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A large ongoing research effort focuses on Variational Quantum Algorithms (VQAs), representing
leading candidates to achieve computational speed-ups on current quantum devices. The scalability
of VQAs to a large number of qubits, beyond the simulation capabilities of classical computers, is
still debated. Two major hurdles are the proliferation of low-quality variational local minima, and
the exponential vanishing of gradients in the cost function landscape, a phenomenon referred to as
barren plateaus. In this work, we show that by employing iterative search schemes one can effectively
prepare the ground state of paradigmatic quantum many-body models, also circumventing the barren
plateau phenomenon. This is accomplished by leveraging the transferability to larger system sizes
of a class of iterative solutions, displaying an intrinsic smoothness of the variational parameters,
a result that does not extend to other solutions found via random-start local optimization. Our
scheme could be directly tested on near-term quantum devices, running a refinement optimization
in a favorable local landscape with non-vanishing gradients.

Introduction.— Variational Quantum Algorithms
(VQAs) [1, 2] are among the main candidates for near-
term practical applications of Noisy Intermediate-Scale
Quantum (NISQ) devices [3]. VQAs are quantum-
classical hybrid optimization schemes that have been
successfully applied to quantum ground state prepara-
tion [4–6] and classical optimization tasks [7], ranging
from the solution of linear systems of equations [8] to
quantum information [9]. In the standard VQA set-
ting, one aims at minimizing the average energy of a

problem Hamiltonian Ĥtarg with respect to a variational
state |ψ (γ)〉 prepared by a parameterized quantum cir-
cuit. This is accomplished by a feedback loop between
a classical and a quantum machine: the quantum device
is used to repeatedly prepare the ansatz state for a set
of gate parameters γ and to estimate the cost function

Evar(γ) = 〈ψ(γ)|Ĥtarg|ψ(γ)〉, while the optimization of
the parameters is performed classically.

The optimization of the cost function Evar(γ) is known
to be a difficult task [10]: only a careful choice of the
ansatz is usually expressive enough to approximately find

the ground state of Ĥtarg and, at the same time, trainable
enough for the optimization to succeed. In particular, the
landscape of the cost function may not be easy to inspect
for two reasons: the proliferation of low-quality local min-
ima traps [11], and the exponential flattening of the land-
scape by increasing the number of qubits, a phenomenon
dubbed barren plateaus [12], which can severely hinder
the scalability of the VQA scheme beyond small system
sizes amenable to classical simulations. Barren plateaus
are linked to highly-expressive parameterized quantum
circuits [12–14], but they arise also in the context of less-
expressive symmetry-preserving [15, 16] or equivariant

[17] ansatzes. A few recent studies have proposed dif-
ferent approaches to limit or avoid barren plateaus, by
employing pre-training techniques [18], layerwise learn-
ing for classification tasks [19], identity-block initializa-
tion [20], or classical shadows [21].

Among the effective strategies to avoid low-quality lo-
cal minima traps, we mention approaches [6, 22, 23]
inspired by standard Adiabatic Quantum Computation
(AQC) [24, 25], and iterative schemes [26, 27], optimiz-
ing only a subset of gate parameters at each iteration and
using this result as a warm-start guess for the next iter-
ative step. These techniques proved particularly efficient
for a class of VQAs inspired by AQC, commonly named
Hamiltonian Variational Ansatz (HVA) [4, 5, 7, 16, 28–
34], with an ansatz state of the form:

|ψ (γ)〉 =

P∏
m=1

e−iγm,M ĤM · · · e−iγm,1Ĥ1 |ψ0〉 , (1)

with m = 1 · · ·P labeling successive circuit layers, each in
turn composed by j = 1 · · ·M alternating unitaries gen-

erated by Hamiltonian operators Ĥj . The target Hamil-

tonian Ĥtarg can be linearly decomposed in terms of the
generators, and |ψ0〉 is a simple initial state. This ansatz
state can be regarded as a generalization of the Quan-
tum Approximate Optimization Algorithm (QAOA) [7],
originally devised for classical combinatorial optimiza-
tion problems. Remarkably, by means of appropriate
iterative schemes for constructing the layer parameters
γm,j , it is often possible to efficiently single-out optimal
or nearly-optimal variational parameters that are smooth
functions [35–41] of the layer index m.

In this paper, we draw a new connection between
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smooth optimal solutions — obtained by means of itera-
tive methods — and barren plateaus, developing a novel
efficient scheme to circumvent this issue. Our procedure
leverages the transferability of an optimal smooth solu-
tion, obtained for small system size, to solve the same
task with a larger number of qubits, where a direct op-
timization would fail due to barren plateaus. In a nut-
shell, the transferred smooth solution serves as an excel-
lent warm-start with low variational energy for the large
system, and a subsequent refinement optimization is ob-
served to be free of the barren plateau issue. Remarkably,
even though other (non-smooth) solutions for the small
system can be obtained by standard random-start local
optimization, they do not provide any useful warm-start
for larger systems and, crucially, a refinement optimiza-
tion still suffers from barren plateaus in their neighbor-
hood.

For definiteness, we focus on the ground state prepa-
ration of the Heisenberg XYZ model [42] and of the anti-
ferromagnetic Longitudinal-Transverse-Field Ising Model
(LTFIM) [43], two ubiquitous models in quantum physics
with rich phase diagrams, whose ground state prepara-
tion with VQAs is affected by barren plateaus [15, 17].
We select ansatz states in the form of Eq. (1), by choosing

the generators Ĥj in such a way to implement model sym-
metries into the variational wavefunctions. This leads
to a restriction of the Hilbert space to the ground state
symmetry sector, boosting trainability, and a reduction
in the number of independent Pauli correlators needed to
compute the cost function.

Models and methods.— The first class of models we
consider is the spin-1/2 XYZ [42, 44] Hamiltonian:

ĤXYZ =

N∑
j=1

(
σ̂xj σ̂

x
j+1 + ∆Yσ̂

y
j σ̂

y
j+1 + ∆Zσ̂

z
j σ̂

z
j+1

)
. (2)

We restrict our considerations to the antiferromagnetic
case ∆Y,∆Z > 0. In this quadrant, the system
is gapped, except at three critical half-lines/segments:
∆Y ≤ 1,∆Z = 1; ∆Y = 1,∆Z ≤ 1; ∆Y = ∆Z,∆Z ≥ 1
[45, 46]. The Hamiltonian (2) is integrable in the whole
(∆Y,∆Z) plane. In particular, ∆Y = 1 corresponds to the
XXZ model, while ∆Y = ∆Z = 1 corresponds to the spin-
isotropic Heisenberg model. The second Hamiltonian we
examine is the antiferromagnetic LTFIM [47, 48]:

ĤLTFIM =

N∑
j=1

σ̂zj σ̂
z
j+1 − gx

N∑
j=1

σ̂xj − gz
N∑
j=1

σ̂zj . (3)

We restrict our analysis to positive local fields gx, gz > 0.
The system is gapped in the whole positive quadrant, ex-
cept for a line connecting the two points (gx = 1, gz = 0)
and (gx = 0, gz = 2), obtained numerically in Ref. [47].
While for gz = 0 the model is integrable by a Jordan-
Wigner transformation to free fermions [5, 49–52], inte-
grability is generically lost for gz 6= 0. In Appendix D, we
specifically address the integrable Transverse Field Ising

Model (TFIM) line (gz = 0). For both the XYZ model
and the LTFIM, we examine even values of N and we
assume periodic boundary conditions.

Our ansatz states are in the general form of Eq. (1)
with M = 2 generating Hamiltonians only, defined to
encode some symmetries of the model. To illustrate this

idea for the XYZ case, let us split ĤXYZ into two mutually
non-commuting parts that refer to the even (2j − 1, 2j)

and to the odd bonds (2j, 2j + 1), ĤXYZ = Ĥeven + Ĥodd,
with

Ĥeven =

N/2∑
j=1

(
σ̂x2j−1σ̂

x
2j+∆Yσ̂

y
2j−1σ̂

y
2j+∆Zσ̂

z
2j−1σ̂

z
2j

)
(4)

and similarly for Ĥodd. Next, in the spirit of AQC [24],

imagine an interpolating Hamiltonian connecting Ĥeven to

the full ĤXYZ:

Ĥ(s) = sĤXYZ + (1− s)Ĥeven = Ĥeven + sĤodd , (5)

with s ∈ [0, 1]. For s = 0, the ground state of Ĥ(0) =

Ĥeven is a valence-bond state of singlets on the even bonds

|ψ0〉 =

N/2∏
j=1

1√
2

(
|↑↓〉 − |↓↑〉

)
2j−1,2j

, (6)

which is taken as initial state. This suggests, in close
analogy with QAOA, the following ansatz for the XYZ
ground-state wave-function:

|ψ(β,α)P〉 = ÛP · · · Û2 Û1|ψ0〉 . (7)

Here, (β,α)P = (β1 · · ·βP , α1 · · ·αP) are 2P variational

parameters, and the unitary operators Ûm = Û(βm, αm),

for m = 1 · · ·P, evolve the state according to Ĥeven and

Ĥodd, in an alternating fashion:

Ûm = Û(βm, αm) = e−iβmĤevene−iαmĤodd . (8)

As usual in the VQA framework, the goal is to mini-
mize the variational energy

EN (β,α)P = 〈ψ(β,α)P|Ĥtarg|ψ(β,α)P〉 , (9)

with Ĥtarg = ĤXYZ. The connection with AQC is restored
in the P→∞ limit, by setting specific values for (β,α)P,
as prescribed by a Trotter split-up of the continuous-time
AQC dynamics [27].

As detailed in Appendix A, the ansatz state lies in
the same symmetry subsector of the XYZ ground states
for the following symmetries: translations by two lattice

spacings T̂2 (which maps j → j + 2), lattice inversion Î

(which maps j ↔ N − j+ 1) and parity P̂b =
∏
j σ̂

b
j . Ad-

ditionally, for the su(2)-invariant Heisenberg model, this

holds true for the total spin Ŝbtot (b = x, y, z) and Ŝ2
tot,

while for the u(1)-invariant XXZ model only for Ŝztot. As
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a result, the cost function in Eq. (9) requires the evalua-
tion of only six independent two-points correlators, which
may be further reduced to four (two) by exploiting rota-
tional symmetries in the XXZ (XXX) case.

The ansatz for the ground state preparation of the LT-
FIM reads as in Eq. (7), with a single layer unitary given
by:

Ûm = eiβmĤXe−iαm(ĤZZ−gzĤZ) , (10)

where we defined ĤZZ, ĤZ, and ĤX simply as the sum of
nearest-neighbors interactions, Pauli-z and Pauli-x op-
erators, respectively. In this setting, the initial state is
simply the fully-polarized state along-x |ψ0〉 = |+〉⊗N ,
once again bearing a direct connection with AQC state
preparation for P→∞. The goal is to minimize the vari-

ational energy as in Eq. (9), now with Ĥtarg = ĤLTFIM.
Also in this case (Appendix A), the variational ansatz is
restricted to the correct symmetry subsector of the tar-

get ground state, for both single-site translation T̂ (full

translational invariance) and lattice inversion Î.
A natural interpretation in terms of light-cone spread-

ing of quantum correlations emerges for both our ansatz
wavefunctions (see Appendix B). As a main consequence,
the whole cost function landscape, once rescaled by the
system size N , becomes independent of N itself for
N > ÑP, where ÑP = 4P + 2 and ÑP = 2P + 1 for
the XYZ and the LTFIM, respectively.

Results.— In this work, we adopt an iterative inter-
polation scheme (INTERP) [26, 27] which was originally
formulated for standard QAOA applied to classical op-
timization problems. Here, we apply this heuristic to
more general HVA wavefunctions as in Eq. (1), with the
goal of quantum many-body ground state preparation.
Essentially, the idea is to perform a sequence of local op-
timizations for increasing values of P, each of them start-
ing from an educated guess that is iteratively updated,
by interpolating on the optimal parameters found at the
previous step. Additional details on this algorithm are
reported in Appendix C, where we also provide numer-
ical evidence that both XYZ and LTFIM ground states
can be efficiently prepared across their phase diagrams,
reaching high fidelity values.

Usually, by adopting such iterative methods, one finds
optimal angles that are smooth functions of the layer in-
dex m = 1 · · ·P. For this reason, we dub them smooth
solutions. This is consistently observed in all phases of
our models, as shown in Fig. 1 at the critical point of
XXZ (Heisenberg model) and close to the critical line
of the LTFIM [47]. On top of that, we note that these
smooth optimal curves are qualitatively similar for differ-
ent system sizes. Inspired by this observation, we verify
numerically that smooth optimal solutions (β∗,α∗)|P,NG

— obtained by applying INTERP to a small-size system
with dimension NG up to a certain value of P — can
be transferred to solve the same task for a larger num-
ber of qubits, thus providing an effective educated guess.
In the following, we will always indicate with NG the
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Figure 1. Smooth optimal parameters (β∗,α∗)|P,N =
(β∗

1 · · ·β∗
P , α

∗
1 · · ·α∗

P) obtained with INTERP (see main text),
plotted vs the rescaled index m̃ ≡ (m − 1)/(P − 1) in the x-
axis range [0, 1]. Results are shown for the Heisenberg model
(∆Y = 1, ∆Z = 1) (left) and the LTFIM (gx = 1, gz = 1)
(right) for P = 16, and they are qualitatively similar for differ-
ent sizes N . These solutions are stable by further increasing
the number of layers P. Similar smooth solutions can be found
for different points of the phase diagram.
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Figure 2. Residual energies (Eq. (11)) for different sys-
tem sizes using parameters from a small-size “guess-system”
(NG = 8) computed for different flavours of the two mod-
els. We show the transferability of smooth optimal solutions
(β∗,α∗)|P,NG with P = 10 for XYZ models (left) and the
LTFIM (right).

“guess” size used to obtain the optimal smooth solution,
which will be eventually transferred to a larger system
with N > NG lattice sites. Unless otherwise stated, we
set NG = 8. In order to estimate the effectiveness of our
transferability protocol, we define the residual energy as

εN (β∗,α∗)|P,NG
=
EN (β∗,α∗)|P,NG

− Emin
N

Emax
N − Emin

N

, (11)

where EN (β∗,α∗)|P,NG
is the cost function in Eq. (9)

for a system of size N , evaluated at fixed angles
(β∗,α∗)|P,NG

, while Emin
N (Emax

N ) is the ground-state
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(maximum) exact energy for such a size N . In Fig. 2
we plot this quantity, for different points of the phase di-
agram of our models: strikingly, smooth optimal curves
obtained for a small system provide an excellent educated
guess for the ground-state preparation up to N = 24 lat-
tice sites.

A few comments are in order. The residual energy
is usually a good proxy for the fidelity with the ground
state. It may roughly evaluate at ≈ 0.5 when computed
at a random point in the energy landscape, while its val-
ues obtained via transferability are remarkably low. A
more detailed study on the actual fidelity of transferred
solutions with target ground states is carried out in Ap-
pendix C. Secondly, the transferability of this class of
smooth solutions found via INTERP holds true for larger
values of P; in contrast, other equal-quality non-smooth
solutions for the small NG-size system — obtained by
means of random-start local optimization — do not pro-
vide any useful guess for the ground state preparation of
the same model with a larger number of qubits. These
results are reported and analyzed in Appendix C. Fi-
nally, we tested the existence of smooth curves, and their
transferability to a larger number of qubits, also for the
TFIM: our results are confirmed up to much larger sizes,
by leveraging a standard mapping to free fermions [49–
51], as reported in Appendix D.

Despite the good educated guess provided by the trans-
ferability of smooth solutions, one may be tempted to re-
fine the ground state approximation for theN -size model,
e.g. by aiming at a target value of fidelity such as 99.9%.
However, for such large sizes, both the XYZ models
and the LTFIM are affected by barren plateaus [15, 17].
Therefore, any local optimization starting from a ran-
dom point in the parameter space is doomed to fail on a
realistic quantum device, due to vanishingly small gradi-
ents requiring an exponential scaling of resources [12, 53].
Remarkably — and this is the main novel result of our
paper — we find that transferred smooth optimal solu-
tions stand out in this respect: in their neighborhood,
the landscape does not suffer from small gradients, and
a local optimization would succeed.

Figures 3 and 4 illustrate this important point. For
conciseness, we show data for (∆Y = 1, ∆Z = 1) and
(gx = 1, gz = 1), but our results extend to other points
of the phase diagrams. Specifically, in Fig. 3, we plot the
variance of a representative gradient component of the
cost function in Eq. (9), as customary in studies on bar-
ren plateaus [12, 13, 16], which is sampled at random
in the whole landscape. As expected, its exponential
decay with the system size N confirms the presence of
barren plateaus. However, if we sample the same gradi-
ent component only in a neighborhood of radius ε of the
transferred smooth solution, its magnitude does not show
any appreciable exponential decay. This result is clearly
observed for both classes of models under exam, and it
is further evidenced in Fig. 4, showing data for a fixed
value of P: the exponential decrease of the gradients in
the whole search space is equivalent to that in a neighbor-
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V
a
r
∂
θ
C

Heisenberg

N=10
N=12
N=14

N=16
N=18
N=20

20 40 60 80 100

P Layers

LTFIM

Smooth

Global

Smooth

Global

Figure 3. Barren plateaus in the whole search space (data de-
noted as “Global”), contrasted with a qualitatively different
trend in the ε-neighborhood of the transferred smooth solu-
tion (β∗,α∗)|P,NG , obtained with INTERP for a small system
size NG = 8 (data denoted as “Smooth”). Here, we focus on
a single partial derivative w.r.t. θ = α1 (see Eqs. (8), (10)) of
the cost function in Eq. (9), rescaled as in Appendix A (see
Eqs. (A5), (A7)) and dubbed C. We plot the sample vari-
ance of the partial derivative as a function of the number P
of HVA layers in the circuit. We fix ε = 0.05 and a batch of
1000 samples for each value of P and N .

hood of radius ε of any given set of angles, with the excep-
tion of the smooth transferred curve (β∗,α∗)|P,NG

. Once
more, also this local-landscape property does not extend
to the neighborhood of other transferred non-smooth so-
lutions, which neither provide a useful educated guess for
the large system nor solve the barren plateau issue for a
local optimization. This is shown in Appendix C, along
with data supporting the effectiveness of a refinement op-
timization, performed classically in the neighborhood of
the transferred smooth curve.

Incidentally, for each value of N , the sample variance
in the whole search space saturates after a certain cir-
cuit depth P, as argued in [12, 53] and clearly shown in
Fig. 3. This fact is usually linked to the ansatz param-
eterized quantum circuit approaching an approximate 2-
design [54–56] on its symmetry subspace [15].

Finally, let us remark that a direct application of the
INTERP algorithm to a large N -size system might cir-
cumvent the barren plateaus issue for this class of prob-
lems: as shown in Appendix C, the smooth optimal curve
provides an effective warm start at each iteration of the
algorithm, starting from low circuit depths up to deep cir-
cuits — where a randomly-initialized local search would
fail, due to barren plateaus. However, it is manifestly
more resource-efficient to apply INTERP to a small-size
system N = NG, and to leverage the transferability of
smooth optimal solutions, as well as the absence of bar-
ren plateaus in their neighborhood. Indeed, our find-
ings pave the way to an improved scheme to prepare the
ground state of this class of many-body quantum sys-
tems with a large number of qubits: the smooth optimal



5
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Figure 4. Same quantity as in Fig. 3, here plotted vs the
qubit number for a fixed circuit depth P = 40 (P = 100)
for the Heisenberg model (LTFIM). The labels “Global” and
“Smooth” refer to the same data of Fig. 3. We denote
with “Local ε” a sampling performed in an ε-region centered
around a random point. Data are averages over 20 random
points (generated independently for each value of N) with
ε = 0.05. We use a constant batch size of 1000 samples,
for each N and sampling region. A clear trend appears: the
neighborhood of a random point (or that of a transferred non-
smooth solution, see Appendix C) exhibits the same exponen-
tial decay as the whole space, whereas this is not present in
the neighborhood of the transferred smooth solution.

curves can be found classically for a small system, and
then transferred to solve the same task for larger N , be-
yond the reach of classical simulations. The quantum de-
vice would only be needed for a refinement optimization,
in the absence of barren plateaus.

Conclusions.— We tackled many-body ground state
preparation via problem-inspired VQAs, and provided
extensive numerical evidence on the transferability of a
class of optimal smooth solutions — obtained by means
of iterative schemes for a small number of qubits — to
solve the same task for larger system sizes. Remark-
ably, these solutions provide an excellent educated guess
for the ground-state wave function, as opposed to other
solutions that can be easily obtained for small systems

without appropriate iterative schemes. These results are
confirmed up to larger sizes for the TFIM.

Our procedure overcomes the well-known (and not yet
fully addressed) difficulties related to the highly non-
trivial structure of the variational energy landscape. On
top of avoiding low-quality local minima traps daunt-
ing random-start local optimization [11, 26], we pro-
vided evidence of a novel and remarkable feature of this
class of solutions: the cost-function landscape is observed
to become free of barren plateaus in their neighbor-
hood, potentially allowing for further effective refinement
optimizations with a quantum device on a classically-
obtained smooth guess.

This work paves the way to a plethora of novel exciting
research directions. Our new effective way of approaching
ground state preparation for larger many-body systems
may allow to deal with 2D lattice models, ranging from
spin systems to Hubbard-like systems, with or without
disorder. On a theoretical side, it might be interesting to
prove analytically the transferability and landscape prop-
erties of smooth solutions found via INTERP. Previous
numerical and analytical results on reusable optimal vari-
ational parameters exist, either among typical instances
of a problem or across different system sizes [36, 57–
61]. These “parameter concentration” results are usu-
ally limited to shallow circuits, while here we focus on
smooth optimal solutions for large values of P, provid-
ing a link between solution transferability and the local
absence of barren plateaus. A possible connection be-
tween this class of solutions and adiabaticity might be
investigated [39, 41, 62]. Finally, our scheme could be di-
rectly tested with near-term technology on real quantum
devices, beyond the size limits of classical computation.

Acknowledgments.— We thank Johannes Jakob Meyer,
Sumeet Khatri, Ryotaro Suzuki, Yihui Quek, Janek Den-
zler, Jakob S. Kottman and Jens Eisert for useful discus-
sion. The research was partly supported by EU Hori-
zon 2020 under ERC-ULTRADISS, Grant Agreement
No. 834402. AAM acknowledges support from BMBF
(FermiQP and Hybrid). GBM acknowledges support
from Austrian Science Fund through the SFB BeyondC
Project No. F7108-N38. GES acknowledges that his re-
search has been conducted within the framework of the
Trieste Institute for Theoretical Quantum Technologies
(TQT).

[1] M. Cerezo, A. Arrasmith, R. Babbush, S. Benjamin,
S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan,
L. Cincio, and P. Coles, Variational quantum algorithms,
Nature Reviews Physics (2021).

[2] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug,
S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen,
J. S. Kottmann, T. Menke, W.-K. Mok, S. Sim, L.-C.
Kwek, and A. Aspuru-Guzik, Noisy intermediate-scale
quantum algorithms, Rev. Mod. Phys. 94, 015004 (2022).

[3] J. Preskill, Quantum computing in the nisq era and be-

yond, Quantum 2, 79 (2018).
[4] W. W. Ho and T. H. Hsieh, Efficient variational simula-

tion of non-trivial quantum states, SciPost Phys. 6, 29
(2019).

[5] D. Wierichs, C. Gogolin, and M. Kastoryano, Avoiding
local minima in variational quantum eigensolvers with
the natural gradient optimizer, Phys. Rev. Research 2,
043246 (2020).

[6] L. Lumia, P. Torta, G. B. Mbeng, G. E. Santoro, E. Erco-
lessi, M. Burrello, and M. M. Wauters, Two-dimensional

https://www.nature.com/articles/s42254-021-00348-9
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.21468/SciPostPhys.6.3.029
https://doi.org/10.21468/SciPostPhys.6.3.029
https://doi.org/10.1103/PhysRevResearch.2.043246
https://doi.org/10.1103/PhysRevResearch.2.043246


6

Z2 lattice gauge theory on a near-term quantum simula-
tor: Variational quantum optimization, confinement, and
topological order, PRX Quantum 3, 020320 (2022).

[7] E. Farhi, J. Goldstone, and S. Gutmann, A Quantum
Approximate Optimization Algorithm, arXiv:1411.4028
[quant-ph] (2014).

[8] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi,
L. Cincio, and P. J. Coles, Variational quantum linear
solver, arXiv:1909.05820 [quant-ph] (2019).

[9] K. C. Tan and T. Volkoff, Variational quantum algo-
rithms to estimate rank, quantum entropies, fidelity, and
fisher information via purity minimization, Phys. Rev.
Research 3, 033251 (2021).

[10] L. Bittel and M. Kliesch, Training variational quantum
algorithms is np-hard, Phys. Rev. Lett. 127, 120502
(2021).

[11] E. R. Anschuetz and B. T. Kiani, Beyond Bar-
ren Plateaus: Quantum Variational Algorithms Are
Swamped With Traps, arXiv:2205.05786 [quant-ph]
(2022).

[12] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Bab-
bush, and H. Neven, Barren plateaus in quantum neural
network training landscapes, Nature Communications 9,
4812 (2018).

[13] Z. Holmes, K. Sharma, M. Cerezo, and P. J. Coles, Con-
necting ansatz expressibility to gradient magnitudes and
barren plateaus, arXiv:2101.02138 [quant-ph] (2021).

[14] C. O. Marrero, M. Kieferová, and N. Wiebe, Entangle-
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Using the same notation as in the main text, a smart

strategy can be to select the generators Ĥ1, . . . , ĤM such

that they all commute with Ŝ. In fact, if we select
as initial state an easy-to-prepare symmetry eigenstate

Ŝ|ψ0〉 = eiφ|ψ0〉, it immediately follows that the HVA is
confined to the same symmetry subsector, since:

Ŝ|ψ (γ)〉 = eiφ|ψ (γ)〉 , (A1)

for any choice of the variational parameters. The ra-
tionale behind this procedure is simple: we should select
the correct symmetry subsector, where the target ground
state belongs, by properly choosing |ψ0〉: this sector is
then preserved by applying only symmetry-commuting
unitaries.

For the sake of clarity, let us now restrict our dis-
cussion to the XYZ model; the LTFIM requires only
minor changes summarized at the end of this section.
As a preliminary observation, we remark that the var-

ious bond terms appearing in Ĥeven (or equivalently,

in Ĥodd) form a set of mutually commuting operators,
hence the corresponding unitaries factorize; even more,

since
[
σ̂bj σ̂

b
j+1, σ̂

b′

j σ̂
b′

j+1

]
= 0 for b, b′ = x, y, z, the vari-

ous unitaries also factorize in the xx, yy and zz terms.
This leads to a standard parameterized quantum circuit,
which can be further decomposed into a basis set of na-
tive gates (e.g. CNOT and single-qubit rotations) [63].
Let us simplify the notation for this ansatz state, eval-
uated in a generic point of the search space, by setting
|ψP〉 ≡ |ψ(β,α)P〉.

The initial state |ψ0〉 in Eq. (6) has obvious symmetries

with respect to translations by two lattice spacings T̂2

(which sends j → j + 2), lattice inversion Î (which maps

j ↔ N − j + 1), parity P̂b =
∏
j σ̂

b
j and total spin Ŝbtot,

with b = x, y, z, as well as Ŝ2
tot. Clearly, Ŝ2

tot|ψ0〉 = 0,

and Ŝbtot|ψ0〉 = 0. The singlets, however, are odd under
exchange of the two spins and also under application of

P̂b. Hence, while T̂2|ψ0〉 = |ψ0〉, we have that P̂b|ψ0〉 =

(−1)
N
2 |ψ0〉 and Î|ψ0〉 = (−1)

N
2 |ψ0〉.

Concerning the symmetries of the ansatz state |ψP〉,
they are inherited by the symmetries of Ĥeven and Ĥodd.
Hence, full spin rotational invariance is broken except for

∆Y = ∆Z = 1; for ∆Y = 1, Ŝztot symmetry is preserved

and Ŝztot|ψP〉 = 0. Moreover, since both Ĥeven and Ĥodd

commute with T̂2, P̂b and Î, we immediately deduce that:

T̂2|ψP〉 = |ψP〉 Î|ψP〉 = (−1)
N
2 |ψP〉

P̂b|ψP〉 = (−1)
N
2 |ψP〉 .

These are precisely the quantum numbers of the ground

states we want to construct for ĤXYZ, as it can be verified
numerically for small-size systems with exact diagonal-
ization.

Restricting the variational wavefunction to the ground
state symmetry subsector may foster trainability, but this

is not the only practical advantage. Indeed, also the num-
ber of independent Pauli correlators needed to compute
the variational energy is reduced.

In order to prove this fact, we need to obtain an explicit
formula for the variational energy in Eq. (9). It is useful
to introduce the k-points correlation functions:

C
bi,bj ,...,bk
i,j,...,k (β,α)P := 〈ψ (β,α)P |σ̂

bi
i σ̂

bj
j · · · σ̂

bk
k |ψ (β,α)P〉 ,

(A2)
where the lower indices enumerate the involved spins
i, j, k = 1 · · ·N , while the upper indices assign corre-
sponding directions b = x, y, z. Contrarily to quantum
chemistry applications [64] or some classical optimization
problems [23], our quantum spin model is 2-local, so that
the expectation value in Eq. (9) only requires calculating
two-points correlators of the type

Cbi,j (β,α)P := 〈ψ (β,α)P |σ̂
b
i σ̂
b
j |ψ (β,α)P〉 . (A3)

In addition, Cbi = 〈ψ|σ̂bi |ψ〉 = 0 thanks to the parity sym-
metry. Importantly, we can exploit ansatz symmetries to

reduce the number of correlators needed: from the T̂2

symmetry it immediately follows that

Cb(2j−1),(2j−1)+i = Cb1,1+i , Cb2j,2j+i= Cb2,2+i . (A4)

Additionally, since only nearest-neighbors correlators are

needed, the ĤXYZ expectation value reduces to

2

N
EN (β,α)P =

∑
b=x,y,z

Cb1,2 (β,α)P + Cb2,3 (β,α)P ,

(A5)
involving only six independent correlators, which may
be further reduced to four (two) by exploiting rotational
symmetries in the XXZ (XXX) case. Moreover, a signifi-
cant reduction in the number of shots to estimate expec-
tation values in real experiments might be accomplished
by a final rotation into the Bell basis at the end of the cir-
cuit, allowing to directly access the correlator statistics
for b = x, y, z by usual measurements in the computa-
tional basis [65].

It is relevant to notice that this symmetry-encoding
procedure can be applied to a subset of symmetries of

Ĥtarg, but it need not be applied to all of them. Indeed,
for the XYZ models, our ansatz state encodes all the

aforementioned symmetries of Ĥtarg = ĤXYZ, whereas it
does not encode its one-site translational symmetry. Nev-
ertheless, the latter is almost-exactly restored for optimal
variational parameters, as clearly shown in Appendix C
(see Fig C2).

The previous discussion extends straightforwardly to
the LTFIM, with a few minor modifications. This varia-
tional ansatz lies in the same symmetry subsector as the
target ground state: precisely, both are eigenstates with

eigenvalue +1 of the symmetry operators T̂ (full trans-

lational invariance) and Î. This fact is once again easily
verified, since the initial fully-polarized along-x state |ψ0〉
is in the same symmetry sector, and both symmetries
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commute with the generators of the HVA wavefunction.
Incidentally, note that the LTFIM parameterized quan-
tum circuit reduces to the usual QAOA ansatz for the

TFIM (gz = 0), where also the parity symmetry P̂x is
restored and the QAOA ansatz has the same eigenvalue
of the ground state (for gx > 0).

Along the same lines of the previous discussion, due to
the full translational invariance, we now have:

Czi,j (β,α)P = Cz1,2 (β,α)P

Cbi (β,α)P = Cb1 (β,α)P ,
(A6)

for any b = x, y, z, leading to the following expression for
the variational energy:

1

N
EN (β,α)P = Cz1,2 (β,α)P −

∑
b=x,z

gb C
b
1 (β,α)P .

(A7)

This reduction in the number of independent correla-
tors — thanks to symmetry encoding in HVA — is handy
for classical simulations but also in realistic experiments
on a quantum device [66].

As a final remark concerning additional symmetries,
since both the XYZ and LTFIM Hamiltonians are real-
valued matrices, and we are using ansatz wavefunc-
tions of the generic form in Eq. (1), then EN (β,α)P =
EN (−β,−α)P (time-reversal symmetry).

2. Alternative HVA implementation

We remark that the number of variational parameters
of our HVA for the XYZ models (defined by Eqs. (7), (8))
is always equal to 2P. This is at variance with a differ-
ent version of the HVA for the XXZ model, studied e.g.
in [16], which introduces more parameters to account for
the possible spin anisotropies in the Hamiltonian: here,

on the contrary, the ĤXYZ spin anisotropies are directly

accounted for by Ĥeven and Ĥodd in Eq. (8), using only
two parameters per layer. Another possible approach was
tested in [67], by adopting a more general class of ansatz
wavefunctions, with a number of variational parameters
per layer proportional to the system size N .

Alternative HVA formulations have also been pro-
posed for LTFIM ground state preparation, as those in
Ref. [15, 32]. Once more, here we only need two varia-
tional parameters per layer, regardless of the phase dia-
gram point in consideration.

Appendix B: The light-cone for XYZ and LTFIM

In Appendix A we derived a simplified expression of the
variational energy for the XYZ model and the LTFIM,
requiring the evaluation of a small set of two-points and

Figure B1. The light-cone spreading of quantum correla-
tions for Cb1,2 (left) and Cb2,3 (right) for the XYZ ansatz as in
Eqs 7, 8, with a given depth P (here P = 2). The blue blocks
represent the observable, while the orange (green) blocks rep-

resent the relevant part of e−iβmĤeven (e−iαmĤodd). Only a
reduced spin chain of length proportional to P is involved
in the calculation: the white blocks (acting on spins outside
the reduced chain) can be trivially contracted. The gates are
arranged according to a brickwork [68] architecture.

one-point correlators, as in Eqs. (A5) and (A7). The cal-
culation of these correlators admits a simple graphical in-
terpretation in terms of a “light-cone” spreading of quan-
tum correlations, which is an immediate consequence of
the locality of two-body spin interactions, reminiscent of
Lieb-Robinson bounds.

Let us first focus on the XYZ case. In view of Eq. (A5),
it is sufficient to compute only Cb1,2 and Cb2,3: this can be
done by addressing a reduced spin chain of length pro-
portional to P, as sketched in Fig. B1. Remarkably, the
reduced spin chain is smaller than the whole chain — and
it “does not see” the boundary conditions [27] — only for
small-enough values of P, corresponding to a low-depth
quantum circuit for our ansatz. When this is the case,
it can be proven that Cb1,2 and Cb2,3 do not depend on
the system size N , and neither does the rescaled vari-
ational energy in Eq. (A5). More precisely, within this
graphical interpretation, it is easy to observe that Cb1,2
is independent of N if 4P < N , while for Cb2,3 the con-
dition reads 4P + 2 < N (notice the minor differences
between the two light-cones in Fig. B1). Therefore, once
we have fixed the depth P of the ansatz, for large-enough
sizes N of the XYZ chain the whole (rescaled) variational
energy landscape defined by Eq. (A5) does not depend

on N . Precisely, this holds true for any N > ÑP, where
ÑP = 4P + 2. This analysis implies that the optimal
parameters for given P, found for an XYZ chain of size
N > ÑP, can be exactly transferred to any chain of size
N ′ > N .

Similarly to the XYZ case, a description of quantum
correlations spreading in terms of a light-cone emerges
also for the LTFIM (analogously to the discussion in [27]
for the TFIM). In particular, one can prove that the
rescaled variational energy in Eq. (A7) does not depend

on the system size N if N > ÑP, with ÑP = 2P+1. This
follows from the graphical interpretation in Fig. B2.
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Figure B2. The light-cone for Cz,z1,2 (left) and Cx1 , Cz1 (right)
for the LTFIM ansatz as in Eqs. (7), (10) for a depth P (here
P = 2). The blue blocks represent the observable, while the

orange (green) blocks represent the relevant part of eiβmĤX

(e−iαm(ĤZZ−gzĤZ)). Also in this case, only a reduced spin
chain of length proportional to P is involved in the calculation:
the white blocks (acting on spins outside the reduced chain)
can be trivially contracted.

Appendix C: Algorithmic details and additional
numerical results

1. Interpolation algorithm (INTERP)

Here we describe the INTERP (interpolation) proce-
dure, specifying technical information on our implemen-
tation. The INTERP strategy, introduced in [37], is an
algorithm devised for an iterative optimization of varia-
tional parameters of the cost function, originally applied
in the context of QAOA for classical combinatorial opti-
mization tasks. The INTERP strategy works as follows:

1. The optimization starts from a guess of the initial
parameters at P = Pmin (e.g. Pmin = 1), namely

(β,α)
start
P=Pmin

.

2. We run a local optimization starting from
(β,α)

start
P=Pmin

, using a classical local optimization
routine, in order to minimize the cost function and
obtain new optimized angles (β,α)

opt
P=Pmin

.

3. We run the following instructions on a loop up to
P = Pmax:

(a) Given the optimal parameters at step P,

(β,α)
opt
P , we set the initial parameters at step

P + 1, (β,α)
start
P+1 , using the interpolation for-

mula of Ref. [37] for i = 1, 2, . . . ,P + 1:[
β start
P+1

]
i

=
i− 1

P

[
β opt
P

]
i−1 +

P− i+ 1

P

[
β opt
P

]
i
,

where β opt
P is a P-dimension vector. Note that

it is not required to define values of
[
β opt
P

]
0

and
[
β opt
P

]
P+1

, since they are multiplied by

null coefficients in the formula. The same rule
applies to α angles.

(b) We run a new local optimization starting

from (β,α)
start
P+1 , yielding a new set of angles

(β,α)
opt
P+1.

(c) We increment the value of P by one unit: P→
P + 1.

As a visual support, in Fig. C1 we sketch the INTERP
procedure for a simple case, starting from the optimized
parameters (β,α)

opt
P=3, and finding (in sequence) the an-

gles (β,α)
start
P=4 , (β,α)

opt
P=4, (β,α)

start
P=5 .

In practice, this is the specific version of INTERP we
used in this paper, involving a single-unit increase of the
value of P at each iteration, starting from P = 1. Never-
theless, several minor modifications can be made to this
scheme, and whole other iterative methods have also been
developed [69]. Concerning the initial guess at P = 1,

we always set (β1, α1)
start
P=1 = (1/10, 1/10), as a starting

point to run the first preliminary optimization. Albeit
this choice might be arbitrary, in practice we verified that
this preliminary optimization always converges to a well-
defined minimum in the (P = 1) search space. Moreover,
this minimum is close to the origin, which might provide
a useful bias toward short total coherence times in the
iterative construction of the smooth optimal curve.

The code for numerical simulations is written with
Qiskit [70] (using as classical optimizer the L-BFGS-B al-
gorithm [71]). We test INTERP algorithm by artificially
fixing a maximum number of iterations for the classical
optimizer: throughout the paper we set Niter = 100, but
our results are qualitatively unaffected by moderately re-
ducing (or increasing) this value. This fixed maximum
number of iterations clearly sets an upper bound on the
computational resources of the algorithm. In practice,
by stopping the optimization loop, we find quasi-optimal
schedules, which, however, are good enough to obtain
almost-unit fidelity with the exact ground state.

2. Numerical results on ground state fidelity

We tested the effectiveness of INTERP in provid-
ing excellent approximate ground states for our models,
by applying it to the ansatz wavefunctions defined by
Eqs. (7), (8) (Eqs. (7), (10)) for the XYZ (LTFIM). We
quantify the accuracy of our ground state approximation
— namely the ansatz state evaluated at optimal param-
eters (β?,α?)P — with the ground state fidelity

FP =
∣∣∣〈ψgs|ψ(β?,α?)P〉

∣∣∣2 . (C1)

Another useful quantity for the XYZ model is the transla-
tional fidelity of the optimal state with its one-site trans-
lated version:

FT
P =

∣∣∣〈ψ(β?,α?)P|T̂|ψ(β?,α?)P〉
∣∣∣2 . (C2)
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Figure C1. Visual example of the interpolation strategy,
showing few initial steps of the iterative algorithm that is
described in the main text.
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Figure C2. Infidelity and translational infidelity for the opti-
mal XYZ ansatz, as a function of increasing number of layers.
Even lower (better) values can be obtained for the Heisenberg
model (∆Y = ∆Z = 1). The translational infidelity follows a
similar pattern, proving that full translational symmetry is
correctly restored. The optimal parameters always lie on a
smooth curve, as shown in Fig. 1.

Indeed, as stated in Appendix A, the ansatz for the XYZ
model does not encode one-site translational symmetry.
Nevertheless, this translational fidelity is expected to
converge to one when approximating the true ground
state with high fidelity, thus restoring the full transla-
tional symmetry.

Some illustrative results for the ground state fidelity
are reported in Fig C2 for XYZ models (also displaying
data for the translational fidelity) and in Fig C3 for the
LTFIM. Note that, for ease of visualization, we plot infi-
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Figure C3. Infidelity for the optimal LTFIM ansatz, as a func-
tion of increasing number of layers. As for the XYZ models,
we observed empirically that similar infidelities can be ob-
tained for other points of the phase diagram (different values
of gx and gz). Once again, the optimal parameters lie on a
smooth curve, as shown in Fig. 1.

delity (translational infidelity) values, simply defined as
1 − FP (1 − FT

P ). Remarkably, INTERP method avoids
low-quality local minima of the energy landscape [11],
converging to smooth optimal curves for the variational
parameters (see Fig. 1) bearing high fidelity values. In-
deed, this iterative scheme provides an effective warm
start at each iteration of the algorithm, as it can be un-
derstood graphically in Fig. C4. Here, we plot the resid-
ual energy (see definition in Eq. (11)) for increasing val-

ues of P, both evaluated at (β,α)
start
P (before the local

optimization) and at (β,α)
opt
P (after it).

4 8 12 16

P Layers

10−5

10−3

10−1

R
es
id
u
a
l
en

er
g
y

Heisenberg

4 8 12 16

P Layers

LTFIM

Before opt.

After opt.

Figure C4. Residual energy vs P before and after each local
optimization leading from (β,α)startP to (β,α)optP . Data refer
to N = 16 qubits, for both the (∆Y = 1, ∆Z = 1) Heisen-
berg model and the (gx = 1, gz = 1) LTFIM. Interestingly,
the residual energy before each optimization is already quite
low, especially for large values of P. The vertical green ar-
rows show the improvement of the local optimization, whereas
the red arrow depicts the interpolation step from (β,α)optP to

(β,α)startP+1 .

We remark that the same ansatz (defined by
Eqs. (7), (8)) successfully prepares the ground state of
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XXZ in both phases (∆Z < 1 and ∆Z > 1, with ∆Y = 1),
of the Heisenberg model (∆Y = ∆Z = 1) and also of
XYZ: here we show data for some arbitrary values of
∆Y,∆Z, but we verified that these results extend to dif-
ferent points in the phase diagram. The same com-
ments apply to LTFIM ansatz (defined by Eqs. (7), (10)),
which is effective in all phases. These high fidelity val-
ues are obtained despite the finite number of iterations
(Niter = 100) set for the classical optimizer and could be
improved by increasing this value.

3. Additional numerical results on transferability
and barren plateaus
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Figure C5. Transferability of smooth optimal solutions (IN-
TERP) vs random-start solutions (local optimization), both
obtained for a small-size “guess” system (NG = 8) and then
transferred to larger system sizes N . Data refer to the
(∆Y = 1, ∆Z = 1) Heisenberg model; we plot the average and
the best out of 20 random-start local optimizations, compared
to the same INTERP smooth curve (β∗,α∗)|P,NG discussed
in the main text. Remarkably, INTERP solutions are always
observed to provide an excellent educated guess for larger sys-
tems: this is particularly evident for large values of P, where
random-start solutions always fail in this respect.

In the main text, we described the transferability prop-
erty of a class of smooth solutions found via INTERP.
However, for a small system (“guess size” NG = 8) and
a large value of P, one can easily find other solutions by
means of standard random-start local optimization, not
displaying any smoothness property as a function of the
layer index m = 1 · · ·P. Remarkably, these do not of-
fer, in general, any useful educated guess for the ground
state preparation of a larger system, as shown in Figs. C5
and C6 for the Heisenberg model and the LTFIM, both
in terms of ground state infidelity and residual energy
(see Eq. (11)). We remark that both INTERP and any
random-start solution prepare equally well (essentially,
with zero infidelity) the ground state for the small sys-
tem. Nevertheless, only the former class of solutions is
observed to always yield an excellent educated guess for
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Figure C6. Transferability of smooth optimal solutions (IN-
TERP) vs random-start solutions (local optimization), both
obtained for a small-size “guess” system (NG = 8) and then
transferred to larger system sizesN . Data refer to the (gx = 1,
gz = 1) LTFIM and we plot the average and the best out of 20
random-start local optimizations. The same comments apply
as in Fig. C5.
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Figure C7. Comparison between the local landscape of trans-
ferred random-start (non-smooth) solutions with that of ran-
dom points in the search space (dubbed “Local ε”, same data
as in Fig. 4). In both cases, we average over 20 instances and,
for each instance, we sample 1000 points in a neighborhood
of radius ε = 0.05. The exponential decay is manifest, with
a striking similarity. This is at variance with the local land-
scape of transferred smooth solutions found via INTERP, not
displaying barren plateaus (compare with Fig. 4).

the same task with a larger number of qubits. This fact
is particularly evident for large values of P. Indeed, in
this regime, transferred random-start solutions perform
as poorly as the ansatz evaluated at random in an arbi-
trary point of the search space (i.e., almost-unit infidelity,
residual energy of the order of ≈ 0.5). Moreover, smooth
solutions found via INTERP stand out also concerning
their favorable local landscape, as discussed in the main
text, where gradients do not show any appreciable ex-
ponential decay. In contrast, this is not observed in the
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neighborhood of transferred non-smooth solutions, where
barren plateaus are as marked as in the neighborhood of
a random point in the search space (or as in the global
search space, see Fig. 4). This result is outlined in Fig C7.
Here, and in the rest of the section, we focus again on
the (∆Y = 1, ∆Z = 1) Heisenberg model and the (gx = 1,
gz = 1) LTFIM.
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Figure C8. Refinement optimization starting from the trans-
ferred smooth curve, for the Heisenberg model with P = 40
(left panel) and the LTFIM with P = 100 (right panel). Even
with a fixed number of iterations Niter = 100 for the clas-
sical optimizer, we can significantly reduce the ground state
infidelity.
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Figure C9. A coarse-grained picture of the optimal pa-
rameters after performing a refinement optimization, com-
pared with the initial smooth guess (obtained by INTERP)
at NG = 8, i.e. (β∗,α∗)|P,NG (see main text). These are
the refined optimal parameters corresponding to Fig. C8, i.e.
P = 40 (P = 100) for the Heisenberg model (LTFIM).

Thanks to this favorable local landscape, one can ef-
fectively perform a refinement optimization for the large
system, so as to further increase the ground state fi-

delity above a target threshold. An example is shown
in Fig. C8, by setting a maximum number of iterations
Niter = 100 for the classical routine performing the re-
finement optimization. Despite this constraint, the local
optimization succeeds, significantly lowering the final in-
fidelity. Incidentally, we verified that the refined optimal
curve is still in the “basin of attraction” of the trans-
ferred smooth curve, as shown in Fig. C9. At this level
of detail, the curves appear almost exactly overlapping.

Appendix D: Large-scale simulations for the TFIM

In this section we address the line (gz = 0) of the
LTFIM phase diagram, corresponding to the integrable
Transverse Field Ising Model (TFIM), with Hamiltonian

ĤTFIM =

N∑
i=1

σ̂zi σ̂
z
i+1 − gx

N∑
i=1

σ̂xi . (D1)

A mapping to non-interacting fermions allows us to per-
form large-N VQA simulations, well beyond the usual
limits of exact diagonalization techniques. In particu-
lar, we used the same ansatz as in Eqs. (7), (10), which
reduces to the standard QAOA ansatz for gz = 0.

As argued in [15], we verified numerically that the
TFIM ground state preparation is not affected by bar-
ren plateaus. However, the possibility of large-scale sim-
ulations offers a useful benchmark on the effectiveness
of INTERP in this regime, in particular concerning the
existence of smooth optimal solutions and their transfer-
ability.

The variational energy is given by Eq. (9) with Ĥtarg =

ĤTFIM, while the residual energy reads as in Eq. (11), now
evaluated in a generic point (β,α)P of the search space.

Refs. [5, 27, 52] previously discussed how to effi-
ciently simulate QAOA using the fermionic mapping of
the TFIM. They showed that, after applying a Jordan-
Wigner and a Bogoliubov transformation, a system of an
even number of spins N decomposes in a direct sum of
N/2 independent two level systems, which are labelled by
the wave-vectors kn = π 2n−1

N with n = 1 · · ·N/2. The
total residual energy of the one dimensional TFIM then
reads

εN (β,α)P =

N/2∑
n=1

ε(kn)(β,α)P , (D2)

where ε(kn)(β,α)P are the residual energies associated to
each individual two-level system. The analytical expres-
sion for ε(kn)(β,α)P, as provided in Ref. [27], is

ε(k)(β,α)P =
1

2
− 1

2
vTk

(←P∏
m=1

Rẑ(4βm)Rbk
(4αm)

)
ẑ ,

where ẑ = (0, 0, 1)T , bk = (− sin k, 0, cos k)T and vk =
(bk+gxẑ)/||bk+gxẑ|| are three-dimensional unit vectors.
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Rω̂(θ) is the 3 × 3 matrix associated with a rotation of
an angle θ around the unit vector ω̂, and their product
is “time”-ordered from right to left for increasing m =
1 · · ·P.
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Figure D1. (Left panel) Smooth optimal parameter curves
for the TFIM, obtained by applying INTERP up to P = 80.
Smooth curves are qualitatively similar for a wide range of
system sizes. (Right panel) Numerical evidence on the trans-
ferability of smooth optimal solutions — obtained for a small-
size “guess” system (NG = 8) — up to very large systems. In
contrast, non-smooth solutions found via random-start local
optimization do not provide, on average, any useful guess for
the ground state preparation of a larger system, yielding a
residual energy ≈ 0.5. We averaged over 100 random-start
solutions and, remarkably, not even the best of them is nearly
comparable with the one obtained via INTERP. Data refer to
the critical point gx = 1, and the same behavior is observed
in other regions of the TFIM phase diagram.

These formulas allow for efficient computation of
ε(β,α)P, enabling us to numerically study the perfor-
mance of QAOA for a large number of qubits. Also for
the TFIM we find smooth curves, which are shown in
Fig. D1 at the critical point gx = 1, up to sizes as large
asN = 128. In the same figure, we also show that smooth
curves — prepared by applying INTERP to a small sys-
tem of size NG = 8 — are transferable up to sizes as
large as 250 qubits, i.e. they offer a good educated guess
for TFIM ground state preparation. This is in stark
contrast with other (non-smooth) solutions, found via
random-start local optimization for the small system: de-
spite preparing the small-size ground state with perfect
accuracy (the same as applying INTERP), they do not
provide any useful educated guess for the large system.
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