This document only includes an excerpt of the corresponding thesis or dissertation. To request a digital scan of the full text, please contact the Ruth Lilly Medical Library's Interlibrary Loan Department (rlmlill@iu.edu).

STRUCTURAL AND FUNCTIONAL STUDY OF RABBIT MUSCLE GLYCOGENIN

Youjia Cao, Car

Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

in the Department of Biochemistry and Molecular Biology
Indiana University School of Medicine

November, 1994

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Peter J. Roach, Ph.D., Chairman Department of Biochemistry and Molecular Biology

Anna A. DePaoli-Roach, Ph.D. Department of Biochemistry and Molecular Biology

Doctoral Committee

Yean A. Hamilton, Ph.D.
Department of Biochemistry and
Molecular Biology

Sherry F. Queener, Ph.D. Department of Pharmacology

Date of Thesis Defense: September 20, 1994

ABSTRACT

The biosynthesis of glycogen involves a specific initiation event mediated by the initiator protein, glycogenin, which undergoes selfglucosylation to generate an oligosaccharide primer from which the glycogen molecule grows. Rabbit muscle glycogenin was expressed at a high level in Escherichia coli and purified close to homogeneity in a procedure that involved binding to a UDP-agarose affinity column. The resulting protein had subunit molecular weight of 38,000 as judged by polyacrylamide gel electrophoresis in the presence of SDS. Purified glycogenin was crystallized and X-ray diffraction data obtained. The preliminary data suggested a compact dimer of glycogenin. Analysis of peptide fragments by mass spectroscopy indicated that the recombinant glycogenin was already glucosylated at Tyr-194. The enzyme was active as a self-glucosylating enzyme and could incorporate up to ~8 glucose residues. The efficacy of the purified glycogenin as substrate for the elongation reaction catalyzed by glycogen synthase was significantly enhanced if glycogenin was first allowed to undergo self-glucosylation. The length of the priming oligosaccharide is thus critical for glycogen synthase action. Fully primed glycogenin was also a substrate for glycogen phosphorylase, which removed glucose from the oligosaccharide attached to glycogenin in a phosphorolysis reaction similar to that involved in glycogen degradation. Treatment of fully primed glycogenin with phosphorylase converted glycogenin to a form less effective as a substrate for glycogen synthase, and hence could affect the synthesis of glycogen. These results suggest a novel role for glycogen phosphorylase in the control of the initiation of glycogen biosynthesis. Of several oligosaccharides of glucose surveyed, only maltose caused significant inhibition of the glycogenin self-glucosylation reaction. Mutation of Tyr-194 to either phenylalanine or threonine disabled self-glucosylation. However, both wild type and mutated glycogenin were catalytically active for the glucose transfer to a maltose acceptor, indicating that Tyr-194, though the site of carbohydrate attachment, is not necessary for catalytic activity.

TABLE OF CONTENTS

	p	age
Title	e Page	i
	eptance Page	
Dedi	ication	iii
	nowledgments	
Abst	tract	v
Tabl	le Of Contents	vii
List	Of Figures	x
List	Of Tables	xii
Foot	tnotes	xiii
Abb	reviations	xiv
INT	TRODUCTION	1
I.	The discovery of a protein core in glycogen	1
II.	Previous studies on glycogenin.	3
III.	Possible mechanism for the regulation of glycogen initiation	7
IV.	Overview of glycogen biosynthesis.	10
V.	Research objectives.	12
EXI	PERIMENTAL PROCEDURES	13
Con	struction of expression vector of glycogenin	13
Gen	neration of glycogenin derivatives	13
	1. Site-directed mutagenesis of the glucosylation site, Tyr-194	13
	2. Introduction of a BspHI site at the start of coding region of the	
	glycogenin cDNA	14
	3. Construction of (His)6-glycogenin expression vector	
	4. Strategy for the construction of N-terminal truncations	15
Exp	pression of recombinant glycogenin and mutants in $E.\ coli.$	16
SDS	S-polyacrylamide gel electrophoresis	16
Wes	stern blot analysis	16
Seq	uencing of the N-terminus of recombinant glycogenin	17

Purific	cation of recombinant glycogenin from $E.\ coli$	17
Deteri	mination of protein concentration	20
	spectroscopy of recombinant glycogenin	
Enzyn	ne assays	21
Synth	etic peptide corresponding to the glucosylation site	23
Glycog	genin elongation by glycogen synthase	23
Prepa	ration of ¹⁴ C-labeled primed glycogenin	24
Deglu	cosylation of primed glycogenin by glycogen phosphorylase	24
Thin-l	ayer chromatography analysis of reaction products	25
Effect	of phosphorylase on glycogenin-glycogen synthase coupling	26
X-ray	crystallography	26
1	. Crystallization and data collection.	26
2	2. Heavy atom isomorphous replacement	27
3	3. X-ray diffraction data process	27
Other	methods and materials.	28
RESU	JLTS	29
I.	Expression and purification of recombinant glycogenin	29
II	Characterization of recombinant glycogenin	30
	A. Glucosylation state of recombinant glycogenin	30
	B. Enzymatic properties of glycogenin	31
III.	Sole glucosylation site of glycogenin, Tyr-194	34
IV.	Glycogenin function as a substrate for rabbit muscle glycogen	
	synthase.	35
V.	Regulation of glycogenin function by glycogen phosphorylase	
VI.	Glucosyltransferase activity towards exogenous acceptors	39
VII.	Importance of the N-terminus of glycogenin in protein folding	
VIII.	X-ray crystallography of glycogenin.	42
DISC	CUSSION	
I.	Analysis of recombinant glycogenin	
II.	Molecular mechanisms for glycogenin self-glucosylation	
	1. Tyr-194 is essential for glycogenin function as a primer	
	2. The substrate binding site	
	3. Glycogenin oligomerization	
	4. Models for the mechanism of glycogenin self-glucosylation	52

III.	Puzzle of the attachment of the first glucose residue	53
IV.	Novel role for glycogen phosphorylase and its physiological	
	implication	56
FIG	FIGURES	
∕TV A TO	BLES	00
IAD	DLES	ປປ
REI	FERENCES	104
CIII	RRICHTHM VITAR	