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Abstract
Applied cost-effectiveness analysis models are an important tool for assessing health and economic effects of healthcare 
interventions but are not best suited for illustrating methods. Our objective is to provide a simple, open-source model for 
the simulation of disease-screening cost-effectiveness for teaching and research purposes. We introduce our model and 
provide an initial application to examine changes to the efficiency frontier as input parameters vary and to demonstrate face 
validity. We described a vectorised, discrete-event simulation of screening in R with an Excel interface to define parameters 
and inspect principal results. An R Shiny app permits dynamic interpretation of simulation outputs. An example with 8161 
screening strategies illustrates the cost and effectiveness of varying the disease sojourn time, treatment effectiveness, and 
test performance characteristics and costs on screening policies. Many of our findings are intuitive and straightforward, such 
as a reduction in screening costs leading to decreased overall costs and improved cost-effectiveness. Others are less obvi-
ous and depend on whether we consider gross outcomes or those net to no screening. For instance, enhanced treatment of 
symptomatic disease increases gross effectiveness, but reduces the net effectiveness and cost-effectiveness of screening. A 
lengthening of the preclinical sojourn time has ambiguous effects relative to no screening, as cost-effectiveness improves for 
some strategies but deteriorates for others. Our simple model offers an accessible platform for methods research and teach-
ing. We hope it will serve as a public good and promote an intuitive understanding of the cost-effectiveness of screening.

Key Points for Decision Makers 

We provide a simplified screening cost-effectiveness anal-
ysis microsimulation for teaching and research purposes.

As an initial application, we present an assessment of 
8161 screening strategies and conduct comparative 
statics to illustrate the influence of parameters on cost-
effectiveness.

Our analysis conveys the intuition of the relationship 
between parameter values and outcomes, including both 
absolute costs and effects and those relative to no screen-
ing, informing the process of model validation.

1  Introduction

Cost-effectiveness analysis (CEA) is the standard method 
for assessing value for money in healthcare [1, 2]. Models 
have been applied extensively to examine the cost-effec-
tiveness of cancer-screening policies [3–5]. Such models 
permit appraisal of a broader range of strategies than is 
feasible to assess in trials [6]. Similarly, simulations can 
offer decision makers estimates of  the long-term effects 
of screening earlier than can be achieved within trials [3].

Despite the widespread application of CEA models 
there are recognised methodological shortcomings in 
applied modelling studies [7, 8]. These include the issues 
of the failure to conduct incremental analyses and the 
omission of relevant strategies [8]. Such issues are evident 
in the cancer-screening CEA literature in particular [9, 
10]. Other screening-specific issues include risk stratifica-
tion, which does not always appear appropriately applied 
[11–13].

Several factors may contribute to the persistence of 
such methodological shortcomings. First, many model-
based analyses primarily address applied research ques-
tions such as the cost-effectiveness of a particular policy 

 *	 Yi‑Shu Lin 
	 yilin@tcd.ie

1	 Centre for Health Policy and Management, Trinity College 
Dublin, 2‑4 Foster Place, Dublin D02 T253, Ireland

2	 Department of Biostatistics, Erasmus Medical Centre, 
Rotterdam, The Netherlands

3	 Department of Epidemiology, Erasmus Medical Centre, 
Rotterdam, The Netherlands

http://crossmark.crossref.org/dialog/?doi=10.1007/s41669-023-00414-1&domain=pdf
http://orcid.org/0000-0003-2533-6099
http://orcid.org/0000-0003-3414-7388
http://orcid.org/0000-0002-9187-244X


	 Y.-S. Lin et al.

proposal rather than addressing methods concerns or pub-
lishing accessible teaching examples. Second, many CEA 
models are not openly shared by the academic groups that 
hold them, which inhibits their application by others to 
examine methods questions and perpetuates “blackbox” 
opacity concerns. While a few open-source models are 
available, these are often applied analyses and come with 
attendant complexity [14, 15]. As such, these models do 
not offer useful starting points for novice modellers to 
begin learning the fundamentals of simulation and can 
require long run times, especially when simulating many 
strategies. Overall, the limited availability of simple, fast, 
openly shared models means the screening literature lacks 
an accessible simulation platform for teaching and meth-
ods research.

An important aspect of model development is model 
validation. This helps avoid errors and ensures the model 
is fit for purpose [16]. One aspect of validation is estab-
lishing face validity, which relies on subjective expert 
judgement regarding the research question [17]. This is 
used to assess if a model’s outputs are consistent with 
expectations. Modellers therefore need to be equipped 
with an understanding of what results appear plausible to 
identify and avoid errors [16]. Some of the early screening 
modelling literature used analytical models that employed 
relatively high levels of abstraction [18–20]. Such sim-
plified models are useful for generating an intuitive 
understanding of screening, yet these models can be alge-
braically challenging to solve and become impractically 
complex once high degrees of abstraction are relaxed. The 
availability of programmable computers and simulation 
software means analytical approaches have generally been 
superseded by simulation. While simulation is suitable for 
applied optimisation problems, the loss of abstraction can 
compromise their usefulness in illustrating relationships 
between parameters and outcomes.

If researchers lack an intuitive understanding of screening 
cost-effectiveness and how it varies between strategies and 
across parameter values, they may be ill-equipped to assess 
elementary face validity. This in turn may compromise pros-
pects for quality improvement in CEA modelling. Previous 
work in the specific context of CEAs of colorectal cancer 
screening found that although most authors report having 
conducted face validation exercises, few studies actually 
present evidence of the validation [21]. The applied nature 
of these CEA models does not lend itself to demonstration 
of face validation in abstract terms, including the explana-
tion for the relationships between the model inputs and their 
corresponding cost-effectiveness estimates.

Several tutorials on state-transition modelling have been 
published [22–25], although none are presented in the 
context of screening interventions. Notable recent exam-
ples are the tutorials published by the Decision Analysis 

in R for Technologies in Health (DARTH) group [22–24]. 
Most tutorials published to date address discrete-time state-
transition models, and we are only aware of one tutorial on 
discrete-event simulation (DES) [26]. To date, there is no 
open-source teaching model designed for CEA screening 
interventions, irrespective of model type.

We believe the lack of an accessible, readily sharable 
model represents a meaningful research gap in the screening 
CEA literature. The objective of this study is to introduce an 
open-source modelling platform for the simulation of cost-
effectiveness of disease screening for teaching and research 
purposes. This simplified model employs DES and is coded 
in the R programming language. It is deliberately coded 
largely in base R in order to enhance accessibility and reduce 
dependence on installed packages. It also employs Microsoft 
Excel spreadsheets to aid easy definition of parameter values 
and convenient inspection of results for those less familiar 
with R. The model is specifically intended to be capable of 
simulating a large range of screening strategies in order to 
illustrate the importance of including sufficient screening 
alternatives among other methods considerations. DES is 
chosen as it offers an intuitive and highly efficient modelling 
paradigm within which to simulate screening interventions.

As an initial application of our model, we demonstrate 
the relationship between parameters and outcomes in order 
to support the development of intuitive understanding of 
screening cost-effectiveness. Our analysis aims to illustrate 
the effects of disease incidence rates, preclinical durations 
and test performance characteristics on the costs and effects 
of screening. In particular, we demonstrate how the posi-
tion of the cost-effective efficiency frontier varies as these 
parameters change, and the implication for optimal screen-
ing policies. We hope that our model will serve as a training 
tool for those working with screening models and that this 
will enhance understanding of CEA simulation, which in 
turn will lead to better evidence, more effective policies and, 
ultimately, improved health outcomes.

2 � A Pedagogical Model

This simplified microsimulation model is coded in R (ver-
sion 4.2.1) and comprises approximately 730 lines including 
markup. The complete model code and its specification are 
available for all to access freely on GitHub (https://​github.​
com/​yishu-​lin/​Pedag​ogical-​CEA-​Model-​of-​Scree​ning.​git).

2.1 � Model Overview

We first provide a broad outline of the modelling approach 
before giving a detailed description of selected key elements of 
the model. The intention is not to give a complete walk through 

https://github.com/yishu-lin/Pedagogical-CEA-Model-of-Screening.git
https://github.com/yishu-lin/Pedagogical-CEA-Model-of-Screening.git
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of the model code within the article. The interested reader can 
consult the fully marked-up model code on GitHub for a com-
plete description. Rather, we wish to provide an overview of 
the modelling approach before describing an application used 
to demonstrate how the efficiency frontier changes as key input 
parameters change. This model was designed for illustrative 
purposes and does not represent any specific disease or inter-
vention, though it is broadly conceived in the context of cancer, 
in which there is a non-communicable preclinical disease that 
can be screened for at multiple points over an individual’s life-
time. Our model is deliberately more abstract than the applied 
models typically used in applied CEAs.

We use a single-lesion model, meaning that individuals 
can only develop one instance of disease per lifetime. The 
disease can be treated, either upon clinical presentation or 
screen detection. Treatment is not assumed to be perfectly 
effective as not all patients survive, but  those who sur-
vive are assumed to have no long-term morbidity. We also 
assumed no disease recurrence.

This individual-level DES depicts a natural history of dis-
ease for a single lesion with five health states (Fig. 1). All 
individuals start in the perfect health state but are at risk of 
disease. In the absence of disease, individuals die of other 
causes, the timing of which is determined by assumed life 
tables. Individuals in the preclinical state have disease but 
have not been diagnosed and suffer no symptoms. Their dis-
ease is detectable by screening. Individuals can be diagnosed 
after either symptomatic presentation or screen detection, 
at which point they enter a clinical state and start treatment. 
We assume treatment has a higher probability of success if 
disease is detected in the preclinical state. If individuals are 
cured, there is no further treatment and survivors are excluded 
from future screening activity. In the case of treatment failure, 
individuals die at the same point in time as if no treatment 
occurred, i.e. there is no longevity benefit. In the case of treat-
ment success, death occurs at the time of other-cause death as 

determined by the assumed life tables. The model simulates 
all health outcomes for each individual until death.

2.2 � Model Structure

2.2.1 � Simulation of Natural History

First, the model simulates the natural history of each indi-
vidual. The age at entering the preclinical state and age at 
other-cause death are independently drawn from the prob-
ability distributions of disease incidence and life tables. 
Both distributions are defined by the incidence probabil-
ity and the survival rate for the user-defined age groups. 
The sojourn time of the preclinical and clinical stages are 
assigned from user-defined distributions. Users can choose 
from uniform, exponential or Weibull distributions. An 
individual’s age exiting a given health state is determined 
by their age at entry plus the sampled sojourn time in that 
state. An individual’s all-cause death age is the minimum 
of the cause-specific and other-cause death ages.

The model employs a vectorised approach, meaning 
that large vectors are used to record the age of entry and 
exit of specific states corresponding with each element 
in the vector corresponding to simulated individuals, and 
the model operations are, wherever possible, applied over 
these vectors. The vectorised approach aids the efficiency 
of the model and minimises the iterative use of loops.

2.2.1.1  Pseudo‑code  A fundamental outcome table in the 
model is one which records the unique identification of 
each simulated individual and the age of entry into the 
three possible disease states, which are preclinical dis-
ease, clinical disease and cause-specific death (Box  1). 
This array also records the other-cause death age and 
the overall all-cause death age. This array therefore has 
dimensions n × 6, where n is the number of simulated 

Fig. 1   Model diagram. The white health states represent the natural 
history of disease. The two interventions, screening and treatment, 
are labelled in green. The screening intervention can only be imple-

mented before the individual enters clinical health state (stage 3), and 
treatment can be received when patients are diagnosed from screen-
ing (stage 2) or clinically presented (stage 3)
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individuals. There is no explicit recording of membership 
of the healthy state as all individuals inhabit this state 
from birth until either the onset of preclinical disease or 
other-cause death.

To simulate the age of entry into the preclinical disease 
state, the model uses an onset function that samples the 
age of entering a specific health state for each individual 
from an age-specific probability (Box 2). This employs 
linear interpolation from a piecewise linear function of 
the cumulative probability of disease onset with age. The 
same approach is applied to simulate the age of entering 
the preclinical state and age at other-cause death.

The onset function is then applied over a vector x, gener-
ated using a random value between 0 and 1, with a length 
equal to the simulated population size. Readers seeking 
detail on how the probability and age arguments are defined 
should refer to the complete model code.

Regarding other health states, the age of entering the state 
is the age of entering the previous state plus the sojourn time 
of this previous state. This is achieved by applying a loop 
over the number of stages minus one, to exclude the final 

stage of other-cause death (Box 3). Inside the loop, we create 
random numbers to draw from the corresponding sojourn 
time distributions. Exponential and Weibull distributions can 
be chosen to sample the sojourn time of each health state, 
as can a constant duration. Naturally, a constant duration 
does not require random sampling because it assumes every 
individual has a fixed duration. Any health states entered 
after age 100 are then censored as the model assumes all 
simulated individuals die by age 100.

The age of all-cause death is determined as the minimum 
of an individual’s cause-specific death and other-cause death 
(Box 4).

2.2.2 � Adjustment of Screening Strategies

The model includes a primary screening test, the sen-
sitivity and specificity of which can be adjusted, as can 
the interval between screens and the start and stop ages. 
The model assumes a disutility from primary screening to 
account for the quality-of-life (QoL) loss due to the time 
and effort associated with undergoing a screening test. The 

# Define number of health stages with the stage arrival
# This model only features five states: (1)Disease Free; (2)Preclinical 
Disease; (3)Clinical Disease; (4)Cause-Specific Death; (5)Other-Cause Death
Outcomes <- array(NA, dim = c(SampleSize, 6))  # Create an array of the 
length of the sample size
colnames(Outcomes) <- c("PersonNumber", 
paste(DefineStages[2:nrow(DefineStages), "Name"]), "AllCauseDeath")  # Set 
column names
Outcomes[, "PersonNumber"] <- c(1:SampleSize)  # Set the first column to be 
the unique person-number for each individual

*DefineStages is a data frame recording the parameters in the spreadsheet Stages, relevant to 
disease history.

Box 1   Pseudo-code creating an outcome table

# The intervening columns correspond to the arrival of the 
intermediate disease states
# This model studies the cohort with the same age, so here does not 
need to simulate the first health state (healthy)
# Define the generic onset function which applies an age-specific 
probability of entering a specific stage
OnsetFunction <- function(x){
  unlist(approx(probability, age, x, ties = max)[2], use.names = F)  
# Ties = max is required because of the possibility of multiple zero 
probabilities of disease at younger ages
}

Box 2   Pseudo-code defining an onset function for disease incidence and other-cause deaths
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model permits the simulation of alternative sets of test 
performance assumptions, corresponding to alternative 
primary screen modalities. Which modalities are applied 
and the screening interval can be varied over the course of 
an individual’s screening programme (Fig. 2). The model 
does not explicitly simulate a triage test, but does assume 
all the positives receive triage and only true positives 
access early treatment. All those false positives from the 
initial screening test therefore do not receive an interven-
tion and remain eligible for future screening rounds.

The screening schedules are generated from the target age 
ranges and intervals. In many cases, the schedules are generated 
as approximations as a given screening age range may not be 
perfectly divisible by a given screening interval. For example, 

triennial screening with a start age of 40 and stop age of 60 is 
approximated by eight screens between the ages of 40 and 61. 
This approximation is achieved by holding the starting age and 
interval fixed but choosing the stop age that gives the closest 
approximation to the target stop age. Where two alternative stop 
ages can approximate a given target stop age, we specify the 
higher of the two. For example, if a screening stop age that the 
user defined is 70, while both 68 and 72 could approximate 70, 
our model applies 72.

2.2.2.1  Pseudo‑code  The model can generate screening 
schedules in which the screening interval length varies, such 
as is often employed in cervical screening. For the sake of 
clarity, the application here uses a constant screening inter-

# The model needs a loop here to go through the disease stages    
for (Stage in 1:(nrow(DefineStages) - 1)){
  # Apply the sojourn time to the stages
  # Retrieve the distribution type, scale and shape
  DurationType  <- Input[paste("StageType",  Stage, sep = ""), 
CurrentRun]
  DurationScale <- Input[paste("StageScale", Stage, sep = ""), 
CurrentRun]
  DurationShape <- Input[paste("StageShape", Stage, sep = ""), 
CurrentRun]
  
  if (!(is.na(DurationType))){
    if (DurationType == 1){Duration <- rep(DurationScale, 
SampleSize)}  # Set the preclinical distribution to be constant
    if (DurationType == 2){Duration <- -(log(1 - runif(SampleSize))) 
* DurationScale}  # Set the preclinical distribution to be 
exponentially distributed
    if (DurationType == 3){Duration <- ((-log(1 - runif(SampleSize))) 
^ (1 / DurationShape)) * DurationScale}  # Set the preclinical 
distribution to be Weibull distribution, and the alternative code: 
rweibull(SampleSize, shape = DurationShape, scale = DurationScale)
    Outcomes[, Stage + 1] <- Outcomes[, Stage] + Duration  # Find the 
end of the preclinical period by adding the onset to the duration
  }
  
  # This study assumes all the people died before aged 100
  Outcomes[which(Outcomes[, Stage + 1] > 100), Stage + 1] <- 100
}

Box 3   Pseudo-code presenting a loop for sampling the sojourn time of health states

# Find the all-cause death
Outcomes[, "AllCauseDeath"] <- pmin(Outcomes[, "CauseSpecificDeath"], 
Outcomes[, "OtherCauseDeath"], na.rm = TRUE)

Box 4   Pseudo-code adjusting the age of all-cause deaths
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val, and this is what is presented in the code and pseudo-code 
(Box 5). A given screening schedule is defined on the basis 
of the length of the screening interval, the screening start age 
and the target screening stop age. The total number of screens 
per schedule is derived from the target age range and  the 
screening interval. In cases in which the age range is not per-
fectly divisible by the interval and the remainder is 0.5 and 
above, we round up to generate the applied number of screens 
as an integer. This number of screens is then used to deter-
mine the actual stop age and, in turn, the schedule of screens.

2.2.3 � Simulation of Screening Strategies

We make several assumptions to both ensure reproducible 
results across model iterations and reduce stochastic (first-
order) uncertainty. Each simulation starts with a random num-
ber seed. The use of common seeds permits holding the natural 
history of each individual constant across simulations. Other 
sample seeds are used to ensure a fair comparison among the 
screening strategies. For instance, we assumed the same ran-
dom seeds for individuals for common age-specific screening 
moments in different simulations. This assumes the probability 
of detecting a true positive at a given screening moment will be 

the same across separate simulations featuring the same screen-
ing moment. Similarly, we also assumed the same random num-
bers when simulating treatment success from screen-detected 
and symptomatically presenting disease. This is to ensure any 
given individual has better outcomes from screen-detected dis-
ease and treatment outcomes are comparable across strategies. 
The same random seeds are used for the probability of cure for 
symptomatic presentation across iterations.

2.2.3.1  Pseudo‑code  The simulation of screening employs 
a loop to iterate through each round of screening (Box 6). In 
order to eliminate stochastic error, the sample seed can be 
reset within each loop to permit the analysis to maintain a con-
stant probability of disease detection within each screening 
moment at a given age over alternative screening schedules. 
For instance, this can ensure that if disease would be detected 
within an annual screening programme for an individual aged 
30, then we can ensure disease would also be detected for an 
identical screen also applied at age 30 within a 5-yearly inter-
val. To achieve this, the set.seed function refers to tables of ran-
dom numbers related to specific ages at which screening could 
be applied. The analysis draws on the same random numbers 
for every screen at that given age. This process is used to gener-
ate random numbers for both test sensitivity and test specificity.

Fig. 2   Screen schedule. The terms used in the figure correspond to 
the parameter names used in the model code. StartAge is the age 
of starting the screening programme, and StopAge is the end of the 
screening. IntervalSwitchAge is the age that changes screening inter-

vals, which can be changed up to three times. TestSwitchAge is the 
age that changes screening modality from TestApplied1 to TestAp-
plied2

NumberOfScreens <- (StopAge - StartAge) / Interval + 1  # Find the 
number of screens
NumberOfScreens <- ifelse(NumberOfScreens %% 1 == 0.5, 
ceiling(NumberOfScreens), round(NumberOfScreens))  # Rounding the 
number of screens
StopAge <- StartAge + (NumberOfScreens - 1) * Interval  # Redefine 
the actual StopAge following rounding
Screens <- c(seq(StartAge, StopAge, Interval))

Box 5   Pseudo-code generating screening schedules
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The analysis identifies individuals eligible for screening 
depending on whether they are both alive and not yet diag-
nosed with disease. While the earlier descriptions mentioned 
Outcomes as the fundamental output array corresponding to 
the disease natural history, the array ScreenedOutcomes is 
used here to record those outcomes once we account for how 
the natural history of disease is modified by screening and 
treatment for both clinically detected and screen-detected dis-
ease. The model identifies those still alive and those not yet 
diagnosed and finds the intersection of the two to determine 
all those eligible for screening at the given screening round.

The model then identifies those individuals who are in 
the preclinical state at the time of screening. It then identi-
fies all those who are in the preclinical phase and eligible 
for screening at the given screening round and the comple-
mentary set of screen-eligible intervals who are negative 
at that screening moment. The model uses the vectors of 
all positive and negative cases and combines them with the 
sensitivity and specificity of the applied screening modal-
ity to generate the true and false positives.

The true positive cases detected through screening have their 
probability of successful treatment applied to determine who is 
cured of disease following treatment. Again, the model uses a 
seed that is held constant over individuals, using the CureSeed in 
this instance. A benefit of a consistent random seed is the avoid-
ance of the circumstance where an individual is cured when dis-
ease was detected at the clinical stage within one strategy, while 
treatment was unsuccessful despite the disease being detected 
at an earlier preclinical phase in another strategy, even though 
the probability of treatment success is assumed to be higher in 
preclinical rather than clinical disease.

2.2.4 � Cost and Effects Estimates

We considered four types of costs: primary screen, triage, 
early treatment and late treatment. The primary screen cost 
is calculated based on the total number of screens con-
ducted regardless of their outcomes. We apply the cost of 
triage testing to all those primary test positives (including 
false positives). Early treatment is received by true-positive 
patients identified by screening. Conversely, late treatment 
is received by those individuals presenting symptomatically. 
The treatment costs occur when individuals undergo treat-
ment, which is assumed to occur at a single point in time 
per patient.

The model includes QoL adjustment to the effectiveness. 
Both screening and triage incur QoL losses. QoL losses are 
also applied to treatment for screen-detected and sympto-
matic disease on a one-off basis. We assumed no QoL decre-
ment for being in the preclinical state, including after screen 
detection, though we assumed a disutility for the clinical 
state and we assumed this also applies to screen-detected 
individuals once their disease progressed to the point that 

it would have presented symptomatically in the absence of 
screening. We discounted the costs and effects on a discrete 
annual basis using a user-defined discount rate and discount 
year.

2.2.5 � The Cost‑Effectiveness Outcomes

We record the principal cost-effectiveness outcomes, includ-
ing the discounted and undiscounted costs, life-years (LYs) 
gained, quality-adjusted life-years (QALYs) gained, and the 
set of strategies on the efficiency frontier and the incremen-
tal cost-effectiveness ratios (ICERs) between them. We also 
record intermediate outcomes, including the age entering 
health states, a disaggregation of costs, and the number of 
screens, individuals entering the preclinical state in their 
disease history, true positives, false positives, cancer deaths 
and clinical cases. The intermediate outcomes also include 
the over-diagnosed cases, i.e. individuals that were screen 
detected but in the absence of screening would not have pre-
sented symptomatically before death.

2.3 � User Interface

To make the framework accessible for those unfamiliar with 
R, all the parameters can be defined in Excel. An Excel tem-
plate is prepared for saving parameter inputs and reading 
main outcomes. The inputs defined in Excel are saved in 
separate files, which R then imports. R is the main program 
to execute the model. Similarly, the main model outputs 
can be accessed by Excel or R, including cost-effectiveness 
tables with ICERs and cost-effectiveness planes. The addi-
tional results are saved in separate output files, which can 
be read by R.

An R Shiny app offers an intuitive interface with which 
to adjust model inputs and observe the changes in outputs 
(Fig. 3). The Shiny app does not conduct model runs itself 
but rather facilitates the dynamic inspection of previously 
calculated results. It permits sensitivity analysis for param-
eter values, adjustment of the cost-effectiveness threshold 
and quick identification of strategies of policy interest. The 
Shiny app also plots the intermediate outcomes, which can 
be useful if the user wishes to interrogate the association 
between strategy characteristics and cost-effectiveness.

The Shiny app allows the user to change the background 
settings, including analysis type (base-case vs scenario 
analysis), effect measurement (QALYs or LYs), results 
discounted or not, axis orientation and range. The user can 
choose the parameter they wish to vary, the parameter val-
ues (on a three-point scale), a cost-effectiveness threshold 
value and a specific screening strategy to observe (defined by 
the screening starting age, stop age and interval). The user 
can also select the characteristics of a particular strategy of 
interest, which is shown in the plot with the red marker. The 
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for (ScreenNumber in 1:nrow(ScreenCounts)){
  set.seed(ScreenCounts[ScreenNumber, "ScreenAge"])  # Fixed sample 
seed for the same screening age across screening programmes
  ScreenSnSeed <- runif(SampleSize)  # Save random numbers for the 
test sensitivity
  ScreenSpSeed <- runif(SampleSize)  # Save random numbers for the 
test specificity

  # Define the screen age
  ScreenAge <- ScreenCounts[ScreenNumber, "ScreenAge"]
  # Retrieve the test sensitivity and specificity
  ScreenSn <- Input[paste("TestSensitivity", 
ScreenCounts[ScreenNumber, "TestApplied"], sep = ""), CurrentRun]
  ScreenSp <- Input[paste("TestSpecificity", 
ScreenCounts[ScreenNumber, "TestApplied"], sep = ""), CurrentRun]
  

  # Determine the status of individuals at the time of screening
  Alive <- ScreenedOutcomes[, "AllCauseDeath"] >= ScreenAge
  NotDiagnosed <- ScreenedOutcomes[, "Clinical"] >= ScreenAge
  NotDiagnosed[is.na(NotDiagnosed)] <- TRUE  # People who never 
develop the disease are also not diagnosed
  ScreenEligible <- Alive * NotDiagnosed  # Only when both conditions 
(alive and not diagnosed) are met
  
  # Identify those in the preclinical stage at the screen age
  Preclinical <- ScreenedOutcomes[, "Preclinical"] <= ScreenAge
  Preclinical[is.na(Preclinical)] <- FALSE  # People who never 
develop the disease are not in the preclinical stage
  AllPositives <- which((Preclinical * ScreenEligible) == 1)  # Save 
patient numbers that can be screened for positive
  # Identify the negatives as the complement of the positives from 
within the ScreenEligible set
  AllNegatives <- which(ScreenEligible == 1)[!(which(ScreenEligible 
== 1) %in% AllPositives)]
  
  # Find the true positives by sampling without replacement over all 
positives in proportion to the test sensitivity
  TruePositives  <- AllPositives[ScreenSnSeed[AllPositives] <= 
ScreenSn]
  # Find the false positives by sampling without replacement over the 
negatives in proportion to the test specificity
  FalsePositives <- AllNegatives[ScreenSpSeed[AllNegatives] >= 
ScreenSp]
  # Censor these successfully treated individuals
  ScreenedCured <- TruePositives[which(CureSeed[TruePositives] <= 
Input["PreClinicalProbability", CurrentRun])]

  # Now update the screen-adjusted outcomes
  ScreenedOutcomes[TruePositives, "Clinical"] <- ScreenAge  # Update 
the age of entering clinical state
  ScreenedOutcomes[ScreenedCured, "AllCauseDeath"] <- 
ScreenedOutcomes[ScreenedCured, "OtherCauseDeath"]  # Update all-
cause death
}

Box 6   Pseudo-code simulating the screening intervention
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intermediate outcomes for the observed strategy are also 
displayed, including the screen performance and the disease 
history.

3 � An Application

To demonstrate the model, we simulate 100,000 individuals 
with an illustrative parameter set. Assuming the screening 
interval remains fixed throughout the programme and is an 
integer in the range of 1–10 years and screening start and 
stop ages are between 25 and 100, we identified all possible 
screening strategies. In total, 8161 screening strategies were 
simulated, including a no-screening strategy and one-off 
screening. To illustrate the relationship between parameter 
values and cost-effectiveness, the simulations were repeated 
over a range of alternative parameter values. Table 1 lists 
all the parameter values used in this example. The cost-
effectiveness threshold in the example is €50,000 per QALY.

We employ comparative statics to show the efficiency 
frontiers within the cost-effectiveness plane before and after 
a change in parameter values. The process of comparative 
statics involves comparing the results of the model with a 

change in one or more parameters while holding all else 
equal. It is instructive to view two sets of results: (1) those 
showing the absolute costs and health effects of all strate-
gies, including no screening and (2) those illustrating costs 
and health effects relative to the no-screening strategy. We 
separately describe our observations for the impact on cost 
and effect estimates.

The execution time is 1.9 min for 250 screening strate-
gies, and 1.45 h for a complete simulation of 8161 strategies 
on a 3.2 GHz I7-8700 processor with 32 GB RAM.

3.1 � Cost‑Effectiveness Results

We identified 17 strategies on the efficiency frontier with 
a broad range of ICERs including a no-screening strategy 
in the base-case scenario (Table 2; Fig. 4). Compared to no 
screening, these strategies are more costly and effective. The 
most intensive strategies are more effective, but not cost-
effective. The efficiency frontier’s shape reflects diminishing 
marginal returns of screening intensification. In this exam-
ple, the optimally cost-effective strategy in the base case is 
screening every 6 years from ages 35–77, with an ICER of 
€40,602 per QALY.

Fig. 3   The screenshot of the interface built in the R Shiny app. The central value within each parameter range corresponds to the base-case sce-
nario in our example. QALY quality-adjusted life-year
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Figure 3 shows the Shiny app illustrating an example strat-
egy of 5-yearly screening between ages 50 and 80. The results 
are plotted on the cost-effectiveness plane, with the strategies 
forming the efficiency frontier joined by the solid black line, 
the strategy with the optimal net health benefit shown with the 
green marker and the cost-effectiveness threshold shown with 
the dashed red line. This strategy features 4781 clinical cases, 
1847 cancer deaths and 261 over-diagnosed cases.

3.2 � Comparative Statics

Figures 5 and 6 demonstrate the efficiency frontier over a 
range of parameter values. Notably, the strategies that com-
prise the frontier differ as parameters change.

(1)	 Screen cost

Changes in screening costs result in changes in the verti-
cal plane only as these do not influence screening effective-
ness. Lower screening costs makes screening more cost-
effective, reducing the ICERs of all efficient strategies. The 
no-screening strategy, which is located at the origin of the 
cost-effectiveness plane, is not influenced by changes in the 
costs of primary screening or those following triage, so the 
start of the frontier remains static across scenarios. Both 
relative and absolute cost estimates decrease as screening 
cost decreases.

(B)	 Treatment cost

Treatment cost changes only influence overall costs with-
out any change in effectiveness, so strategies simply move 
vertically in the cost-effectiveness plane. ICERs of screening 
decrease when the treatment costs decrease for the screen-
detected disease or increase for symptomatic disease.

Changes to the cost of screen-detected disease do not 
influence the position of the no-screening strategy. Conse-
quently, the absolute and relative costs of screening fall iden-
tically when the treatment cost for screen-detected disease 
falls. Conversely, varying treatment costs for symptomatic 
disease influences costs of both screening and no-screening 
strategies. While absolute costs increase, they increase the 
most for no screening and by increasingly less as screening 
gets more effective. Therefore, a decline in the cost of treating 
symptomatically detected disease results in a fall of the cost 
of the no-screening scenario and the relative costs of screen-
ing rise and the cost-effectiveness of screening deteriorates.

(C)	 Treatment effectiveness

Changes in treatment effectiveness only result in changes 
in the horizontal plane. Changes to the effectiveness of 
screen-detected disease do not influence the position of the 

no-screening strategy, so the relative and absolute changes 
are identical. Conversely, changes to the effectiveness of 
symptomatically detected disease will influence the position 
of the no-screening scenario, and the relative and absolute 
outcomes differ.

An improvement in treatment effectiveness of screen-
detected disease shifts the outcomes to the right and all 
screening strategies become more cost-effective. A reduc-
tion in treatment effectiveness of symptomatically detected 
disease shifts the frontier to the left in terms of the absolute 
estimates and shifts to the right in terms of estimates relative 
to no screening, and all strategies become more cost-effective.

If the effectiveness of early treatment falls to parity with 
that of late treatment, then there is no advantage of screening 
and no screening becomes the preferred strategy. There is a 
minimum difference in effectiveness between early and late-
stage treatment required for screening to ever be beneficial. 
This minimal difference is required, in part, to ensure that 
the advantages of screening at least outweigh the QoL losses 
imposed by screening itself.

(D)	 Test performance

Changes in test sensitivity or specificity influence screen-
ing effectiveness and costs, resulting in movement in both 
the horizontal and vertical plane. Improved test sensitivity 
or specificity improves the accuracy of screening results, and 
screening then becomes more effective, less costly and more 
cost-effective. As the no-screening strategy is not influenced 
by changes in test performance, the absolute and relative 
outcomes are identical.

(E)	 Incidence and other-cause mortality

Varying disease incidence and other-cause mortality affect 
both cost and effectiveness of screening. Both parameters 
influence the cost and effectiveness estimates of the no-
screening strategy, so the absolute and relative outcomes dif-
fer. In terms of absolute results, increased disease incidence 
leads to higher absolute costs and lower absolute effects for 
all strategies, including no screening. In terms of results rela-
tive to no screening, the converse is observed, as the relative 
costs of screening fall and the relative effects increase, mean-
ing cost-effectiveness increases. Lengthening life expectancy 
(reducing other-cause mortality) increases both absolute and 
relative costs and health effects. In this example, the relative 
outcomes indicate the efficiency frontier moves to the right, 
indicating screening becomes more cost-effective.

(F)	 Sojourn time

In absolute terms, a lengthening of preclinical or clini-
cal sojourn time results in increased effectiveness. Absolute 
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Table 1   The parameter inputs Parameter R name Base case Low High

Sojourn time: stage 2
 Distribution StageType2 3 3 3
 Scale StageScale2 5 3 9
 Shape StageShape2 1 1 1

Sojourn time: stage 3
 Distribution StageType3 1.0 1.00 1
 Scale StageScale3 0.5 0.25 1
 Shape StageShape3 1.0 1.00 1

Quality of life
 Stage 1 StageUtility1 0.999 0.99 1.00
 Stage 2 StageUtility2 0.900 0.70 0.95
 Stage 3 StageUtility3 0.500 0.30 0.60

Test sensitivity
 Modality 1 TestSensitivity1 0.95 0.600 1
 Modality 2 TestSensitivity2 0.50 0.250 1
 Modality 3 TestSensitivity3 0.60 0.300 1
 Modality 4 TestSensitivity4 0.65 0.325 1
 Modality 5 TestSensitivity5 0.70 0.350 1

Test specificity
 Modality 1 TestSpecificity1 0.98 0.600 1
 Modality 2 TestSpecificity2 0.95 0.475 1
 Modality 3 TestSpecificity3 0.93 0.465 1
 Modality 4 TestSpecificity4 0.90 0.450 1
 Modality 5 TestSpecificity5 0.80 0.400 1

Test disutility
 Modality 1 TestDisutility1 0.001 0.0005 0.002
 Modality 2 TestDisutility2 0.002 0.0010 0.004
 Modality 3 TestDisutility3 0.005 0.0025 0.010
 Modality 4 TestDisutility4 0.005 0.0025 0.010
 Modality 5 TestDisutility5 0.005 0.0025 0.010

Probability of treatment success
 Early treatment PreClinicalProbability 0.85 0.425 1
 Late treatment ClinicalProbability 0.40 0.200 1
 Other quality-of-life 

burden
 Triage DisutilityTriage 0.01 0.005 0.02
 Treatment DisutilityTrt 0.09 0.045 0.18

Discounting factors
 Rate for costs DiscountRateCost 0.05 0.025 0.1
 Rate for effects DiscountRateEffect 0.05 0.025 0.1
 Base-year DiscountYear 0 0 5

Costs
 Screen CostPrimaryScreen 100 50 200
 Triage CostFollowUp 1,000 500 2,000
 Early treatment CostTrtScreen 10,000 5,000 20,000
 Late treatment CostTrtClinical 20,000 10,000 40,000

Annual incidence (ages)
 0 Incidence_0 0 0 0
 1–5 Incidence_5 0 0 0
 6–10 Incidence_10 0 0 0
 11–15 Incidence_15 0 0 0
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costs reduce with an increase in the preclinical sojourn time 
but remain unchanged with the clinical sojourn time. In rela-
tive terms, lengthening the preclinical sojourn time has an 
ambiguous effect on effectiveness and cost-effectiveness. 
Some low-intensity strategies become relatively more effec-
tive, but higher intensity strategies become relatively less 
effective. Consequently, the ICERs fall for some strategies 
but rise for others. The relative outcomes for lengthening 
the clinical sojourn time are unambiguous as effects fall 

and costs remain unchanged, meaning the ICERs rise for all 
strategies as screening becomes less cost-effective.

4 � Discussion

We provide a simplified screening CEA microsimulation for 
teaching and research purposes. As an initial application, 
we present an assessment over a large range of strategies 

a The probability of surviving at a particular year of age

Table 1   (continued) Parameter R name Base case Low High

 16–20 Incidence_20 0 0 0
 21–25 Incidence_25 0 0 0
 26–30 Incidence_30 0 0 0
 31–35 Incidence_35 0.0005 0.0004167 0.00060
 36–40 Incidence_40 0.0005 0.0004167 0.00060
 41–45 Incidence_45 0.0008 0.0006667 0.00096
 46–50 Incidence_50 0.0008 0.0006667 0.00096
 51–55 Incidence_55 0.0008 0.0006667 0.00096
 56–60 Incidence_60 0.0012 0.0010000 0.00144
 61–65 Incidence_65 0.0012 0.0010000 0.00144
 66–70 Incidence_70 0.0012 0.0010000 0.00144
 71–75 Incidence_75 0.0012 0.0010000 0.00144
 76–80 Incidence_80 0.0016 0.0013333 0.00192
 81–85 Incidence_85 0.0016 0.0013333 0.00192
 86–90 Incidence_90 0.0016 0.0013333 0.00192
 91–95 Incidence_95 0.0016 0.0013333 0.00192
 96–100 Incidence_100 0.0016 0.0013333 0.00192

Survivala

 0 Survival_0 1 1 1
 5 Survival_5 0.9942 0.993968 0.994432
 10 Survival_10 0.9937 0.993448 0.993952
 15 Survival_15 0.9931 0.992824 0.993376
 20 Survival_20 0.9919 0.991576 0.992224
 25 Survival_25 0.9902 0.989808 0.990592
 30 Survival_30 0.9883 0.987832 0.988768
 35 Survival_35 0.9858 0.985232 0.986368
 40 Survival_40 0.9821 0.981384 0.982816
 45 Survival_45 0.9762 0.975248 0.977152
 50 Survival_50 0.9665 0.965160 0.967840
 55 Survival_55 0.9508 0.948832 0.952768
 60 Survival_60 0.9272 0.924288 0.930112
 65 Survival_65 0.8906 0.886224 0.894976
 70 Survival_70 0.8347 0.828088 0.841312
 75 Survival_75 0.7466 0.736464 0.756736
 80 Survival_80 0.6127 0.597208 0.628192
 85 Survival_85 0.4344 0.411776 0.457024
 90 Survival_90 0.2398 0.209392 0.270208
 95 Survival_95 0.0892 0.052768 0.125632
 100 Survival_100 0 0 0
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Table 2   The cost-effectiveness results for the base-case scenario for strategies that lie on the efficiency frontier

ICER incremental cost-effectiveness ratio, LY life-year, QALY quality-adjusted life-year

Strategy Undiscounted outcomes Discounted outcomes ICER, €/QALY

Label Start age Stop age Interval LYs QALYs Costs (€) LYs QALYs Costs (€)

A No screening 79.801947 79.516654 904.00 19.365480 19.337555 50.498 –
B 46 46 0 79.853977 79.541461 990.91 19.367595 19.338478 61.127 11,515
C 46 56 10 79.886550 79.556584 1073.01 19.368548 19.338875 67.361 15,712
D 46 66 10 79.910897 79.567635 1146.67 19.369057 19.339082 70.908 17,162
E 46 70 8 79.930444 79.576316 1230.96 19.369545 19.339270 75.571 24,743
F 45 66 7 79.934988 79.578538 1239.68 19.369834 19.339381 78.626 27,613
G 45 73 7 79.947866 79.583990 1311.88 19.370050 19.339459 80.960 29,814
H 45 70 5 79.967722 79.592732 1418.12 19.370769 19.339725 89.344 31,578
I 38 73 7 79.973945 79.595844 1415.95 19.371485 19.339986 98.124 33,531
J 35 77 7 79.991348 79.603523 1501.67 19.372273 19.340264 108.922 38,883
K 35 77 6 80.005383 79.609435 1596.73 19.372850 19.340463 116.996 40,602
L 35 75 5 80.021411 79.616258 1707.34 19.373513 19.340678 127.768 50,211
M 35 80 5 80.027628 79.618563 1766.25 19.373595 19.340702 129.106 54,420
N 35 83 4 80.053901 79.628843 2021.69 19.374402 19.340910 147.236 87,398
O 35 83 3 80.080173 79.637804 2409.42 19.375412 19.341099 177.200 158,385
P 34 82 3 80.085183 79.640079 2436.57 19.375637 19.341132 184.887 233,353
Q 34 85 3 80.087298 79.640566 2485.51 19.375661 19.341135 185.699 282,266

Fig. 4   The cost-effectiveness plane for the base-case scenario with the efficiency frontier shown in black and efficient strategies marked A to Q
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and conduct comparative statics to illustrate the influence 
of parameters on cost-effectiveness. Our results illustrate 
the relevance of considering both absolute costs and effects 
and those relative to no screening. This distinction between 
absolute and relative outcomes is useful when seeking to 
demonstrate the intuition behind the observed results. Our 
analysis conveys the intuition of the relationship between 
parameter values and outcomes, informing the process of 
model validation.

To our knowledge, this is the first CEA teaching model 
published in the specific context of disease screening. While 
this model does not necessarily correspond to screening for 
any specific disease, the example presented broadly corre-
sponds to screening for cancer. The framework can, never-
theless, also be applied to other interventions such as peri-
odic dental exams, eye exams, and hepatitis screening.

Our framework is accessible and editable by all as the 
complete model code and variable inputs are specified and 
provided online. Users are able to apply and extend the 
model without concerns of copyright infringement. The 
full access contributes to research transparency and facili-
tates sharing knowledge of simulation methodology. As 
such, our model is intended as a public good, and we hope 

its dissemination will benefit the field of CEA in disease 
screening.

An important advantage of our model is its simplicity 
and speed. Compared to specialised commercial software or 
spreadsheet applications such as Microsoft Excel, the non-
proprietorial nature of R permits an accessible, transparent 
and adaptable model platform [27, 28]. R is increasingly 
adopted as the modelling tool, with the support of a large 
range of open-source materials and well-documented pack-
ages and functions [29]. Importantly, models written in R are 
now accepted by the National Institute for Health and Care 
Excellence (NICE) [30]. Although there are some published 
tutorials for modelling in R [16, 17, 28, 31], these models 
are not applied to screening and do not employ DES. As 
such, our model offers a novel contribution to the growing 
R in CEA literature.

As a teaching tool, our model is intended for two groups. 
First, it can serve as a teaching tool for the students who 
want to understand the principles of economic evaluation 
regarding screening interventions. The intuitive interfaces of 
Excel and Shiny ensure that students do not need to under-
stand R programming as they are able to explore alternative 
screening policies under different scenarios and threshold 

Fig. 5   The cost-effectiveness efficiency frontier as specific input 
parameters are varied (absolute results). QALY quality-adjusted life-
year. (i) Solid line represents the higher-value scenario, and dashed 
lines are the low-value scenarios; the shape of the markers corre-
spond to the strategies in Fig. 4. (ii) In the scenarios of high treatment 

success for symptomatic disease and low for screen-detected disease, 
the no-screening strategy becomes the only comparator on the effi-
ciency frontier. (iii) Note that the range of the axes may vary between 
plots to better illustrate the shape change across the scenarios of each 
parameter sets
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values without having to operate or modify R code. Our 
Shiny app offers a convenient interface for the examina-
tion of changes to parameter values on cost-effectiveness 
estimates. Second, our model serves as a resource for those 
intending to learn DES programming in R. Our model pro-
vides a starting point for extensions to other implementa-
tions, either methodological or applied.

Our simplified model is suitable for the purpose of dem-
onstrating the relationship between key parameter values and 
cost-effectiveness. Its simplified nature makes demonstrating 
face validity straightforward. While our simplified model 
can help modellers develop their understanding of screen-
ing, any specific modelling application requires independent, 
context-specific demonstration of validation. As such, any 
extension of our model might require a renewed exercise in 
face validity depending on how extensive the changes are.

Our model deliberately employs a high degree of 
abstraction to make it accessible and efficient. Although 
this simulation only has five stages, it is sufficient to dem-
onstrate the fundamentals of screening cost-effective-
ness. As an abstracted model it is not suitable for solving 
applied research questions regarding specific prevention 
programmes. Rather, it is intended as offering a basis for 

addressing methods research questions. Potential applica-
tions include methods demonstrations of alternative forms of 
risk stratification, the differences between models of single 
and multiple birth cohorts and illustrating the consequences 
of omitting screening strategies.

Our model deliberately eliminates some sources of sto-
chastic error by preserving random seeds for chance events 
regarding both screening and treatment success. These can 
help the model yield consistent results across alternative 
screening strategies with smaller sample sizes. Care must 
be taken, however, to ensure that the elimination of this sto-
chastic error does not itself cause artefacts in the simulation 
estimates, especially with smaller simulation sample sizes. 
An alternative approach is to relax the assumptions around 
these common random seeds and simply to inflate the simu-
lation size to attenuate the effects of random error, though 
this can come at the cost of model run time.

Naturally, our model has limitations. At a minimum, users 
must at least be able to install and run R. They will need to 
install the Shiny package if they wish to use our Shiny app. 
Our deliberate avoidance of packages results in minor imper-
fections in the presentation of overlapping ICERs within 
the cost-effectiveness plane. A consequence of the degree 

Fig. 6   The cost-effectiveness efficiency frontier as specific input 
parameters are varied (results relative to no screening). QALY qual-
ity-adjusted life-year. (i) Solid line represents the higher-value sce-
nario, and dashed lines are the low-value scenarios; the shape of the 
markers correspond to the strategies in Fig. 4. (ii) In the scenarios of 

high treatment success for symptomatic disease and low for screen-
detected disease, the no-screening strategy becomes the only com-
parator on the efficiency frontier. (iii) Note that the range of the axes 
may vary between plots to better illustrate the shape change across 
the scenarios of each parameter sets
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of abstraction adopted in the model is that its structure and 
parameter values are merely notional and do not correspond 
directly to any specific disease. For example, a one-off treat-
ment cost in our model cannot illustrate the treatment cost 
correlated with the severity of the disease or the length 
of hospital stay. The distinction between the treatments 
for screen-detected and symptomatically detected diseases 
is a simplistic representation of early and late-stage therapy. 
The model also does not include palliative care costs and 
death-related expenses. Furthermore, although our model 
achieves a fast runtime, it will not retain such speeds when 
extended to the multiple health states and complex screening 
and triage algorithms required in applied analyses. Further 
adaptations might require integration with C++. Another 
limitation is that this initial demonstration does not explore 
parameter uncertainty, although the comparative statics 
framework presented can naturally be used as a template for 
one-way sensitivity analysis. Adding probabilistic sensitiv-
ity analyses or exploring multivariate impacts is an obvious 
future extension.

5 � Conclusion

We present a simple microsimulation model of the cost-
effectiveness of screening. Our model is the first open-source 
DES CEA model of screening coded in R. It is specifically 
intended to overcome the constraints of the models typi-
cally applied in cancer screening, which are both large and 
not openly shared. In this initial application we simulated 
thousands of screening strategies as an example to illustrate 
how the efficiency frontier moves when parameter changes 
through a series of comparative statics. This permits a dem-
onstration of face validity and is intended to aid modellers’ 
understanding of screening cost-effectiveness. We hope our 
model will serve as a useful basis for methods research and 
as a teaching tool.
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