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Abstract. Feature importance is often used to explain clinical prediction models. In 

this work, we examine three challenges using experiments with electronic health 
record data: computational feasibility, choosing between methods, and 

interpretation of the resulting explanation. This work aims to create awareness of 

the disagreement between feature importance methods and underscores the need for 
guidance to practitioners how to deal with these discrepancies. 
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1. Introduction 

Personalized medicine aims to provide treatment and prevention tailored to individual 

patients. Machine learning (ML) models can help with personalized risk prediction based 

on individuals’ characteristics to pursue this goal. When implementing prediction models 

in practice, explanations can be useful to validate model behavior and/or to create a 

shared meaning of the decision-making process [1]. 

Feature importance is often used to explain ML models and identified as useful 

explanation by clinicians [2]. A higher score implies a higher importance of the specific 

feature, i.e. a larger impact on the model predictions (‘How does the output rely on a 

variable?’) or model performance (‘How much is the loss function reduced?’). In the 

literature, many methods have been proposed to compute feature importance. In this 

work we focus on model-agnostic methods (i.e. suitable to explain any kind of ML 

model) to compute global feature importance (i.e. explaining the model as a whole). 

In practice, there are several challenges when aiming to estimate feature importance 

for prediction models developed using electronic health record (EHR) data: I) 

computational feasibility, II) choosing between methods, and III) interpretation of the 

resulting explanation. These challenges are not unique to EHR data, but might be 

magnified due to the large size, high-dimensionality, and sparsity of the data. In the 

following paragraphs we discuss the three challenges in more detail: 
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I) First, not all methods are computationally feasible for big data. Some feature 

importance methods require examining all possible combinations of K features or rely 

on conditional distributions which are unavailable in practice and difficult to estimate. 

Although there is already work dealing with various ways of approximations (e.g. for 

Shapley values), formal evaluation of methods (and their approximations) is often 

lacking and otherwise focused on relatively low-dimensional data. 

II) Second, there is a need to choose between methods, but guidance on which 

method is best to use is lacking. In existing studies, the reason for preferring the chosen 

feature importance method over alternatives is rarely motivated. However, there is 

increased awareness that different feature importance methods do not align on the 

generated explanations (e.g. ranking of top features). This makes the ‘interchangeable 

use’ of methods problematic. In recent work, Krishna et al. [3] formalized this as the 

disagreement problem and analyzed how users deal with this problem in practice.  

III) Finally, feature importance explanations might not be in line with (user) 

expectations. Hase et al. [4] state that explanations are socially misaligned when they 

convey a different kind of information than what users expect. As an example, they 

mention some unexpected factors (e.g. model seed, hyperparameters) that might 

influence the resulting explanations more than expected factors (e.g. the data). However, 

there are also large differences in how feature importance methods work (e.g. different 

definitions and/or assumptions), which can formally explain variation in explanations. 

Resulting explanations miss this nuance and are interpreted similarly by end-users. The 

general lack of consensus on a definition for feature importance makes it impossible to 

systematically evaluate whether the selected subset of features is truly important.  

In this work, we examine these challenges using experiments with real-world health 

data when estimating feature importance for a model predicting hospital readmission 

within 30 days.  

2. Methods 

2.1. Real-world data 

We developed a prediction model on the Dutch Integrated Primary Care Information 

(IPCI) database [5] to answer the following question: “Among adult patients discharged 

from the hospital (target population), which patients will be readmitted (outcome) within 

30 days (time-at-risk) after the visit?”. The IPCI database has been mapped to the 

Observational Medical Outcomes Partnership Common Data Model (OMOP CDM), 

which enables standardized extraction and analysis of health care data. This study was 

approved by the IPCI Governance Board (number 09/2020). 

2.2. Model development 

We selected a random sample of N = 100,000 patients of which 75% was used for model 

development (‘training set’). The remaining 25% of patients (‘test set’) was used for 

validation. We trained prediction models using the python library sklearn using logistic 

regression with L2-regularization (C=0.1) on the training set. Candidate covariates 

included sex, age (in 5-year groups), and binary variables indicating the presence or 

absence of recorded conditions and drugs (measured 30 days, 1 year, and any time prior 
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to index). To obtain a dataset with dimensionality K, we selected the K features with the 

strongest relation to the outcome based on the Pearson correlation coefficient.  

2.3. Feature importance methods 

We investigated the following feature importance methods: 

� Permutation feature importance (FI): measures the decrease in model 

predictive performance after random shuffling the values of a certain feature. 

We measured model performance using the area under the receiver operator 

curve (AUC) and balanced accuracy (BA). This method has the advantage that 

it is fast because it does not require retraining of the model, but has the 

disadvantage that it might extrapolate to unlikely data points. 

� Shapley Additive exPlanation (SHAP) value: measures the marginal 

contribution of features, averaged over all orderings in which the subset of 

features can be constructed. The resulting explanations are considered to result 

in a ‘fair’ allocation because they satisfy five desirable properties (efficiency, 

symmetry, dummy, monotonicity, and linearity). However, depending on the 

estimation strategy the method can still extrapolate to unlikely data points in 

case of correlated features. The computation time of exact Shapley values is an 

NP-hard problem, therefore we studied two approximations: 

o KernelSHAP: uses a weighted linear regression to estimate local SHAP 

values [6], we implemented this using the python library shap (with 

nsamples = 10*num_features + 2048 and l1_reg = ‘num_features(10)’).  

o SAGE: a sampling-based approximation to compute global SHAP values 

[7], we implemented this using the python library sage-importance 

(with MarginalImputer() and n_permutations = 1000*num_features).  

2.4. Experiments 

I. Computational feasibility: we investigated which feature importance 

methods are able to deal with the high dimensionality of EHR data. We 

measured the computation time when calculating feature importance using 

each method across different data dimensionalities K = [20, 50, 100]. For 

Shapley values we evaluated using 500 and 1000 background samples. The 

experiments were run using 16 cores of an Intel® Xeon® CPU E5 v4.  

II. Choosing between methods: we investigated to what extent different 

feature importance methods result in different rankings of features for EHR 

data. We investigated the top-10 ranked features as users typically focus 

only on the most important features.  

III. Interpretation of the resulting explanation: we investigated alignment with 

user expectations. We argue that users expect feature importance for 

additive models to be in line with the size of the model coefficients. We 

measured alignment of the feature importance methods with model 

coefficients, comparing both the ranking (using top-5 overlap, top-5 sign 

agreement, and Kendall’s tau) and normalized values (using mean absolute 

error).  
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3. Results 

3.1. Experiment I: computational feasibility 

Table 1 indicates the required computation times for each of the methods. This shows 

that the computation times to explain a prediction model quickly explode. Permutation 

methods are very fast, but the approximations of Shapley values take up to multiple 

hours. These results suggest that it is critical to further improve the speed of Shapley 

methods as the explanation times might be a hurdle for model explanation in practice.  

Table 1. Computation time (in minutes) for various FI methods. 

 Permutation FI KernelSHAP SAGE 
 AUC BA 500 samples 1000 samples 500 samples 1000 samples 

K=20 0,0 0,0 23,7 93,4 1,2 2,5 

K=50 0,1 0,1 34,6 129,8 16,6 33,6 
 K=100 0,2 0,3 52,5 193,8 129,2 260,5 

3.2. Experiment II: choosing between methods 

The prediction models for K = [20, 50, 100] resulted in performance (AUC) of 0.66, 0.66, 

and 0.67, respectively, on the test set. Figure 1 presents the most important features 

identified by each method for the prediction model for K=50. This shows significant 

differences in the explanations across methods. Not only is there a mismatch in the top 

features, but also the ordering of features and the direction of effect differ (e.g. X28). 

Model coefficients, permutation FI, and SAGE roughly identify the same set of important 

features. However, KernelSHAP leads to a very different set of features. SAGE can 

additionally capture the direction of effect as this does not capture the change in model 

error (as permutation FI), but the difference between the actual and average prediction.  

 

Figure 1. Top-10 ranked features in the prediction model according to different FI methods (K = 50). 

3.3. Experiment III: interpretation of the resulting explanation 

Figure 2 shows the alignment of feature importance methods with model coefficients 

measured using three rank-based metrics and one value-based metric. The agreement 

between model coefficients is highest with SAGE across all metrics, as can be seen from 

the figure because Top-5/Sign agreement are both 1 (indicating perfect agreement) and 

the MAE is low (indicating the normalized values are close). These metrics make the 

discrepancies between model coefficients and KernelSHAP very clear for the top 

features (Top-5/Sign agreement are both 0.2), but also show that the overall produced 

ranking (Kendall’s tau) and values (MAE) are better than for permutation FI.  
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Figure 2. Agreement of FI methods with model coefficients. The metrics are scaled between 0-1, with values 

closer to 1 indicating more agreement. 

4. Discussion and Conclusion 

It is often important to understand which features are most important for a given 

prediction model. We have shown there are challenges in different phases of creating 

such explanations for EHR data, even for a simple classifier. First, the computation times 

for state-of-the-art feature importance methods are significant, which may be a hurdle to 

implementation in practice. Second, different feature importance methods often result in 

different explanations, hence it is important to make an informed choice between 

methods. Third, even though these observed differences are not always unexpected, e.g. 

permutation FI/SAGE explains model performance and KernelSHAP explains model 

predictions, it remains a challenge to communicate these differences to end users.  

We only investigated one type of classifier and one prediction task. Results may 

vary depending on the studied example, but the main findings (e.g. disagreement 

between methods) have been found in other studies as well (e.g. [3]). Moreover, when 

investigating other classifiers such as tree-based and/or deep learning methods we expect 

the problems will only be larger due to the non-linearity of these methods. 

This work aims to create awareness of the disagreement between feature importance 

methods and underscores the need for guidance to practitioners how to deal with the 

discrepancies between feature importance methods. For this, we argue it is important to 

make explicit what we mean with feature importance (also for non-linear models) and 

which goal we aim to fulfill (e.g. to understand model decisions or to improve the model), 

as this can guide how methods should be formally evaluated and selected.  
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