⁸Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), IOB-Quiron, UVic-UCC, Barcelona, Spain
- ²⁹Bristol Myers Squibb, Princeton, NJ
- ³⁰Celgene Research SLU, a Bristol Myers Squibb Company, Boudry, Switzerland
- ³¹Wolfson Wohl Cancer Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- $^{\rm 32} \rm West$ of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
- ³³South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales, Australia
- ³⁴IRCCS Ospedale San Raffaele Vita e Salute University, Milan, Italy

CORRESPONDING AUTHOR

Margaret A. Tempero, MD, Helen Diller Family Comprehensive Cancer Center, 1825 4th St, Fourth Floor, San Francisco, CA 94158; e-mail: mtempero@medicine.ucsf.edu.

PRIOR PRESENTATION

Presented at AACR Special Conference on Pancreatic Cancer: Advances in Science and Clinical Care 2019, Boston, MA, September 5-9, 2019; American Pancreatic Association 2019, Maui, HI, November 6-9, 2019; ASCO 2019, Chicago, IL, June 1-3, 2019; European Society for Medical Oncology World Congress on Gastrointestinal Cancer 2019, Barcelona, Spain, July 3-6, 2019; ASCO 2020, virtual, May 29-31, 2020; ASCO Gastrointestinal Cancers Symposium 2020, San Francisco, CA, January 23-25, 2020; European Society for Medical Oncology Asia Congress 2020, virtual; November 20-22, 2020; and World Congress on Gastrointestinal Cancer 2021, virtual, June 20-July 3, 2021.

SUPPORT

Supported by Bristol Myers Squibb and by Celgene, a Bristol Myers Squibb Company, Princeton, NJ. Professional medical writing and editorial assistance was provided by Narender Dhingra, MBBS, PhD, CMPP, of Meditech Media, Ltd; Aaron Runkle, PhD, CMPP, of Meditech Media, Ltd; and Krystin Tran, PharmD, of Chrysalis Medical Communications LLC and funded by Bristol Myers Squibb. Medical review was supported by Julie Jeanes, Emily Mantovani, Desmond McGovern, Alfredo Romano, David Eardley, and Lotus Yung.

CLINICAL TRIAL INFORMATION

NCT01964430

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Disclosures provided by the authors are available with this article at DOI https://doi.org/10.1200/JC0.22.01134.

DATA SHARING STATEMENT

Data requests may be submitted to Celgene, a Bristol Myers Squibb Company, at https://vivli.org/ourmember/celgene/ and must include a description of the research proposal.

AUTHOR CONTRIBUTIONS

Conception and design: Margaret A. Tempero, Uwe Pelzer, Eileen M. O'Reilly, Chung-Pin Li, Giampaolo Tortora, Armando Santoro, Hanno Riess, Jordan Berlin, Philip Philip, Malcolm Moore, David Goldstein, Josep Tabernero, Mingyu Li, Yvan Le Bruchec, Brian Lu, Andrew V. Biankin, Michele Reni

Financial support: Brian Lu

Administrative support: Uwe Pelzer, Josep Tabernero, Stefano Ferrara, Andrew V. Biankin

Provision of study materials or patients: Uwe Pelzer, Eileen M. O'Reilly, Jordan Winter, Chung-Pin Li, Giampaolo Tortora, Heung-Moon Chang, Charles D. Lopez, Tanios Bekaii-Saab, Andrew H. Ko, Armando Santoro, Joon Oh Park, Giovanni Luca Frassineti, Yan-Shen Shan, Andrew Dean, Eric Van Cutsem, Jordan Berlin, Philip Philip, Malcolm Moore, David Goldstein, Josep Tabernero, Andrew V. Biankin, Michele Reni **Collection and assembly of data:** Margaret A. Tempero, Uwe Pelzer,

Eileen M. O'Reilly, Jordan Winter, Do-Youn Oh, Chung-Pin Li, Giampaolo Tortora, Heung-Moon Chang, Charles D. Lopez, Tanios Bekaii-Saab, Andrew H. Ko, Joon Oh Park, Marcus S. Noel, Giovanni Luca Frassineti, Yan-Shen Shan, Andrew Dean, Hanno Riess, Eric Van Cutsem, Jordan Berlin, Malcolm Moore, David Goldstein, Josep Tabernero, Mingyu Li, Yvan Le Bruchec, Brian Lu, Michele Reni

Data analysis and interpretation: Margaret A. Tempero, Uwe Pelzer, Eileen M. O'Reilly, Jordan Winter, Do-Youn Oh, Chung-Pin Li, Giampaolo Tortora, Charles D. Lopez, Tanios Bekaii-Saab, Andrew H. Ko, Armando Santoro, Marcus S. Noel, Andrew Dean, Hanno Riess, Eric Van Cutsem, Jordan Berlin, Malcolm Moore, David Goldstein, Josep Tabernero, Mingyu Li, Stefano Ferrara, Yvan Le Bruchec, George Zhang, Brian Lu, Andrew V. Biankin, Michele Reni

Manuscript writing: All authors

Final approval of manuscript: All authors

Accountable for all aspects of the work: All authors

ACKNOWLEDGMENT

The authors thank the patients who participated in the study and their family members as well as the investigators and staff who conducted the study. Study and data management were provided by Heidi Marks, Yessenia Cruz-Garcia, Jacqui Farnell, and Wendy Garwood. Biostatistics assistance was provided by Olivia Tian and Juan Shen. The authors are fully responsible for all content and editorial decisions for this manuscript. M.L., S.F., Y.L.B., and B.L. are not currently employed at Bristol Myers Squibb. A list of APACT investigators and sites can be found in Appendix Table A1.

REFERENCES

- 1. World Health Organization: Latest world cancer statistics—GLOBOCAN 2012: Estimated cancer incidence, mortality and prevalence worldwide in 2012. https:// www.iarc.fr/news-events/latest-world-cancer-statistics-globocan-2012-estimated-cancer-incidence-mortality-and-prevalence-worldwide-in-2012/
- Ducreux M, Cuhna AS, Caramella C, et al: Cancer of the pancreas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 26: v56-v68, 2015 (suppl 5)
- 3. National Cancer Institute—Surveillance, Epidemiology, and End Results Program: Cancer Stat Facts: Pancreatic Cancer. 2018. https://seer.cancer.gov/ statfacts/html/pancreas.html
- American Cancer Society: Cancer Facts and Figures. 2018. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annualcancer-facts-and-figures/2018/cancer-facts-and-figures-2018.pdf
- Groot VP, van Santvoort HC, Rombouts SJ, et al: Systematic review on the treatment of isolated local recurrence of pancreatic cancer after surgery; re-resection, chemoradiotherapy and SBRT. HPB (Oxford) 19:83-92, 2017
- Neoptolemos JP, Palmer DH, Ghaneh P, et al: Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): A multicentre, open-label, randomised, phase 3 trial. Lancet 389:1011-1024, 2017
- 7. Conroy T, Hammel P, Hebbar M, et al: FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N Engl J Med 379:2395-2406, 2018
- NCCN Clinical Practice Guidelines in Oncology: Pancreatic Adenocarcinoma. V3.2019. https://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf
 Von Hoff DD, Ervin T, Arena FP, et al: Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369:1691-1703, 2013
- Goldstein D, El-Maraghi RH, Hammel P, et al: nab-Paclitaxel plus gemcitabine for metastatic pancreatic cancer: long-term survival from a phase III trial. J Natl Cancer Inst 107:diu413, 2015
- 11. Neoptolemos JP, Stocken DD, Bassi C, et al: Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: A randomized controlled trial. JAMA 304:1073-1081, 2010
- 12. Oettle H, Post S, Neuhaus P, et al: Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: A randomized controlled trial. JAMA 297:267-277, 2007
- 13. Sinn M, Bahra M, Liersch T, et al: CONKO-005: Adjuvant chemotherapy with gemcitabine plus erlotinib versus gemcitabine alone in patients after R0 resection of pancreatic cancer: A multicenter randomized phase III trial. J Clin Oncol 35:3330-3337, 2017
- 14. Stone A, Gebski V, Davidson R, et al: Exaggeration of PFS by blinded, independent, central review (BICR). Ann Oncol 30:332-338, 2019
- Neoptolemos JP, Palmer DH, Ghaneh P, et al: ESPAC-4: A multicenter, international, open-label randomized controlled phase III trial of adjuvant combination chemotherapy of gemcitabine (GEM) and capecitabine (CAP) versus monotherapy gemcitabine in patients with resected pancreatic ductal adenocarcinoma: Five year follow-up. J Clin Oncol 38, 2020 (suppl 15; abstr 4516)
- 16. Sohal D, Duong MT, Ahmad SA, et al: SWOG S1505: Results of perioperative chemotherapy with mFOLFIRINOX vs gemcitabine/nab-paclitaxel for resectable pancreatic ductal adenocarcinoma. J Clin Oncol 38, 2020 (suppl 15; abstr 4504)
- 17. Sohal D, McDonough S, Ahmad SA, et al: SWOG S1505: Initial findings on eligibility and neoadjuvant chemotherapy experience with mFOLFIRINOX versus gemcitabine/nab-paclitaxel for resectable pancreatic adenocarcinoma. J Clin Oncol 37, 2020 (suppl 4; abstr 414)

- 18. Reni M, Zanon S, Balzano G, et al: A randomised phase 2 trial of nab-paclitaxel plus gemcitabine with or without capecitabine and cisplatin in locally advanced or borderline resectable pancreatic adenocarcinoma. Eur J Cancer 102:95-102, 2018
- 19. Barbour AP, Samra JS, Haghighi KS, et al: The AGITG GAP study: A phase II study of perioperative gemcitabine and nab-paclitaxel for resectable pancreas cancer. Ann Surg Oncol 27:2506-2515, 2020

We are a global community of nearly 45,000 members from more than 150 countries, serving members from all subspecialties and professional roles in the pursuit of quality cancer care and progress. Membership provides the support, resources, and solutions for your professional needs:

- Stay on the cutting edge of scientific research and advances
- Streamline your pursuit of continuous learning
- Access evidence-based and data-driven quality resources
- Obtain insight into best practices for cancer care teams
- Connect and exchange views with oncology experts

To learn more about the value of membership, visit **asco.org/membership**. Not a member? Join today at **join.asco.org**.

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Adjuvant nab-Paclitaxel + Gemcitabine in Resected Pancreatic Ductal Adenocarcinoma: Results From a Randomized, Open-Label, Phase III Trial

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/jco/authors/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Margaret A. Tempero

Honoraria: Novartis, CPRIT, Bluestar Genomics

Consulting or Advisory Role: Bristol Myers Squibb, AbbVie, GlaxoSmithKline, Ipsen, Swedish Orphan Biovitrum, Karyopharm Therapeutics, Merck, Astellas Pharma, BeiGene, Biomea Fusion, BioSapien, Bluestar Genomics, Cend Therapeutics Inc, Debiopharm Group, Geistlich Pharma, Global Bio Access Fund, Jazz Pharmaceuticals, Mirati Therapeutics, Novartis Pharmaceuticals UK

Ltd, ONCOLYTICS, Steba Biotech Research Funding: Celgene, Halozyme, Bristol Myers Squibb/Ono Pharmaceutical, Pharmacyclics

Travel, Accommodations, Expenses: BIOPHARM, Bristol Myers Squibb, Pharmacyclics, PharmaCyte Biotech, AbbVie, GlaxoSmithKline, Merck

Eileen M. O'Reilly

Consulting or Advisory Role: Adicet Bio (I), AstraZeneca, Alnylam (I), Autem Medical (I), BeiGene (I), Berry Genomics (I), CytomX Therapeutics, Eisai (I), Exelixis (I), Genentech/Roche (I), Genoscience Pharma (I), Helio Health (I), Incyte (I), Ipsen, Legend Biotech (I), Merck, Nerviano Medical Sciences (I), QED Therapeutics (I), RedHill Biopharma (I), Yiviva (I), Novartis, Rafael Pharmaceuticals, CytomX Therapeutics, Seattle Genetics, Boehringer Ingelheim, IDEAYA Biosciences, Noxxon Pharma, BioSapien, Thetis Pharma, BioSapien, Cend Therapeutics, Flatiron Health (I)

Research Funding: AstraZeneca/MedImmune (Inst), Celgene (Inst), Genentech (Inst), Roche (Inst), Silenseed (Inst), Arcus Ventures (Inst), BioNTech (Inst), Elicio Therapeutics (Inst), Parker Institute for Cancer Immunotherapy (Inst) Uncompensated Relationships: Thetis Pharma

Do-Youn Oh

Consulting or Advisory Role: AstraZeneca, Novartis, Genentech/Roche, Merck Serono, Bayer, Taiho Pharmaceutical, ASLAN Pharmaceuticals, Halozyme, Zymeworks, Celgene, Basilea, BeiGene, Turning Point Therapeutics, Yuhan, Arcus Biosciences, IQVIA

Research Funding: AstraZeneca, Novartis, Array BioPharma, Lilly, Servier, BeiGene, MSD, Handok

Giampaolo Tortora

Consulting or Advisory Role: Celgene, Merck Serono, MSD Oncology, Bristol Myers Squibb/Celgene, AstraZeneca, Dompé Farmaceutici Travel, Accommodations, Expenses: Merck Serono, Roche

Heung-Moon Chang

Research Funding: Taiho Oncology (Inst), Celgene (Inst), Zymeworks (Inst), Astellas Pharma (Inst)

Charles D. Lopez

Research Funding: Taiho Pharmaceutical, Roche/Genentech (Inst)

Tanios Bekaii-Saab

Consulting or Advisory Role: Amgen (Inst), Ipsen (Inst), Lilly (Inst), Bayer (Inst), Roche/Genentech (Inst), AbbVie, Incyte (Inst), Immuneering, Seattle Genetics (Inst), Pfizer (Inst), Boehringer Ingelheim, Janssen, Eisai, Daiichi Sankyo/UCB Japan, AstraZeneca, Exact Sciences, Natera, Treos Bio, Celularity, SOBI, BeiGene, Foundation Medicine, Arcus Biosciences (Inst), Stemline

Therapeutics, Kanaph Therapeutics, Deciphera, Illumina, Foundation Medicine **Patents, Royalties, Other Intellectual Property:** Patent WO/2018/183488, Patent WO/2019/055687

Other Relationship: Exelixis, Merck (Inst), AstraZeneca, Lilly, Pancreatic Cancer Action Network, FibroGen, Suzhou Kintor Pharmaceuticals, 1Globe Health Institute, Imugene, Xilis, Replimune, Sun Biopharma, UpToDate

Open Payments Link: https://openpaymentsdata.cms.gov/physician/636276

Andrew H. Ko

Honoraria: Research to Practice, Clinical Care Options, Medscape, BioAscent, MJH Life Sciences, Gerson Lehrman Group

Consulting or Advisory Role: ERYTECH Pharma, Imugene, SynCoreBio, Roche/Genentech, Ipsen, Five Prime Therapeutics, Tyme, Turning Point Therapeutics, Signatera, Syros Pharmaceuticals

Speakers' Bureau: Clinical Care Options

Research Funding: Celgene (Inst), Merck (Inst), Genentech/Roche (Inst), Bristol Myers Squibb (Inst), AbGenomics International (Inst), Apexigen (Inst), Astellas Pharma (Inst), Leap Therapeutics (Inst), BioMed Valley Discoveries (Inst), CrystalGenomics (Inst)

Armando Santoro

Consulting or Advisory Role: Bristol Myers Squibb, Servier, Gilead Sciences, Pfizer, Eisai, Bayer, MSD, Sanofi, ARQULE, Incyte

Speakers' Bureau: Takeda, Roche, AbbVie, Amgen, Celgene, AstraZeneca, ArQule, Lilly, Sandoz, Novartis, BMS, Servier, Gilead Sciences, Pfizer, Eisai, Bayer, MSD

Joon Oh Park

Consulting or Advisory Role: Celgene, Merck Serono, Servier, AstraZeneca, MediRama

Research Funding: Celgene, MedPacto, Servier, ABL Bio, Eutilex

Marcus S. Noel

Consulting or Advisory Role: Celgene, Taiho Pharmaceutical, Ipsen Speakers' Bureau: Taiho Pharmaceutical, Celgene, Daiichi Sankyo/Astra Zeneca

Andrew Dean

Stock and Other Ownership Interests: A2A Pharmaceuticals Honoraria: Amgen Travel, Accommodations, Expenses: Novartis, Juniper Biologics

Uncompensated Relationships: A2A Pharmaceuticals

Hanno Riess

Leadership: Bayer, BMS GmbH & Co KG, Mylan, Boehringer Ingelheim Speakers' Bureau: Bayer, BMS GmbH & Co KG

Eric Van Cutsem

Consulting or Advisory Role: Bayer, Lilly, Roche, Servier, Bristol Myers Squibb, Merck Sharp & Dohme, Merck KGaA, Novartis, AstraZeneca, Array BioPharma, Daiichi Sankyo, Pierre Fabre, Taiho Pharmaceutical, Incyte, Astellas Pharma, GlaxoSmithKline, Nordic Group, Pfizer, Takeda, ALX Oncology, AbbVie, BeiGene, Boehringer Ingelheim, Mirati Therapeutics, Seattle Genetics, TERUMO, Zymeworks, Ipsen

Research Funding: Amgen (Inst), Bayer (Inst), Boehringer Ingelheim (Inst), Lilly (Inst), Novartis (Inst), Roche (Inst), Ipsen (Inst), Merck (Inst), Merck KGaA (Inst), Servier (Inst), Bristol Myers Squibb (Inst)

Jordan Berlin

Consulting or Advisory Role: Bayer Health, QED Therapeutics, Ipsen, Mirati Therapeutics, Insmed, Oxford BioTherapeutics, Merck KGaA, BioSapien Research Funding: Bayer (Inst), Incyte (Inst), Karyopharm Therapeutics (Inst), EMD Serono (Inst), Boston Biomedical (Inst), PsiOxus Therapeutics (Inst), Pfizer (Inst), Lilly (Inst), Dragonfly Therapeutics (Inst), AbbVie (Inst), I-MAB (Inst), Astellas Pharma (Inst), Atreca (Inst), Day One Biopharmaceuticals (Inst), Bristol Myers Squibb/Celgene (Inst), Sumitomo Dainippon Pharma Oncology (Inst), 23andMe (Inst), Totus Medicines (Inst), Tyra Biosciences (Inst) Other Relationship: Novocure, Pancreatic Cancer Action Network, Karyopharm

Therapeutics, AstraZeneca

Philip Philip

Honoraria: Celgene, Bayer, Ipsen, Merck, AstraZeneca, TriSalus Life Sciences, Blueprint Medicines, SynCoreBio, Incyte, Bristol Myers Squibb/Medarex, Guardant Health, Rafael Pharmaceuticals, Daiichi Sankyo/Astra Zeneca

Consulting or Advisory Role: Celgene, Ipsen, Merck, TriSalus Life Sciences, Daiichi Sankyo, SynCoreBio, Taiho Pharmaceutical

Speakers' Bureau: Celgene, Bayer, Ipsen, Novartis, Incyte, Bristol Myers Squibb/Medarex

Research Funding: Bayer (Inst), Incyte (Inst), Karyopharm Therapeutics (Inst), Merck (Inst), Taiho Pharmaceutical (Inst), Momenta Pharmaceuticals (Inst), Novartis (Inst), Plexxikon (Inst), Immunomedics (Inst), Regeneron (Inst), Genentech (Inst), TYME (Inst), Caris Life Sciences (Inst), ASLAN Pharmaceuticals (Inst), QED Therapeutics (Inst), Halozyme (Inst), Boston Biomedical (Inst), Advanced Accelerator Applications (Inst), Lilly (Inst), Merus

(Inst) Travel, Accommodations, Expenses: Rafael Pharmaceuticals, Celgene, AbbVie Uncompensated Relationships: Rafael Pharmaceuticals, Caris MPI

David Goldstein

Honoraria: Sun Biopharma, Boehringer Ingelheim, AstraZeneca

Consulting or Advisory Role: Sun Biopharma, Seattle Genetics, AstraZeneca, Boehringer Ingelheim

Research Funding: Amgen (Inst), Pfizer (Inst), Celgene (Inst), Bayer (Inst), Zucero Therapeutics (Inst), Bristol Myers Squibb (Inst)

Josep Tabernero

Stock and Other Ownership Interests: Oniria Therapeutics

Consulting or Advisory Role: Bayer, Boehringer Ingelheim, Lilly, MSD, Merck Serono, Novartis, Sanofi, Taiho Pharmaceutical, Peptomyc, Chugai Pharma, Pfizer, Seattle Genetics, Array BioPharma, AstraZeneca, Genentech, Menarini, Servier, HalioDx, F. Hoffmann LaRoche, Mirati Therapeutics, Pierre Fabre, Tessa Therapeutics, TheraMyc, Daiichi Sankyo, Samsung Bioepis, IQvia, Ikena Oncology, Merus, NeoPhore, Orion Biotechnology, Hutchison MediPharma, Scandion Oncology, Ona Therapeutics, SOTIO, Inspirna, Scorpion Therapeutics Other Relationship: Medscape, MJH Life Sciences, PeerView, Physicians' Education Resource, Imedex/HMP

Mingyu Li

Employment: Ascentage Pharma

Stock and Other Ownership Interests: Bristol Myers Squibb/Celgene, Ascentage Pharma

Stefano Ferrara

Employment: SOTIO, BeiGene AG, Bristol Myers Squibb/Celgene/Juno (I) Stock and Other Ownership Interests: BeiGene

George Zhang

Employment: Bristol Myers Squibb/Celgene Stock and Other Ownership Interests: Bristol Myers Squibb/Celgene

Brian Lu

Employment: Bristol Myers Squibb/Celgene Stock and Other Ownership Interests: Bristol Myers Squibb/Celgene

Andrew V. Biankin

Employment: AstraZeneca/MedImmune, BMSi Leadership: Cambridge Cancer Genomics, Concr, Wollemia Oncology, Gabriel Precision Oncology, Cumulus Oncology

Stock and Other Ownership Interests: Cumulus Oncology, Modulus Oncology, Wollemia Oncology, Concur, Cambridge Cancer Genomics, Gabriel Precision Oncology, Humans.ai

Honoraria: Havas Lynx Group

Consulting or Advisory Role: AstraZeneca/MedImmune

Speakers' Bureau: Celgene

Research Funding: Celgene (Inst), AstraZeneca/MedImmune (Inst) Patents, Royalties, Other Intellectual Property: Agilent Technologies—Royalty payments to Institute (University of Glasgow)

Michele Reni

Consulting or Advisory Role: Celgene, Lilly, AstraZeneca, Panavance Therapeutics, Viatris, SOTIO, Servier, MSD/AstraZeneca Research Funding: Celgene (Inst), AstraZeneca (Inst) Travel, Accommodations, Expenses: Celgene Other Relationship: Celgene, AstraZeneca

No other potential conflicts of interest were reported.

APPENDIX

TABLE A1. List of APACT Investigators and Sites	
---	--

Country	Site Name	Principal Investigator
Australia	Prince of Wales Hospital	David Goldstein
	St Vincent's Hospital Sydney	Richard Epstein
	Icon Cancer Care South Brisbane	Paul Vasey
	Cabrini Hospital Malvern	Jeremy Shapiro
	Royal Brisbane & Women's Hospital	Matthew Burge
	The Canberra Hospital	Yu Jo Chua
	Monash Medical Center— Moorabbin Campus	Marion Harris
	Northern Cancer Institute, St Leonards	Nick Pavlakis
	St John of God Hospital Subiaco	Andrew Dean
	Austin Hospital	Niall Tebbutt
Austria	Medizinische Universität Wien	Gerald Prager
	Kaiser-Franz-Josef Spital	Christian Dittrich
	Landesklinikum Wiener Neustadt	Friedrich Längle
	Universitätsklinikum Innsbruck	Kathrin Philipp- Abbrederis
	Salzburg Cancer Research Institute	Richard Greil
	Medizinische Universität Graz	Herbert Stöger
	A O Krankenhaus der Elisabethinen	Michael Girschikofsky
	Klinikum Wels-Grieskirchen GmbH	Thomas Kuehr
Belgium	UZ Leuven	Eric Van Cutsem
	Hôpital Erasme	Jean-Luc Van Laethem
	UZ Gent	Stéphanie Laurent
Canada	Princess Margaret Hospital	Neesha Dhani
	Sunnybrook Health Sciences Center Odette Cancer Centre	Yoo Joung Ko
	Tom Baker Cancer Centre	Scot Dowden
	Sir Mortimer B Davis Jewish General Hospital	Petr Kavan
	CHUM—Pavillon Asselin	Mustapha Édouard Tehfe
	Princess Margaret Hospital	Malcolm Moore
Czech Republic	Fakultni nemocnice Hradec Kralove	Eugen Kubala
	Krajska nemocnice T. Bati a.s.	Milan Kohoutek
Denmark	Odense Universitetshospital	Per Pfeiffer
	Aalborg Universitetshospital	Mette Yilmaz
	Herlev Hospital	Vibeke Parner
Finland	Tampereen Yliopistollinen Sairaala	Tapio Salminen
	Helsingin Yliopistollinen Keskussairaala	Leena-Maija Soveri
	Turun Yliopistollinen Keskussairaala	Eija Korkeila
	Tempere University Hospital; Karolinska Institutet/University Hospital	Pia Osterlund
	(continued in next column)	

TABLE A1.	List of APACT	Investigators and	Sites	(continued)
TABLE A1.	List of APACT	Investigators and	Sites	(continued	

France	Hôpital Européen Georges Pompidou	Julien Taieb
	CHRU de Poitiers La Miletrie	David Tougeron
	Hopital prive Jean Mermoz	Pascal Artru
	CHU Angers	François Xavier Caroli-Bosc
	Hôpital de Rangueil—PPDS	Rosine Guimbaud
	CHRU Lille	Antony Turpin
	Groupement Hospitalier Edouard Herriot	Thomas Walter
	Groupe Hospitalier Pitié Salpétrière	Jean Baptiste Bachet
Germany	Universitätsklinikum Würzburg	Volker Kunzmann
	Universitätsklinikum Tübingen	Florian Kreth
	Charité—Universitätsmedizin Berlin	Uwe Pelzer
	Universitätsklinikum Hamburg Eppendorf	Andreas Block
	Universitätsklinik Magdeburg	Marino Venerito
	Praxis für Innere Medizin Droettle Helmut	Helmut Oettle
	Klinikum Neuperlach	Meinolf Karthaus
	Universitätsklinikum Frankfurt	Jörg Trojan
	Universitätsklinikum Carl Gustav Carus an der TU Dresden	Gunnar Folprecht
	Universitätsmedizin Greifswald	Markus Lerch
	Klinikum Weiden	Frank Kullmann
	Praxis Internistischer Onkologie und Hämatologie Köln	Marcel Reiser
	LMU Klinikum der Universität München	Volker Heinemann
	Universitätsmedizin der Johannes Gutenberg—Universität Mainz	Marcus-Alexander Wörns
	Praxis Internistischer Onkologie und Hämatologie Frechen	Holger Schulz
	Charité-Universitätsmedizin Berlin	Hanno Riess
	Otto von Guericke University	Benjamin Garlipp
Hong Kong	Queen Mary Hospital	Thomas Yau
	Prince of Wales Hospital	Lam Stephen Chan
Hungary	Debreceni Egyetem Klinikai Kozpont	Balazs Juhasz
	Uzsoki Utcai Kórház	László Landherr
	Petz Aladár Megyei Oktató Kórház	Tamas Pinter
	Del-pesti Centrumkorhaz— Orszagos Hematologiai és Infektologiai Intezet	György Bodoky
	Szegedi Tudomanyegyetem Szent- Gyorgyi Albert Klinikai Kozpont	Zsuzsanna Kahán
Ireland	St Vincent's University Hospital	Raymond McDermott

© 2022 by American Society of Clinical Oncology

TABLE A1. Lis Country	t of APACT Investigators and Sit Site Name	es (continued) Principal Investigator	TABLE A1. Lis Country	st of APA
Italy	Azienda Ospedaliera Universitaria Integrata Di Verona	Giampaolo Tortora		Hospita Roci
	Ospedale San Raffaele S.r.I.—PPDS	Luca Gianni		Hospita Octu
	ASST Grande Ospedale	Salvatore Siena		CHUS
	Metropolitano Niguarda— Presidio Ospedaliero Ospedale Niguarda Ca' Granda			Hospita Greg
	Istituto Nazionale Tumori Regina Elena	Michele Milella		Comple Hospita
	Azienda Ospedaliero Universitaria Pisana	Alfredo Falcone		Mala ICO I'H
	Azienda Ospedaliero Universitaria Ospedali Riuniti Umberto I-G.M. Lancisi-G. Salesi	Rossana Berardi		Reyr Hospita Valde
	Istituto Clinico Humanitas	Armando Santoro		Hospita
	Fondazione Policlinico Universitario A Gemelli	Cinzia Bagalà		Vall d'H and
	Azienda Ospedaliera Universitaria Careggi	Francesco Di Costanzo	Taiwan	Taichu Hosp
	Azienda Ospedaliera S Maria Di Terni	Fausto Roila		Nationa Tri-Sen
	Azienda Ospedaliero Universitaria Di Bologna—Policlinico S Orsola	Andrea Ardizzoni		Taipei
	Malpighi			Chang Linko
	Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori IRST	Giovanni Luca Frassineti		Nationa
	Ospedale Casa Sollievo Della Sofferenza IRCCS	Evaristo Maiello	United Kingdom	Univers
	Arcispedale Santa Maria Nuova	Silvia Fanello		Addept
	IRCCS Ospedale San Raffaele	Michele Reni		Addent
Republic of	Asan Medical Center—PPDS	Heung-Moon Chang	United States	Univers
Korea	Seoul National University Hospital	Do-Youn Oh	United States	Fran
	Samsung Medical Center, Sungkyunkwan University	Joon Oh Park		Vander Cente
The Netherlands	Academisch Medisch Centrum Amsterdam	Johanna Wilmink		Seattle SCRI T
	Isala Klinieken	Jan Willem de Groot		Nash
	Catharina Hospital	Geert Creemers		Com
Portugal	Centro Hospitalar de Lisboa Central	Eduardo Barroso		Univers
	Hospital da Luz	Tânia Rodrigues		Northsi
	Centro Hospitalar de Sao Joao EPE	Cristina Sarmento		Memor
Singapore	National University Hospital	Cheng Ean Chee		Cente
01.1	National Cancer Centre	David Tai		Karmar
Spain	Hospital Universitario Vall d'Hebron—PPDS	Teresa Macarulla Mercade		Univers Medi
	Hospital Universitario HM	Manuel Hidalgo		Univers
	Sanchinarro—CIOCC Hospital Universitario Ramon y	Medina Alfredo Carrato Mena		Univers Cente
	Cajal			Univers
	Hospital Clinic de Barcelona	Joan Maurel Santasusana		NYU La
	(continued in next column)			(0

TABLE A1. List of APACT Investigators and Sites (continued)CountrySite NamePrincipal Investigator

	Hospital Universitario Virgen del Rocio	Maria Jose Flor Oncala
	Hospital Universitario 12 de Octubre	Carlos Gomez Martin
	CHUS – H. Clinico U. de Santiago	Rafael Lopez
	Hospital General Universitario Gregorio Marañon	Andres Muñoz
	Complejo Hospitalario de Navarra	Ruth Vera Garcia
	Hospital Regional Universitario de Malaga—Hospital General	Inmaculada Ales
	ICO l'Hospitalet—Hospital Duran i Reynals	Berta Laquente Sáez
	Hospital Universitario Marques de Valdecilla	Fernando Rivera
	Hospital Clinico San Carlos	Javier Sastre
	Vall d'Hebron University Hospital and Institute of Oncology (VHIO)	Josep Tabernero
aiwan	Taichung Veterans General Hospital	Cheng-Chung Wu
	National Taiwan University Hospital	Yu-Wen Tien
	Tri-Service General Hospital	De-Chuan Chan
	Taipei Veterans General Hospital	Chung-Pin Li
	Chang Gung Memorial Hospital, Linkou	Tsann-Long Hwang
	National Cheng Kung University Hospital	Yan-Shen Shan
Jnited	University of Glasgow—PPDS	Jeffry Evans
Kingdom	Weston Park Hospital	Jonathan Wadsley
	Addenbrooke's Hospital	Pippa Corrie
	University of Glasgow	Andrew Biankin
United States	University of California San Francisco	Andrew Ko
	Vanderbilt University Medical Center	Dana Cardin
	Seattle Cancer Care Alliance	Elena Chiorean
	SCRI Tennessee Oncology Nashville	Johanna Bendell
	Ohio State University Comprehensive Cancer Center	Anne Noonan
	University of Chicago	Hedy Kindler
	Northside Hospital	Nishan Fernando
	Memorial Sloan Kettering Cancer Center	Eileen M. O'Reilly
	Karmanos Cancer Institute	Philip Philip
	University of Texas Southwestern Medical Center	Muhammad Beg
	University of Florida	Thomas George
	University of Rochester Medical Center	Marcus Noel
	University of Wisconsin	Noelle LoConte
	NYU Langone Medical Center	Francis Arena
	Thomas Jefferson University	James Posey
	(continued on following page))

Country

Country		Site Name	Principal Investigator
TABLE A1.	List of APACT	Investigators and	Sites (continued)

iy	Site Maille	Thicipal investigator
	Thomas Jefferson University	Jordan Winter
	Illinois Cancer Specialists (Niles)—USOR	Rajat Malhotra
	Oregon Health and Science University	Charles Lopez
	Cleveland Clinic	Davendra Sohal
	Mayo Clinic—PPDS	Robert McWilliams
	Lynn Cancer Institute	Warren Brenner
	SCRI Tennessee Oncology Chattanooga	Mark Womack
	State University of New York Upstate Medical Center (SUNY)	Rahul Seth
	Roswell Park Cancer Institute	Renuka lyer
	UPMC Cancer Pavillion	Nathan Bahary
	NorthShore University HealthSystem Research Institute	Robert Marsh
	Ochsner Cancer Institute	Robert Ramirez
	Oncology Hematology Care Inc	Cynthia Chua
	SCRI Florida Cancer Specialists South	James Reeves
	Columbia University Medical Center	Gulam Manji
	University of Southern California	Anthony El-Khoueiry
	SCRI Florida Cancer Specialists South	Robert Weaver
	University of Michigan	Vaibhav Sahai
	University of Colorado	Wells Messersmith
	University of Virginia	Robert Dreicer
	Florida Hospital Cancer Institute	Ahmed Zakari
	Beth Israel Deaconess Medical Center	Andrea Bullock
	(continued in next column)	

TABLE A1. List of APACT Ir	stigators and Sites (continued)
----------------------------	---------------------------------

LISU	Site Name	Principal Investigator
	Baylor College of Medicine	Benjamin Musher
_	Mayo Clinic Arizona—PPDS	Mitesh Borad
	The Regents of the University of California	Edward Kim
_	Case Western University	David Bajor
_	Methodist Cancer Center	Tim Huyck
	University of Oklahoma Peggy and Charles Stephenson Cancer Center	Hassan Hatoum
	The Center for Cancer and Blood Disorders	Henry Xiong
	Wake Forest University School of Medicine	Boris Pasche
_	Yale University School of Medicine	Jill Lacy
	University of Cincinnati	Olugbenga Olowokure
	Rocky Mountain Cancer Centers (Williams)—USOR	Allen Cohn
	Texas Oncology (Loop)—USOR	Donald Richards
	University of Louisville	Robert Martin
_	Baylor Sammons Cancer Center	Andrew Paulson
_	University of California San Diego	Paul Fanta
	University of California, San Francisco; Helen Diller Comprehensive Cancer Center	Margaret A. Tempero
_	Mayo Clinic Cancer Center	Tanios Bekaii-Saab
_	Vanderbilt-Ingram Cancer Center	Jordan Berlin
	Cleveland Clinic	Smitha Krishnamurthi
_	Columbia University Medical Center	Paul Oberstein
	Ochsner Clinic Foundation	Jyotsna Fuloria