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Abstract 

A persistent problem in the selective laser sintering process is to maintain the quality of 

additively manufactured parts, which can be attributed to the various sources of uncertainty. In 

this work, a two-particle phase-field microstructure model has been analyzed using Gaussian 

Process based model. The sources of uncertainty as the two input parameters were surface 

diffusivity and inter-particle distance. The response quantity of interest (QOI) was selected as 

the size of the neck region that develops between the two particles. Two different cases with 

equal and unequal-sized particles were studied. It was observed that the neck size increased 

with increasing surface diffusivity and decreased with increasing inter-particle distance 

irrespective of particle size. Sensitivity analysis found that the inter-particle distance has more 

influence on variation in neck size than that of surface diffusivity. The machine learning 

algorithm Gaussian Process Regression was used to create the surrogate model of the QOI. 

Bayesian Optimization method was used to find optimal values of the input parameters. For 
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equal-sized particles, optimization using Probability of Improvement provided optimal values 

of surface diffusivity and inter-particle distance as 23.8268 and 40.0001, respectively. The 

Expected Improvement as an acquisition function gave optimal values 23.9874 and 40.7428, 

respectively. For unequal-sized particles, optimal design values from Probability of 

Improvement were 23.9700 and 33.3005, respectively, while those from Expected 

Improvement were 23.9893 and 33.9627, respectively. The optimization results from the two 

different acquisition functions seemed to be in good agreement. 

Keywords: Powder; Microstructure; Additive manufacturing; Machine learning; Optimization  
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1. Introduction 

Selective laser sintering (SLS) is an additive manufacturing technique that uses a laser as the 

power source to sinter powdered material, aiming the laser automatically at points in space 

defined by a 3D model, binding the material together to create a solid structure [1, 2]. This 

process has been widely used in aerospace and automotive sectors for preparing complex parts 

with unconventional geometries which were not possible previously by conventional 

subtractive manufacturing techniques. The sintering kinetics is characterized by multiple 

diffusion paths, particle rigid-body motion, and grain-growth through boundary migration [3].  

Sintering can also be used as heat treatment in order to increase the strength and integrity of a 

material. This material processing technique is very useful for custom shaping materials that 

have high melting points. Materials can be produced with uniform porosity and preserved 

purity. Efficient control of evolving morphologies like inter-particle neck region and grain 

boundary is necessary for better mechanical and thermal properties and an optimized 

manufacturing process.  

In the current work, microstructure evolution has been studied during the selective laser 

sintering process. During the process, morphologies such as densification and grain growth 

occur. The proper control of these structural evolutions is necessary for better mechanical 

properties of the material. Sintering takes place due to the diffusion of atoms through the 

microstructure of the material. The diffusion results due to a gradient in chemical potential i.e., 

atoms move from a region of higher chemical potential to that of a lower chemical potential. 

Diffusion takes place by several mechanisms like surface diffusion, vapor transport, lattice 

diffusion from the surface, lattice diffusion from grain boundary, grain boundary diffusion, 

plastic diffusion, etc. Higher densification is preferred to reduce porosity in the material and 

smaller grain growth is desired. The microstructure evolution is driven by a reduction of total 

system free energy through diffusion and structural relaxation[3]. The particle rigid-body 
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motion that occurs during sintering is driven by the diffusion of atoms from grain boundaries 

to nearby growing neck surface and thus leads to the formation of neck region between two 

particles. In Ref. [4], it is found that enhancing both neck size and neck growth rate and may 

lead to the formation of dense samples with further increases in processing time or temperature. 

In Ref. [5], the in situ strength during sintering was determined by the competition among 

interparticle neck growth, densification, and thermal softening. 

Analysis of the simulation models has found an expression for the rate of change of neck size 

ratio as a function of sintering time [6]: 
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= 𝐾𝐾𝐾𝐾     (1)       

where 𝑋𝑋 refers to the neck width and 𝐷𝐷 the diameter of the particle. 𝐾𝐾 is related to material 

properties and geometric assumptions. Due to the growing neck size between the particles, 

sintering provides strength which can be formulated as [6, 7]: 
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     (2) 

where 𝜎𝜎𝐵𝐵 is the bulk sintering strength, summing about the packing coordination 𝑁𝑁𝑐𝑐, ∑ is the 

summation sign, 𝑉𝑉𝑠𝑠 is solid volumetric fractional density, and  𝑋𝑋
𝐷𝐷

 is the neck size to particle size 

ratio.  

However, one persistent concern in this material processing methodology as in other 

manufacturing technologies has been to produce parts with desired properties. Even if the same 

parameters are used during the manufacturing process of a specific product, it is not possible 

to acquire uniform properties. Pavan et al. used X-ray Computed Tomography (CT) based 

approach to study the effect of features' size and printing orientation on the porosity and shape 
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deviation of each feature in laser sintering for polymers processing [8]. Several replicas of the 

test object were made for polyamide-12 to analyze the reproducibility of the manufacturing 

process. It was observed that porosity levels of small features depend on their size and 

orientation with a smooth increase in voids' content with increased size. Also features oriented 

along printing direction showed an overall higher porosity value with bigger average pore sizes 

independent of the size of the feature. Dotchev et al. investigated polyamide 12 (PA12) powder 

properties deterioration in the laser sintering process by artificially aging new and recycled 

grades of PA2200 powder in a temperature-controlled oven and tested using melt flow rate 

(MFR) indexer [9]. It was found that the powder exposed at a higher temperature and longer 

time experienced a higher deterioration rate. Also, powder located at the periphery and top of 

the build is less deteriorated than that at the center or the bottom of a long build. Karapatis et 

al. tried to find out to what extent the density of thin powder layers can be increased for 

controlling the quality of selective laser sintered parts [10]. Experiments showed that the 

density of thin layers increased from 53% to 63% when 30% fine powder was added to a coarse 

powder with a coarse-to-fine ratio of 1:10. However, this density improvement method was 

found to be less efficient as the particle do not arrange as efficiently. Zarringhalam et al. 

showed that differential scanning calorimetry (DSC) has a good potential for quality control of 

selective laser-sintered parts [11]. DSC analysis of SLS Nylon-12 parts showed the presence 

of two distinct melt peaks which correspond to the melted and un-melted regions of the part. 

Also, it was proved that the amount of energy input during the process affects the degree of 

melting. Phillips et al. provided an approach of controlling temperature non-uniformity in the 

Selective Laser Sintering (SLS) process through a feed-forward control system [12]. It was 

evident that a 45% improvement in ultimate flexural strength standard deviation was achieved. 

Wegner et al. integrated a thermal imaging system in a laser sintering machine for process 

monitoring [13]. Results found that thermal imaging is well-suited for checking on powder bed 
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surface temperature distribution and the melt's temperature. Olakanmi et al. investigated the 

effect of mixing time on SLS processed density and microstructure [14]. The optimal mixing 

time was found to be ten minutes above which the density of sintered parts decreased and hence 

porosity increased. This led to the deterioration of the microstructure of the SLS sintered parts. 

Olakanmi et al. showed that microstructural evolution in laser sintered Al-12Si powder was 

controlled by specific laser energy input [15].  

In addition to experiments, numerical models, such as the phase-field method have been used 

as an effective tool for modeling co-evolution of microstructure and physical properties at the 

mesoscale. The microstructure is explained by a system of continuous variables with the 

interfaces having a finite width over which the variables have varying values. The evolution of 

the microstructural morphology is described in terms of the free energy of the system. Biswas 

et al. studied the consolidation kinetics during the sintering process using a phase-field 

modeling approach [16]. It was observed that the initial interactions among particles were due 

to surface diffusion and then densification was governed by volume and grain boundary 

diffusion. The grain size kept increasing under pressure and stabilized later when adjacent 

grains touched each other. Hotzer et al. used a phase-field model based on the grand potential 

approach to study the microstructural evolution during the solid-state sintering process [17]. 

The neck growth rates and particle approach in a two-particle system were compared with 

analytic solutions for different diffusion mechanisms and a good agreement was found between 

the two. Densification results for a three-dimensional green body of 24897 Al2O3-grains 

matched well with the analytic Coble model. Biswas et al. investigated the microstructural 

changes during solid-state sintering using a phase-field model that included rigid-body motion, 

elastic deformation, and heat conduction [18]. The simulations showed three distinctive stages 

during the sintering process - neck and grain boundary formation, neck length growth and 

stabilization, rapid grain growth, and disappearance of one of the grains. Morphology evolution 
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was found to be contributed by the radius of particles, the curvature at neck location, surface 

energy, grain boundary energy, and variation in temperature. Asp et al. presented a phase-field 

model of sintering and related phenomena in a two-phase system and multi-phase system using 

diffusion of vacancies as the mechanism for redistribution of material [19]. The solid body was 

characterized by a low vacancy content, the surroundings by a high vacancy content, and the 

surface with varying vacancy content. The temporal development of particles during solid-state 

sintering with wetting effects was shown in the simulations. Kumar et al. modeled sintering 

and simultaneous concurrent grain growth of two unequal-sized particles using a phase-field 

method [20] The simulation revealed to have three sub-processes: neck growth, coarsening 

with concurrent slow grain boundary migration, and rapid grain boundary motion. The 

simulation results were analyzed based on thermodynamic analysis of the driving forces for 

different sub-processes. The slow grain boundary migration was found to be sensitive to 

sintering geometry. Dzepina et al. incorporated the contact mechanics algorithm into a phase-

field sintering model [21]. Energy relaxation maintained contact between the particles through 

deformation was achieved by diffusive fluxes along stress gradients and rigid body motion of 

the deforming particles. The effect of applied pressure on high pressure-high temperature 

(HPHT) liquid phase sintering of diamond particles was investigated and changes in neck size, 

particle coordination, and contact flattening were observed. Termuhlen et al. introduced an 

approach for incorporating individual particle rigid-body motion during three-dimensional 

phase-field sintering simulation [22]. A grouping algorithm was introduced with a cut-off 

radius set on each grain to calculate the particle velocity during densification. This allowed for 

the incorporation of densification mechanisms into the three-dimensional phase-field sintering 

model. 

Recently machine learning and artificial intelligence (AI) have been used to study the sintering 

phenomena. Swaroop et al. proposed a machine-learning based approach to predict abnormal 
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grain growth in powdered samples before actual sintering [23]. The approach was found to 

have the potential to allow for the pre-selection of appropriate powder samples with an 

accuracy of 82%. This way of controlling abnormal grain growth could help reduce porosity 

and hence the enhancement of sintered material properties. Song et al. proposed a 

comprehensive prediction model of sinter quality based on a machine learning approach [24]. 

Classification model of sinter quality and regression model of sinter's total iron content was 

established using different machine learning algorithms. Results showed that the prediction 

accuracy of the classification model and regression model inferred by the extra tree is the best. 

The F1-score of the quality index classification model was found to be 0.92 and R2 of the total 

iron content regression model was 0.882 thus indicating good learning and generalization 

ability of the proposed framework. Xiao et al. applied a deep convolution neural network to 

detect three typical types of powder bed defects in the selective laser sintering process: 

warpage, part shifting, and short feed [25]. The method was found to have good accuracy and 

efficiency and was able to cope with geometrical distortion and image blurring. Wu et al. 

established a method for rapid evaluation of the effect of heating rate on sintering densification 

based on the domain-adversarial neural network [26]. This allowed for the prediction of 

densification evolution of a material that lacked a master sintering curve (MSC) from MSC 

data of another material. The proposed approach could provide an efficient solution to the issue 

of data scarcity in the sintering field. Zhang et al. presented a multi-objective optimization and 

analysis model of the sintering process based on the BP neural network [27]. Genetic 

algorithms combined with BP neural network reduced the learning time and increased the 

forecasting accuracy of the network model. The relation between factors like quality and multi-

objective was analyzed with the results being consistent with the process. 

The extensive experimental and modeling efforts produced some good results, however, one 

persistent concern in high-demand manufacturing technology has been to produce parts with 
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controlled desirable properties. Even if the same parameters are used during the manufacturing 

process of a specific product, it is not possible to acquire uniform properties.  For modeling 

approaches to study the different phases of the additive manufacturing technique, a little 

variation in any of the models will contribute to the final uncertainty of the prediction of the 

quality of the manufactured part.  

Therefore, the motivation of this work is that since neck size is directly related to the quality 

and strength of the sintered part, there is a need to develop a methodology to optimize the neck 

size. The objective is to use a machine learning approach to find out optimal values of surface 

diffusivity and inter-particle distance for maximizing neck size for equal and unequal sized 

particles and quantify the uncertainty. The structure of the current paper is as follows. Section 

2 elaborates the model details and mechanisms i.e., the phase-field model for simulation of 

neck growth in a two-particle system, surrogate models via Machine Learning approach, 

sensitivity analysis, and surrogate-based input parameter optimization through a Bayesian 

Optimization algorithm. Section 3 lists all the results and discussion. Section 4 concludes the 

paper with major points. 

2. Numerical model details 

2.1 Phase-field model of powder sintering 

2.1.1 Governing equations of the phase-field microstructural model 

In the present study, the phase-field model and its codes for sintering in Ref. [28] have been 

adopted for the current work to generate the microstructures of the two-particle model. The 

values used in this work are based on Ref. [3]. As stated in Ref. [3], the equations are also 

nondimensionalized with respect to the computational grid size and the energy barrier 

between the two coexisting phases. These parameters give a diffusivity ratio of about 

1000:100:10:1 along surface and grain boundary, through volume and vapor, respectively, 
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and an interfacial energy density ratio of about 2:1 between surface and grain boundary. 

These values could also be taken from physical quantities related to specific materials. The 

microstructure is defined by the free energy function of the system which is mathematically 

represented as: 

𝐹𝐹 = �[𝑓𝑓(𝜌𝜌, 𝜂𝜂1, … 𝑝𝑝) +
𝑘𝑘𝜌𝜌
2

(∇𝜌𝜌)2 + �
𝑘𝑘𝜂𝜂
2

(∇𝜂𝜂𝑖𝑖)2]𝑑𝑑𝑑𝑑 
𝑖𝑖𝑣𝑣

     (3) 

where 𝑘𝑘𝜌𝜌and 𝑘𝑘𝜂𝜂 are gradient energy coefficients for concentration and grain boundary energies 

respectively [28]. The evolution equation for the density field follows the Cahn-Hilliard 

equation: 

𝜕𝜕𝜌𝜌
𝜕𝜕𝐾𝐾

= ∇. �
𝐷𝐷∇δF
δρ

� = ∇. D∇ �
∂f
𝜕𝜕𝜌𝜌

− 𝑘𝑘𝜌𝜌∇2𝜌𝜌�      (4) 

where D is the microstructure-dependent diffusivity coefficient [28]. D is assumed to take the 

form: 

𝐷𝐷 = 𝐷𝐷𝑣𝑣𝑣𝑣𝑣𝑣𝜙𝜙(𝜌𝜌) + 𝐷𝐷𝑣𝑣𝑣𝑣𝑣𝑣[1 − 𝜙𝜙(𝜌𝜌)] + 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜌𝜌(1 − 𝜌𝜌) + 𝐷𝐷𝐺𝐺𝐵𝐵��𝜂𝜂𝑖𝑖𝜂𝜂𝑚𝑚
𝑖𝑖≠𝑚𝑚𝑖𝑖

     (5) 

where 𝐷𝐷𝑣𝑣𝑣𝑣𝑣𝑣 is the bulk diffusivity, 𝐷𝐷𝑣𝑣𝑣𝑣𝑣𝑣 is the diffusivity of the vapor phase, 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the surface 

diffusivity and 𝐷𝐷𝐺𝐺𝐵𝐵is the grain boundary diffusivity.  

The non-conserved order parameter which represents the particles and the grain boundaries 

follows the Allen-Cahn equation: 

𝜕𝜕𝜂𝜂𝑖𝑖
𝜕𝜕𝐾𝐾

= −
𝐿𝐿
𝜕𝜕𝜂𝜂𝑖𝑖

𝛿𝛿𝐹𝐹 = −𝐿𝐿 �
𝜕𝜕𝐹𝐹
𝜕𝜕𝜂𝜂𝑖𝑖

− 𝑘𝑘𝜂𝜂∇2𝜂𝜂𝑖𝑖�     (6) 

where 𝐿𝐿 is grain-boundary mobility [28]. 
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The Cahn-Hilliard and Allen-Cahn governing equations were solved with a finite-difference 

algorithm by using the five-point stencil in two-dimensional space. The time integration was 

carried out by a simple explicit Euler time marching scheme.  

 

2.1.2 Geometry and mesh of equal size and unequal size two-particle models 

For equal-sized particles, the radii of the two spherical particles were made equal and the model 

was simulated for 20,000 time steps. The radius of each particle was 20 units. The simulation 

cell was discretized into 100 grid points in the x-direction and 100 grid points in the y-direction.  

The grid spacing was 0.5 in both x and y directions. The inter-particle distance was kept as 40 

units initially and was varied according to the uniform distribution. 

For unequal-sized particles, the radius of one of the spherical particles was made 1.5 times that 

of the other and the phase-field model was simulated for 20,000 time steps. The radius of one 

particle was 20 and that of the other was 40/3. The simulation cell was discretized into 100 grid 

points in the x-direction and 100 grid points in the y-direction. The grid spacing was 0.5 in both 

x and y-directions. The inter-particle distance varied from 33.3 through 34.8.  

 

2.1.3 Material properties 

The gradient coefficient for the concentration field 𝑘𝑘𝜌𝜌 was set to 5.0, the gradient coefficient 

for order parameters 𝑘𝑘𝜂𝜂 was assigned value of 2.0, mobility of order parameters 𝐿𝐿 set as 10.0 

[28]. The value of bulk diffusivity 𝐷𝐷𝑣𝑣𝑣𝑣𝑣𝑣 was 0.04, diffusivity of the vapor phase 𝐷𝐷𝑣𝑣𝑣𝑣𝑣𝑣 0.002, 

initial surface diffusivity 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 16.0, grain boundary diffusivity 𝐷𝐷𝐺𝐺𝐵𝐵 1.6 [28]. Since the values 

in the phase-field model were normalized, the temperature was not considered as an explicit 
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input parameter. However, the temperature effect can be included by using temperature-

dependent material properties.   

 

2.1.4 Boundary conditions 

The concentration field which takes the value of 1 in the particles and 0 elsewhere was 

initialized to 0. It is a one-dimensional array and can be represented as 𝑐𝑐𝑐𝑐𝑐𝑐(𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦). The two-

dimensional array of non-conserved order parameters for the particles 𝑒𝑒𝐾𝐾𝑒𝑒𝑠𝑠(𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦,𝑐𝑐𝑝𝑝𝑒𝑒𝑛𝑛𝐾𝐾) was 

initialized to 0.  𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦 represents the total number of grid points in the simulation cell and 

𝑐𝑐𝑝𝑝𝑒𝑒𝑛𝑛𝐾𝐾 is the number of particles.   

 

2.2 Machine learning approach 

2.2.1  Gaussian process regression 

A Gaussian Process is a set of random variables, any finite number of which have joint 

Gaussian distributions [29]. A random variable is any variable whose value depends on the 

outcome of a random phenomenon. Any random variable can be described by its cumulative 

distribution function which describes the probability (𝑃𝑃) that the random variable will be less 

than or equal to a certain value. The cumulative distribution function can be described as: 

𝐹𝐹𝑋𝑋(𝑥𝑥) = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥)    (7) 

where 𝑋𝑋 is the random variable and 𝑥𝑥 is the target value. A joint distribution is used when we 

want to study two random variables together. For instance, the joint cumulative distribution 

function of two random variables 𝑋𝑋 and 𝑌𝑌 can be represented as: 

𝐹𝐹𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦) = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥,𝑌𝑌 ≤ 𝑦𝑦)    (8) 
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which can also be represented as: 

𝐹𝐹𝑋𝑋𝑋𝑋(𝑥𝑥, 𝑦𝑦) = 𝑃𝑃((𝑋𝑋 ≤ 𝑥𝑥) and (𝑌𝑌 ≤ 𝑦𝑦)) =  𝑃𝑃((𝑋𝑋 ≤ 𝑥𝑥) ∩  (𝑌𝑌 ≤ 𝑦𝑦))      (9) 

 

A Gaussian Process consists of a mean function m(x) and a covariance function k(x, x'). The 

Gaussian distribution can be indicated as: 

𝑓𝑓 ~ 𝐺𝐺𝑃𝑃(𝑚𝑚,𝑘𝑘)    (10) 

which means the function f is distributed as a Gaussian Process with mean function m and 

covariance function k [29]. The individual random variables in a vector from a Gaussian 

distribution are indexed by their position in the vector. For example, if the input variable is 

denoted by x, then for each input x, there is an associated random variable f(x) which is the 

value of the stochastic function f at that location. The Gaussian process prediction, known as 

Kriging, has a basis function that can be formulated as [30]: 

𝜓𝜓𝑖𝑖 = exp  (−�𝜃𝜃𝑗𝑗�𝑥𝑥𝑗𝑗
(𝑖𝑖) − 𝑥𝑥𝑗𝑗�

𝑣𝑣𝑗𝑗
)  

𝑘𝑘

𝑗𝑗=1

     (11) 

The 𝜃𝜃 in the equation above allows the width of the basis function to vary from variable to 

variable [30]. The varying value of 𝑝𝑝𝑗𝑗 allows for the smoothness to vary for the function. As 

mentioned earlier, each input variable has an associated random output variable, so the 

observed responses can be denoted by a set of random vectors: 

𝒀𝒀 = �
𝑌𝑌(𝑥𝑥1)
⋮

𝑌𝑌(𝑥𝑥𝑛𝑛)
�      (12) 
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The random vector has a mean of 𝟏𝟏𝜇𝜇 where 𝟏𝟏 is an 𝑐𝑐 × 1 column vector of ones, and 𝑐𝑐 

represents the number of observations. The random variables are correlated with each other by 

the expression: 

𝑐𝑐𝑐𝑐𝑛𝑛�𝑌𝑌�𝑥𝑥𝑖𝑖�,𝑌𝑌(𝑥𝑥𝑣𝑣)� = exp (−�𝜃𝜃𝑗𝑗�𝑥𝑥𝑗𝑗𝑖𝑖 − 𝑥𝑥𝑗𝑗𝑣𝑣�
𝑣𝑣𝑗𝑗)  

𝑘𝑘

𝑗𝑗=1

     (13) 

 

From Eq. 13, an 𝑐𝑐 × 𝑐𝑐 correlation matrix can be constructed for the observed samples: 

𝚿𝚿 =  �
𝑐𝑐𝑐𝑐𝑛𝑛[𝑌𝑌(𝑥𝑥1),𝑌𝑌(𝑥𝑥2)] ⋯ 𝑐𝑐𝑐𝑐𝑛𝑛[𝑌𝑌(𝑥𝑥1),𝑌𝑌(𝑥𝑥𝑛𝑛)]

⋮ ⋱ ⋮
𝑐𝑐𝑐𝑐𝑛𝑛[𝑌𝑌(𝑥𝑥𝑛𝑛),𝑌𝑌(𝑥𝑥1)] ⋯ 𝑐𝑐𝑐𝑐𝑛𝑛[(𝑌𝑌(𝑥𝑥𝑛𝑛),𝑌𝑌(𝑥𝑥𝑛𝑛)]

�       (14) 

 

A covariance matrix can be created from the above correlation matrix [30]: 

𝐶𝐶𝑐𝑐𝑑𝑑(𝒀𝒀,𝒀𝒀) = 𝜎𝜎2𝚿𝚿      (15) 

Correlation refers to the degree to which two random variables are linearly related to each 

other. There are several correlation coefficients like the Pearson correlation coefficient, 

Spearman's rank correlation coefficient, Kendall's rank correlation coefficient, etc. The value 

of the correlation coefficient can vary between -1 and +1. A value of +1 refers to a perfect 

linearly increasing relationship between the two variables. A value of -1 refers to a perfect 

linearly decreasing relationship between the variables. A value of 0 refers to no correlation or 

dependence between the variables. The closer the coefficient is to -1 or +1, the stronger the 

correlation is between the variables. Covariance is defined as the correlation between two or 

more sets of random variables. For two random variables 𝑋𝑋 and 𝑌𝑌 , 

𝐶𝐶𝑐𝑐𝑑𝑑(𝑋𝑋,𝑌𝑌) = 𝐸𝐸�(𝑋𝑋 − 𝜇𝜇𝑥𝑥)�𝑌𝑌 − 𝜇𝜇𝑦𝑦�� = 𝐸𝐸[𝑋𝑋𝑌𝑌] − 𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦      (16) 
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where  𝜇𝜇𝑥𝑥 and 𝜇𝜇𝑦𝑦 are the means of 𝑋𝑋 and 𝑌𝑌 and 𝐸𝐸 is the expectation. The relation between 

correlation and covariance can be represented as [30]: 

𝑐𝑐𝑐𝑐𝑛𝑛(𝑋𝑋,𝑌𝑌) =
𝑐𝑐𝑐𝑐𝑑𝑑(𝑋𝑋,𝑌𝑌)
𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦

       (17) 

The correlation between the elements of Y depends on the values of absolute distance between 

the sample points �𝑥𝑥𝑗𝑗𝑖𝑖 − 𝑥𝑥𝑗𝑗𝑣𝑣�, the parameters 𝑝𝑝𝑗𝑗 and 𝜃𝜃𝑗𝑗 . It has been observed that as the two 

points move close together i.e., 𝑥𝑥𝑗𝑗𝑖𝑖 − 𝑥𝑥𝑗𝑗𝑣𝑣 → 0, exp �−�xji − xjl�
pj� → 1 i.e., the points show 

highly increasing linear correlation whereas when the distance→ ∞, the correlation 

coefficient→ 0, i.e., the points do not correlate. 𝜃𝜃𝑗𝑗  is a width parameter that affects how far a 

data point's influence extends. A low 𝜃𝜃𝑗𝑗  means all data points have a high correlation [30] while 

the reverse is true for a high 𝜃𝜃𝑗𝑗 . Hence 𝜃𝜃𝑗𝑗  can be considered as a measure of how active the 

approximating function is. The value of 𝜃𝜃 and 𝑝𝑝 can be found out by maximizing the likelihood 

of the observed responses 𝒀𝒀. Taking the natural logarithm of likelihood : 

ln(𝐿𝐿) = −
𝑐𝑐
2

ln(2𝜋𝜋) −
𝑐𝑐
2

ln(𝜎𝜎2) −
1
2

ln|𝚿𝚿| −
(𝒚𝒚 − 𝟏𝟏𝜇𝜇)𝑇𝑇𝚿𝚿−𝟏𝟏(𝒚𝒚 − 𝟏𝟏𝜇𝜇)

2𝜎𝜎2
      (18) 

The maximum likelihood estimates (MLEs) for 𝜇𝜇 and 𝜎𝜎2: 

�̂�𝜇 =
𝟏𝟏𝑇𝑇𝚿𝚿−1𝒚𝒚
𝟏𝟏𝑇𝑇𝚿𝚿−1𝟏𝟏

        (19) 

𝜎𝜎�2 =
(𝒚𝒚 − 𝟏𝟏𝜇𝜇)𝑇𝑇𝚿𝚿−1(𝒚𝒚 − 𝟏𝟏𝜇𝜇)

𝑐𝑐
       (20) 

The concentrated ln-likelihood function can be denoted as [30]: 

ln(𝐿𝐿) ≈ −
𝑐𝑐
2

ln(𝜎𝜎2) −
1
2

ln|𝜳𝜳|      (21) 
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The values of 𝜃𝜃 𝑒𝑒𝑐𝑐𝑑𝑑 𝑝𝑝 are found to maximize the above ln-likelihood function. This is usually 

done through a genetic algorithm or exhaustive search function. The maximum likelihood 

estimate (MLE) for the Kriging prediction 𝑦𝑦� is given by [30]: 

𝑦𝑦�(𝒙𝒙) = �̂�𝜇 + 𝝍𝝍𝑇𝑇𝚿𝚿−1(𝒚𝒚 − 𝟏𝟏�̂�𝜇)     (22) 

2.2.2 Surrogate modeling 

Surrogate models are approximations of the original simulation model. In this work, the 

Gaussian Process Regression (Kriging) methodology has been used here to build the surrogate 

models that predict neck size from input parameters surface diffusivity and inter-particle 

distance. A 4-level full factorial Design of Experiments (DOE) was performed in the process 

of creating the surrogate model. First, the design variables and response variables were 

determined. In this case, the design variables were surface diffusivity and the inter-particle 

distance. The response variable was certainly the size of the evolved neck region in-between 

the two spherical particles. The statistical design of experiments allows varying variables 

simultaneously rather than varying one-factor-at-a-time [31]. This way the mutual interactions 

between the variables are also considered. So the quantity of interest neck size can be modeled 

as a function of these two design variables: 

𝑁𝑁 = 𝑓𝑓�𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑑𝑑�      (23)  

where 𝑁𝑁 refers to the neck size, 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 stands for surface diffusivity and 𝑑𝑑 refers to the inter-

particle distance.  

 

2.2.2.1 Training data 

Table 1 and Table 2 show the DOE matrix for equal-sized and unequal-sized particles 

respectively. Sixteen simulations of the phase-field model were performed at varying values of 
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the input parameters. A uniform distribution of data was considered for both surface diffusivity 

and inter-particle distance. For equal-sized particles, the range of surface diffusivity was [4, 

24] and that for inter-particle distance [40, 41.5] while for unequal-sized particles, the ranges 

were [4, 24] and [33.3, 34.8] respectively. There was not much difference in values of neck 

size at higher time steps. Hence, in order to reduce computational expense, the total time steps 

were kept at 5000, and the neck size after each simulation was noted. The trend in response 

values was found to be monotonic, so even if more simulations were performed, the additional 

data points would be on the same surfaces.  

 

Table 1: DOE matrix for equal-sized particles model 

 

Serial No. 

Surface diffusivity 

(𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 

Inter-particle 

distance (𝑑𝑑) 

 

Neck size(𝑁𝑁) 

1 4 40 14.15388 

2 8 40 15.50387 

3 16 40 17.18751 

4 24 40 19.36508 

5 4 40.5 12.40309 

6 8 40.5 13.95348 

7 16 40.5 15.748 

8 24 40.5 16.69287 

9 4 41 8.00002 

10 8 41 9.53848 

11 16 41 12.1875 
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12 24 41 14.1732 

13 4 41.5 5.84617 

14 8 41.5 7.75193 

15 16 41.5 10.39367 

16 24 41.5 12.28342 

Table 2: DOE matrix for unequal sized particles model 

Serial No. 

Surface diffusivity 

(𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 

Inter-particle 

distance (𝑑𝑑) Neck size (𝑁𝑁) 

1 4 33.3 12.093 

2 8 33.3 13.2308 

3 16 33.3 14.68752 

4 24 33.3 15.55554 

5 4 33.8 10.46155 

6 8 33.8 11.47285 

7 16 33.8 13.22831 

8 24 33.8 14.28572 

9 4 34.3 6.82169 

10 8 34.3 8.37208 

11 16 34.3 10.39367 
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12 24 34.3 12.06348 

13 4 34.8 4.30771 

14 8 34.8 6.76924 

15 16 34.8 9.06252 

16 24 34.8 10.39367 

 

Observations 4, 5, 6, and 7 in both Table 1 and Table 2 were kept aside for the model testing 

purpose and were not used for generating the metamodels.  

 

2.2.2.2 Metamodel generation 

The metamodel was generated from the training data through Gaussian Process Regression. 

The ooDACE toolbox was used for the creation of the surrogate model [32]. A fourth of the 

data in Tables 1 and 2 were left out and kept reserved for testing the accuracy of the model. 

The lower bound and upper bound of the hyper-parameters were fixed at [-5 5]. Three Gaussian 

regression functions of orders zero, one, and two were tested for building the metamodel. A 

mesh grid of size 100 × 100 was created to plot the surface of neck size.  

 

2.2.2.3 Model testing 

For model testing purposes, the root mean squared error (RMSE) can be used as a metric [30]. 

If the available observed data is enough, 0.25𝑐𝑐 𝑥𝑥 → 𝑦𝑦 pairs can reserved for model testing 

[33]. RMSE can be formulated as: 
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�
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛𝑡𝑡
𝑖𝑖=0 

𝑐𝑐𝑡𝑡
       (24) 

where 𝑐𝑐𝑡𝑡 is the number of observations for testing, 𝑦𝑦𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ observation and 𝑦𝑦�𝑖𝑖 is the 

prediction corresponding to the 𝑖𝑖𝑡𝑡ℎobservation [30]. 

 

Table 3: Model testing data for equal-sized particles 

 

Serial No. 

Surface diffusivity 

(𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 

Inter-particle 

distance (𝑑𝑑) 

 

Neck size(𝑁𝑁) 

1 24 40 19.36508 

2 4 40.5 12.40309 

3 8 40.5 13.95348 

4 16 40.5 15.748 

 

Table 4: Model testing data for unequal sized particles 

Serial No. Surface diffusivity 

(𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 

Inter-particle 

distance (𝑑𝑑) 

Neck size(𝑁𝑁) 

1 
 

24 33.3 15.55554 

2 
 

4 33.8 10.46155 

3 
 

8 33.8 11.47285 

4 
 

16 33.8 13.22831 
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2.2.2.4 Cross-validation 

Cross-validation is a technique to test how accurately a predictive model will perform in real 

life. The goal is to test the model's ability to predict new data that was not used as training data. 

This can help to avoid problems like overfitting or underfitting of the model and generalize the 

model for working on unknown datasets. Cross-validation involves partitioning the data into 

subsets called training set and validation set. In one round, the model is built using the training 

set and validated using the validation/testing set. Multiple rounds are performed like this with 

different subsets to reduce variability. The prediction error is found in each round. The average 

error for all rounds gives an estimate of the accuracy of the predictive capability of the model. 

There are two types of cross-validation methods: Exhaustive and Non-exhaustive. The 

exhaustive methods include Leave-p-out cross-validation, Leave-one-out cross-validation, 

while the non-exhaustive methods include k-fold cross-validation, the Holdout method, 

Repeated random sub-sampling validation. In this work, the Leave-one-out cross-validation 

(LOOCV) has been used to evaluate the surrogate model. In LOOCV, the dataset is divided 

into 𝑘𝑘 subsets where 𝑘𝑘 equals the total number of observations. The function approximator is 

trained on all the data except for one point and prediction is made for that point. The average 

error is computed from all such predictions. Though it can be a little computationally 

expensive, it gives an accurate measure of the predictability of the machine-learning model. 

The advantage is that the variance is reduced to a minimum and it does not depend on how the 

dataset is subdivided, unlike other cross-validation methods. Mathematically, if a mapping 

𝜁𝜁: {1, … ,𝑐𝑐} → {1, … ,𝑘𝑘 describes the allocation of 𝑐𝑐 training points to one of the 𝑘𝑘 subsets and 

𝑓𝑓−𝑖𝑖 is the value of the predictor obtained by removing the subset 𝜁𝜁(𝑖𝑖), the cross-validation 

measure can be depicted as [30]: 

𝜖𝜖𝐶𝐶𝐶𝐶 =
1
𝑐𝑐
� |𝑦𝑦𝑖𝑖 − 𝑓𝑓−𝑖𝑖
𝑛𝑛

𝑖𝑖=1

|       (25) 
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where the absolute error has been taken into account between the 𝑖𝑖𝑡𝑡ℎ test response and the 𝑖𝑖𝑡𝑡ℎ 

predicted value. 

 

Table 5: Cross-validation data for equal-sized particles model 

 

Serial No. 

Surface diffusivity 

(𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 

Inter-particle 

distance (𝑑𝑑) 

 

Neck size(𝑁𝑁) 

1 4 40 14.15388 

2 8 40 15.50387 

3 16 40 17.18751 

4 24 40 19.36508 

5 4 40.5 12.40309 

6 8 40.5 13.95348 

7 16 40.5 15.748 

8 24 40.5 16.69287 

9 4 41 8.00002 

10 8 41 9.53848 

11 16 41 12.1875 

12 24 41 14.1732 

13 4 41.5 5.84617 

14 8 41.5 7.75193 

15 16 41.5 10.39367 

16 24 41.5 12.28342 
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Table 6: Cross-Validation data for unequal sized particles model 

Serial No. 

Surface diffusivity 

(𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 

Inter-particle 

distance (𝑑𝑑) Neck size (𝑁𝑁) 

1 4 33.3 12.093 

2 8 33.3 13.2308 

3 16 33.3 14.68752 

4 24 33.3 15.55554 

5 4 33.8 10.46155 

6 8 33.8 11.47285 

7 16 33.8 13.22831 

8 24 33.8 14.28572 

9 4 34.3 6.82169 

10 8 34.3 8.37208 

11 16 34.3 10.39367 

12 24 34.3 12.06348 

13 4 34.8 4.30771 

14 8 34.8 6.76924 

15 16 34.8 9.06252 
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16 24 34.8 10.39367 

 

Each observation here was considered a subset. So for each iteration, fifteen sets of training 

data were available and one set of test (validation) data was present. The error was found in 

each iteration by subtracting the predicted response from the test response. 

 

2.2.3 Sensitivity analysis 

Sensitivity analysis can determine how robust the result is. It can help save time and make 

informed decisions or choices. Sensitivity Analysis finds out which input variable has more 

contribution towards the variation of the output response variable. Global Sensitivity Analysis 

(GSA) takes into account all input variables in a model and determines sensitivity by evaluating 

the entire range of each input variable [34]. 

 

2.2.3.1 Pearson product-moment correlation coefficient 

The Pearson product-moment correlation coefficient can be used to determine the contribution 

of each input parameter on the variability of the response QOI i.e., neck size [35].  

Corr �𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑁𝑁� = 𝜌𝜌𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁 =
Covariance(𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑁𝑁)

𝜎𝜎𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜎𝜎𝑁𝑁
       (26) 

Corr(𝑑𝑑,𝑁𝑁) = 𝜌𝜌𝑑𝑑𝑁𝑁 =
Covariance(𝑑𝑑,𝑁𝑁)

𝜎𝜎𝑑𝑑𝜎𝜎𝑁𝑁
          (27) 

where 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the surface diffusivity, 𝑑𝑑 is the inter-particle distance, 𝑁𝑁 the neck size, 𝜎𝜎𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 

𝜎𝜎𝑑𝑑 and 𝜎𝜎𝑁𝑁 are the standard deviations of 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑑𝑑 and 𝑁𝑁 respectively.  
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2.2.4 Input parameter optimization 

2.2.4.1 Bayesian optimization 

Bayesian optimization is a class of machine-learning-based optimization methods focused on 

solving the problem: 

Maximize
xϵA

𝑓𝑓(𝑥𝑥)           (28) 

where 𝑓𝑓(𝑥𝑥) is the objective function, 𝑥𝑥 is the input, 𝐴𝐴 is the feasible set. The input 𝑥𝑥 is in ℝ𝑑𝑑 

for a value of 𝑑𝑑 that is not too large, typically 𝑑𝑑 ≤ 20. The feasible set 𝐴𝐴 is a hyper-rectangle 

{𝑥𝑥𝜖𝜖ℝ𝑑𝑑:𝑒𝑒𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖} or the 𝑑𝑑-dimensional simplex {𝑥𝑥𝜖𝜖ℝ𝑑𝑑:∑ 𝑥𝑥𝑖𝑖 = 1}𝑖𝑖 (2). The objective 

function 𝑓𝑓 is continuous and modeled using Gaussian Process Regression. 𝑓𝑓 usually lacks any 

known special structure like concavity or linearity that would make it easy to optimize using 

techniques that leverage such structure to improve efficiency. So 𝑓𝑓 is considered as a black-

box. This type of optimization is also referred to as derivative-free optimization as there is no 

evaluation of first or second-order derivatives. Bayesian optimization consists of two main 

components: a Bayesian statistical model for modeling the objective function and an 

acquisition function to decide where to sample next. The statistical model which is usually a 

Gaussian process provides a Bayesian posterior probability distribution that describes potential 

values for 𝑓𝑓(𝑥𝑥) at a candidate point 𝑥𝑥. For each evaluation of 𝑓𝑓 at a new point, the posterior 

distribution is updated. The acquisition function measures the value that would be generated 

by evaluation of the objective function at a new infill point 𝑥𝑥 based on current posterior 

distribution over 𝑓𝑓. The Gaussian Process-based models permit the calculation of an estimated 

error in the model, hence it is possible to use this to position infill points where the uncertainty 

in the prediction of the model is highest. The mean squared error (MSE) in a Gaussian process-

based prediction model is [30] 
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�̂�𝑠2(𝐱𝐱) = 𝜎𝜎2 �1 −𝝍𝝍𝑇𝑇𝚿𝚿−1𝝍𝝍 +
1 − 𝟏𝟏𝑇𝑇𝚿𝚿−1𝝍𝝍
𝟏𝟏𝑇𝑇𝚿𝚿−1𝟏𝟏

�           (29) 

 

Using this estimated error, the uncertainty in prediction can be modeled by considering it as 

the realization of a normally distributed random variable 𝑌𝑌(𝐱𝐱) with mean 𝑦𝑦�(𝐱𝐱) and variance 

�̂�𝑠2(𝐱𝐱). Considering the possibility that 𝑌𝑌(𝐱𝐱) can take different values, due to the size of �̂�𝑠2(𝐱𝐱), 

infill criteria can be made which balances the values of 𝑦𝑦�(𝐱𝐱) and �̂�𝑠2(𝐱𝐱). One way to balance 

these two is minimizing a statistical lower bound [30]: 

LB(𝐱𝐱) = 𝑦𝑦�(𝐱𝐱) − 𝐴𝐴�̂�𝑠(𝐱𝐱)       (30) 

where 𝐴𝐴 is a constant that controls the exploitation/exploration balance. As 𝐴𝐴 → 0, LB(𝐱𝐱) →

𝑦𝑦�(𝐱𝐱) (pure exploitation) and as 𝐴𝐴 → ∞, the effect of 𝑦𝑦�(𝐱𝐱) becomes negligible and minimizing 

LB(𝐱𝐱) is equivalent to maximizing �̂�𝑠(𝐱𝐱) (pure exploration) [30]. 

 

2.2.4.2 Optimization using Probability of Improvement 

Usually, the infill point is placed at a value of 𝐱𝐱 that will help in an improvement on the best 

observed value so far, i.e., 𝑦𝑦min [30]. By considering 𝑦𝑦�(𝐱𝐱) as the realization of a random 

variable, the probability of improvement can be calculated as 𝐼𝐼 = 𝑦𝑦min−𝑋𝑋(𝐱𝐱)
𝑦𝑦min

 [30].  

𝑃𝑃[𝐼𝐼(𝐱𝐱)] =
1

�̂�𝑠√2𝜋𝜋
� 𝑒𝑒−[𝐼𝐼−𝑦𝑦�(𝐱𝐱)]2/(2𝑠𝑠2)d𝐼𝐼
0

−∞
        (31) 

Using the error function, 

𝑃𝑃[𝐼𝐼(𝐱𝐱)] =
1
2
�1 + erf �

𝑦𝑦min − 𝑦𝑦�(𝐱𝐱)
�̂�𝑠√2

��        (32) 
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For a maximization problem, 𝐼𝐼 = 𝑋𝑋(𝐱𝐱)−𝑦𝑦max
𝑦𝑦max

        (33)  

2.2.4.3 Optimization using Expected Improvement 

If the mean 𝑦𝑦�(𝑥𝑥) and the variance �̂�𝑠2(𝑥𝑥) are provided, the amount of improvement over the 

current model can be determined. The Expected Improvement can be calculated by [30]: 

𝐸𝐸[𝐼𝐼(𝑥𝑥)] = �𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛 − 𝑦𝑦�(𝑥𝑥)�Φ�
𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛 − 𝑦𝑦�(𝑥𝑥)

�̂�𝑠(𝑥𝑥) � + 𝑠𝑠𝜙𝜙 �
𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛 − 𝑦𝑦�(𝑥𝑥)

�̂�𝑠(𝑥𝑥) �   𝑖𝑖𝑓𝑓 𝑠𝑠 > 0        (34) 

𝐸𝐸[𝐼𝐼(𝑥𝑥)] = 0                 𝑖𝑖𝑓𝑓 𝑠𝑠 = 0      (35) 

where Φ(. ) and 𝜙𝜙(. ) are the cumulative distribution function and probability density function 

respectively. A maximum expected improvement infill procedure usually finds the global 

optimum. Using the error function, the expected improvement can be expressed as: 

𝐸𝐸[𝐼𝐼(𝐱𝐱)] = �𝑦𝑦min − 𝑦𝑦�(𝐱𝐱)� �
1
2

+
1
2

erf�
𝑦𝑦min − 𝑦𝑦�(𝐱𝐱)

�̂�𝑠√2
�� + �̂�𝑠

1
√2𝜋𝜋

exp �
−�𝑦𝑦min − 𝑦𝑦�(𝐱𝐱)�

2

2�̂�𝑠2
�   (36) 

 

In this work, the Efficient Global Optimization (EGO) algorithm [36] was used to find the best 

design possible. The flowchart for the simulation is shown in Figure 1. The Probability of 

Improvement and Expected Improvement were used as acquisition functions. After finding the 

initial best design, i.e., the maximum value of neck size from the simulation response values, 

the acquisition function is maximized using a genetic algorithm [37]. The optimal values of the 

design variables are determined and using those values, the new response is found out from the 

simulation model. This helps in updating the metamodel in each iteration. This process is 

continued till an adequately suitable design is obtained or until the maximum number of 

iterations i.e., 15 is reached. The following flowchart illustrates the workflow of the 

optimization routine. 
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Figure 1: Flow chart of the Efficient Global Optimization algorithm used in this study 
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The optimization problem for equal-sized particles can be framed as: 

   Find   𝒙𝒙 ∈ ℝ2  (37) 

   Maximize  𝑁𝑁(𝑥𝑥) 

   Subject to  𝑥𝑥𝑖𝑖 ∈ {4,40, … ,24,41.5} 

where 𝒙𝒙 = �𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑑𝑑� is the vector of design variables surface diffusivity and inter-particle 

distance, and 𝑁𝑁(𝒙𝒙) is the neck size.  

The Efficient Global Optimization (EGO) approach was used in this work for the following 

major advantages [36]: (1) Fewest function evaluations are required among other competing 

optimization methods. This is due to the possibility of interpolating or extrapolating accurately 

over large distances in the design space. (2) There is a credible stopping rule based on the 

acquisition function from further searching the surrogate. This is possible because the 

probabilistic model provides confidence intervals on the function's value at unsampled points, 

the validity of which can be checked by model validation techniques. (3) There is a fast 

approximation to the multi-physics simulation model that can be used to identify important 

variables and visualize the nature of input-output relationships.   

 

3. Results and discussion 

3.1 Sintered particle microstructure evolutions 

Figure 2 depicts the microstructure evolution with the sizes of the two spherical particles being 

equal, using the phase-field code in Ref. [28]. In this case, it can be observed that the shrinkage 

of both particles takes place at an equal rate. The neck evolution is rapid at the beginning and 
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then slows down later. The changes in the size of the neck can be attributed to the transport of 

matter from regions in the vicinity with high concentration to the neck region facilitated by 

various diffusion paths. 

 

   

(a) (b) 

Figure 2: Neck evolutions of the equalized particles (a) at time step 100, (b)  at time step 20,000.  

 

Figure 3 describes the evolution of the neck region for unequal-sized particles, i.e., particle size 

ratio of 1.5, using the phase-field code in Ref. [28]. It was observed that the neck formation 

was rapid in the early stages of the simulation but later slowed down and reached a steady state. 

It was also observed that the smaller particle had a faster contraction.  
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(a) (b) 

Figure 3: Neck evolutions of the unequalized particles. (a) at time step 100, (b)  at time step 

20,000.  

 

Figure 4 shows the evolution of the neck region sizes for both the equal and unequal sized 

particles models. The curves show the increase of neck size is steep at the beginning for both 

the particle sizes and then tends to flatten as the time step increases. In both cases, the surface 

diffusivity was fixed at 16. This indicates that the particle size does not have a significant effect 

on the evolution of neck size at later time steps. 
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Figure 4: Evolution of neck size at different time steps for equal and unequal sized particles 

 

3.2 Machine learning approach results 

3.2.1 Equal sized particles 

Figures 5,6, and 7 show the initial metamodels obtained using three regression functions 

Regpoly0, Regpoly1 and Regpoly2 which refer to polynomial approximations of orders zero, 

one and two, respectively. The standard practice is to use a constant regression function which 

is Regpoly0. This is done in order to avoid unwanted flexibility of the model which may lead 

to overfitting the noise in the data generated due to higher order polynomials. This eventually 

causes poor generalization capability of the model. The neck size is seen to increase with 

increasing surface diffusivity and decreases with increasing inter-particle distance.  
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Figure 5: Metamodel by regression function of order zero for equal sized particle model 

 

Figure 6: Metamodel by regression function of order one for equal sized particle model 
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Figure 7: Metamodel by regression function of order two for equal sized particle model 

 

For model testing, the root mean square error (RMSE) values for each initial metamodel were 

calculated as 1.2077, 1.2205, and 1.3937 for Regpoly0, Regpoly1, and Regpoly2, respectively.  

The model with the regression function of order zero was found to have the least RMSE of 

1.2077 and hence was selected for the further optimization process.  

For cross-validation, the average error found by cross-validation for the observations used to 

build the surrogate model is 0.25836, 0.38635, and 0.32083 for Regpoly0, Regpoly1, and 

Regpoly2, respectively.  Again, the model with the regression function of order zero has the 

least error of 0.25836. Hence error results from both model testing and cross-validation indicate 

Regpoly0 is the best metamodel for equal-sized particles.  
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Figure 8 presents the correlation of surface diffusivity and inter-particle distance with neck 

size, which shows a strong correlation with a correlation coefficient of 0.5733. This is because 

as the surface diffusivity increases, there is a large increase in neck size.  

 

Figure 8: Correlation between surface diffusivity and neck size for equal sized particle model 

 

Figure 9 explains that the inter-particle distance is strongly associated with the neck size with 

a Pearson correlation coefficient of -0.8028. As the inter-particle distance increases, there is a 

large decrease in neck size. 
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Figure 9: Correlation between inter-particle distance and neck size for equal sized particle 

model 

 

For optimization by Probability of Improvement (PI) as the acquisition function, the random 

sampling plan was used with a surface diffusivity range from 4 to 24 and inter-particle distance 

from 40 to 41.5. Using the metamodel generated by Gaussian Process Regression, the results 

show a monotonic nature of the data for neck size linearly increasing with increasing surface 

diffusivity and decreasing with inter-particle distance.  At the last iteration in the optimization 

process, the values of optimal design variables converged at [23.8268, 40.0001]. Hence the 

iteration was stopped here. The maximum neck size was 19.0476 and the Probability of 

Improvement 0.5119.   

Additionally, using Expected Improvement (EI) as the acquisition function, the initial 

metamodel generated by Kriging regression and its re-iterations show that the neck size linearly 

increases with increasing surface diffusivity and decreases with increasing inter-particle 

distance. After 15 iterations in the optimization process, the values of optimal design variables 
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were found as [23.9874, 40.7428]. The maximum neck size was 19.0476 and the Expected 

Improvement 8.1805×103. The solution obtained looks like a global optimum as all potential 

values seem to have been explored from the entire design space.  

 

3.2.2 Unequal sized particles 

A. Initial Metamodel Generation 

For unequal-sized particles, Figures 10, 11, and 12 show the initial metamodels obtained using 

three regression models with polynomials of order zero (Regpoly0), one (Regpoly1), and two 

(Regpoly2) respectively. The figures have the surfaces that detail the monotonic increase of 

neck size with an increase in surface diffusivity and decreasing neck size with an increase in 

inter-particle distance. The neck size increased from 12.093 to 14.68752 for an inter-particle 

distance of 33.3, from 6.82169 to 12.06348 for an inter-particle distance of 34.3, and from 

4.30771 to 10.39367 for an inter-particle distance of 34.8. The surface diffusivity ranged from 

4 to 24 and inter-particle distance spanned 33.3 through 34.8.   
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Figure 10: Metamodel by regression function of order zero for unequal sized particle model 

 

Figure 11: Metamodel by regression function of order one for unequal sized particle model 
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Figure 12: Metamodel by regression function of order two for unequal sized particle model 

 

For model testing,  the RMSE values for each metamodel are 0.4111, 0.7734, and 1.0878 for 

Regpoly0, Regpoly1, and Regpoly2, respectively. Since order zero was found to have the least 

RMSE of 0.4111, hence it was chosen for Bayesian optimization. For both equal and unequal-

sized particles, the model with the regression function of order zero gave the least mean square 

error. Also, the error was observed to decrease in unequal-sized particles.  

The average error found by leave-one-out cross-validation for the observations was used to 

build the surrogate model of unequal-sized particles. The cross-validation errors at different 

regression functions for unequal sized particles are 0.3149, 0.5850, and 0.4362 for Regpoly0, 

Regpoly1, and Regpoly2, respectively. The model with the regression function of order zero 

has the least error of 0.3149. The error results from model testing and cross-validation for 

unequal-sized particles indicate Regpoly0 is the suitable metamodel to start the optimization 

process with. This result concurs with that of equal-sized particles. The cross-validation error 

is greater for unequal-sized particles than equal-sized particles.   

For sensitivity analysis, the correlations of surface diffusivity and inter-particle distance with 

neck size respectively were calculated.  There is a strong positive correlation between surface 

diffusivity and neck size with a coefficient of 0.5734, and there is a strong dependence of neck 

size on inter-particle distance with a Pearson correlation coefficient of -0.7960. As the inter-

particle distance increases, there is a considerable decrease in neck size. This proves that the 

nature of the correlation between the QOI and input parameters is independent of the particle 

size. 
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For optimization using Probability of Improvement, the random sampling plan was used with 

surface diffusivity ranging from 4 to 24 and inter-particle distance from 33.3 to 34.8.  The first 

metamodel generated by Gaussian Process Regression with neck size linearly increases for the 

range of surface diffusivity and decreasing for that of inter-particle distance. 

The values of optimal design variables were fixed at [23.9700, 33.3005] after exhausting all 15 

iterations in the optimization process. The maximum neck size was 16.1905 and the Probability 

of Improvement was 0.4999. 

Additionally, for optimization using Expected Improvement, the input sampling plan was used 

with surface diffusivity ranging from 4 to 24 and inter-particle distance from 33.3 to 34.8. The 

results show that the initial metamodel generated by Kriging regression and the increasing 

nature of the neck size with increasing surface diffusivity and decreasing with inter-particle 

distance.  

At the end of 15 iterations, the values of design variables converged at [23.9893, 33.9627], the 

maximum neck size being 16.1905 and Expected Improvement as 6.0914×103. The solution 

obtained here tends to be a global optimum.  

For the Probability of Improvement at each iteration for unequal-sized particles, initially, the 

PI decreases and tends to zero, then becomes constant in the later iterations. The trend is similar 

to the case for equal-sized particles but here the function will apparently require more than 15 

iterations to eventually turn zero. 

The final optimal values of design variables surface diffusivity 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and inter-particle distance 

𝑑𝑑 as obtained from the two acquisition functions: For equal-sized particles, the Probability of 

Improvement gives the optimal result as [23.8268, 40.0001] when the design converged after 

10 iterations. The Expected Improvement after 15 iterations provides an optimal design of 
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[23.9874, 40.7428] which indicates a global optimum. For unequal-sized particles, the 

Probability of Improvement provides a solution of [23.9700, 33.3005] while the Expected 

Improvement provides optimal values of [23.9893, 33.9627] after consuming all 15 iterations.  

The maximum value of surface diffusivity present in the sampling plan is 24. The minimum 

values of inter-particle distance in the sampling plans are 40 and 33.3 for equal-sized and 

unequal-sized particles respectively. Hence, the optimization result validates the theory that 

surface diffusivity should be as high as possible to have better densification of the material 

undergoing sintering. The optimal values of inter-particle distance emphasize the fact that 

lower inter-particle distance leads to a close-packed arrangement of atoms and hence reduction 

of porosity between the particles. This leads to better mechanical properties of the material.  

 

4. Conclusions and future work 

In the current work, a machine-learning framework has been developed to aid in quality control 

of the sintering process in additively manufactured materials. Specifically, the two-particle 

microstructure evolution during the process was optimized. The following conclusions can be 

drawn: 

1. With increasing surface diffusivity, the neck size between particles always increases 

irrespective of the particle radii. For equal-sized particles, the neck size increased from 

14.15388 to 19.36508 with an increase of surface diffusivity from 4 to 24 and inter-

particle distance constant at 40. For unequal-sized particles, the neck size increased 

from 12.093 to 15.55554 with the same increase of surface diffusivity and inter-particle 

distance constant at 33.3. This is because surface diffusivity increases densification in 

the material and hence enlargement of neck width occurs.  
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2. The neck size decreases with an increase in inter-particle distance independent of 

particle radii. For equal-sized particles, the neck size decreased from 14.15388 to 

5.84617 with an increase of inter-particle distance from 40 to 41.5 at constant surface 

diffusivity of 4.  For unequal-sized particles, the neck size decreased from 12.093 to 

4.30771 for an increase of inter-particle distance from 33.3 to 34.8 with a constant 

surface diffusivity of 4. This is attributable to the fact that lesser inter-particle distance 

leads to a reduction in porosity and hence better densification due to a close-packed 

arrangement of particle microstructure. This helps in enhancing material properties.  

3. The sensitivity analysis shows that inter-particle distance has a higher contribution to 

the variation of neck size than that of surface diffusivity irrespective of particle size. 

For equal-sized particles, the value of the correlation coefficient between surface 

diffusivity and neck size is 0.5733 which indicates a strong positive correlation. The 

same conclusion can be drawn from the value for unequal-sized particles which are 

0.5734. The correlation coefficients between inter-particle distance and neck size for 

equal and unequal sized particles are -0.8028 and -0.7960 respectively which indicate 

a strong negative association of inter-particle distance with neck size. As the values are 

closer to -1, the lesser the inter-particle distance, the more the value of neck size should 

be. Hence, to get better mechanical properties of the material, it is recommended to 

have the inter-particle distance as small as possible and surface diffusivity as high as 

possible.   

4. For both equal-sized and unequal-sized particles, the metamodel with the regression 

function of order zero (Regpoly0) is the best initial metamodel. The root mean square 

error and cross-validation error for Regpoly0 for equal-sized particles are 1.2077 and 

0.25836. The same for unequal sized particles are 0.4111 and 0.3149.   
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5. The optimization result from two different acquisition functions looks in good 

agreement with each other. For equal-sized particles, the Probability of Improvement 

offers the optimal values of design variables, surface diffusivity, and inter-particle 

distance as 23.8268 and 40.0001, while Expected Improvement provides the values 

23.9874 and 40.7428 respectively. For unequal-sized particles, the optimal design 

values from Probability of Improvement were 23.9700 and 33.3005 while those from 

Expected Improvement were 23.9893 and 33.9627.  

Although the insightful optimization results achieved in this work, there are still a few 

limitations that can be included in the future work. A powder bed, including the one in the AM 

processes, can be modeled with randomly packed particles with a particle size distribution, e.g., 

[38]. The current work is intended to provide a base line data using a two-particle model, and 

the focus is on understanding the optimization process. In the future, a more realistic packed 

powder bed can be included.  
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