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Abstract
Prognostic modelling techniques have rapidly evolved over the past decade and may greatly benefit patients supported with
ExtraCorporeal Membrane Oxygenation (ECMO). Epidemiological and computational physiological approaches aim to
provide more accurate predictive assessments of ECMO-related risks and benefits. Implementation of these approaches
may produce predictive tools that can improve complex clinical decisions surrounding ECMO allocation and management.
This Review describes current applications of prognostic models and elaborates on upcoming directions for their clinical
applicability in decision support tools directed at improved allocation and management of ECMOpatients. The discussion of
these new developments in the field will culminate in a futuristic perspective leaving ourselves and the readers wondering
whether we may “fly ECMO by wire” someday.
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Introduction

In patients receiving ExtraCorporeal Membrane Oxygena-
tion (ECMO) support for severe cardiogenic shock and/or
respiratory failure, personalized management could reduce
complication rates and improve survival and quality of life.1,2

Personalization of treatment already occurs with the decision
to start or withhold ECMO support and the tailoring of
cannulation strategy.3,4 During ECMO support, patient-
specific risks and benefits are accounted for in the person-
alization of management, such as anticoagulation strategies
(weighing risk of bleeding vs. thrombosis) or the necessity to
introduce a left ventricular unloading techniques (weighing
risk of left ventricular overload vs. risk of vascular damage as a
consequence of introduction of a second device).

(Real-time) prognostic models could provide deci-
sion support and improve tailoring of ECMO therapy by
combining pieces of data that hold predictive infor-
mation and which would, in their combination, exceed
the abilities of physicians to interpret. The rapid digi-
talization of healthcare has opened up possibilities for
models and tools to become more sophisticated and

automatically fed with continuously updated data
throughout a clinical course.5

In this scoping Review, we discuss the potential role
of prognostic models for decision support regarding
optimal allocation of ECMO and its management. We
describe relevant epidemiologic prognostic models and
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computational physiological models (also being referred
to as a “Digital Twin”) to provide a generic overview of
currently available prognostic models in different do-
mains. Finally, we venture on how these model ap-
proaches could be integrated in one comprehensive
system, potentially allowing us to “fly ECMO by wire” in
a nearby future.

The relevance of- and rising need for-
prognostic models

An accurate assessment of (treatment-related) risks in
the setting of ECMO is notoriously difficult given the
complexity of the clinical situation, the large hetero-
geneity between patients and the fact that interventions
often carry a “double edged sword” effect where different
risks exist in each approach.6 For example, determining
the optimal anticoagulation strategy after a severe
bleeding complication in a patient supported with veno-
arterial (V-A) ECMO after placement of a mechanical
mitral valve prosthesis is challenging and heavily relies
on accurate assessments of risks for bleeding and valve
thrombosis. Decisions to tailor mechanical support and
associated treatments in the setting of ECMO are
nowadays commonly based on doctors’ experience and
reasoning, sometimes supported by relatively simple
protocolized schemes which provide stratified risks for
individual patients.7,8 Long-standing experience and
high degree of expertise are the only tools available now
for accurate assessments of risk and benefit for ECMO-
related decision making.

Prognostic models could support personalized risk
assessments for ECMO-supported patients.9 These prog-
nostic models are tools that can compute a predicted risk
for a particular event (e.g., death, or bleeding) based on
patient- and disease-related characteristics.10 Prognostic
models can be simple or more complex, depending on
their input and content. Simple prediction formulas have
been particularly useful in times when a doctor was re-
quired to calculate these scores in their head. Recent and
rapid advancements in computing power as well as the
availability of digital electronic patient records (EPR) have
however mitigated these limitations and opened up the
way to more complex algorithms and artificial intelligence
(AI) techniques with potentially better predictive perfor-
mance.11 Models that perform sufficiently well could be
used as clinical decision support tools.12,13

Areas of application of decision support in
ECMO care

Prognostic models may provide decision support in
several areas of ECMO care. These areas cover decisions

about the optimum allocation of ECMO support and a
multitude of aspects surrounding ECMO management.
Below, we elaborate on these areas and reflect on some
currently available tools and models.

Optimal allocation of ECMO

From both a patient- and socio-economical perspective,
it is essential to reserve ECMO specifically for those
patients who are expected to benefit most.14 That is
because of the large impact of ECMO support for pa-
tients and the rapidly increasing health care costs and
growing shortages in staffing and equipment. Decisions
regarding optimum allocation may be improved by
knowledge about a patients’ prognosis and the expected
effect of ECMO support.

We recently summarized all existing prognostic
models in the setting of ECMO and identified a total of
58 models that were specifically designed to predict
mortality based on variables collected shortly before or
after initiation of ECMO.15 Discriminative performance
of frequently externally validated models7,8 (Table 1)
was moderate on average but highly variable across
different external validation cohorts. Most importantly,
all models were based on cohorts in which ECMO had
already been initiated. This conditionality prevents these
models from describing prognosis of patients in whom
ECMO is considered and also to assess the incremental
value of ECMO on outcomes in these individuals. This
implies that there is currently no evidence-based pre-
diction tool available to inform the decision on ECMO
initiation based on patient prognosis. Existing prog-
nostic models likely approximate patient prognosis at
best.

Optimal allocation of ECPR

The identification of patients who would benefit from
ECMO support in the setting of cardiac arrest (so
called “Extracorporeal CardioPulmonary Resuscita-
tion (ECPR)) is considered a separate challenge be-
cause of two reasons. Firstly, a patients’ prognosis
seems more importantly determined by neurological
status mandating different sets of predictors than in
other ECMO supported patients. It is because of this
very reason that the Survival After Veno-Arterial
ECMO (SAVE) score7 did not include patients after
cardiac arrest. Secondly, the setting where a decision
regarding ECPR is being made is typically subject to
considerable time pressure and discomfort. Success of
prognostic models is therefore also largely influenced
by simplicity and the availability of measurements in
such circumstances.
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Until now, several prediction tools have been de-
veloped specifically for the setting of ECPR,18,23–26 with
varying predictive performance in external validation
cohorts.27,28 Decisions to apply ECPR are currently
made on typical prognostic signs which are also used in
patients with cardiac arrest treated with conventional
methods. These include having had a witnessed arrest,
shockable rhythm and end tidal CO2 concentration
above a certain threshold.29 However, these measures
taken during resuscitation do not only focus on neu-
rological recovery but also aim to assess the chance of
return to spontaneous circulation. As restoration of
circulation is however guaranteed with ECPR, these
predictors may not provide optimum support for the
selection of ECPR candidates. In the future, it is likely
that neurological measures during resuscitation such as
direct pupillometry, near-infrared spectroscopy or a
form of electroencephalogram will provide improved
predictive performance aiding in the selection of pa-
tients for ECPR.

Cessation of ECMO for reasons of futility

Prognostic models may also be utilized to (repeatedly)
quantify a patients’ prognosis during ECMO support.30

These estimations could help to assess chances of sur-
vival after a number of ECMO support days have passed
during which adverse events could have occurred.
Continuation of support would for example be pointless
if a patients’ prognosis would have become futile at some
point in time. Currently, no such dynamic prediction
models exist that could aid in the decision to withdraw
ECMO for reasons of futility because nearly all models
predict mortality or survival at a fixed time point shortly
after initiation of ECMO support.30,31

Weaning from V-A ECMO

Between 30 and 70% of patients can ultimately not be
weaned from V-A ECMO.32 Prognostic information
about chances for weaning failure can contribute to
planning of care and prevent wastes of resources and
time. For such purpose, one model was designed to
predict chances for weaning failure in patients who
underwent coronary artery bypass grafting (CABG).17

This model however only incorporated baseline vari-
ables and has to our knowledge not been externally
validated (Table 1).

Clinical routine is largely based on prognostic factor
studies for weaning success during ECMO support and
during a weaning trial. Variables acquired during a
weaning trial include persistence of hemodynamic
stability, aortic time-velocity integral (VTI) > 10 cm, left

ventricular ejection fraction > 20 – 25%, and lateral
mitral annulus peak systolic velocity ≥6 cm/s,33–35

however these largely explorative studies did not de-
velop prognostic models that were evaluated for their
performance.

Some patients who cannot be weaned from ECMO
support are candidates for LVAD implantation or heart
transplantation. The scarcity of donor organs, poor
overall posttransplant survival for these ‘bridge to
LVAD/heart transplant’ patients and high costs typically
justify a certain expectation for survival in these pa-
tients.36 A large international multicenter registry pre-
dicted one-year survival after implantation of a durable
mechanical circulatory system (MCS) after ECMO,
based on model incorporating age, sex, lactate and
MELD score on day of MCS implantation, a history of
atrial fibrillation, necessity for redo surgery, and body
mass index above 30 kg/m2 19,37 (Table 1). And while
this model has to our knowledge not been externally
validated, it would also only be able to predict outcomes
in patients who already received an LVAD from the
setting of ECMO support.

ECMO management

During ECMO support, many decisions regarding
management of treatment have to be taken on a daily
basis. These decisions pertain to a multitude of con-
siderations where risks and benefits must be weighted
and physicians could benefit from prognostic models
and decision support tools. Below we describe three of
these considerations.

Thrombotic and bleeding complications. Thrombotic and
bleeding complications are among the most frequently
encountered events during ECMO support and strongly
associate with increased mortality and length of in-
tensive care stay.38,39 For estimating bleeding risk in
ECMO recipients specifically, one study derived a
prognostic score based on hypertension, age greater
than 65, and ECMO type (V-V or V-A) in a single-
center cohort21 (Table 1). The model showed slightly
better internal predictive performance than external
predictive performance of the HAS-BLED score.21 To
our knowledge, this model has not been externally
validated in other ECMO recipients.

Left ventricular unloading. An increase in left ventricular
afterload due to the added flow and pressure by the
extracorporeal blood flow of V-A ECMO may exacer-
bate ventriculo-arterial decoupling and eventually
contribute to the development of pulmonary edema,
aortic- and intracavitary thrombosis, and significantly
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impair cardiac recovery.40,41 These negative sequelae
imposed by V-A ECMO can be mitigated or even re-
versed by means of different interventions which in-
clude a reduction of ECMO flow, condensation of
intravascular volume, and the initiation of inotropic
medication or concomitant mechanical left ventricular
unloading through intra-aortic balloon pump or a
trans-aortic microaxial blood pump.40 A recent expert
review42 recommended a stepwise approach where
interventions targeting left ventricular unloading
would be escalated on basis of a multimodal assessment
of cardiac function and overload. Beyond this first step
towards patient tailored left ventricular unloading, to
our knowledge, no dedicated studies have examined
personalized approaches in observational- or trial-
data. These studies, and especially those in upcoming
randomized clinical trial data, are eagerly awaited.

Infectious complications. Infections are commonly observed
during ECMO support and have been associated with
adverse outcomes.43,44 Recognizing infectious episodes is
typically challenging in ECMO patients due to masking of
inherent signs, such as fever, through permanent heat loss
by the extracorporeal circuit.20 Proper identification of
patients that are (highly) susceptible to acquiring infec-
tions during ECMO could lead to timely (antibiotic) in-
terventions, thereby possibly decreasing morbidity. A
nomogram predicting probability of nosocomial infections
in patients receiving V-A ECMO after cardiac surgery was
developed and incorporated age, white blood cell (WBC)
count, ECMO site (ICU or non-ICU), and mechanical
ventilation duration into the model20 (Table 1). External
validation has yet to be performed.

Limitations of currently available models

Currently available prognostic models seem to fall short
from several perspectives. First, not all relevant clinical
outcomes are addressed by existing prognostic models.
Prognostic models including short-term endpoints –
such as events of bleeding and thrombosis, weaning
success, necessity for LVAD implantation, and serum
levels of antibiotics – are sparse and insufficiently ex-
ternally validated. With regards to longer term end
points, one could advocate that neuropsychological
wellbeing and quality of life are also important outcomes
to model as some survivors may suffer from a low
quality of life and even find their lives not worth living.45

Additionally, the lack of real-time continuous decision
support hampers use of prognostic models during the
course of ECMO.

Secondly, currently available models often seem
misaligned with their intended use in clinical practice.46

An illustrative example is found in the section covering
the allocation of ECMO. Many studies in ECMO re-
cipients wrongly claim that their prediction tool would
qualify to assist in the allocation of ECMO to those who
would benefit best. Nevertheless, as previously pointed
out,7 such question can only be answered in a source
population which also comprises individuals who
eventually did not receive ECMO support.

Thirdly, from a technical point of view, many pub-
lished studies included relatively small numbers of
patients and events per included predictor.47 Models are
thus prone for overfitting and incorrect predictions.48

Finally, and maybe most importantly, most developed
models have never been externally validated.

Important statistical considerations and
modern techniques

Moving the field of prognostic modelling for ECMO
treatment decisions forward starts with external vali-
dation of existing models.49,50,51 This applies to both
statistical regression models and AI algorithms alike.
One could argue that reliable predictions in patients that
were not used for development of the model are all that
matters, irrespective of the methods used to derive a
model.52,53 Time and effort should be dedicated to
carefully set up external validation studies with ap-
propriate data and statistical analyses.46 Collected data
needs to accurately reflect the population of interest at
the intended moment of making the prediction. In
addition, measurement procedures of the outcome
and predictors should correspond to the derivation
data set, including the moment at which they are
measured.51,54,55 The statistical analysis plan should
describe how missing data are handled (which re-
quires different considerations in prediction research
compared to etiologic or therapeutic research)56,57

and how predictive performance in terms of model
discrimination and calibration is assessed.58,52,59

One opportunity for validation studies is to combine
data sets from multiple studies to assess the external
predictive performance of a range of prognostic models
more thoroughly. In such studies, researchers can assess
the predictive performance of multiple models across
ECMO centers and subgroups of ECMO patients. If a
prognostic model has poor predictive performance in
new data, it does not imply that the model should
simply be discarded. Rather, it can be assessed if- and
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how- intercept-updating or tailoring strategies (such as
recalibration) can improve performance.60–63

Prognostic models currently available in the lit-
erature are insufficient to provide full decision
support as they do not cover all decisions related to
ECMO initiation and management. Development of
new models for specific medical decisions can be
considered for future research. For instance, to
decide whether to initiate ECMO weaning versus
continuing ECMO, a physician may want to consult
a prognostic model several times during ECMO
treatment of a single patient. This requires a dy-
namic prediction modelling technique in which
predictions are updated given the history of ECMO
up to that point in time, such as a landmarking
approach31 or joint modelling.30 Still, methods to
assess predictive performance of dynamic prediction
models have yet to be developed.

When the intended use of a prognostic model is to
inform decisions regarding initiation or management of
ECMO, we are typically interested in the treatment-
näıve prediction of the outcome. For instance, in a
patient who is difficult to wean from V-A ECMO
support, it could be of interest to know the potential
benefit of LVAD implantation in terms of mortality risk
reduction. For such purpose, a prognostic model needs
to be able to calculate the mortality risk if an LVAD is
not implanted – a scenario that would be counterfactual
for patients who actually received an LVAD

implantation. When the decision is informed based on a
prediction that does not take LVAD implantation into
account, high-risk patients are likely to be indicated at
low risk of mortality, as their prediction is reflective of
interventions made to lower the risk of similar patients
under current LVAD assignment policies.64,65 Devel-
oping a prognostic model that can predict treatment-
näıve outcome risks requires counterfactual reasoning
and corresponding statistical approaches.64,66,67

Making so-called “counterfactual predictions”68,69

seems attractive, but the complexity of developing
such models should not be underestimated, especially
the specification of the counterfactual prediction target
and the assessment of identifiability. Assessing predic-
tive performance of counterfactual prognostic models is
difficult as currently no consensus exists on how to
assess predictive performance for counterfactual pre-
dictions.64 Moreover, not all treatment decisions require
counterfactual predictions. For instance, because ECMO
is often initiated as a live-saving support, a treatment-
näıve risk of mortality is not always informative. Rather,
a prognostic model that predicts risk of mortality under
current ECMO assignment policy can be of support in
making the decision to initiate ECMO or not. Such a
model can be developed using factual predictions only
(i.e., without counterfactual prediction). In such a study,
details about the current ECMO assignment patterns are
necessary to assess applicability of the model in par-
ticular clinical settings.

Figure 1. A digital twin in a healthcare environment.
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Simulating treatment response through a
“Digital Twin”

In recent years, attention is given to so called “Digital
Twins”, that may serve to optimize clinical man-
agement and workflow in healthcare to improve pa-
tient’s outcome in complex and critical clinical
scenarios. In general terms, a Digital Twin is a
computational representation of a physical system,
used to predict and optimize its behavior in a real-
time setting.70 A Digital Twin could provide insight
into a patient’s expected outcome under the possible
counterfactual scenarios of a treatment decision using
simulations. At present, there are no Digital Twins
specifically for ECMO, but several attempts are on-
going to develop Digital Twins for ICU in general,
they are discussed briefly in this paragraph.

Ideally, the Digital Twin reads data from a patient
and from the medical devices connected, and processes
this information with the support of a mathematical
model to reproduce and make predictions on a patients’
status, and finally informs physicians about the optimal
care accordingly (Figure 1).71 This type of Digital Twin
is expected to act at bedside level and to simulate pa-
tient’s status and the main interaction with one or
multiple therapies dynamically in (quasi) real time.

A Digital Twin is not one (novel) technique but can
be based on (deterministic) physiological models or on

statistical models ranging from simple regression to
more complex AI techniques, such as neural networks,
or a combination of the two. The deterministic physi-
ological models can reach different levels of complexity,
depending on the number of organs or anatomical sites
represented and the details implemented.40,72 The level
of complexity to embed in a Digital Twin is a non-trivial
choice: on one hand sophisticated models can be in-
formative and useful to investigate pathophysiology and
unravel patient-device interaction; on the other hand the
large amount of variables to be tuned requires more
clinical data to be inserted manually by the clinician or
retrieved automatically from the monitoring systems,
thus hindering their application at bedside.73 In the case
of ECMO, a possible Digital Twin is composed of a
deterministic physiological model of cardiac and vas-
cular functions and of the ECMO pressures and flow.
Such a model would retrieve hemodynamic data from
the ICU monitor and offer a replica to be used for
example to test different ECMO speeds on patient’s
hemodynamics. Then a titration of ECMO therapy
would be operated accordingly, in an automatic or
semiautomatic manner, depending on the level of su-
pervision of the clinician in the process. If the output of
the Digital Twin goes beyond the prediction of the mere
hemodynamics, then data-driven (AI) models can be
added in combination. These models can convey a more
holistic description of patients, although they lack in

Figure 2. Simplified example of a flight control system.
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representing cause-effect mechanisms of patient-device
interaction.74

It goes without saying that as a Digital Twin is based
upon modelling techniques, the limitations mentioned
beforehand for prognostic models apply also here, plus
other challenges specific for deterministic models (e.g.
thorough verification, validation and uncertainty
quantification of model parameters). As such, the
process of upgrading a computational model to a Digital
Twin applicable to the clinical environment is a non-
trivial task.

In addition to therapy optimization, Digital Twins
can help improving ICU processes and their strategic
management by incorporating administrative data
and tracking the location of medical personnel and
equipment over time.75 This type of Digital Twin
could improve medical workflow and in turn patient
outcomes. Furthermore, Digital Twins could be used
for training purposes in healthcare staff working with
ECMO via high-fidelity simulation. Still, major
challenges hamper its full implementation in
healthcare. It is not trivial to schematize and nu-
merically model clinical decision making (especially
when it involves multiple clinical specialists). It is
difficult to standardize healthcare processes and
workflows due to the large variability in structures and
resources among different clinical centers; clinical
data lacks integration and is poorly accessible due to
safety and privacy issues.76 Besides that, it should be
taken into account that all clinical data is prone to

measurement error and measured values do not al-
ways represent the actual status of a patient (i.e., when
continuously measuring blood gas within the ECMO
circuit, the measured values could be different from
those within the patient). Furthermore, the prognostic
and therapeutic problems that Digital Twins aim to
address have so far remained unsolved in research and
some modesty in expectations therefore seems
appropriate.

Regardless of the modelling technique used, a
patient Digital Twin, ascribable to clinical use, is
considered as a full-fledged medical device and needs
to comply with regulatory requirements depending
on its intended use and purpose.77,78 This aspect
becomes more crucial if we envision a Digital Twin

Figure 4. Overcorrection of noradrenaline dosages resulting in
undesired fluctuations in mean arterial blood pressure.

Figure 3. A hypothetical patient control system for an intensive care patient supported with ECMO.
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not only as a support to clinical decision, but also as a
tool fully integrated in the clinical workflow that
automatically titrates a therapy (e.g., ECMO flow
level, dose of drug infusion, mechanical ventilation
settings) in closed loop fashion without clinical staff
supervision.

Overall, the use of Digital Twins in ECMO and more
general in the ICU is still in its infancy, but if the listed
hurdles are overcome Digital Twins could aid in more
personalized treatments.

Flying ECMO by wire

Current developments led us to speculate about a fu-
ture where we would possibly fly ECMO “by wire”. The
fly-by-wire concept is naturally adopted from the world
of aviation but has the potential to significantly
stimulate and inspire our visions on future intensive
care support tools. Below we have allowed ourselves to
elaborate on this concept, applying some of the known
concepts from aviation to the context of ECMO care
but purposely leaving out some important ethical and
legal considerations.

“Flying ECMO by wire” would imply that certain
adjustments in ECMO settings would be automati-
cally taken care of by digital interfaces and differ-
ential equations striving for target values or intended
actions as defined by a treating physician. In aviation,
a flight control system largely controls a planes’ ac-
tions by integrating feedback from sensors and input
from the pilot, preventing impossible actions from
the point of an aircrafts’ “physiology”. For the setting
of intensive care and ECMO, an intelligent “patient
control system” (PCS) could optimize treatment de-
cisions, for instance using real-time prognostic
models or Digital Twin approaches (Figure 2). Minor
changes in treatment settings within certain pre-
defined safety boundaries (e.g., increasing ECMO
flow) could be directly fed back to the ECMO console
or another device. Recommendations for larger ad-
justments could instead be relayed back to the nurse
or physician for supervised adjustments. Sensors
registering pressures, flows, temperatures, and blood
levels of certain markers (like SvO2) in the ECMO
circuit, indwelling catheters, but also other devices
such as the ventilator and infusion pumps, could, by
cross talk, provide integrated feedback on specific
interventions or adjustments which were advised or
carried out by the PCS (Figure 3). The underlying
Digital Twin model could in turn improve its pre-
dictive power by recalibrating based on the integra-
tive feedback. Safety of the PCS could meanwhile be
ensured by a variant of “flight envelope protection”

which would prevent the operator (e.g., physician,
nurse) from dangerously handling the ECMO con-
sole. An example would be that it would become
impossible to reduce FiO2 and/or gas flow on the gas
blender below a certain level while supporting a
patient with V-A ECMO.

Flying by wire approaches have significantly im-
proved safety, efficiency, economy, and comfort in
aviation79 and could possibly also improve some of
these aspects in intensive care medicine. For ex-
ample, “pilot-induced oscillation”80 describe the
development of undesired fluctuations in an air-
crafts’ altitude or flight path which arise secondary to
an increasing series of adjustments in opposite di-
rections by a pilot, each of which is intended to
restore a previous input. Such series of over-
corrections in opposite directions can also be ex-
perienced during ECMO support. For instance,
frequent adjustments in noradrenaline dosages (il-
lustrated in Figure 4), sedative medication or even
ECMO revolutions per minute can result in large
variations in blood pressure, states of arousal, or
suction events, respectively. All these events base
back on difficulties in assessing patient response
rates and delays to the effects of medications. Au-
tomation of some of these processes might prevent
some of the aforementioned events.

For this potential fly by wire future to become
reality, some important considerations need men-
tioning. Translating predictions or physiological in-
put from prognostic models or Digital Twins into
treatment decisions requires setting a threshold value
for physiological parameter(s) and for risk prognos-
tications. Research should be conducted to find ac-
curate thresholds.81 To inform automated
management of ECMO with prognostic information,
the development, evaluation and implementation of
dynamic prediction models needs to be further
studied.62 Methods need to be developed to evaluate
dynamic predictive performance and to update im-
plemented models, as well as software to integrate a
prognostic model or Digital Twin in routine care.
There is also a need to consider which data are re-
quired to develop prognostic tools that can support
ECMO decisions. For example, a variable that would
indicate that a patient could be eligible for ECMO is
necessary for a prognostic model used in ECMO al-
location but is not (readily) available in EPRs. A large
proportion of the required data for predictions is
currently unavailable or unstandardized in different
EPRs, requiring extensive efforts to standardize ter-
minologies and definitions before use in prognostic
models.82
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Conclusion

Currently available prognostic models for ECMO re-
cipients are limited in their clinical value, amongst other
reasons because of their fixed design, only incorporating
variables at one moment in time. Prognostic modelling
techniques have developed to the point where they have
the potential to incorporate high-dimensional and time-
varying data from ECMO supported patients to aid
clinical decision making regarding both allocation and
management of ECMO. From this perspective, dynamic
prediction modelling, incorporating counterfactual
reasoning, and Digital Twin approaches seem promising
for evaluating and simulating treatment responses
providing decision support for physicians at the bedside.
These developments lead us to speculate about a future
where we could fly ECMO by wire. Before we could use
such techniques, many important hurdles regarding
logistical, technical, medical-ethical, and legal aspects
have to be overcome.
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