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Abstract: Dental and skeletal fluorosis caused by consuming high-fluoride groundwater has been re-
ported over several decades globally. Prediction maps to estimate the fluoride contaminated area rely
on interpolation methods. This study presents a comparison of the accuracy of nine spatial interpola-
tion methods in predicting the fluoride in groundwater. Leave-one-out cross-validation (LOOCV),
hold-out validation and validation with an independent dataset were used to assess the precision
of the interpolation methods. This is the first study on fluoride with a large dataset (N = 13,585)
applied at the regional level in India. Our findings showed that the inverse distance weighted (IDW)
algorithm outperformed other methods in terms of less discrepancy between measured and predicted
fluoride. IDW and local polynomial interpolation (LPI) were the only methods to predict contam-
inated areas (fluoride > 1.5 mg/L). However, the area estimated by the typical assessment of the
percentage of unsuitable samples was much higher (6.1%) compared to that estimated by IDW (0.2%)
and LPI (0.2%). LOOCV provided viable results than the other two validation methods. Interpolation
methods are accompanied with uncertainty which are regulated by the sample size, sample density,
sample distribution, minimum and maximum measured concentrations, smoothing and border
effects. Drawing a comparison among variegated interpolation methods capturing a wide range of
prediction uncertainty is suggested rather than relying on one method exclusively. The high-fluoride
areas identified in this study can be used by the Government in planning remediation actions.

Keywords: fluoride; drinking water; health risk; geology; aquifer; interpolation analysis; Tamil
Nadu; India

1. Introduction

Fluoride is a trace element occurring in groundwaters. Groundwaters with high levels
of fluoride are commonly reported in several aquifers around the world. Many of these
cases occur in developing and underdeveloped nations, where groundwater forms an
important source of drinking water for the population. An estimated 200 million people
worldwide are exposed to drinking water with fluoride concentrations above the World
Health Organization’s (WHO) guideline value (>1.5 mg/L) [1]. Exposure to high levels of
fluoride is associated with dental and skeletal fluorosis, depending on the concentration
and exposure period [2].

About 120 million people in India are at risk due to consumption of fluoride-contaminated
groundwater [3], and an estimated 66 million people, including 6 million children, suffer
from fluorosis [4]. Several studies have reported on the health risk of high-fluoride ground-
water in India [5–11]. To overcome the fluoride problem, the extent of contamination should
be first identified. Regular spatiotemporal monitoring and assessment of fluoride from

Water 2023, 15, 1707. https://doi.org/10.3390/w15091707 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15091707
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-4369-276X
https://orcid.org/0000-0002-6883-8139
https://doi.org/10.3390/w15091707
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15091707?type=check_update&version=1


Water 2023, 15, 1707 2 of 20

densely located sampling network is time-consuming, requires extensive manpower, is
expensive, and is not always feasible. Therefore, mapping contaminated areas using spatial
interpolation methods has come to the fore and has proved useful in geosciences [12–17].

Interpolation methods can be classified as deterministic and stochastic (geostatistical)
methods. Deterministic methods are directly based on measured data, and they create
surfaces based on the similarity extent or the extent of smoothing. Geostatistical methods
do not directly use the data, but use the statistical properties of the measured data. These
are based on a stochastic model that allows the derivation of optimal prediction at random
points in the studied area [18]. Accuracy of these methods depends on the type and nature
of input data, its quality (e.g., measurement errors, missing values, etc.), its distribution
across the prediction area, and the boundaries. All interpolation methods have a smoothing
effect that overestimates the lower values and underestimates the higher values. Thus,
interpolated results are accompanied with some degree of uncertainty, thus leading to bias
in pollution assessment and subsequent planning of remediation measures. Inconsistency
in the results from interpolation methods and argument over the superiority of one method
over another, or a universal method suitable to all studies is questionable.

A comparison of interpolation methods for predicting groundwater levels showed krig-
ing method to perform with highest accuracy and minimum error [19]. Adhikary et al. [20]
compared ordinary kriging (OK) and probability kriging methods for the estimation of
heavy metal concentrations in groundwater and reported that probability kriging performs
better than OK. In another water quality evaluation study, universal kriging (UK) outper-
formed OK and inverse distance weighting (IDW) [21]. Water quality index and leachate
pollution index were better predicted by cokriging than kriging by Farzaneh et al. [22]. OK
was able to identify the groundwater pollution extent in a coastal area more accurately,
while IDW over-estimated the polluted areas [23]. Arsenic concentrations were estimated
with least error by IDW than Gaussian kriging, spherical kriging and cokriging methods,
but the results also varied when data from sub-areas were compared independently [24].
The only reported study on fluoride estimation has identified empirical Bayesian kriging
(EBK) to be much superior than IDW [25].

Although thus far several studies have taken advantages of interpolation algorithms
for providing a distribution map of contamination across studied areas, a comparison
among the deterministic and stochastic interpolation methods has not been conducted.
This holds especially true for fluoride contamination in groundwater. In the light of
this comparison, the process underlying the interpolation methods and the sources of
prediction uncertainty can be explored. In the present study, we compare three deterministic
approaches (IDW, radial basis function (RBF), and local polynomial interpolation (LPI))
and six geostatistical methods (OK, spherical kriging, Gaussian kriging, simple kriging, UK,
and EBK). Considering the importance of assessing the extent of fluoride contamination
in groundwater to support the remediation of the problem, this study was carried out
with the objective to assess the prediction accuracy of nine interpolation techniques. The
ambiguity in the form of the extent and degree of contamination from the different methods
are compared through three validation approaches. The present study is applied to Tamil
Nadu State in India with a large fluoride database and is one of the known fluoride endemic
regions in the world.

2. Methodology
2.1. Dataset Description

Fluoride concentration in groundwater was provided by the Public Works Department
(PWD), Government of Tamil Nadu. PWD has monitoring wells that are spread throughout
Tamil Nadu State, where systematic sampling and analysis are carried out twice a year;
one in January representing post-monsoon and the other in July representing pre-monsoon
(Figure 1). Data were available for 13,768 groundwater samples collected between 2011
and 2015. Initial data analysis included data cleaning and pre-processing such as checking
the coordinates, identifying duplicates in well numbers, inaccurate recordings, number of
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recordings per monitoring well, deleting inaccurate recordings, and identifying outliners.
After data cleaning, 13,585 fluoride values, collected from 2735 monitoring wells, spanning
a time period from 2011 to 2015 were used for further analysis. Monitoring wells were
also classified based on the aquifer type information from the Central Ground Water Board
(CGWB) [26] (Figure 1).
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2.2. Interpolation Methods

Deterministic and geostatistical methods were compared in this study. These included
the widely adopted interpolation methods in groundwater studies, i.e., IDW, RBF, LPI, OK,
spherical kriging, Gaussian kriging, simple kriging, UK, and EBK. Brief explanations of the
methods are provided below.

2.2.1. Inverse Distance Weighting

IDW predicts based on a linear combination of closely located data points. This method
assigns weights to the data points such that points closer to the prediction location have
higher weights and the weight decreases as the distance from the data point increases [27].
Predicted values are thus highly influenced by the assigned weights.

z =
∑n

i=1 wizi

∑n
i=1 wi

(1)

wi = d−u
i (2)

where z is the predicted value, zi is the known value, n is the total number of known values
used in the interpolation process, wi is the assigned weight to the known value, di is the
distance between known and predicted values, u is the power parameter where weight
decreases as distance increases from the prediction location. In this study, we used the
commonly used inverse of the distance raised to the 2nd power [24].

2.2.2. Radial Basis Functions

RBFs are exact interpolation methods, i.e., the surface must pass through each mea-
sured data point. This method uses a basic equation, which is dependent on the distance
between the interpolated point and the sampling points [28]. The predicted value at a given
point is expressed as a sum of the following two components [29].

Z(x) =
m

∑
i=1

ai fi(x) +
n

∑
j=1

bjψ
(
dj
)

(3)

where ψ(dj) refers to the RBFs, dj is the distance between the measured value and the
predicted value x, fi(x) is a trend function considered as a member of a basis for the space of
polynomials of degree <m, coefficients ai and bi are calculated by means of the resolution of
the following system of n + m linear equations where n is the number of measured values
used in the interpolation of the surface Z(x) [28].

Z(xk) = ∑m
i=1 ai fi(xk) + ∑n

j=1 bjψ (djk ) for k = 1, 2, . . . , n (4)

∑n
j=1 bj fk

(
xj
)
= 0 for k = 1, 2, . . . , m (5)

In this study, we compare the completely regularized spline (CRS) of RBF, given by

ψ(d) = ln
(

cd
2

)2
+ E1(cd)2 + γ (6)

where d is the distance between the location of measured and predicted values, c is the
smoothing factor and γ is Euler’s constant [30].

When compared with the other exact interpolation methods, IDW will never pre-
dict values above or below the maximum and minimum measured values, respectively.
However, RBFs can predict values above the maximum and below the minimum mea-
sured values.
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2.2.3. Local Polynomial Interpolation

Polynomial interpolation is classified as global and local polynomial interpolation
(GPI/LPI). GPI fits a single polynomial to the entire surface, while LPI fits many polyno-
mials using measured values from a specific neighborhood. The neighborhoods overlap
and the value used for predicting each neighborhood is the value of the fitted polynomial
at the center of the neighborhood. GPI uses the entire dataset to make the predictions,
thus a change in one of the input values will change the entire map. LPI predicts based on
small sets of measured data, i.e., predictions are made for smaller areas in a large area map.
Change in any of the input values will only lead to change the results in the small area.
GPI can be used to create smooth surfaces and identify long-range trends in the dataset.
However, the data used in this study have short-range variations, and hence LPI, which is
the appropriate method for interpolation of the available data, is included in this study.

2.2.4. Kriging Methods

Kriging assumes that the distance or direction between two measured data reflects a
spatial correlation that can be used to explain the variation in the surface. The variogram is
the geostatistical method for analyzing the spatial data, and forms the basis for kriging [31].
This is calculated using the formula below.

γ(h) =
1

2N(h)

N(h)

∑
i=1

[z(xi)− z(xi + h)]2 (7)

where γ(h) is the semivariogram, semivariance or variogram value at a distance interval
of h, N(h) is the number of sample pairs within the distance interval h, z(xi) and z(xi + h)
are the sample values at two points separated by the distance interval h [31]. Kriging fits
this mathematical function to a defined set of data points, or to all points within a specified
radius, to predict the values for the unknown location.

OK is a weighted linear combination of the measured values [32], which is defined as:

Ẑ(x0) =
n

∑
i=1

λiZ(xi) (8)

where Ẑ(x0) is the predicted value at location x0, Z(xi) is the measured value at the ith
location, λi is the weight assigned to the measured value at the ith location and n is the
number of measured values. The sum of weights in the above equation is equal to unity,
i.e., ∑n

i=1 λi = 1.
The kriging option offers various functions based on the semivariogram model. The

semivariogram model can be fitted to different mathematical models such as linear, expo-
nential, circular, spherical, and Gaussian. The present study includes the most widely used
spherical and Gaussian models.

Simple kriging is based on the following formula:

Ẑ(x0) = µ + ε(x0) (9)

where µ is a known constant. In OK, it is assumed that the expected value of the underlying
process is the same over the entire domain studied. Hence, this constant was not necessary.
In simple kriging, which is similar to OK, the mean (µ) is known in the entire domain [33],
whereas in OK, µ is estimated.

UK is calculated based on the following formula:

Ẑ(x0) = µ(x0) + ε(x0) (10)

where µ(x0) is a deterministic function and ε(x0) is a random variation called microscale
variation and mean of this is 0 [14].
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Kriging methods usually require manual adjustment of parameters to arrive at accurate
predictions. However, EBK automates most steps in the kriging model development. EBK
automatically calculates the parameters through subsetting and simulations, and considers
the errors estimated by using several semivariogram models. This is in contrast to other
kriging models in which only one semivariogram from the observed data is normally
calculated, which is used to predict the unknown values [34].

2.3. Validation of the Interpolation Methods
2.3.1. Leave-One-Out Cross-Validation

Leave-one-out cross-validation (LOOCV), commonly called cross-validation, is a
widely used method for testing the accuracy of the interpolation. This method involves
removing the fluoride data at one location and this value is predicted based on the neigh-
boring data. This is repeated until all the data points are interpolated. Measured and
predicted values of all sampling locations can be compared using this validation.

2.3.2. Hold-Out Validation

The data set is divided into two sets, namely, the training set and the test set. Normally,
80% of the data are used as the training set and 20% as test set. Eighty percent of the data
spread throughout the study area were chosen at random, and predictions were made
using this training set. The predicted values at the test set locations are then compared with
the measured values. This is a quick and simple method for cross-validation, but may not
be suitable for studies with limited sample size [30]. The accuracy of this method depends
largely on the dataset that is classified as the training set and test set and the error may be
significantly different based on the classified data sets. Here, a subset of 2191 wells were
used as the training set and 544 wells were used as the test set.

2.3.3. Validation with an Independent Dataset

Two independent studies carried out in parts of Tamil Nadu were used to validate
the predictions. The area covered in these independent studies include the Pambar and
Vaniyar river basin [35,36]. Collection and analysis of groundwater samples were carried
out in 78 locations. Multiple sampling campaigns were conducted between 2011 and 2013.
Detailed information on the sampling and analysis are provided elsewhere [37,38]. Average
fluoride concentration in these locations were compared with the predicted values by the
interpolation methods based on the PWD data.

2.4. Comparison of the Interpolation Methods

The accuracies of the interpolation methods were assessed based on the mean relative
error (MRE) and root mean square error (RMSE) from the measured and predicted fluoride
concentrations. Equations for predicting these parameters are given below.

MRE =
1
n

n

∑
i=1

∣∣∣∣ zo(xi)− zp(xi)

zoxi

∣∣∣∣πr2 (11)

RMSE =

√
1
n

n

∑
i=1

∣∣zp(xi)− zo(xi)|
2 (12)

where zo(xi) and zp(xi) are the observed and predicted values at location ‘i’, ‘n’ is the
sample size. The smaller the MRE and RMSE values, the better the predictive power of
the methods.

Coefficient of variance (CV) is calculated by,

CV =

(
SD
X̄

)
· 100 (13)
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where SD is the standard deviation and X̄ is the mean. SD is calculated using the follow-
ing formula.

SD =

√
∑n

i=1(xi − X̄)
2

n− 1
(14)

X̄ =
1
n

n

∑
i=1

xi (15)

where xi is the observed value and, n is the number of values.
Pearson’s correlation coefficient (r) is used to determine the strength of a linear rela-

tionship between two variables. This was used to measure the relationship between the
measured and predicted values. The value of r = +1 indicates a perfect positive correlation,
while r = −1 indicates a perfect negative correlation.

rxy =
∑n

i=1 (xi − X̄ ) (yi − Ȳ )√
∑n

i=1 (xi − X̄ )2
√

∑n
i=1 (yi − Ȳ )

2
(16)

where xi and yi are the measured and predicted values, and X̄ and Ȳ are the mean of the
measured and predicted values.

3. Results
3.1. Measured Fluoride Concentration

Fluoride in groundwater during 2011–2015 in Tamil Nadu state, India ranged from
0.01 to 5 mg/L, with an average of 0.7 mg/L. Both WHO [2] and the Bureau of Indian
Standards [39] have recommended 1 to 1.5 mg/L of fluoride in drinking water to avoid
possible adverse dental and skeletal effects. As groundwater provides directly for domestic
consumption including drinking water in the rural parts of India [40,41], we used this range
for classifying the groundwater based on fluoride measurements. Of the groundwater
fluoride samples (N = 13,585), 6.1% were above 1.5 mg/L, 14.7% were between 1 to
1.5 mg/L, and 79.2% were below 1 mg/L. Based on the 2735 sampling locations, the mean
fluoride concentration ranges from 0.03 to 2.35 mg/L with an average of 0.7 mg/L. About
15.6% were within the Bureau of Indian Standards (BIS) drinking water specification range
and, 2.8% lay above 1.5 mg/L.

3.2. Variation Based on Aquifer Type

Monitoring locations indicated that the highest fluoride concentration can be witnessed
in gneissic areas followed by charnockite and alluvium aquifers. Range, mean and SD of
fluoride concentrations in different aquifers are listed in Table 1. It is worth mentioning that
there is a large variation in the number of measured fluoride samples which is associated
with the size of each aquifer type. The area covered by each aquifer type is provide
in Table S1 [26] (Supplementary material). From this table, it is evident that alluvium,
gneiss and charnockite aquifers together cover up to 80% of the study area, and therefore
account for 86% (N = 11,747) of the measured fluoride concentrations. The highest fluoride
concentrations were present in gneissic, charnockite and sandstone aquifers. About 10%, 9%
and 5% of the samples exceeded 1.5 mg/L of fluoride in granitic, gneissic and charnockite
areas, respectively. Main source of fluoride in this region is ensued from weathering of
fluoride rich rocks and rock–water interaction, which is supported by earlier studies [42–45].
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Table 1. Distribution of fluoride in groundwater.

Aquifer Type
Number of
Measured

Fluoride Samples
Range (mg/L) Mean (mg/L) SD Number of Samples above

1.5 mg/L of Fluoride

Alluvium 2368 0.01–2.77 0.47 0.38 48
Banded Gneissic

Complex 380 0.05–1.77 0.71 0.35 8

Charnockite 2900 0.01–5.00 0.62 0.48 146
Gneiss 6479 0.01–5.00 0.77 0.51 563
Granite 307 0.01–2.50 0.88 0.49 32
Laterite 38 0.05–1.95 0.41 0.39 1

Limestone 67 0.05–1.50 0.59 0.36 0
Quartzite 27 0.15–1.68 0.93 0.48 5
Sandstone 1013 0.01–4.90 0.40 0.40 18

Shale 6 0.55–1.35 0.92 0.29 0
Total 13,585 0.01–5.00 0.66 0.49 821

3.3. Statistical Accuracy of Various Methods

Spatial prediction of groundwater fluoride by various methods is illustrated in Figure 2.
The accuracy of the interpolation methods was assessed through evaluation metrics cal-
culated for different validation methods (Table 2). The fluoride range and average con-
centration do not vary for the input in (1) LOOCV and (2) validation with independent
datasets. This is because part of the dataset is not set aside for validation. However, in
hold-out validation, the range and mean fluoride of the training set and the test set vary.
For the training set, minimum, maximum, and mean fluoride were 0.03, 2.4 and 0.7 mg/L,
respectively. In the test set, fluoride ranged from 0.05 to 2 mg/L, with a mean of 0.7 mg/L.
Fluoride content for the independent data differed from 0.2 to 5.9 mg/L with a mean of
1.8 mg/L [37,38].

Table 2. Prediction accuracy of the different interpolation methods.

Measure IDW RBF LPI OK Gaussian Kriging Spherical Kriging Simple Kriging UK EBK

LOOCV

Predicted mean 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
MRE 0.53 0.54 0.54 0.53 0.53 0.54 0.56 0.53 0.54

RMSE 0.32 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31
CV, predicted (%) 42 37 36 37 38 38 32 37 37

r, measured vs. predicted 0.32 0.35 0.34 0.35 0.34 0.34 0.34 0.35 0.35
r, measured vs. error 0.47 0.58 0.60 0.58 0.55 0.55 0.68 0.58 0.58

Hold-out validation

Predicted mean 0.67 0.67 0.68 0.67 0.68 0.68 0.65 0.67 0.68
MRE 0.56 0.58 0.58 0.58 0.57 0.57 0.55 0.58 0.58

RMSE 0.32 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31
CV, predicted (%) 41 36 34 36 37 37 34 36 35

r, measured vs. predicted 0.28 0.31 0.30 0.31 0.31 0.31 0.30 0.31 0.30
r, measured vs. error 0.49 0.58 0.62 0.58 0.57 0.57 0.64 0.58 0.60

Validation with an independent dataset

Predicted mean 0.86 0.86 0.87 0.86 0.86 0.85 0.82 0.86 0.86
MRE 0.50 0.51 0.50 0.50 0.50 0.50 0.53 0.50 0.50

RMSE 1.48 1.48 1.48 1.48 1.48 1.48 1.52 1.48 1.49
CV, predicted (%) 8 9 5 8 11 11 6 8 8

r, measured vs. predicted 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.02
r, measured vs. error 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00
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Interpolation methods showed that there is a minor discrepancy between the predicted
and measured means (Table 2). The lower the values of MRE and RMSE, the smaller the
errors when using the methods. Simple kriging has the highest MRE, whereas IDW, OK,
Gaussian kriging and UK delivered the smallest MRE by LOOCV (Table 2). Conversely,
simple kriging was more accurate than the other interpolation methods, with the smallest
MRE in the hold-out validation method. Moreover, OK, UK, EBK, RBF and LPI had larger
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MRE values than the other methods. Most of the interpolation methods have smaller
MRE for the validation subsets with independent dataset except for RBF and simple
kriging (Table 2).

IDW interpolation has the maximum RMSE, while the other methods were slightly
lower by LOOCV and hold-out validation (Table 2). Both validation methods resulted
in similar values for all interpolation methods. RMSE was highest for all methods in the
validation step with independent dataset as compared to LOOCV and hold-out validation.
Among the interpolation methods, simple kriging had larger error followed by EBK and
all other methods had the same RMSE. Of the three validation methods, validation with
independent dataset had the lowest MRE but high RMSE.

CV for measured values is 56% in LOOCV and for the training-dataset. The CV of the
measured values for the independent dataset was 61%. CV for predicted values by all inter-
polation methods (Table 2) were lower than the CV for the measured values. A significant
reduction in CV was observed for the validation method with an independent dataset. IDW
has the highest CV in LOOCV and hold-out validation. Gaussian and spherical kriging
had the largest CV in the validation method with an independent dataset (Table 2).

3.4. Correlation and Prediction Error

The values of Pearson’s correlation coefficient (r) calculated between the measured
and predicted values are given in Table 2 and represented in Figures S1–S3. A slightly
stronger correlation in comparison to other methods with r amounting to 0.35 was observed
by OK, UK, EBK and RBF in LOOCV. Using the hold-out validation method, the kriging
methods yielded a slightly higher r, amounting to 0.31, for OK, Gaussian, Spherical and UK.
Of the deterministic methods, RBF has a higher r of 0.31 compared to r values of 0.28 for
IDW and 0.30 for LPI when using the hold-out validation method.

The prediction error indicates the uncertainty associated with the predicted values
at each location. The prediction error reflected in the interpolation maps is shown in
Figures 3–5. The IDW interpolation method resulted in the lowest r between the measured
fluoride and error in predicting fluoride, which amounted to 0.47 and 0.49 for LOOCV and
hold-out validation, respectively (Table 2). Poor correlation (r) and the highest prediction
error were observed for the validation method with independent dataset, which should be
ascribed to the fact that the sampling wells of the independent dataset are densely located
in the vicinity of each other, while only a few of them from the secondary dataset fall in
this region (Table 2, Figure 6).

3.5. Prediction of Contaminated Areas Using Various Methods

The geospatial analysis of contaminated areas with fluoride concentration or the
areas that require attention is performed using various interpolation methods (Figure 2).
Comparison of the areas predicted by the interpolation methods are given in Table 3.
IDW and LPI were the only methods that predicted areas with >1.5 mg/L fluoride. The
remainder of the methods had predicted that the entire region had fluoride < 1.5 mg/L.
This can be misleading, especially in studies such as the present one, where samples are
collected over a large area with considerable distance between the samples. Simple kriging
and UK predicted the lowest fluoride concentration, which is in the range between 1 and
1.5 mg/L. In comparison with the percentage of samples (~6%) and the predicted area in
different fluoride range, the IDW and LPI methods provided closer predictions. Spatial
interpolation in all methods showed similar patterns across areas in the central part and
few patches in the southern part of the study area (Figure 2). Northern and eastern parts
were found to not be prone to fluoride contamination. Most of central and western Tamil
Nadu, and several small patches in the southern parts, recorded high fluoride.
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Table 3. Fluoride contaminated area calculated by different interpolation methods.

Method

Fluoride Range and Area in %

<0.5 0.5 to 1 1 to 1.5 >1.5

Very Low Fluoride Low Fluoride Suitable Range Unsuitable

IDW 28.0 61.2 10.6 0.2
RBF 25.4 64.4 10.2 -
LPI 26.0 63.2 10.6 0.2
OK 26.5 63.6 9.9 -

Gaussian kriging 26.6 63.2 10.2 -
Spherical kriging 26.5 63.2 10.3 -
Simple kriging 29.6 65.9 4.5 -

UK 26.5 63.6 9.9 -
EBK 27.1 61.5 11.4 -
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3.6. Over- and Under-Estimation of Contaminated Areas

The fluoride concentration predicted by the interpolation methods were subtracted
from one another to analyze the similarity or dissimilarity in prediction in the form of
residuals (Figure 6, Table 4). Positive values indicate over-estimation of measured values
by the predicted values, and negative values indicate under-estimation of measured values
by the predicted values. Based on the previous results, IDW was found to be the most
suitable method for the prediction of fluoride concentration. Hence, the under-estimation
or over-estimation of the other interpolation methods was assessed in comparison to IDW.
Figure 6 indicates the similarity and under-/over-estimation in the areas of prediction
by IDW relative to other methods. RBF demonstrated the highest similarity to IDW in
predicting the fluoride concentrations (Table 4). Simple kriging correlated poorly with IDW,
owing to an over-estimation of fluoride. Gaussian kriging and LPI under-estimated the
fluoride content than IDW. Residual histograms for the validation methods show more
under-estimation in the fluoride values than over-estimation (Figures 7–9).
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Table 4. Comparison of IDW method with other interpolation methods (area in %).

Comparison Under-Estimated Equal Over-Estimated

IDW minus OK 11.2 77.9 10.9
IDW minus Gaussian Kriging 12.9 74.4 12.7
IDW minus Spherical Kriging 13.2 73.9 12.9

IDW minus Simple Kriging 11.5 63.3 25.2
IDW minus UK 11.2 77.9 10.9
IDW minus EBK 11 78.2 10.8
IDW minus RBF 7.2 85.1 7.7
IDW minus LPI 12.3 74.8 12.9
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The estimation capability was further analyzed based on the geology (Table 1). Here,
only IDW and LPI were considered, as they were the only methods to predict fluoride
above the WHO [2] and BIS [39] standards and align with the direct assessment of the
data given in Table 1. Additionally, the geology where the highest numbers of fluoride
measurements were available, was further assessed (see Table 1 for number of measured
fluoride concentrations). For example, shale, with six fluoride measurements, was not
included in the analysis. A general trend of over-estimation, especially by 0.5 to 1 mg/L,
were seen in both IDW and LPI in all aquifer types (Figures S4 and S5). However, the IDW
prediction for granitic areas slightly underestimated fluoride by 0.5–1 mg/L. This variation
was exceeded by only two data points.
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4. Discussion

Fluoride concentration in groundwater varies in time and space. In the present study,
it was indicated that IDW and LPI methods outperformed other methods. These were the
only methods that predicted vulnerable areas with high levels of fluoride up to 2.3 mg/L.
Other methods predicted a minuscule area with the fluoride concentration above 1.5 mg/L
in comparison with the total samples. The interpolation techniques smooth the values to
minimize the estimated error of the global mean, while targeting to predict the values as
accurately as possible in the spatial dimension [30]. This results in under-estimation of the
local maximum values and over-estimation of the surrounding minimum values. Based on
the level of the smoothing effects, the degree of under- and over-estimation varies. Low
smoothing effect preserves as much measured data as possible, which is observed more
in deterministic methods than stochastic ones. An optimal interpolation method should
not rely on high smoothing to produce the results [46,47]. Studies have suggested that OK
and EBK methods are superior to other methods, especially compared to IDW, as they have
smoother effects [25,48]. A robust interpolation analysis should not rely on a great degree
of smoothing effects.

The discrepancy among the interpolation methods was found to be minimal, although
the evaluation metrics used in this study including MRE, RMSE and CV were lower for
IDW than those of the other methods. Though IDW and LPI could estimate areas with
high fluoride risk, these areas are not spatially identical in terms of the predicted fluoride
concentration (Figure 2). Compared to the measured fluoride data in these locations, IDW
could predict the spatial variation better than LPI. In national- and state-level observations,
the monitoring wells are not often densely and evenly distributed across the region; rather,
they are poorly and unevenly distributed with respect to each other. This is one of the
reasons why high concentrations above 2 mg/L were not reported often in the secondary
data collected (Table 1). However, many investigations conducted at local scales with high-
density water sampling have reported concentrations above 2 mg/L [42,49,50], including
the independent dataset used in the present study for validation [35,51]. Thus, the spatial
distribution of wells play a significant role in forming the interpolation patterns [48]. To
deal with this uncertainty, sampling sites/wells should be expanded at areas prone to
high fluoride. Through this, we can confirm whether the presence of high concentration of
fluoride in groundwater is a transient phenomenon, which is witnessed occasionally, or it is
a long-standing and stable phenomenon, which requires considerable attention. Analyzing
the sources of fluoride contamination in these areas will be of benefit in deciding on the
distribution of the sampling network.

Border effects can also influence the interpolation patterns. Uncertainty was mostly
identified along the boundary of the study area, where the coverage of the sampling net-
work is not enough. This is the reason the prediction uncertainty reduces from the boundary
to the inner zone [13,52]. In our study, we could not detect a considerable variation along
the boundary. Under certain circumstances, when the nearest sampling site existing for
interpolation is distant, the predicted geospatial maps for all interpolation methods showed
a subtle difference and thus fell within a narrow range [13]. Uncertainty also increased with
the weighing power used in some methods. For example, in IDW, the weighing power used
during the interpolation influenced the CV. Normally, higher weighing power increases
the CV, the associated error and the predicted extent of contaminated area [30,48]. In the
present study, we used the most commonly used weighing power 2 that has provided a
good fit.

Geostatistical methods, i.e., the various kriging methods, indicated more or less similar
results, and their efficiency was not drastically different from the deterministic methods,
i.e., IDW, LPI and RBF. This was well supported by the evaluation metrics (Table 2), but
not for spatial interpretation (Table 3). Other studies have shown drastic variations in
the interpolation methods for the targeted parameter with high MRE and RMSE. Such
variations were not witnessed in this study as the concentration range did not show a
wide difference such as that reported in former studies [24,30,48]. Comparison of the
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concentrations predicted by the methods in this study showed closer prediction by IDW
and RBF followed by EBK, OK and UK (Table 4).

Sample size also dictates the choice of validation method. Most studies work with
smaller numbers of samples, which might not be statistically significant/sufficient for either
hold-out validation or validation with an independent dataset. Hence, LOOCV is often
employed [25,30]. This study, with a large dataset, provided the suitable opportunity to
test three validation methods and evaluate the suitability/superiority of one interpolation
method over another. Simple kriging produced the largest MRE when LOOCV and vali-
dation with an independent dataset were used, but the smallest MRE was obtained when
using the hold-out validation method (Table 2). It should be noted that the training set and
test set were chosen at random, therefore for a different set of training-data and test-data,
the prediction by the methods may be different.

Results from the independent dataset showed poor correlation with the measured data
from PWD wells. There were 78 sample data for the independent dataset and 22 samples
for PWD over the same area, i.e., about one-third of the data was used to predict fluoride.
Descriptive statistics for the independent data were as follows: range 0.2 to 5.9 mg/L; and
mean was 1.8 mg/L. The minimum, maximum and average of the measured fluoride were
0.4, 1.6 and 0.9 mg/L, respectively. SDs for the PWD wells were smaller (0.3 mg/L) than
the independent dataset (1.1 mg/L), indicating that the independent dataset comprised
a higher variance. This proved that 68% of the data fell in the range between 0.6 and
1.2 mg/L for the PWD data and between 0.7 and 2.9 mg/L for the independent data for
normally distributed data. In that case, the PWD data was much closer to the measured
range than the independent dataset, thus suggesting that special circumstances leading
to high concentrations were averaged-out in the PWD data, which is collected only twice
a year. The shortest distance/space between PWD wells was 0.4 km and the highest was
12 km. Thus, the wells are not installed at equal intervals but are placed in a way to
cover the large area except for the hilly regions. Nonetheless, due to the smaller study
area in the independent study, the sample locations were distributed evenly and closely
throughout the area. Here, one sample was collected within a radius of every 1 to 3 km2,
depending on the topography and geology, except for areas that were not accessible or
there were no existing wells to monitor. Nevertheless, the fluoride concentration patterns
were spatially correlated. Even though the r values were low, this did not mean that the
values predicted by the interpolation methods were not useful, but rather that they can
give a spatial orientation in the high or low values in the region.

In summary, interpolation techniques are often used to estimate contaminated ar-
eas or areas with potential risk of contamination. Ideal conditions for monitoring and
collection of data are not always feasible. However, in light of the recent availability of
open-source programs to create various maps, these interpolation methods have proved
to be promising tools. Though the application of these methods is ample, procuring esti-
mations/predictions reflect uncertainty. Effective prediction of the interpolation methods
depends on several factors including (but not limited to) spatial location of samples, density
of samples, number of samples, minimum and maximum concentration of the contaminant.
Identifying a contaminated region is not a straightforward process and thus should not
be undertaken via only predicted maps. Under-estimation of contamination may result
in only short-term remediation, and the problem will re-emerge, while over-estimation
may increase the burden on the government in the form of financial costs and manpower
spent in resolving the problem. Hence, along with the interpolation methods, the natural
background concentrations, land use and local experts’ opinion should be included during
the decision phase.
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5. Conclusions

This study compares for the first time the accuracy and uncertainty of nine interpola-
tion methods for predicting fluoride concentration over a large area on the basis of more
than 13,000 observations. About 6% of the groundwater samples exceeded the guideline
threshold of >1.5 mg/L of fluoride. Findings demonstrated that the prediction of con-
taminated areas obtained from the interpolation methods was lower than the traditional
comparison of the number of samples above the desired limits. Deterministic methods pro-
vided closer prediction of contaminated areas than the geostatistical methods. To address
the prediction uncertainty, one interpolation method should not be universally applied,
while variegated interpolation algorithms should be employed and thus their resultant
predictions should be compared for the purpose of the study. Interpolation methods would
always commit errors to a certain extent. For stakeholders and decision makers who are
already involved in regional- or national-level surveillance of water quality, these interpo-
lation methods help to identify the most vulnerable areas to contamination. Additional
samples should be collected from highly vulnerable areas to ascertain the seriousness of the
problem before implementing possible remediation measures. From this study, it can be
clearly concluded that relying on interpolation methods is not trustworthy and may result
in biased remediation measures. IDW is appropriate for identifying fluoride risk zones in
Tamil Nadu. Care should especially be given to over-estimated and under-estimated areas,
because over-estimating the contaminated areas may increase the cost of the management
practices, while under-estimation may not solve the problem thoroughly and the issue may
resurface after a short time.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w15091707/s1, Table S1: Area covered by different aquifer types in
Tamil Nadu; Figure S1: Scatter plots of measured and predicted fluoride by LOOCV; Figure S2: Scatter
plots of measured and predicted fluoride by hold-out validation; Figure S3: Scatter plots of measured
and predicted fluoride by validation with an independent dataset; Figure S4: Residual histograms for
various aquifer types by IDW interpolation; Figure S5: Residual histograms for various aquifer types
by LPI.
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