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Purpose: Our team previously identified the presence of five corneal resonant
frequency (RF) peaks in healthy volunteers using vibrational optical coherence tomog-
raphy (VOCT). Prior studies have suggested that the ≤100 Hz RF peak represents the
cellular element of tissue. The aim of this study was to confirm that this peak reflects the
human corneal cellular component using VOCT and histological analysis.

Methods: Two human research globes were obtained from the same donor, and VOCT
measurements were collected from the full-thickness corneas. A microkeratome was
then used to create serial-free corneal caps from each cornea, with VOCT performed
on the residual stromal bed after each excision. All lamellar sections from both globes
were sent for histological analysis to determine cellularity. Cell counts on the specimens
were performed by two independent observers.

Results: The average of the normalized ≤100 Hz peak values before lamellar section-
ing was significantly higher than the average of this peak values after the first, second,
and third cuts (P = 0.023), which was 33.9% less than before any cuts. The cell count
values in the first slice were significantly higher than the average cell count values of the
three deeper slices (P< 0.001), and the cell count dropped 84.4% after the first slice was
removed.

Conclusions:Thefindingsof this study suggest that the≤100Hz corneal peak identified
by VOCT corresponds to the cellular component of the cornea.

Translational Relevance: This work furthers our understanding of the origin of the
corneal ≤100 Hz peak identified using VOCT.

Introduction

Conditions associated with altered corneal biome-
chanics include keratoconus and other ectasias,1,2
refractive surgery,3 alkali burn,4 and glaucoma.5
Various diagnostic modalities are available to measure
corneal biomechanics in vivo including Ocular

Response Analyzer (Reichart Ophthalmic Instru-
ments, Buffalo, NY, USA) and Corneal Visualiza-
tion Scheimpflug Technology (Corvis ST; Oculus
Optikgeräte GmbH, Wetzlar, Germany).6 Although
these two devices are currently widely marketed and
used, their measurements vary according to charac-
teristics of adjacent tissues such as anterior chamber
volume, aqueous humor movement, iris and lens
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tvst.arvojournals.org | ISSN: 2164-2591 1

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Downloaded from tvst.arvojournals.org on 05/05/2023

mailto:zsyed@willseye.org
https://doi.org/10.1167/tvst.12.4.11
http://creativecommons.org/licenses/by-nc-nd/4.0/


VOCT Corneal Cellular Peak TVST | April 2023 | Vol. 12 | No. 4 | Article 11 | 2

anatomy, and intraocular pressure fluctuation.7–12
Additional technology that can measure corneal
biomechanical properties include magnetic resonance
elastography, optical coherence elastography, and
Brillouin optical microscopy.13–16 Among ex vivo
methods, the most widely used to measure stress-strain
behavior is corneal strip extensometry.17–19

Vibrational optical coherence tomography (VOCT)
is a noninvasive and nondestructive device that
measures resonant frequency (RF) and the elastic
modulus of the components of tissue under exami-
nation. VOCT has been used to measure the biome-
chanical (including elastic and viscous) properties of
different materials.20–24 A spectrum of audible sound
waves is used to vibrate tissue in conjunction with
simultaneous imaging by optical coherence tomog-
raphy (OCT).20,25–29 Through the OCT, an infrared
light detects the tissue displacement and measures the
RF,25–28 which is the frequency at which the maximum
displacement is achieved.20,23,24 Our team recently
published findings from the in vivo use of VOCT to
evaluate corneas of healthy human volunteers and 5
RF peaks were identified.30 This pilot study demon-
strated that the first peak noted in the lowest frequency
range of ≤100 Hz had a mean RF of 73.5 ± 4.9 Hz in
the central cornea and a mean RF of 72.1 ± 6.3 Hz in
the inferior cornea.30

Previous studies have suggested that the RF of
the cellular component of skin is similarly ≤100
Hz.21,22,31–35 Based on prior literature, we hypothesize
that the ≤100 Hz peak in human corneas corresponds
to their cellular component. In this study, we confirm
this speculation using VOCT and histology of lamellar
sections and emphasize the utility of VOCT as a novel
technology to characterize corneal biomechanics.

Methods

This prospective studywas performed in compliance
with theHealth Insurance Portability andAccountabil-
ity Act (HIPAA), adhered to the tenets of the Declara-
tion of Helsinki, and was approved by the Wills Eye
Hospital Institutional Review Board.

Acquisition and Preparation of Globes

Two human globes from the same donor were
obtained for research purposes (Eversight, Ann Arbor,
MI, USA). The globes were from a 70-year-old
Caucasian female. The time from death to preservation
was 18 hours, and the globes were received by our facil-
ity 45 hours after death. The patient had no history of
ocular disease (including keratoconus and glaucoma)
or any prior ocular surgeries.

Figure 1. Schematic representation of the VOCT technique. Sound
waves are produced by the speaker (approximately 1–2 inches away
from the cornea for this experiment) and causes displacement of the
corneal tissue, which is detected through OCT using infrared light. A
photographof themachine’s setuphas beenpreviously published.30

Immediately on the arrival of the paired fresh
globes, each was placed in the orbital cavity of a
mannequin head according to its original anatomical
orientation. The intraocular pressure was monitored
with a Tonopen (Reichert Technologies, Buffalo, NY,
USA) and maintained at 15 to 20 mm Hg through an
intravitreal injection of balanced saline solution at the
temporal pars plana with a 30-gauge needle.

VOCTMeasurements

The VOCT measurements were collected from the
full thickness corneas of each globe after fixating
the globes in a mannequin head in front of the
VOCT device such that the acoustic Bluetooth speaker
(EWA A106 Pro; J.Y.M. Digital Technology Co., Ltd,
Shenzhen, Guangdong, China) and OCT (Lumedica
Inc., Durham, NC, USA) measured the central cornea
of the globes without direct contact. We scanned each
eye at the center of the cornea, because we recognize
that corneal thickness and collagen density and distri-
bution may differ between the central and peripheral
cornea.

Figure 1 illustrates a simplified schematic repre-
sentation of the VOCT device and procedure. The
technique for VOCT measurements of the donor
globes was similar to that previously described for
human subjects,30 which uses a Bluetooth speaker
capable of producing audible driving frequencies
between 30 and 250 Hz at an amplitude of 55 decibels
that cause displacement of tissue components under
examination. This displacement is then detected by a
spectral-domain OCT system (operating in A-mode)
using infrared light (840 nm). The RF is obtained by
noting the frequency at which the maximum tissue
displacement is achieved and is dependent on the
material thickness.20,23,24

Downloaded from tvst.arvojournals.org on 05/05/2023



VOCT Corneal Cellular Peak TVST | April 2023 | Vol. 12 | No. 4 | Article 11 | 3

Figure 2. Schematic model of cell count analyses. (A) Each lamellar slice was sectioned to sample the central 1 mm of tissue (black dotted
lines), and four levels within each 1mm section (red dotted lines) were analyzed. Representative histological images from the first (B), second
(C), third (D), and fourth (E) lamellar slices. Asterisk indicates the epithelium; arrowhead indicates the Bowman membrane; arrow indicates
(B) the keratocyte; and arrow indicates (E) the Descemet membrane (hematoxylin-eosin stain; magnification × 100).

Lamellar Corneal Sectioning

A Moria Evolution 3 unit (Moria, Antony, France)
with a Carriazo Barraquer (CB) single-use microker-
atome 110 head, CBm turbine, and suction ring were
used to create free corneal caps from each cornea of the
paired globes. Each lamellar slice was approximately
110 μm in thickness. The CB microkeratome head was
screwed into the turbine. The metallic suction ring was
centered on the corneal-scleral junction, allowing the
microkeratome blade to enter the cornea. The vacuum
was initiated to stabilize the globe during the passage of
the microkeratome blade through the cornea. The foot
pedal was engaged while allowing the microkeratome
head to move in a single consistent motion to complete
the pass in approximately five seconds.

A central corneal 8 mm diameter free lamellar cap
was created and submitted for histological study. After
removing the suction ring, the intraocular pressure
was adjusted as described previously. After removal
of the first lamellar cap, VOCT measurements were
performed on the remaining corneal stromal bed. This
process was repeated to create the second and third
lamellar caps. The fourth corneal cap was the last
created for both globes as the anterior chamber was
entered during passage of the blade.

Cellular Count Measurements

After lamellar corneal sectioning, each slice was
fixed in 10% buffered formaldehyde. Sections of
5 μm thickness were prepared from the routinely
processed paraffin-embedded tissues. Figure 2 presents

a schematic model of histological analyses. Each
cornea was submitted as four distinct lamellae as
described above. All slices were sectioned sequen-
tially from their nasal to temporal margins, sampling
the central 1 mm of corneal tissue at step levels
(Fig. 2A). One hundred eighty sections were stained
with hematoxylin-eosin and examined. Corneal epithe-
lium, Bowman layer, stroma, and Descemet membrane
were morphologically unremarkable. Corneal endothe-
lium was artifactitiously denuded, which was likely
secondary to manipulation during lamellar segmen-
tation and during orientation and sectioning for
pathology. Less likely, but it is also possible that
some endothelial cell loss occurred during the inter-
val between time of death to fixation. Representative
stained sections sampling four 200 to 250 μm levels
in the central 1 mm of each slice were scanned
with MoticEasyScan virtual slide scanner (Motic
Digital Pathology, Vancouver, Canada) and displayed
via Aperio ImageScope viewer (Leica Biosystems,
Nussloch, Germany).

Corneal epithelial and stromal keratocyte cell counts
were performed by two independent observers (T.M.,
O.G.G.) on four representative levels from the 1 mm
central cross-section of each slice (Figs. 2B–E), and
counts were averaged for each slice.

Statistical Analysis

Descriptive statistics were used for VOCT and
histological results, and Student’s t-tests were used to
identify significant differences between the samples.
P values < 0.05 were considered to be statistically
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significant. Data were analyzed using Microsoft Excel
(Microsoft Inc., Redmond, WA, USA).

Results

Analysis of VOCTMeasurements in Lamellar
Slices

When the donor corneas were evaluated using
VOCT prior to lamellar sectioning, the 5 previously-
published peaks were observed (Figs. 3, 4).30 We
focused on the peakwith aRFof ≤100Hz and normal-
ized the VOCT data in each examination by dividing
the height of each peak value by the peak with the
highest weighted displacement.Weighted displacement
accounts for corrections to the peaks after speaker
vibrations without a sample present are removed from
the raw data. The peak heights will vary depending on
the speaker distance from the cornea and exact angle
of the speaker, and these differences are corrected by
normalization.

As presented in Table 1, after data normalization
the value of the ≤100 Hz peak was 1.0 in both globes
before lamellar sectioning. The peak dropped to 0.552
and 0.764 after cutting the first lamellar slice, 0.538 and
0.500 after cutting the second lamellar slice, and 0.636
to 0.975 after cutting the third lamellar slice.

The average normalized ≤100 Hz peak value before
lamellar sectioning was significantly higher than the
average of this peak’s values after the first, second, and

third cuts (1.0 vs. 0.661, P = 0.023), and the ≤100 Hz
peak decreased 33.9% after the first lamellar cut. None
of the other four preidentified corneal peaks30 showed
a statistically significant decrease after the first lamel-
lar cut (P > 0.05 for all). The diminution of the ≤100
Hz peak after removal of the most superficial layer is
demonstrated in the right globe in Figure 3 and left
globe in Figure 4.

Cellular Counts in Individual Corneal Layers

Averaging the measurements obtained by two
observers using four levels of each tissue specimen from
two globes, the average cell count measured for the first
lamellar section was 276.5 ± 10.3, which consisted of
an average of 203.6 epithelial cells and 72.9 kerato-
cytes. The second, third, and fourth slices had average
cell counts of 49.5 ± 1.5, 48.3 ± 7.4, and 31.5 ± 5.6,
respectively. As described above, endothelial cells were
artifactitiously denuded and thus not included in the
count. Table 2 details the cell count values from each
slice for the two globes.

The mean epithelial cell and keratocyte cell counts
obtained by the two observers in the most superfi-
cial slice were compared with the mean keratocyte cell
count values of the other three slices. The average
cell count values in the first slice were significantly
higher than the average cell count values of the three
deeper slices (276.5 vs. 43.1, P < 0.001), and the cell
count dropped 84.4% after the first cut. Given that the
reduction in the ≤100 Hz peak corresponded to the

Figure 3. Frequency versus weight displacement for the right donor globe before and after each lamellar section.
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Figure 4. Frequency versus weight displacement for the left donor globe before and after each lamellar section.

Table 1. Normalized Values for the ≤100 Hz Peak
Before and After Lamellar Sectioning

Peak 1

Resonant
Frequency

(Hz)

Normalized
Peak 1 Value
Right Globe

Normalized
Peak 1 Value
Left Globe

Average
(P = 0.023)

Before cuts ≤100 1.0 1.0 1.0
After Cut 1 ≤100 0.552 0.764 0.661
After Cut 2 ≤100 0.538 0.500
After Cut 3 ≤100 0.636 0.975

Table 2. Cell Count for Each Human Donor Cornea
Tissue From Two Observers

Cell Count (Mean ± SD)

Cornea
Tissue

Observer 1
Right Globe

Observer 1
Left Globe

Observer 2
Right Globe

Observer 2
Left Globe

Average
(P< 0.001)

Slice 1 287.3 ± 37.5 269.0 ± 16.4 286.0 ± 49.5 263.8 ± 26.2 276.5
Slice 2 51.0 ± 4.7 48.0 ± 11.2 50.5 ± 5.4 48.5 ± 12.1 43.1
Slice 3 55.0 ± 9.6 41.0 ± 3.3 54.3 ± 12.3 42.8 ± 4.6
Slice 4 27.0 ± 6.3 37.0 ± 6.5 26.3 ± 8.7 35.5 ± 5.2

removal of the most anterior section of the cornea,
which includes the epithelium and superficial stroma,
we conclude that this peak reflects the human corneal
cellular component.

Discussion

Previous VOCT studies have demonstrated that
the cellular contributions of skin have a RF ≤100
Hz,21,22,31–35 which would correspond to the lowest

RF peak previously obtained from in vivo human
corneas.30 Higher RF values were attributed to
collagen fibers of normal dermis.21,22,31–35 Silver et
al.31 analyzed different tissues in vivo using VOCT and
showed that normal skin has resonant frequency peaks
at 50 to 70 Hz, 100 to 120 Hz, and 150 Hz corre-
sponding to the cellular epidermal component (50–70
Hz), collagenous dermal components (100–120 Hz),
and extracellular matrix in the arterial wall (150 Hz).
Additional evidence that the ≤100 Hz RF peak repre-
sents the cellular component of tissue was published
in a study highlighting VOCT’s potential to perform
“virtual biopsies” of skin after thermal and chemical
burns.32 A study analyzing skin lesions with VOCT
found a value of 50 Hz as the RF for the cellular
components.34

Our study supports the hypothesis that the cellu-
lar component of the human cornea corresponds to
the ≤100 Hz peak, one of the five peaks identified
using VOCT in normal human corneas.30 Although
the relative heights of these five peaks differed in
the current study compared to our pilot study,30 the
peaks with higher RF values may represent extracellu-
lar tissue components that may be affected by perioc-
ular tissue present in the human volunteers included
in the pilot study. With our histological analyses, we
demonstrated that the number of cells is higher in
the anterior layers of the cornea, because average cell
count measurements dropped 84.4% after removal of
the most superficial slice of the cornea. It is known that
the epithelial cell layer and anterior stroma contain the
vast majority of cells within the cornea.36 Removal of
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this anterior layer corresponded to a 33.9% reduction
in the ≤100 Hz peak height, suggesting that cells are
the most important contributor to the first weighted
displacement in this layer. Of note, the ≤100 Hz
peak identified with VOCT included endothelial cells,
which were absent from histological analysis, likely
because of loss during experimentation or processing.
This phenomenon may partly explain why the percent
reduction in cell count measurement was higher than
the drop in the corresponding peak height.

The clinical implications of this study involve
the potential utility of VOCT to measure epithe-
lial changes as a marker of keratoconus severity.
Previous studies have demonstrated that alternations
in the epithelial layer occur early in this disease.37
Basal epithelial cells in patients with keratoconus may
undergo enlargement, irregular arrangement, and a
decrease in cell density.38–40 Interestingly, the epithe-
lial remodeling that occurs in keratoconus is so strik-
ing that it may independently differentiate normal
from diseased eyes.41 Further research is needed to
validate our findings and to determine the role of
VOCT in grading keratoconus severity based on epithe-
lial features. Studies are also needed to understand
VOCT changes in conditions involving corneal edema.
In the field of dermatology, this technology has been
used to analyze biomechanical features of human
skin,25–27,34 to characterize malignant and premalig-
nant skin lesions,21 chemical and burn wounds,32 and
for performing a “virtual biopsy” of skin lesions.32,33

The current study has several limitations. Our
sample size was small with only two globes analyzed.
However, our results are consistent with other studies
discussed above,21,22,31–35 and we have previously
demonstrated the repeatability of VOCT findings.30
Our examination of the material prepared for histol-
ogy in the study could be affected by changes that occur
during formalin fixation, processing, and preparation
of the sample, as was the case with endothelial cells. We
noticed that in the left globe, the height of the≤100 Hz
VOCT peak increased after the third cut (Table 1). The
height of this peak includes the corneal endothelium
that is concentrated in this section after the rest of the
cornea is removed. The original content and retention
of the intact endothelium during processing will affect
this peak after the third cut. As a result, we anticipate
there to be variation between eyes, because both eyes
are not identical. Furthermore, there may be “noise” in
each individual eye’s normalized VOCT data, because
each peak is divided by the highest peak from that
particular study. In the case of the left globe after the
third cut, there may have been variable heights for the
remaining four peaks, resulting in a higher normalized
first peak. This “noise”was the primary reason we took
the average of both eyes in our analysis. Finally, RF

values obtained with VOCT have a margin of error of
± 10 Hz, limiting the accuracy of identified peaks.21

In this study, we demonstrate that VOCT can effec-
tively isolate the cellular component of corneal tissue.
Further studies are needed to understand whether
alterations occur in the≤100HzVOCT peak in corneal
pathology, such as keratoconus, and whether VOCT
can assist in clinicalmanagement as has been the case in
dermatology.21,31–34 Future experimental studies with
VOCT are planned to identify the origin of other RF
peaks identified in the cornea with the goal of studying
early biophysical markers of corneal disease.
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