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Abstract

Guzmania monostachia is a large, long-lived bromeliad whose leaves grow in a rosette pattern
and is native to the Americas, but endangered in Florida due to damage caused by the in-
vasive weevil Metamasius callizona. Each G. monostachia rosette can reproduce sexually via
flowers or asexually by producing clonal offshoot rosettes. We model the population dynamics
and demographic structure of a G. monostachia population using a Lefkovitch matrix model
where each state represents a demographic class of rosettes. Model analysis over a range of
uncertain parameters show the conditions under which a G. monostachia population is viable
in the absence and presence of M. callizona, and the expected demographic structure under
those conditions. In particular, our analysis illustrates that proportional reductions in sur-
vival have a qualitatively stronger impact on population viability than proportion reductions
in clonal fecundity.

Keywords: Lefkovitch matrix, demographic model, Guzmania monostachia, population via-
bility

1 Introduction

Guzmania monostachia is a large, long-lived epiphyte
in the primarily neotropical plant family Bromeliaceae
which contains over 3,000 flowering species commonly re-
ferred to as bromeliads. The vegetative bodies of bromeli-
ads grow in a rosette pattern with the newest leaves
growing from the center of the rosette. Most bromeli-
ads (including G. monostachia) are monocarpic which
means that each rosette will produce a single inflores-
cence (i.e., flowering structure), typically from the cen-
ter of the rosette, before the rosette desiccates and dies.
However, most bromeliads (including G. monostachia)
are also iteroparous which means that they have multiple
opportunities for sexual reproduction via flowers prior to
the death of the genetic individual through the produc-
tion of clonal rosettes. Each G. monostachia rosette has
the ability to produce clonal rosettes once it has reached a
size of 5 cm in longest leaf length (LLL) and will produce,
on average, 0.1144 clonal rosettes per year [3]. Therefore,
a single genetic G. monostachia individual can be com-
prised of a rosette started from seed and multiple gener-
ations of clonal rosettes.

G. monostachia is native to South America, Central
America, the West Indies, and Florida [3, 4, 9, 15]. In
Florida, G. monostachia is one of 16 native bromeliad
species, and is one of the 12 bromeliad species classified

1Rhodes College, Department of Mathematics & Computer Sci-
ence, Memphis, TN

as endangered in Florida due to an invasive weevil Meta-
masius callizona [8, 9, 15]. The damage caused by M. cal-
lizona to Florida’s native bromeliad populations has been
so extensive that the weevil is now colloquially referred
to as the “evil weevil” [2, 11].

The invasive M. callizona feed on bromeliads through-
out their entire life cycle. Adult weevils feed off the leaves
of the bromeliad, however, this is not detrimental to the
plant [9]. The larvae hatched by the weevil are the pri-
mary contributors to the vast decline of the bromeliad
population. FemaleM. callizona lay their eggs at the base
of bromeliads, preferentially selecting the largest bromeli-
ads. When the larvae hatch, they consume the core of the
plant including meristematic tissues. The apical meris-
tem, located at the center of the rosette, is the meristem-
atic tissue responsible for producing new leaves. Once
a G. monostachia rosette has reached a size of at least
20 cm LLL, the meristematic tissue can go through in-
duction at which point it stops producing new leaves and
starts building the inflorescence [3]. The axillary meris-
tems are located above the base of each leaf in the rosette,
and are the meristematic tissues responsible for produc-
ing clonal rosettes (which can each eventually produce
inflorescences of their own). Thus, when the larva con-
sumes the meristematic tissues of a bromeliad, it removes
the plant’s means of reproduction [9].

In Florida, the three largest native bromeliads, Tilland-
sia utriculata, Tillandsia fasciculata, and G. monos-
tachia have experienced the most severe population de-
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clines due to damage from M. callizona larvae. The long
generation times of these three bromeliad species have
made them slow to rebound in response to rapid wee-
vil predation [7, 9]. All three of these bromeliads are
tank-forming, which means that the base of the leaves
of the rosette overlap to form a tank that collects rain
water. This tank provides an aquatic habitat for many
anthropods and frogs [2, 9]. Thus, the decline of these na-
tive bromeliad populations will result in the loss of these
micro-habitats and species.

To understand and quantify the impact of weevil preda-
tion on the demographic structure and population viabil-
ity of G. monostachia we have constructed a demographic
model of a population of G. monostachia using a stage
structured matrix model (presented in Section 2). We an-
alyzed the model to explore the viability of a G. monos-
tachia population experiencing reductions in survival and
fecundity due to weevil predation (presented in Sections
3 and 4). From our analysis, we can determine which
vital statistics should be targeted by conservation strate-
gies for Florida G. monostachia populations (presented
in Section 5).

2 Mathematical Model

We simulate the population dynamics of G. monos-
tachia using a Leftkovich matrix model [6]. The size
classes for the stage-structured matrix were determined
using the longest leaf length (LLL) of the rosette mea-
sured in cm. The model consists of six demographic
classes, denoted by x = [x1, . . . , x6]

T where the size
of rosettes in each demographic class are given in Ta-
ble 1. Time is measured discretely where one time step is
equal to one year, and the time step is advanced in late
February/early March immediately prior to seed disper-
sal. Seeds germinate in May [4], and those that survive
until next March enter the model in the seedling year 1
class (x1, 0–0.5 cm LLL). Individual seedling rosettes that
survive another year progress to the seedling year 2 class
(x2, 0.5–5 cm LLL). Rosettes remain in the x2 state for an
average of two years [3] before progressing to the medium
class (x3, 5–20 cm LLL) where they remain for an aver-
age of two years [3] before progressing to the large class
(x4, >20 cm LLL). Rosettes in the medium and large
classes are capable of producing clonal rosettes which
grow at a significantly faster rate than rosettes started
from seed. The clonal rosettes reach a size of at least
20 cm LLL within one year [3], and subsequently enter
the large clonal rosette class (x6, >20 cm LLL). Once
the size of a rosette (either started from seed or a clonal
rosette) reaches at least 20 cm LLL, it can go through in-
duction at which point it stops producing new leaves and
produces an inflorescence. Large, post-induction rosettes

Table 1: Demographic size/reproductive classes for
G. monostachia used in Equation (1.1) and depicted in
the life-cycle graph in Figure 1.

State Size/Reproductive LLL
Variable Class (cm)

x1 Seedling Yr 1 [0, 0.5]
x2 Seedling Yr 2 [0.5, 5]
x3 Medium [5, 20]
x4 Large (from seed) >20
x5 Large (post-induction) >20
x6 Large (clonal rosette) >20

are counted in the x5 model class where they remain for
one time step (one year) before dispersing their seeds and
dying.

The progression of rosettes through the demographic
classes is shown in the life-cycle diagram in Figure 1, and
are described by the matrix equation

x(t+ 1) = Ax(t) (1.1)

where

A =


0 0 0 0 ghF5 0
G1 P2 0 0 0 0
0 G2 P3 0 0 0
0 0 G3 P4 0 0
0 0 0 I4 0 I6
0 0 C3 C4 0 C6 + P6

 (1.2)

is a 6 × 6 Leftkovich matrix in which Pi is the probabil-
ity that an individual will survive and remain in stage i
in the next time step; Gi is the probability that an indi-
vidual will survive and progress to stage i+1 in the next
time step; Ii is the probability that an individual will sur-
vive and go through induction in the next time step; Fi is
the seed fecundity of stage i (i.e., the number of seed pro-
duced per rosette); Ci is the clonal fecundity rate of stage
i (i.e., the number of clonal rosettes produced per rosette
per time step); h is the proportion of seeds produced by a
single rosette that disperse to a suitable habitat for ger-
mination; and g is the germination rate. The probability
that an individual in stage i will survive to the next time
step is Si = Pi+Gi+Ii, and ghFi is the number of seeds
that land in a suitable habitat, germinate, and survive
one time step to enter the x1 size class.

Lemma 1. Let the Lefkovitch matrix A be the 6 Ö 6
matrix defined in Equation (1). Then A is non-negative,
irreducible, and primitive.

Proof. Let the Lefkovitch matrix A be the 6 Ö 6 matrix
defined in Equation (1). Since every entry in A is non-
negative, the matrix is a non-negative matrix. A non-
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x1
S. year 1

x2
S. year 2

x3
medium

x4
large

x5
large

x6
large

G1

G2

G3

P2

P3

P4 P6

I4 I6

ghF5

C3

C4

C6

x5 rosette with inflorescence

inflorescence

rosette

x3 rosette with 2 clones

clonal rosettes

Figure 1: Life-cycle graph corresponding to matrix A in Equation (1), where ■ = rosettes started from seed, ■
= clonal rosettes, and ■ = post-induction rosettes. Inset sketches show a large rosette with inflorescence (x5, top
right), and a medium rosette (x3) in the process of producing two clonal rosettes (left) in which the parental rosette
is grayed out to accentuate the location of the clonal rosettes.

negative matrix is irreducible if in its life cycle graph rep-
resentation there exists a path from every node to every
other node [6]. The life cycle graph representation of A
in Figure 1 shows that there are no terminal nodes. Thus,
there is a path from every node to every other node, and
therefore A is irreducible. An irreducible matrix is prim-
itive if the greatest common divisor of the loop lengths
of its life cycle graph is 1, where a loop is a path from a
node back to itself [6]. The life cycle graph representa-
tion of A in Figure 1 has loops of length 1, 5, and 6, and
thus the greatest common divisor of the loop lengths is 1.
Therefore, A is a primitive matrix.

Theorem 1. Let A be the 6× 6 matrix defined in Equa-
tion (1). Then there exists a simple, real, and positive
eigenvalue λ1 that is greater in magnitude than the other
five eigenvalues. Furthermore, the right and left eigen-
vectors corresponding to λ1 are real and strictly positive.

Proof. Let A be the 6×6 matrix defined in Equation (1).
Since A is a square matrix, there are six eigenvalues (de-
noted λi, i = 1, . . . , 6). Each eigenvalue has correspond-
ing left and right eigenvectors (denoted vi and wi, re-
spectively) which satisfy the equations λiA = Avi and
λiA = wiA, respectively, for i = 1, . . . , 6. By Lemma 1,

A is irreducible and primitive. Therefore, by the Perron-
Frobenius Theorem [6, 10], there exists a simple, real,
positive eigenvalue λ1 that is greater in magnitude than
any other eigenvalue (i.e., λ1 ≥ ∥λi∥ for i = 2, . . . , 6), and
its corresponding right and left eigenvectors are real and
strictly positive.

Structural equilibrium. A population will be at a
structural equilibrium if the proportion of the popula-
tion in each demographic class remains constant over
time. The eigenvector λ1 from Theorem 1 is referred to as
the dominant eigenvalue and biologically represents the
growth rate of the population at structural equilibrium
[6]. If λ1 > 1, the population size will grow over time.
If λ1 = 1, the population size will remain constant over
time. If λ1 < 1, the population will decrease towards
extinction. When considering questions of population vi-
ability, we are concerned with the conditions under which
λ1 ≥ 1.

Let v1 be the normalized right eigenvector correspond-
ing to the dominant eigenvalue (i.e., ∥v1∥ = 1). The
vector v1 represents the proportion of the population in
each demographic class at structural equilibrium [6]. Pop-
ulations with high mortality rates in the youngest demo-
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graphic classes are expected to have low proportions in
the older classes.

Let w1 be a left eigenvector corresponding to the domi-
nant eigenvalue. The elements of vector w1 represent the
relative reproductive value of each demographic class at
structural equilibrium [6]. For the model given in Equa-
tion (1), w1 would represent the relative contribution of
each of the six demographic classes towards generating
new seedlings entering the seedling year 1 class (x1). It
is common to scale the reproductive values relative to
the reproductive value of the smallest or youngest size
class [6]. Thus, let w1 be the left eigenvector such that
w1(1) = 1. Therefore, for the model given in Equation (1)
the elements of vectorw1 represent the reproductive value
of each demographic class relative to the seedling year 1
class.

2.1 Model parameters

In studies performed in Costa Rica, Cascante-Maŕın et al.
conducted a series of experiments designed to measure
various aspects of growth and reproduction in G. monos-
tachia and T. fasciculata [3, 4]. These studies provided a
basis for determining the values of Si, Gi, Pi, Ii, Fi, Ci,
and g for the model given in Equation (1). The value or
range of values for each parameter is given in Table 2.

Survival rates (Si). The probability that an individ-
ual rosette in state i at time step t survives to time step
t + 1 is Si. Estimates and ranges for parameters S1, S2,
and S3 were taken from [4]. The range of S4 = S5 = S6

has the same upper bound as S3, but has a lower bound
selected such that P6 = S6 − I6 > 0. Some rosettes
in state i may survive and remain in state i (Pi), while
other rosettes in state i will survive and grow into another
state (Gi) or survive and induce into the post-induction
state (Ii). For each state, Si = Gi + Pi + Ii.

Induction rates (Ii). In the model given in Equa-
tion (1), only rosettes in the x4 and x6 states can move
to the post-induction state (x5), thus I4, I6 > 0 and
I1, I2, I3, I5 = 0. The range for I6 is derived directly
from data from Cascante-Maŕın, et al in [3] on the pro-
portion of clonal rosettes (termed “asexual ramets” in
[3]) that flowered in their second year, 80–92% of clonal
rosettes. Cascante-Maŕın, et al did not directly report
an induction rate for rosettes started from seed (I4), but
did report overall induction rates and total numbers of
rosettes (from seed and clonal) with LLL > 20 cm. Thus,
the following formulation was used to calculate I4

0.658 =
I4x4 + I6x6

x4 + x6
⇒ I4 =

0.658(x4 + x6)− I6x6

x4
(2)

Table 2: Parameterization of Equation (1) for NWP
G. monostachia populations. The values of Si, Gi, Pi,
and Ii are given as a proportion per year; values of Ci

are measured as the number of clonal rosettes produced
per rosette per year; F5 is measured in seeds produced
per post-induction rosette; g is the probability of germi-
nation per seed; and h is a probability.

Parameter Value or Range References

S1 0.148 [4]
S2 0.527 [4]
S3 [0.527, 0.960] [4]

S4 [0.801, 0.960]
S5 [0.801, 0.960] S5 = S4

S6 [0.801, 0.960] S6 = S4

G1 0.148 G1 = S1

G2 0.2635 G2 = 0.50S2

G3 [0.2635, 0.48] G3 = 0.50S3

P2 0.2635 G2 = 0.50S2

P3 [0.2635, 0.48] G3 = 0.50S3

P4 [0.285, 0.564] P4 = S4 − I4
P6 [0.001, 0.16] P6 = S6 − I6

I4 [0.396, 0.516] Equation (2)
I6 [0.80, 0.92] [3]

C3 0.1144 [3]
C4 0.1144 [3]
C6 0.1144 [3]

F5 8166 [3]
g [0.471, 0.514] [4]
h [0.01, 1]

where x4 and x6 are the model states for large from seed
and large clonal rosette, respectively. Given the range in
I6 values and assuming an equal proportion in states x4

and x6, a corresponding range in I4 was calculated to be
39.6–51.6% of large rosettes started from seed.

Growth & survival rates (Gi and Pi). The proba-
bility that an individual rosette in state i at time step t
survives and remains in state i is Pi. Note Pi = 0 for
i = 1, 5, because individuals only remain in these states
for at most one year (i.e., one time step). The probability
that an individual rosette in state i at time step t grows
into the next size class i + 1 by time step t + 1 is Gi.
Note Gi > 0 for i = 1, 2, 3, and Gi = 0 otherwise. The
probability that an individual rosette in state i at time
step t remains in state i in time step t + 1 is Pi. Note
Pi > 0 for i = 2, 3, 4, 6, and Pi = 0 otherwise.
For i = 1, since I1 = P1 = 0, it follows that G1 =

S1. For i = 2, 3, since rosettes spend an average of two
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years in the seedling year 2 (x2) and medium (x3) states
(based on the growth model in Figure 3 of [3]), and since
I2 = I3 = 0, we assume that G2 = P2 = 0.5S2 and
G3 = P3 = 0.5S3. Lastly, since G4 = G6 = 0, it follows
that P4 = S4 − I4 and P6 = S6 − I6.

Fecundity rates (Fi and Ci). Our model assumes
that, of the average seeds produced by a single rosette
(F5), only g×h of those seeds will survive to the seedling
year 1 size class (x1), where h is the proportion of seeds
that land in a suitable habitat and are not eaten/removed
prior to germination, and g is the proportion of seeds
that germinate and survive one year. An estimate of
F5 = 8166 is given in [3], and an estimated range for
g is given in [4] (shown in Table 2). There are no known
estimates for h, and thus in model analyses we vary the
value of h from 0.01 (a scenario in which only 1% of seeds
are not removed prior to germination) up to 1.0 (a sce-
nario in which all seeds are viable for germination).

Estimates for Ci values were calculated from measure-
ments from [3] which counted 219 new clonal rosettes
produced over three years from a study of 638 rosettes
yielding

Ci = 219 clonal rosettes/638 rosettes/3 yrs

= 0.1144 clonal rosettes/rosette/yr.

Given the lack of data indicating differential clonal fe-
cundity rates for the three different clonal reproductive
classes (x3, x4, and x6), we assume Ci = 0.1144 for
i = 3, 4, 6.

3 Model Analysis Methods

3.1 Uncertainty analysis

If a parameter is known to be imprecise or is completely
unknown, uncertainty analysis is performed to account for
variation in model outcomes due to uncertainty in model
parameters. We systematically varied uncertain model
parameters to determine the conditions under which a
G. monostachia population is viable.

Seed dispersal. The seeds of a G. monostachia are
dispersed via wind [5, 12]. As an epiphyte, G. monos-
tachia seeds must land on another plant (typically a tree)
in order to germinate. However, the seeds do not always
land in a suitable location for germination. In the model
given in Equation (1.1), the parameter h defines the pro-
portion of seeds that land in a location suitable for ger-
mination. However, there are no known estimates for h,
and thus we vary the value of h from 0.01 up to 1.0, and
calculate the resulting dominant eigenvalue.

Weevil redation. Exact data could not be found for
the magnitude to which weevil predation has reduced the
Florida population of G. monostachia overtime. In the
model, weevil predation was simulated through a propor-
tional reduction of the survival rates of the larger size
classes (S3, S4, S5, and S6), which are the most sus-
ceptible to weevil predation. For i = 4 and i = 6,
the inequality Pi = Si − Ii > 0 must be maintained,
and thus we proportionally reduced the induction rates
I4 and I6 by the same amount as the survival rates.
Additionally, as noted before, weevil predation occurs
mainly through larvae feeding on the meristamatic tis-
sue of G. monostachia which affects the production of
an inflorescence and the production of clonal rosettes for
individual rosettes that otherwise survive predation. To
capture the potential impact on the production of clonal
rosettes, we also considered a proportional reduction of
the clonal fecundity parameters (C3, C4, C6).

Latin hypercube sampling (LHS). Latin hypercube
sampling (LHS) is an efficient sampling method for gener-
ating parameter sets across a multidimensional parameter
space [1, 13]. LHS generates n equiprobable samples from
the distribution of each parameter independently without
replacement, and then creates n random combinations of
sampled parameter values (which we will refer to as pa-
rameter sets). We used LHS to generate n = 1000 ran-
dom parameter sets across the parameter space for nine
uncertain parameters (S3, S4, S5, S6, I4, I6, P4, P6, and
g) over the ranges given in Table 2. However, given that
P6 = S6−I6, the values of P6 have the possibility of being
negative for some parameter sets. This would not make
sense in a biological context, so we used the Constrained
LHS (cLHS) algorithm by Petelet et al. [14], which con-
sists of performing a series of permutations on an initial
LHS to enforce a desired monotonic constraint (S6 > I6,
in our case). The details of the algorithm are provided in
the Appendix.

3.2 Measured outcomes

To determine the conditions for viability of a population
of G. monostachia in both the presence and absence of
weevil predation, we are primarily concerned with the
conditions under which λ1 ≥ 1, where λ1 is the dominant
eigenvalue of A from Equation (1). Given the parame-
ter values and ranges in Table 2, we used LHS and cLHS
to formulate 1000 unique parameter sets. The matrix A
was parameterized for each of the 1000 unique parame-
ter sets, for each value of h = 0.01, 0.02, . . . , 1, and for
combinations of proportional reductions in survival rates
and clonal fecundity rates ranging from 0% reductions
to 90% reductions. The dominant eigenvalue was calcu-
lated for each parameterization of matrix A by solving
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det(A− λ1I) = 0 for λ1 (the eigenvalue of greatest mag-
nitude for a single parameterization) where I is the 6× 6
identity matrix.

For four select combinations of h and % reduction in
survival and clonal fecundity, we also recorded the range
of v1 and w1 across 1000 unique parameters sets (deter-
mined via LHS and cLHS). Recall from Section 2, v1 is
the the normalized right eigenvector associated with the
dominant eigenvalue corresponding to the proportion of
the population in each model state at the structural equi-
librium, and w1 is the scaled left eigenvector associated
with the dominant eigenvalue corresponding to the re-
productive value of each class at structural equilibrium
relative to the seedling year 1 class reproductive value.
The four select combinations are (1) h = 1 and no re-
duction in survival or clonal fecundity, (2) h = 0.02 and
no reduction in survival or clonal fecundity, (3) h = 0.02
and 30% reduction in survival and clonal fecundity, and
(4) h = 0.02 and 50% reduction in survival and clonal
fecundity.

4 Results

To determine the conditions of population viability for
G. monostachia, we examined the conditions under which
the dominant eigenvalue (λ1) of A from Equation (1) was
greater than or equal to 1.

Figure 2 shows the impact of varying the parameter h,
the proportion of seeds produced by a single rosette that
disperse to a location suitable for germination, with differ-
ent levels of proportional reduction in survival and clonal
reproduction. Each graph in Figure 2 shows the mean
(black curve) and range (shaded region) of the dominant
eigenvalue over the 1000 unique parameter sets. In the
case with no reduction in survival or clonal reproduction
(Figure 2a) and in the case with no reduction in survival
and a 90% reduction in clonal fecundity (Figure 2b, top
curves), the entire range of the dominant eigenvalue re-
mains above 1 for all values of h ≥ 0.02 indicating that
even very low levels of seed dispersal to suitable locations
will result in viable populations. In the case with a 90%
reduction in survival and no reduction in clonal fecundity
(Figure 2b, middle curves), the entire range of the domi-
nant eigenvalue is above 1 for all values of h ≥ 0.40. Thus,
if the probability of seeds dispersing to a suitable habitat
for germination is low (below 40%) and survival is signif-
icantly reduced due to weevil predation, we would expect
the G. monostachia population to decline to extinction.
Lastly, in the case where there is a 90% reduction in both
survival and clonal reproduction, the entire range of the
dominant eigenvalue is below 1 for all values of h (Fig-
ure 2b, bottom curves). Thus, if weevil predation signif-
icantly reduces both survival and clonal fecundity, there

are no conditions under which the population will remain
viable.

To further quantify the relationship between the pro-
portional reduction in survival and clonal fecundity on
population viability, we examined the range of two out-
puts for all combinations of proportional reductions in
survival rates and proportional reductions in clonal fecun-
dity rates ranging from 0% reductions to 90% reductions
in increments of 0.1% (Figure 3). First, we examined the
range in the dominant eigenvalue (λ1) given 1000 unique
parameter sets (determined via LHS and cLHS with pa-
rameter ranges given in Table 2) for h = 0.02. A value of
h = 0.02 was used because it was the smallest value of h
for which the entire range of the dominant eigenvalue was
greater than 1 when there was no reduction in survival
rates or clonal fecundity (as shown in Figure 2a). Fig-
ures 3a–c show heat maps of the min (Figure 3a), mean
(Figure 3b), and max (Figure 3c) dominant eigenvalue
for each proportional reduction combination. For each
heat map, the cool colors show λ1 > 1 (i.e., the popula-
tion will grow over time and thus is viable over the long
term). Second, we examined the range in the minimum
proportion of seeds that must land in a suitable loca-
tion for germination (min h) such that the population
is viable (λ1 > 1). Figures 3d–f show heat maps of the
minimum value of h such that min(λ1) > 1 (Figure 3d),
mean(λ1) > 1 (Figure 3e), and max(λ1) > 1 (Figure 3f).
When the reduction in survival rates is 40% or less, the
minimum h such that min(λ1) > 1 is always less than
0.1. Thus, for these low to moderate reductions in sur-
vival rates, the population will remain viable even if the
proportion of seeds that land in suitable locations during
dispersal are low (around 10%). However, as the reduc-
tion in survival rates increases, larger values of h (lighter
colors in Figures 3d–f) are required to maintain popu-
lation viability. When the reduction in survival is 90%
and the reduction in clonal fecundity is high (70%, 80%
or 90%), there is no value of h such that min(λ1) > 1.
These are shown as black squares in Figure 3f. Both sets
of heat maps clearly illustrate that proportional reduc-
tions in survival have a qualitatively stronger, negative
impact on the viability of a G. monostachia population
than proportional reductions in clonal fecundity.

Lastly, we examined the range of the population pro-
portions at structural equilibrium (v1), the relative re-
productive values for each demographic class at struc-
tural equilibrium (w1), and the dominant eigenvalue (λ1)
given 1000 unique parameter sets (determined via LHS
and cLHS with parameter ranges given in Table 2) for four
different scenarios: (1) h = 1 and no reduction in survival
or clonal fecundity (Figures 4a–c), (2) h = 0.02 and no
reduction in survival or clonal fecundity (Figures 4d–f),
(3) h = 0.02 and 30% reduction in survival and clonal
fecundity (Figures 4g–i), and (4) h = 0.02 and 50% re-
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Figure 2: Mean (black) and range (gray) of dominant eigenvalue over 1000 unique parameter sets for the proportion of
seeds that land in suitable habitat (h) ranging from 0.01 to 1 given (a) no reduction in survival or clonal reproduction,
(b) no reduction in survival with 90% reduction in clonal reproduction (top curves), 90% reduction in survival with
no reduction in clonal reproduction (middle curves), and 90% reduction in both survival and clonal reproduction
(bottom curves).

Figure 3: Impact of variation in percent reduction in survival and percent reduction in clonal fecundity. Panels
(a)–(c) show range of the dominant eigenvalue (λ1) over 1000 unique parameter sets given h = 0.02 showing (a) min
λ1, (b) mean λ1, and (c) max λ1. The cool colors show λ1 > 1. Panels (d)–(f) show range of minimum value of h
such that (d) min(λ1) > 1, (e) mean(λ1) > 1, and (f) max(λ1) > 1.
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Figure 4: Range in structural equilibrium (left column), relative reproductive value vector (middle column), and
dominant eigenvalue (right column) across 1,000 unique parameters sets given h = 1 and no reduction in survival
or clonal reproduction (a–c), h = 0.02 and no reduction in survival or clonal reproduction (d–f), h = 0.02 and
30% reduction in survival and clonal reproduction (g–i), and h = 0.02 and 50% reduction in survival and clonal
reproduction (j–l). Size classes 1, 2, 3, 4, 5, and 6 correspond respectively to seedling year 1, seedling year 2, medium
size class, large size class, post-induction size class, and clonal rosettes.
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duction in survival and clonal fecundity (Figures 4j–l).
Lowering the value of h from 1 to 0.02 results in larger
proportions of a G. monostachia population residing in
the larger demographic classes (x2, . . . , x6; compare Fig-
ures 4a and 4d), and lower relative reproductive values
of those same larger demographic classes (compare Fig-
ures 4b and 4e). However, reductions in survival and
clonal reproduction do not dramatically change the de-
mographic structure at structural equilibrium (v1; com-
pare Figure 4d to Figures 4g and 4j) or the relative re-
productive value of each demographic class (w1; compare
Figure 4e to Figures 4h and 4k). Across all four scenarios,
at structural equilibrium, the largest proportions of the
population are in the seedling year 1 and seedling year 2
classes, and the large size classes (x4, x5, and x6) have
the highest reproductive value.

In the first scenario when h = 1 and there is no re-
duction in survival and clonal reproduction, the domi-
nant eigenvalue (λ1) has values in [2.1, 2.5] for all 1000
unique parameter sets (Figure 4c), and thus the popu-
lation is growing for all parameter sets. In the second
scenario when the value of h is lowered to 0.02 (and there
is still no reduction in survival and clonal reproduction),
λ1 ∈ [1.1, 1.3] for all 1000 unique parameter sets (Fig-
ure 4f). In this case, the population is growing for all
parameter sets, but growing slower than in the first sce-
nario. In the third scenario with h = 0.02 and 30% reduc-
tion in survival and clonal fecundity, λ1 ∈ [0.94, 1.1] for
all 1000 unique parameter sets (Figure 4i). In fact, 35.5%
of the parameter sets result in λ1 < 1. Thus, if weevil pre-
dation is causing a 30% reduction in survival rates and
clonal fecundity, then there are parameter scenarios which
would lead to the eventual extinction of the G. monos-
tachia population under weevil predation. Lastly, in the
fourth scenario with h = 0.02 and 50% reduction in sur-
vival and clonal fecundity, λ1 ∈ [0.81, 0.93] for all 1000
unique parameter sets (Figure 4l). Thus, in this case, all
parameter scenarios result in the G. monostachia popu-
lation declining to extinction.

5 Conclusions

G. monostachia is a large, long-lived ephyphtic bromeliad
that is currently listed as endangered in Florida due to
the destructive impact of an invasive weevil M. calli-
zona. We developed a novel demographic model of a
G. monostachia population using a stage structured ma-
trix model and parameterized the model using data taken
from G. monostachia populations in Costa Rica [3, 4].
Due to uncertainty in some of the parameter values, we
analyzed model predictions over a range of different sur-
vival rates and induction rates. Matrix population the-
ory was used to analyze the long-term yearly growth rate,

demographic structure at structural equilibrium, and rel-
ative reproductive value for each demographic class.

Weevil predation occurs mainly through larvae feeding
on the meristematic tissues of G. monostachia and other
large bromeliads. Severe damage to the core of the rosette
can cause pre-reproductive death (i.e., a reduction in sur-
vival). Less severe damage may not kill the rosette, but
may damage the apical meristem (preventing sexual re-
production and thus reducing the induction rate) or the
axillary meristems (preventing clonal reproduction and
thus reducing the clonal fecundity rate). However, each
rosette has many axillary meristems (as many as there are
leaves), and if one is damaged it would not prohibit the
other axillary meristems from initiating and producing
clonal rosettes.

Our model analysis shows that reductions in survival
rates have a qualitatively greater impact on reducing the
population growth rate (and thus the population viabil-
ity) compared to reductions in clonal fecundity. Reduc-
tions in clonal fecundity often had little to no impact on
population viability in our model simulations, while re-
ductions in survival rates in all simulations resulted in
substantial decreases in the dominant eigenvalue, which
when below 1 predict population extinction. However, it
should be noted that within our analysis reductions in
survival rates (Si) were coupled with reductions in induc-
tion rates (Ii), and thus simulated both a reduction in sur-
vival and a reduction in sexual reproduction. The results
of our model suggest that conservation efforts will have
greater impact if they focus on strategies that increase
G. monostachia survival rates. Nonetheless, conserva-
tion efforts that mitigate damage to meristemic tissue or
prevent weevil infestations of G. monostachia will likely
result in returning populations to baseline (pre-weevil in-
festation) survival rates and clonal fecundity rates, thus
resulting in increasing both population vital rates.

While almost all of the parameters in the model could
be estimated from studies of G. monostachia populations
in Costa Rica [3, 4] or mathematical relationships with
those estimated parameters, one parameter could not.
The proportion of seeds each year that land in a loca-
tion suitable for germination after dispersal (h) is not
estimated within the literature. To understand the im-
pact of this unknown parameter on the population growth
rate, the value of the proportion h was varied over 99%
of its feasible range, specifically from 1% (h = 0.01) to
100% (h = 1). Our analysis showed that the dominant
eigenvalue increases as h increases, and thus a G. monos-
tachia population with a low proportion of seeds that
disperse to a suitable location for germination will have a
difficult (or potentially impossible) time remaining viable
when experiencing high reductions in survival rates due
to weevil predation. Given that the Florida G. monos-
tachia populations have been reduced in size since the
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1990s due to weevil predation [8], our analysis suggests
that either the survival rates have been drastically re-
duced (if h > 0.1) or there have only been moderate
reductions in survival rates, but the proportion of seeds
that land in a suitable location for germination is very low
(h < 0.1). If future research is able to estimate a range
for h for G. monostachia populations, then our model,
in conjunctions with G. monostachia demographic data,
could be used to estimate the potential range of reduc-
tions in survival and clonal fecundity rates due to weevil
predation.

Appendix

Constrained LHS

Let x and y be parameters that can be sampled from
defined distributions X and Y, respectively, which may
overlap. Let x and y be column vectors of length n con-
taining sampling from X and Y, respectively, generated
using Latin hypercube sampling (LHS, see [1] for details).
For any particular sampling pair (xi, yi) we wish to satisfy
the constraint

xi > yi. (3)

Petelet et al. provide the necessary and sufficient condi-
tion for the existence of at least one such permutation of
y, called y∗, such that xi > y∗i for all i [14, Equation (9)].
Additionally, Petelet et al. [14] provide an algorithm for
finding such a permutation of y.

Necessary & sufficient existence condition: Let C
be a matrix such that cij = 1 if xj > yi and cij = 0
otherwise, where C is known as the compatibility matrix.
Let S be a column vector such that si =

∑n
j=1 cij , that

is si is the sum across each row of C. If

sort(S)−

1...
n

 ≥

0...
0

 , (4)

then there exists a permutation of y, called y∗, such that
xi > y∗i for all i.

Algorithm for finding y∗: Given vectors x and y that
meet the necessary and sufficient existence condition de-
fined above, the following algorithm produces a permuta-
tion of y, denoted as y∗ such that xi > y∗i for all i.

1. Run an LHS algorithm to find x and y.

2. Let C∗ = C, b∗ = 0 (a row vector of length n),
and a∗ be a row vector of length n where aij is the
position of the i th smallest element of x.

3. For k = 1, . . . , n,

� Set j = a∗k

� Form b, an array of the indices of column j of
C∗ that are equal to 1

� Set r = rand(b)

� Set b∗j = r

� Set all the elements of row r of C∗ equal to 0

4. Let y∗ be the permuation of y according to b∗, i.e.
y∗k = yb∗k for all k = 1, . . . , n.
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