This document only includes an excerpt of the corresponding thesis or dissertation. To request a digital scan of the full text, please contact the Ruth Lilly Medical Library's Interlibrary Loan Department (rlmlill@iu.edu).

ALPHA-1 ADRENERGIC RECEPTORS, PROTEIN KINASE C, AND REGULATION OF INTRACELLULAR PH IN CARDIAC PURKINJE FIBERS

Timothy Edward Breen

Submitted to the faculty of the Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Physiology, Indiana University

December 1990

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements of the degree of Doctor of Philosophy.

William McJ. Armstrong, William McD. Armstrong, Ph.D.,

Chairman

ihada. Arch

Richard A. Haak, Ph.D.

. Li

Milton L. Pressler, M.D.

Date - 5 December 1990

Timothy E. Breen

ALPHA-1 ADRENERGIC RECEPTORS, PROTEIN KINASE C, AND REGULATION OF INTRACELLULAR PH IN CARDIAC PURKINJE FIBERS

Subtypes of the alpha-1 adrenergic receptor are found in many tissues including the myocardium. The cardiac conduction system has not been examined for the existence of alpha-1 receptor subtypes. The current study investigated three questions with respect to alpha-1 receptor subtypes in canine cardiac Purkinje fibers: 1.) do alpha-1 receptor subtypes exist in canine Purkinje fibers, 2.) are the functional responses of activation of alpha-1 receptor subtypes related to the responses of activation of protein kinase C, 3.) does activation of alpha-1 receptors affect intracellular pH. The results of this study support the conclusion that alpha-1 receptor subtypes exist in canine cardiac Purkinje fibers. The alpha-1 agonist phenylephrine in combination with the beta antagonist timolol maximally increased active tension at 1 μ M and significantly reduced active tension at 1 mM. In addition, the alpha-1 antagonists prazosin, WB4101, and benoxathian competitively inhibited the positive inotropic effect of phenylephrine, but only prazosin and WB4101 blocked the negative inotropic effect. The negative inotropic effect of phenylephrine was not a result of activation of the alpha-2 adrenergic receptor as the alpha-2 antagonist yohimbine

vi

did not inhibit either the positive or negative inotropy with phenylephrine. Chloroethylclonidine, a drug observed selective for only one alpha-1 receptor subtype, produced a decrease only in active tension. Radioligand saturation binding studies using [¹²⁵I]HEAT with purified ventricular sarcolemmal membranes was consistent with two alpha-1 binding sites. Activation of protein kinase C with phorbol-12,13-dibutyrate profoundly reduced active tension. The specificity of the action of phorbol 12,13-dibutyrate was verified with 4α -phorbol 12,13-didecanoate, an inactive phorbol ester. The cholinergic antagonist atropine potentiated the effect of lower doses of phorbol 12,13dibutyrate. Protein kinase C was activated by enhancing the accumulation of diacylglycerol with the diacylglycerol kinase inhibitor R59022. R59022 decreased active tension in a manner similar to phorbol esters and inhibited the positive inotropic effect of phenylephrine. Phenylephrine and phorbol 12,13-dibutyrate increased intracellular pH. The alkalinization produced by phenylephrine was sensitive to amiloride, an antagonist of the Na^+/H^+ exchanger. The results of this study support the conclusion that one of alpha-1 receptor subtypes produces the positive the inotropic effect, while the other alpha-1 receptor subtype is responsible for the negative inotropic effect. Further, functional responses following activation of protein kinase C or alpha-1 receptors are similar for both active tension and intracellular pH.

vii

William McD. Armstrong, Ph.D., Chairman

Richard A. Haak, Ph.D.

Chiu Shuen Hui, Ph.D.

Milton L. Pressler, M.D.

TABLE OF CONTENTS

DEDICATION	Page iv
ACKNOWLEDGEMENTS	v
ABSTRACT	vi
TABLE OF CONTENTS	ix
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xiv
INTRODUCTION	1
I. THE ALPHA-1 ADRENERGIC RECEPTOR	1
A. HISTORICAL DEVELOPMENT	1
B. ALPHA-1 ADRENERGIC RECEPTOR SUBTYPES	7
1. Classification of Receptor Subtypes	7
2. Alpha-1 Receptor Subtypes	10
C. MOLECULAR BIOLOGY OF THE ALPHA-1 ADRENERGIC RECEPTOR	22
D. ALPHA-1 ADRENERGIC RECEPTORS IN THE HEART	27
 Alpha-1 Receptors and Positive Inotropy in the Heart 	27
2. Alpha-1 Receptors and Negative Inotropy in the Heart	30
3. Alpha-1 Receptors and Electrophysiological Properties	32
4. Alpha-1 Receptors and Radioligand Binding	36
5. Alpha-1 Receptors and Second Messengers in the Heart	38
II. PROTEIN KINASE C IN THE HEART	41

III. HYPOTHESES	46
A. HYPOTHESIS 1	47
B. HYPOTHESIS 2	48
C. HYPOTHESIS 3	49
METHODS	52
I. ACTIVE TENSION	52
A. GENERAL	52
B. MEASUREMENT OF ACTIVE TENSION	52
C. ALPHA-1 RECEPTOR DOSE-RESPONSE RELATIONSHIPS	54
D. ANGIOTENSIN II DOSE-RESPONSE RELATIONSHIPS	56
E. PHORBOL ESTER, R59022 DOSE-RESPONSE RELATIONSHIPS	56
F. MEASUREMENT OF TRANSMEMBRANE ACTION POTENTIALS	57
II. RADIOLIGAND BINDING	59
A. PREPARATION OF CANINE CARDIAC SARCOLEMMAL VESICLES	59
B. SATURATION BINDING ASSAY	60
C. ANALYSIS OF BINDING DATA	63
III. INTRACELLULAR pH	65
A. PROTON SELECTIVE MICROELECTRODES	67
B. PROTON SELECTIVE MICROELECTRODE CALIBRATION	68
C. MEASUREMENT OF INTRACELLULAR pH	70
IV. DRUGS	71
V. DATA ANALYSIS	72
RESULTS	75
I. PHENYLEPHRINE AND ACTIVE TENSION	75
II. PHORBOL ESTERS AND ACTIVE TENSION	77

х

	III. PHORBOL ESTERS AND ACTION POTENTIALS	78
	IV. ANGIOTENSIN II AND ACTIVE TENSION	79
	V. DIACYLGLYCEROL KINASE INHIBITOR AND ACTIVE TENSION	79
	VI. CHLOROETHYLCLONIDINE AND ACTIVE TENSION	80
	VII. [¹²⁵ I]HEAT SATURATION BINDING	81
	VIII. INTRACELLULAR pH	81
DISCUSSION		105
	I. ALPHA-1 ADRENERGIC INOTROPIC EFFECTS	105
	II. ALPHA-1 RADIOLIGAND BINDING	111
	III. PROTEIN KINASE C AND ACTIVE TENSION	113
	IV. INTRACELLULAR pH	119
B	BIBLIOGRAPHY	

CURRICULUM VITAE