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1A Summary

Control over the intracellular localisation of RNA is an important aspect of post-transcriptional regula-

tion, especially for highly polarised cells like neurons. The presence of speci�c transcripts in axons and

dendrites, together neurites, is determined by cis-active elements called zipcodes and ultimately allows

neurons to locally synthesise required proteins and adapt quickly to cues of the local environment. This

capability is important for the correct function of synapse remodelling and memory formation and a

disruption of RNA localisation in neurons has been associated with several neurodegenerative diseases.

Using RNA sequencing a vast number of transcripts can be detected in neurites of neuronal model

systems. With over 7500 transcripts even the neurite core transcriptome, which I summarised from

the published datasets generated in the last decade, contains at least half or a third of the full neuronal

transcriptome. Whether all of these transcripts should be considered localised to neurites or if this

designation is better determined by di�erential expression analysis between compartments is still

di�cult to answer. For one thing, no strong overlap of transcripts with localisation based on signi�cant

enrichment in many individual datasets exists and also my integrated analysis utilising batch correction

did only generate a relatively small set of di�erentially expressed genes, which however tend to have

more conserved enrichment. Secondly, several transcripts that are generally considered as classical

localised transcripts, like the Actb mRNA, are not relatively enriched in neurites, even if they are strongly

expressed there.

Relying on a set of transcripts with consistent neurite enrichment based on datasets from primary

murine neurons I designed Nzip, a massively parallel reporter assay (MPRA) aimed at the identi�cation

of unknown zipcodes. Based on 16 candidate sequences determined from the �rst experiment, it was

possible to identify 2 new zipcode motifs utilising a secondary library with a mutational analysis

approach: the let-7 miRNA seed sequence CUACCUC and an (AU)n repeat motif. The compartmental

quanti�cation of miRNAs and associated protein machinery indicates a stronger activity of let-7 in

soma, providing a potential mechanism for its zipcode activity. Additionally, also the (AU)n motif is also

associated with lower read counts in soma and several identi�ed binding proteins have known e�ects

on RNA stability, indicating that it likely also a�ects RNA localisation through stability regulation.

Building on my observations that assignment of RNA localisation state based on either detection or

enrichment in neurites both is problematic and that Nzip mainly identi�ed motifs conferring neurite

enrichment by RNA stability, I argue that a clear distinction between localised and not-localised tran-

scripts may not be an accurate description of the biological system. Instead, zipcodes likely a�ect the

probability of a given transcript to reach neurites and there may also be di�erent mechanisms that a�ect

the tendency for localisation as measured by enrichment or detection. Whether this is a more accurate

description of RNA localisation mechanics as well as the exact functions of the zipcodes I identi�ed
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should be further investigated in future studies.

As a second part of my work I have contributed to studying the human neurodegenerative disease

amyotrophic lateral sclerosis (ALS). This a�iction is mainly characterised by the degradation of motor

neurons usually starting at the synapses between axons and skeletal muscle, the neuromuscular junction

(NMJ), and in many cases is known to be caused by mutations in several RNA binding proteins a�ecting

RNA localisation. Among these is the FUS protein, whose mutations often disrupt its exclusive nuclear

localisation and thus can lead both to a loss-of-function as well as a toxic gain-of-function trough

availability of new RNA targets in the cytoplasm.

To study a disease like ALS a cellular model system for human neurons is needed, which repli-

cates the relevant molecular signatures of a�ected motor neurons, speci�cally including the axonal

containing neurite compartment. I have characterised the transcriptome and proteome of induced motor

neurons (iMN) generated by expression of NGN2, ISL1 and LHX3 transcription factors. This system

showed expected expression of marker genes throughout motor neuron di�erentiation as well as proper

speci�cation of neurite compartment and similarity with signatures of electrophysiological maturity.

Using the iMN model system I performed investigative analysis for the e�ect of ALS patient derived

FUS mutations on the proteome and transcriptome, speci�cally including e�ects pronounced in the

neurite compartment. With this I identi�ed many di�erentially expressed genes already associated with

ALS or FUS mutations, which, however, span a very wide �eld of functional associations and to my

understanding are more likely linked to a disruption of normal FUS activity. However, I also observed

a more consistent and rarely reported pattern of down-regulation of genes building the extracellular

matrix around the NMJ, which was speci�cally notable in the neurites of cells with cytoplasmic localised

P525L FUS. Additionally, I found a very similar pattern of down-regulation in neurites for genes passing

the secretory pathway, known target transcripts of FUS, as well as those with a G-quadruplex motif,

which has been identi�ed as a potential binding site for both FUS and other ALS associated RBPs. This

highlights a potential toxic gain-of-function for FUS as well as a particular pathway which may be

important in the axonal degeneration in ALS. Validation of this observation including any potential

signi�cance of an overlap between the a�ected gene groups I identi�ed should be the focus of further

work.
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1B Zusammenfassung

Die Kontrolle über die intrazelluläre Lokalisation von RNA is ein wichtiger Aspekt der post-tran-

skriptionalen Regulation, insbesondere für stark polarisierte Zellen wie Neuronen. Die Präsenz von

bestimmten RNA Molekülen in Axonen oder Dendriten, zusammen Neuriten, wird durch cis-aktive

Elemente, sogenannte ’Zipcodes’, bestimmt und erlaubt ultimativ, dass Neuronen schnell auf Reize

reagieren und benötigte Proteine dort lokal synthetisieren können. Diese Fähigkeit ist essentiell, damit die

Remodellierung von Synapsen und das Bilden von Erinnerungen korrekt funktioniert, weiterhin wurde

die Störung von RNA-Lokalisation mit der Pathophysiologie mehrerer neurodegenerativer Erkrankungen

in Zusammenhang gebracht.

Durch RNA Sequenzierung kann eine große Anzahl von Transkripten in Neuriten von Modellsyste-

men für Neuronen identi�ziert werden. Mit über 7500 verschiedenen Transkripten enthält selbst das

Kerntranskriptom, das ich aus den verö�entlichten Datensätzen der letzten Jahre zusammengestellt habe,

nahezu ein Drittel oder die Hälfte des kompletten neuronalen Transkriptoms. Ob all diese Transkripte

tatsächlich als lokalisiert angesehen werden sollten oder ob diese Bezeichnung besser durch di�erenzielle

Expression zwischen Zellfraktionen bestimmt werden sollte, ist schwer zu beurteilen. Einerseits gibt

es keine klare Übereinstimmung von Transkripten mit di�erenzieller Lokalisation zwischen einzelnen

Datensätzen und auch mit meiner integrativen Datenanalyse inklusive Batch-Korrektur konnte ich nur

ein relativ kleines Set an di�erenziell exprimierten Transkripten identi�zieren. Zum anderen gibt es

einige Transkripte, die im allgemeinen als lokalisiert angesehen werden, wie beispielsweise die Actb

mRNA, die allerdings trotzdem keine relative erhöhte Expression in Neuriten aufzeigen, auch wenn sie

dort stark exprimiert sind.

Mit einem Set von in primären murinen Neuronen konsistent Neurit-angereicherten Transkripten

habe ich ’Nzip’ konstruiert, ein massiv paralles Reporter Experiment mit dem Ziel unbekannte Zipcodes

zu identi�zieren. Mit 16 potentiellen Sequenzen, die in einem ersten Experiment entdeckt wurden und

einem Mutations-Analyse Ansatz war es möglich 2 neue Zipcodes zu bestimmen: die let-7 miRNA

Zielsequenz CUACCUC und ein (AU)n Motiv. Die Zellfraktion-spezi�sche Quanti�zierung von miRNAs

und ihrer assoziierten Proteinmaschinerie legt zusätzlich nahe, dass die Aktivität von let-7 im Zellkörper

stärker ist, was einen potentiellen Mechanismus für diese Zipcode Aktivität liefert. Weiterhin wurde

auch für das (AU)n Motiv eine ähnliche Reduzierung von RNA Molekülen in Zellkörper festgestellt und

einige der dazu identi�zierten Bindeproteine können die Stabilität von RNA beein�ussen, sodass dieses

Motif RNA Lokalisation vermutlich ebenfalls über Stabilitätsregulation kontrolliert.

Aufbauend auf meinen Beobachtungen, dass die Designation des RNA Lokalisationsstatus basierend

auf entweder Detektion oder Anreicherung in Neuriten problematisch ist, und dass Nzip primär Motive

identi�ziert hat, die RNA Anreicherung durch Stabilität kontrollieren, bin ich der Au�assung, dass
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eine klare Unterscheidung zwischen lokalisierten und nicht lokalisierten Transkripten nicht unbedingt

einer akkuraten Beschreibung entspricht. Stattdessen halte ich es für zutre�ender, dass Zipcodes die

Wahrscheinlichkeit beein�ussen, dass eines gegebenes Transkript den Zellkörper verlässt, und dass

potentiell unterschiedliche Mechanismen die Präsenz und Anreicherung von Transkripten in Neuriten

kontrollieren. Ob dieses Modell von RNA Lokalisation korrekt ist sowie die exakte Funktionsweise der

entdeckten Zipcodes, muss allerdings noch durch weitere Untersuchungen kontrolliert werden.

Der zweiten Teil meiner Arbeit widmet sich der Erforschung der neurodegenerativen Erkrankung

Amyotrophe Lateralsklerose (ALS). Diese zeichnet sich vor allem dadurch aus, dass Motorneuronen

beginnend an den Synapsen zwischen Axonen und Muskeln, der neuromuskulären Endplatte (NME),

degenerieren. Weiterhin gibt es RNA bindende Proteine, deren Mutationen die Krankheit auslösen

können. Unter diesen be�ndet sich das FUS Protein, dessen Mutation oft seine Lokalisation im Zellkern

beeinträchtigt und damit sowohl zu funktionalem Verlust als auch zu neuen toxischen Funktionen durch

das Binden anderer RNA Moleküle im Zytoplasma führen kann.

Um eine Krankheit wie ALS zu erforschen ist ein zelluläres Modellsystem für humane Neuronen

erforderlich, das relevante molekulare Signaturen der betro�enen Motorneuronen und insbesondere der

Axon- und Neurit-Fraktion abbildet. Ich habe das Transkriptom und Proteom von induzierten Motor-

neuronen (iMN) charakterisiert, die durch die Expression von NGN2, ISL1 und LHX3 generiert werden.

Dieses System zeigt die während der Motorneuron-Di�erenzierung erwarteten Expressionsmuster sowie

klar spezi�zierte Neurite und Ähnlichkeit zu elektrisch aktiven Signaturen.

Mit dem iMN System habe ich eine erste Untersuchung der E�ekte von FUS Mutationen aus ALS

Patienten auf das Proteom und Transkriptom und insbesondere die Neurit Fraktion durchgeführt. Dabei

habe ich einige di�erentiell exprimierte Gene gefunden, die bereits mit ALS oder FUS Mutationen

assoziert wurden, allerdings auch ein sehr breites funtionales Spektrum umfassen und daher vermutlich

mit der Störung von normaler FUS Funktion zusammenhängen. Zusätzlich habe ich aber auch eine

konsistente und bisher weniger beachtete Expressionsreduktion von Genen der extrazellulären Matrix

nahe der NME beobachtet, die insbesondere in Neuriten von Zellen mit zytoplasmatischem P525L FUS

präsent ist. Weiterhin habe ich ähnliche Muster mit reduzierter Expression von den Genen gefunden,

die den Sekretionsweg passieren, bekannte Bindeziele von FUS sind, oder ein G-Quadruplex Motiv

besitzen, wobei letzteres als potentielle Bindestelle für FUS und andere ALS assoziierte Proteine identi�-

ziert wurde. Auch wenn diese Beobachtungen einen potentiellen toxischen Funktionsgewinn für FUS

darstellen und einen bestimmten molekularen Pfad hervorheben, der wichtig für den Verlauf von ALS

sein könnte, müssen sie noch durch weitere Studien veri�ziert werden, da insbesondere die Signi�kanz

einer Überschneidung der von mir identi�zierten betro�enen Gen-Gruppen bisher nicht klar ist .
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2 Introduction

The distribution of individual RNA molecules to speci�c places within a cell, or the localisation of RNA,

plays an important role in many cellular functions given that it a�ects several aspects of RNA biology

ranging from accessibility of the RNA to locally available factors to the origin point of translation and

new proteins (Chin & Lécuyer, 2017; Lécuyer et al., 2007). It is therefore not surprising that speci�c

control of RNA localisation is a common occurrence not only in all types of eukaryotes (Das et al.,

2021; Engel et al., 2020) but even in bacteria (Nevo-Dinur et al., 2011). Of course, the well studied

nuclear export of mRNA and non-coding transcripts is the most common occurrence of RNA transport

across cellular compartments, even if this aspect of RNA biology is generally considered as a part of

transcription and RNA maturation rather than RNA localisation (Rodriguez et al., 2004; Williams et al.,

2018). However, the nuclear localisation of both coding and non-coding transcripts, mostly through

retention in the nucleus, has recently also emerged as an area of research interest in RNA localisation

(Halpern et al., 2015; Lubelsky & Ulitsky, 2018).

While sub-cellular localisation of RNA to other parts of the cell has been studied for a long time, many

aspects of it are still not fully understood. Especially in animals, RNA localisation occurs throughout

di�erent stages of development from embryonic patterning controlled by speci�c localisation of maternal

mRNA in the oocyte and asymmetric cell division (Medioni et al., 2012), over localisation of transcripts

to cellular organelles (Fazal et al., 2019; Kraut-Cohen et al., 2013) to RNA localisation in axons and

dendrites of neurons (Costa et al., 2021; Engel et al., 2020). Based on the studies of all these systems several

mechanisms that control RNA localisation have been discovered and can be summarised into three broad

categories. First, RNA can be enriched at speci�c points in the cell by anchoring the transcripts there.

This mechanism is best described in the oocytes and embryos of �ies (Trcek & Lehmann, 2019), but also

occurs in others systems and can rely both on passive di�usion and active transport (Becalska & Gavis,

2009; Forrest & Gavis, 2003). Secondly, the protection from degradation or preferential degradation of

RNA in a speci�c compartment can also lead to local enrichment of transcripts. However, this mechanism

also has so far mainly been shown to be utilised in developing drosophila melanogaster (L. Chen et al.,

2014) with some evidence of nonsense mediated decay controlling transcripts in neuronal outgrowths

(Colak et al., 2013; Notaras et al., 2020) and also still depends on additional transport mechanisms for

transcripts to reach their destination. And �nally the third mechanism to achieve RNA localisation is

the active transport of transcripts usually along the actin or microtubule cytoskeleton (de Heredia &

Jansen, 2004), or possibly alongside vesicles (Cioni et al., 2019; Liao et al., 2019). Since such transport

of RNA has to be mediated by motor proteins, it occurs through the transport of ribonucleoprotein

particles (RNPs). The amount of transcripts an average RNP contains is still a matter of debate with

evidence for both multiplexing of di�erent transcripts (Gao et al., 2008) as well as claims of only single
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molecule transcript transport (Batish et al., 2012). Additionally, it is generally assumed that transcripts

inside transport RNPs are translationaly repressed (Besse & Ephrussi, 2008; Pimentel & Boccaccio, 2014;

Wells, 2006), which has speci�cally been shown for RNPs incorporating fragile X mental retardation

protein (FMRP) (Darnell et al., 2011) or pumilio (PUM) protein (Zahr et al., 2018).

Overall there are several mechanisms and many more individual factors that in�uence RNA localisation

in the cytoplasm and together they all contribute to a system that can be quite complex even for

individual transcripts, but is of course not the same between di�erent ones. While RNA localisation

patterns play important roles in multiple cell types (Das et al., 2021; Engel et al., 2020), some of the

few well described localisation machineries have been shown to work similarly across di�erent cellular

systems. One of the best examples for this is the IGF2BP1 (also known as ZBP1 or IMP1) mediated

localisation of β-actin (Actb) mRNA to both axonal growth cones (Bassell et al., 1998; Leung et al., 2006)

and dendrites (Tiruchinapalli et al., 2003) as well as the leading edges of �broblasts, where it was �rst

identi�ed as a localised RNA (Kislauskis et al., 1994; Ross et al., 1997).

2.1 Neurons as experimental model systems for sub-cellular RNA localisation

Neurons have emerged as the cellular model that is most often used to study RNA localisation, not only

because their large size and complex morphology allows for comparatively easy separation of the cell

body and neuronal outgrowths, but also because disruption of RNA localisation can strongly impact neu-

ronal function and cause diseases (Mofatteh, 2021). The �rst experiments and observations suggesting

local translation and therefore localised RNA at axons and dendritic synapses were made already over

40 years ago based on the detection of localised polysomes and translation activity (Steward & Levy,

1982; Tobias & Koenig, 1975). The �rst clear evidence for local presence of RNA itself came with the

discovery of Map2 and Camk2a transcripts in dendrites (Burgin et al., 1990; Garner et al., 1988) followed

by that of β-actin mRNA in axonal growth cones (Bassell et al., 1998; Leung et al., 2006). Experiments

with neurons of the sea slug aplysia also showed that local translation in axonal pre-synapses can be

activated by stimulation and that there exists a larger set of transcripts localised to neurites (Martin

et al., 1997; Moccia et al., 2003). Initially, the numbers of di�erent transcripts identi�ed in neurites by

these and other, mainly microarray based, studies only reached a few hundred (Lein et al., 2007; Moccia

et al., 2003; Poon et al., 2006; A. M. Taylor et al., 2009; Zhong et al., 2006), but with the emergence of next

generation sequencing and therefore increasingly more sensitive detection capabilities this �gure soon

increased �rst to the often cited �gure of approximately 2500 transcripts (Cajigas et al., 2012; Gumy

et al., 2011) and then to above ten thousand in more recent publications (Briese et al., 2016; Maciel et al.,

2018; Minis et al., 2014; Rotem et al., 2017; Taliaferro et al., 2016; Zappulo et al., 2017). Similarly, these

studies started focusing more on transcripts with relative enrichment in the neurite compartment and

13



their numbers as opposed to the absolute number of transcripts detectable at all.

Building on a large body of research, neuronal RNA localisation has been studied in several species and

di�erent neuronal subtypes, mainly cortical, hippocampal and motor neurons, either derived from pri-

mary sources or generated from stem cells. Additionally, several di�erent techniques for the separation

of neurites have been established, the most common being separation outgrowths alongside porous

�lter membranes (Poon et al., 2006; Zappulo et al., 2017) or the groves of micro�uidic chambers (Saal

et al., 2014; A. M. Taylor et al., 2009), which are only a few µm wide and are supposed to exclude the

slightly larger dendrites and allow harvesting of only axons. Other approaches have analysed RNA of

the neuropil from hippocampal CA1 stratum radiatum, an anatomic regions, which lacks neuronal cell

bodies and mainly consist of dendrites, mixed with some axons and non-neuronal cells (Cajigas et al.,

2012; Tushev et al., 2018; Zhong et al., 2006). Regardless of the approach, very few clear di�erences

between RNA localisation to axon and dendrites have been described so far, with the exception of few

individual transcripts with speci�c localisation, like the exclusively dendritic Map2 transcript (Garner

et al., 1988). Also, since no single technique allows for the separation of both axons and dendrites, no

direct comparison of the transcripts in these compartments has been possible so far. However, recent

advances in proximity labelling of RNA at speci�c subcellular sites based on localised marker proteins

might allow such studies in the future (Fazal et al., 2019). While axons and dendrites do have important

functional and molecular di�erences, especially at the pre- and post-synapse, in my work I am focusing

on RNA generally localised to all neuronal outgrowths, summarised under the term neurites, which is

the most easily obtained cell fraction and encompasses all available experimental models.

Apart from bulk analysis of RNA from neurons physically separated into soma and neurites, several

additional approaches have allowed further insights into the organisation of the neuronal subcellular

transcriptome. Some investigations into smaller sub-compartments of neurons, like axonal growth

cones or nanobiopsies of dendritic cytosol, reported only a small subset of more speci�c transcripts

(Poulopoulos et al., 2019; Tóth et al., 2018), whereas studies of synaptosomes, which incorporate only

slightly larger cell fractions, allowed the analysis of responses across nearly the whole transcriptome

(B. J. Chen et al., 2017; Most et al., 2015).

Of course, the interest in localised RNA in neurons is strongly based on the expectation that this

presence of transcripts is functionally relevant and allows localised generation of new proteins. Indeed, it

has been shown that local translation in neurites and especially near synapses is important for neuronal

functions including synaptic plasticity, memory formation and neural regeneration, but also axonal

branching and even retrograde signalling to the nucleus (Cioni et al., 2018; Holt & Schuman, 2013;

Tasdemir-Yilmaz & Segal, 2016). Direct evidence of local translation in neurites and these functions
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comes from several studies, that used sequencing of RNA fragments covered by the ribosome during

active translation (Ribo-Seq) or at least ribosome bound transcripts (Ainsley et al., 2014; Ouwenga

et al., 2017; Shigeoka et al., 2016; Zappulo et al., 2017). The considerable overlap between actively

translated transcript sets and generally localised transcripts (von Kügelgen & Chekulaeva, 2020) as well

as indication that a large fraction of the local proteome is derived from local translation (Zappulo et al.,

2017), indicate that the comparatively easier study of the localised transcriptome is a good proxy for the

contribution of local translation to local protein functions.

2.2 Zipcodes and RBPs - elements controlling RNA localisation

The control over which RNA is localised to a speci�c compartment in a cell is generally encoded by

cis-active elements, which are also called zipcodes, like the �rst localisation element identi�ed in the

β-actin mRNA (Kislauskis et al., 1994). Zipcodes, like many other cis-active elements, are most often

found in the 3’UTR of mRNAs and usually allow the binding of associated trans-factors and thereby a

connection to the localisation machinery (Andreassi & Riccio, 2009; Gomes et al., 2014). These trans-

factors are most often RNA binding proteins (RBPs), which are able to bind many di�erent transcripts

with similar motifs. While considerable e�ort has been undertaken towards the characterisation of RBP

sequence preferences (Dominguez et al., 2018; Ray et al., 2013), the resulting motifs are often short or

promiscuous and therefore yield a very wide prediction of potential transcript targets. Large numbers of

RBP targets were also reported by studies directly measuring the interaction of an RBP with RNA using

crosslinking immunoprecipitation (CLIP), like FMRP which can bind hundreds of di�erent transcripts

(Darnell et al., 2011). Furthermore, transcripts can have multiple binding sites for the same or di�erent

RBP as well as other trans-factors, leading to a complex interplay of di�erent regulation factors that

can both increase binding speci�city but also lead to competition for target binding (Gomes et al., 2014;

Iadevaia & Gerber, 2015).

Finally, even in the case of well studied binding motifs like the 54nt zipcode of β-actin mRNA bound

by IGF2BP1 (Kislauskis et al., 1994), orthogonal binding sites in other target transcripts like Gap43,

which has no sequence homology to β-actin, can also lead to RNA localisation (Donnelly et al., 2011).

Additionally, the binding site for IGF2BP1 in the β-actin mRNA also overlaps with a binding site for

ELAVL4 (also known as HUD; Kim et al., 2015), another RBP which has been implicated in the localisation

of β-actin and Gap43 transcripts (Yoo et al., 2013).

Similarly to the β-actin zipcode, most other RNA localisation elements described so far were all

identi�ed in case studies of individual genes, most of which were known to be localised, had localised

proteins products or are known targets of localised RBPs. The non-coding regions of transcripts from
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Arc (Kobayashi et al., 2005), Bc1 (Muslimov et al., 2006), Bdnf (An et al., 2008; Oe & Yoneda, 2010),

Camk2a (Blichenberg et al., 2001; Huang et al., 2003; Mori et al., 2000), and Map2 (Blichenberg et al.,

1999) were all studied using reporter assays, which allowed determination of certain sequence fragments

with the capability to drive localisation towards neurites. However, many of the localisation elements

identi�ed by these approaches are not clearly de�ned as a speci�c sequence motif and only describe a

broad region of the transcript 3’UTR, which confers zipcode activity.

Only in few cases it was possible to identify a sequence motif or a trans-acting RBP, which binds a

speci�c element: the A2 response element (A2RE) originally identi�ed as a zipcode in Mbp transcripts

(Ainger et al., 1997) also provides localisation activity for the Map2a or reporter transcripts in neu-

rons and is dependent on the heterogeneous nuclear ribonucleoprotein (hnRNP) A2 (Shan et al., 2003).

Furthermore, it is also present in the Bdnf, Camk2a, Arc, and Bc1 transcripts where it similarly can

drive localisation, which can also be mediated by hnRNP A/B (Raju et al., 2011). While the neuritic

localisation of Bc1 has also been shown to be dependent on hnRNP A2, the direct binding is based on

a structural motif overlapping the A2RE, where the contribution of the primary sequence is not clear,

but the interaction is linked to activity correlated intracellular calcium levels (Muslimov et al., 2006;

Muslimov et al., 2014). Another de�ned sequence motif identi�ed as a zipcode in the Camk2a 3’UTR is

the cytoplasmic poly-adenylation element (CPE), with its known binding protein CPEB (Huang et al.,

2003). While no further reports on its e�ect on RNA localisation have been made, there is extensive

knowledge about the e�ect of the CPE on translational control (Ivshina et al., 2014), a level of regulation

that has also be reported for the A2RE (Kosturko et al., 2006). As such, it is not clear whether the e�ect

of CPE on localisation is speci�c to the Camk2a transcript or also present in other transcripts, however

there are many transcripts potentially regulated by it, as a CLIP study of the drosophila ortholog orb

identi�ed over 3000 targets of CPEB (Stepien et al., 2016).

Another more recently discovered zipcode is the structural RNA G-quadruplex motif that induces

neurite localisation in Camk2a and Psd95 transcripts, but is also present in others known to be localised

like Bdnf and Shank1 (Subramanian et al., 2011; Y. Zhang et al., 2014). The same studies identifying

the zipcode activity of the RNA G-quadruplex have also shown that it is a binding site for FMRP, a

neuronal protein with many functions and strong in�uence on translation or neuronal and synaptic

transcripts as well as neurological disorders (Mofatteh, 2021; Thelen & Kye, 2020). Furthermore, several

other RBPs like FUS and TDP43, which are also linked to both RNA transport and neurodegenerative

diseases, have now been shown to bind the same motif (Imperatore et al., 2020; Ishiguro et al., 2016).

In addition to their functions in RNA localisation these RBPs share other functional capabilities like

control of translation (E�mova et al., 2017; Z. Li et al., 2001) and interaction with complexes that mediate
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miRNA dependent silencing of transcripts (Kawahara & Mieda-Sato, 2012; Muddashetty et al., 2011).

Similarly, further proteins that mainly regulate other aspects of RNA biology, most often translation,

have also been implicated to a�ect RNA localisation. This includes the Staufen proteins, which among

other functions are also involved in the regulation of stress granules, that can globally inhibit trans-

lation (Thomas et al., 2009) and control localisation of their own transcript both during development

of drosophila oocytes and in asymmetric neuroblast di�erentiation (P. Li et al., 1997; Vessey et al.,

2012). Additionally, it was shown that Staufen associates with many RNA granules (Furic et al., 2008;

Heraud-Farlow et al., 2013), including actively transported granules (Jeong et al., 2007) and also a�ects

synaptic plasticity and long-term potentiation in the brain (Lebeau et al., 2008). Similarly, the Pumillo

proteins, which are also required for neuronal development, have as well been implicated in mRNA

transport and formation of stress granules (Menon et al., 2004; Zahr et al., 2018).

In summary, the complexity of well studied individual factors that control RNA localisation and often

other aspects of RNA biology can not be understated and many of these factors also interact with one

another, further complicating the prediction of their exact e�ects in RNA localisation. This pattern of

complex interactions governing localisation of individual transcripts of concurrently controlled regulons

likely extends from the known examples into a much larger �eld of unknown ones (Costa et al., 2021;

Turner-Bridger et al., 2020). The interplay of several factors, often with both di�erent target transcripts

and potentially using orthogonal binding motifs, also highlights that many RBPs may not strictly bind

to a speci�c sequence motif, but rather employ structural and context clues to achieve combinatorial

control of transcript target sets (Dominguez et al., 2018).

2.3 Massively parallel reporter assays

While several zipcodes and RNA localisation factors are quite well described, the number of known

zipcodes and associated localisation factors is relatively small compared to the complexity and extent of

the neurite localised transcriptome. Therefore, it is generally expected that several unknown zipcode

motifs and associated RPBs exist which control localisation of the many transcripts that have not been

studied in depth (Gomes et al., 2014; Kar et al., 2018).

One emerging approach to uncover unknown control elements like zipcodes combines both the advan-

tages of next generation sequencing techniques and the principle of reporter assays already used in

early studies of RNA localisation elements. A sequencing based approach requires the generation of

distinct RNA pools, which is of course ideal in the neuronal system where neurites and soma can be

physically separated and also allows the analysis of a very large number of individual reporters at the

same time. Therefore, these approaches, usually called massively parallel reporter assays (MPRAs), have
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allowed the discovery of control elements for stability and translation control of RNAs (Oikonomou

et al., 2014; Rabani et al., 2017; Yartseva et al., 2017; Zhao et al., 2014) as well as nuclear RNA localisation

(Lubelsky & Ulitsky, 2018; Shukla et al., 2018).

Several technical aspects of the MPRA approach as well as choices in assay design can have strong

impacts on the obtained results, which is especially important to consider with an assay for a new model

system like neuronal RNA localisation. Foremost is the selection of the set of genes or sequences to

be analysed in the MPRA. Di�erent strategies have been employed to select these sequence pools: the

most common approach is informed manual or guided selection of di�erently sized sets of biologically

relevant genes (Lubelsky & Ulitsky, 2018; Rabani et al., 2017; Shukla et al., 2018; Yartseva et al., 2017),

but other approaches include the pre-screening of randomised oligos (Wissink et al., 2016), selection of

conversed sequences (Oikonomou et al., 2014) or analysis of di�erent mutations of a single sequence

to obtain detailed insights (Zhao et al., 2014). Since cis-active elements, and especially localisation

associated ones like zipcodes, are most often located in the 3’UTR of a transcript (Andreassi & Riccio,

2009; Gomes et al., 2014), it is reasonable to include only this part of the transcript sequences in the

assay.

While it would be possible to build a reporter system for the whole 3’UTR of a large set of genes,

this is technically quite challenging due to the very wide range of sequence lengths and would also

not even provide any information about the speci�c position of any potential zipcodes. Therefore,

the genes selected for analysis in an MPRA are usually subdivided into many equally sized sequence

fragments, which not only reduces technical noise in the reporter libraries, but also aids with streamlining

analysis. This subdivision can be done in two di�erent ways: either by selecting speci�c, potentially

overlapping, tiles with a de�ned o�set along each sequence (Lubelsky & Ulitsky, 2018), or by using

random fragmentation and size selection of a sequence pool (Yartseva et al., 2017). While the latter

o�ers potentially more distinct fragments and therefore a theoretically higher positional resolution for

identifying active elements, it also more heavily depends on high quality technical performance and

readouts to achieve this. Additionally, pre-de�ned sets of sequences allow for easier analysis and quality

control with RNA sequencing, since one can check for exact sequence matches.

Whichever set of genes and reporter sequences are chosen and generated for an MPRA, they have

to be converted into an actual reporter library pool, that can be used in the desired model system. While

some model systems like developing embryos allow direct injection of RNA (Yartseva et al., 2017), this is

not possible in neurons, where a transfection system that also works well with the non-proliferative

cells has to be used. Such a system is usually based on an initial plasmid library pool, in which additional

experimental parameters can be �ne tuned to the model system, like utilisation of a neuron speci�c

promoter. Furthermore, the source of neurons, or any other cells, is also an important parameter, not
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only because reliance on an established and well described system like primary neurons further cultured

in vitro determines the data quality obtainable from the assay, but also because the initial selection of

genes with potential active elements is usually built on knowledge that also derives from the same or at

least commonly used model systems. Finally, the reporter RNA in the cellular system has to be separated

into distinct functional groups material for RNA sequencing library generation. In the case of zipcodes

for neuronal RNA localisation, this can be achieved through the same physical separation procedures

that allow identi�cation and quanti�cation of localised transcripts in neurites.

2.4 RNA-Seq: high throughput data and their analysis

Regardless of whether one wants to study transcriptomics, perform an MRPA or study other aspects of

RNA biology, the most common method to identify and quantify many di�erent RNA molecules in one

experiments is RNA sequencing (RNA-Seq). This approach relies on reverse transcription of RNA into

cDNA, which can be identi�ed and quanti�ed using next generation sequencing (NGS) machines. While

NGS was originally developed as a tool to identify the primary sequence of genomic DNA fragments, in

modern transcriptomics it is mainly used to quantify the number of reads associated with a speci�c

transcript or gene and therefore also allows di�erential expression analysis (Stark et al., 2019).

A similar analysis approach was already possible based on RNA microarrays before the emergence

of sequencing. However, microarrays are limited to the detection and quanti�cation of known and

prede�ned transcript sequences and are also limited by the dynamic range of the probe scanner and

have higher noise levels than RNA-seq, where the dynamic range is also only limited by sequencing

depth (Wang et al., 2009; Wilhelm et al., 2008). Similarly to microarrays, other high throughput methods,

like mass spectrometry protein measurements, can usually also provide only intensity based readouts.

Nonetheless, modern shotgun proteomics are similarly to RNA-Seq in their ability to quantify the

whole proteome in a single experiment, relying on the identi�cation of peptides fragments to obtain

summarised quanti�cation of individual proteins (Tyanova et al., 2016).

All high-throughput methods have technical biases and uncertainties, which need to be accounted

for in the analysis to achieve proper quanti�cation of molecules. In RNA-Seq based transcriptomics

one major source of such uncertainty are over-ampli�ed cDNA duplicates generated during PCR based

library construction. The most common approach to overcome this issue is the introduction of unique

molecular identi�ers (UMIs), which are short randomised sequences tags introduced early on in the

cDNA or library preparation. The UMIs are then part of the sequenced reads and allow the distinction

between arti�cially duplicated cDNA fragments and true biological signal from multiple RNA fragments

with the same sequence (Kivioja et al., 2012).

Many di�erent approaches or methods built on RNA sequencing exist, like di�erent transcript
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selection procedures for mRNA (oligo-dT selection) or the total transcriptome (depletion of ribosomal

RNA). However, regardless of the approach or speci�c question, the basic steps in analysis of RNA-Seq

data are always similar: �rst read sequences need to be mapped to the genome or transcriptome to

subsequently allow summarisation of gene or transcript counts. These counts then have to be normalised

and potentially �ltered before di�erential expression analysis can be performed (Conesa et al., 2016).

Genome alignment of RNA-Seq reads to speci�c positions is performed with tools like STAR, that

perform a full sequence based alignment of reads (Dobin et al., 2013), but require a secondary step to

obtain the counts of reads mapped to each gene body. Alternative tools like salmon have emerged more

recently, which use k-mer based matching of reads to known transcript sequences to directly perform

quanti�cation (Patro et al., 2017). This approach is computationally much faster than other methods and

always includes partially estimated counts of individual overlapping transcript isoforms, but also looses

some accuracy for very small or lowly expressed RNAs (Wu et al., 2018) and only allows quanti�cation

and no other analysis like identi�cation of novel transcripts or splice sites (Stark et al., 2019).

The normalisation of RNA-Seq gene or transcript abundances, which are generally correlated to

expression levels, needs to account for the fact that read counts are derived from individually identi�ed

molecules. This is also the biggest di�erence between RNA-Seq and other high throughput methods like

mass spectrometry or microarrays, which produce intensity measurements. The distribution of these

counts is intrinsically biased to samples with a higher sequencing depth and, in the case of mRNA or

total RNA sequencing, but not necessarily for other protocols, also towards the transcript length, since

random fragmentation produces more readable fragments from longer transcripts (Conesa et al., 2016;

Stark et al., 2019). Normalisation for these two parameters does, depending on the order of normalisation,

generated either RPKM (reads per kilobase per million) or TPM (transcripts per million) values (Wagner

et al., 2012). While these values give good indications of relative transcript expression levels within or,

in the case of TPM, also between samples, they are not suited for di�erential expression analysis, since

the relative expression levels are not always directly comparable between samples (Bullard et al., 2010;

Dillies et al., 2013; Wagner et al., 2012).

2.5 Di�erential expression analysis and integration of multiple datasets

After counts from RNA-Seq have been generated and quality controlled, depending on the tools utilised,

either raw or properly normalized values can used for di�erential expression (DE) analysis, which allows

the calculation of relative expression changes between two experimental conditions expressed as log2

fold change values. Some of the most popular tools for DE analysis are DESeq2 (Love et al., 2014), which

was speci�cally developed for RNA-Seq data, and limma (Ritchie et al., 2015), which was originally

developed for microarray data, but can be used on any kind of expression data. DEseq2 operates
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on raw counts, since it performs it’s own normalisation, which includes calculation of size factors

controlling sequencing depth of samples that are modelled based on a negative binomial distribution

of the underlying count values. This approach allows for a robust estimation of baseline expression

levels, even with a relatively small number of samples and also for genes with low counts. However, it

also assumes that genes with similar expression levels also have similar dispersion, in order to allow

correction of the dispersion measured for individual genes from few samples by the observed average of

similarly expressed genes (Love et al., 2014).

In order to determine and enumerate expression changes between di�erent samples, both DESeq2

and other DE tools utilise a generalised linear model (GLM) that allows �tting of coe�cients for user

de�ned experimental variables. These coe�cients are derived from a statistical model provided for any

set of samples, which can accommodate anything from a simple comparison between two conditions to

a design with several co-factors and experimental variables. DESeq2 controls for the strong e�ect of

very low expression on log2 fold change values by correction of initial values with a secondary GLM

�t and enables testing for statistical signi�cance with the Wald test (Love et al., 2014). Both this test

for signi�cance and the GLM are build with the assumption that the majority of analysed genes does

not di�er between conditions and changes occur equally likely in either direction, i.e. that log2 fold

change values are centred around zero with a normal distribution. Other tools for DE analysis generally

share most assumptions made by DESeq2, but di�er in the exact algorithms used for individual steps

of the analysis. The limma tool for example, also is based on �tting of a GLM and groups similarly

expressed genes by variability to increase the statistical accuracy of log2 fold change values, but does

not itself contain steps for normalisation, which makes it also applicable to DE analysis of data types

other than RNA-Seq (Ritchie et al., 2015). A GLM supported analysis of multiple samples and e�ects

at the same time provides several bene�ts, but also makes proper model design and normalisation of

read counts more di�cult. The sharing of information in a larger set of samples and consideration of

known covariates can increase the statistical power of the model, even if DE is only calculated for a

given subset of conditions (Ritchie et al., 2015). Additionally, multiple comparisons can potentially be

done in the same singular modelling step, which improves both the runtime and comparability of results

within a given experiment.

As large sets of biological samples can often not be generated and processed at the same time, the

emergence of processing correlated batch e�ects is a common issue in DE analysis, but can be somewhat

mitigated by appropriate study design, even though additional correction may still be necessary (Leek

et al., 2010). This problem can also be overcome by using batch correction approaches, several of

which were developed for genomics or microarray studies before the wide spread usage of RNA-Seq.

If the batch variables are known, for example from di�erent processing times of samples, then it is
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possible to correct systematic di�erences in expression values using empirical Bayes models. This

approach is similar to GLM based determination of fold di�erences between conditions, as it also allows

borrowing of information from several genes to estimate and consecutively remove a global e�ect of

a certain batch variable on expression (Johnson et al., 2007). Since this approach can only adjust for

known batch variables, another method called surrogate variable analysis (SVA) was developed, which

allows batch correction after determination of unexplained singular vectors, or principal components,

within the residual expression variation not correlated to known parameters of interest (Leek & Storey,

2007). Another approach to determine batch factors is to focus on a set of negative control genes like

ubiquitously expressed house keeping genes or, especially for RNA-Seq, exogenous spike-in controls.

This approach minimizes the risk that any known or determined batch factors correlate with a biological

signal of interest, which could get lost during batch correction, and has been implemented as the remove

unwanted variation (RUV) method by Risso et al. (2014). It has also been shown that batch correction is

highly bene�cial for DE analysis, especially for large collections of data, and can even be applied without

explicit knowledge about negative control genes by including all genes as a proxy (RUVs approach)

(Peixoto et al., 2015; Risso et al., 2014).

Another possible complication for DE analysis is breaking of assumptions in the used models. While

this is very unlikely to occur during analysis of the full transcriptome, it is possible in an analysis with a

reduced number of genes or under circumstances where DE is very common. Such conditions are most

likely within in a reporter assay context, where several analysed transcripts share a similar sequence

and the experimental design may intentionally produce many positive results. Additionally, MPRAs

or other reporter libraries also have further deviation from standard transcriptome sequencing, like a

more homogeneous read length distribution and often either speci�cally designed fragments that can be

mapped to a known reference set or unknown fragments for which count bins over genomic or 3’UTR

regions need to be generated. Therefore analysis of such data often uses only a very simple approach

that only includes basic sequencing depth normalisation, generation of log ratios between conditions

of interest and potentially statistical test for the signi�cance of di�erences (Lubelsky & Ulitsky, 2018;

Oikonomou et al., 2014; Yartseva et al., 2017), even if more sophisticated analysis including model �tting

are possible if one ascertains that all model assumptions are met (Rabani et al., 2017).
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2.6 The importance of localised RNA in disease - ALS and the FUS protein

While basic research leading to a better understanding of how RNA localisation in general and within

neurons in particular is an important goal in itself, there is also considerable interest in understanding

its importance in neurodegenerative diseases. Several RNA binding proteins that have been tightly

linked to di�erent diseases, like SMN to spinal muscular atrophy, FMRP to fragile X syndrome as well as

FUS and TDP43 to frontotemporal dementia and amyotrophic lateral sclerosis (ALS), have indeed also

been associated with local RNA localisation (Thelen & Kye, 2020). Correspondingly, disruption of RNA

localisation has also been identi�ed has a hallmark of several neurodegenerative diseases including ALS,

but it is so far not clearly understood, whether this is a cause of or a symptom underlying the molecular

disease pathways (Mofatteh, 2021).

ALS in particular is an incurable disease that ultimately leads to death about 2-5 years after diagnosis

due to the irreversible loss of motor neurons. While the exact cause and progression of the disease

are not fully understood, one common theory is that the degradation starts at the synapses between

motor neurons and muscles, the neuromuscular junction (NMJ), and slowly progresses from there with a

’dying-back’ phenomenon (Dadon-Nachum et al., 2011). The exact mechanisms of how this degradation

and loss of motor neurons occurs involves many cellular pathways in a complicated network and as

such is still a matter of ongoing research. A good overview of the molecular pathology of ALS has

been given by J. P. Taylor et al. (2016). As ALS can occur both with and without a familiar genetic

background, a considerable amount of research into mutations that are most often associated with

especially the familiar origin of the disease has been conducted. The most important of these proteins

include SOD1, a mitochondrial enzyme for which most mutations gain a toxic function, C9ORF, a gene in

which CGG-repeat expansion leads to ALS, as well as the RBPs TDP43 and FUS, which both lose nuclear

localisation and become part of inclusion bodies in ALS (J. P. Taylor et al., 2016). This aggregation

as well as disrupted degradation of proteins, speci�cally including TDP43, is also one of the most

common hallmarks of most forms of sporadic and familiar ALS. Additionally, protein aggregation and

miss-folding, which also a�ects other ALS associated proteins like SOD1 and FUS, as well as generally

increased ER stress has also been reported as a common occurrence in ALS. Furthermore, the molecular

pathology of ALS also involves disruption of axonal transport, homeostasis, and the local transcriptome

and translatome (Suzuki et al., 2020), as well as contributions from non-neuronal cells, especially glia,

towards the disease (Haidet-Phillips et al., 2011). A �nal mechanistic link between the genes, whose

mutations are associated with ALS, which has so far not been investigated in depth, is the structural

G-quadruplex motif, which can also act as a zipcode in neurons (Maltby et al., 2020; Subramanian et al.,

2011). Not only can both FUS and TDP43 bind this motif (Imperatore et al., 2020; Ishiguro et al., 2016), it

can also be formed by the hexanucleotide repeats within C9ORF (Haeusler et al., 2014).
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In order to study ALS one either needs to rely on mouse models that can replicate the human disease,

or use in vitro generated human motor neurons as a model system. As importance of disease related

processes inside axons are reinforced by the fact that the dying back phenomenon starts there, an in

vitro model system that allows separation of soma and neurites is a promising approach towards this

particular �eld of study. The generation of motor neurons can either be achieved by di�erentiation of

stem cells after natural activation of signalling pathways through small molecules (Amoroso et al., 2013)

or by induced expression of neurogenic transcription factors (Hester et al., 2011; Mazzoni et al., 2013).

Both of these approaches can yield motor neurons, however, induced di�erentiation is often possible

in a shorter time frame, achieves higher di�erentiation e�ciency and also yields more reproducible

results, even if the resulting cells may not fully recapitulate speci�c motor neuron subtypes formed

in vivo (Davis-Dusenbery et al., 2014). In addition to their ease of handling, in vitro generated motor

neurons have the added bene�t that ALS associated mutations can easily be introduced in a wild type

cell line, or corrected in a phenotypic cell line.

Of particular interest for basic research into the molecular mechanics of ALS is the FUS protein,

which is not only the second most common cause of familiar ALS with around 5% of all such cases

(Kwiatkowski et al., 2009), but also has been associated with frontotemporal dementia (FTD), another

neurodegenerative disease that has molecular similarities to ALS, but a�ects the brain rather than motor

neurons (J. P. Taylor et al., 2016). Furthermore, FUS can a�ect both RNA transport and local translation in

axons, where the presence of mutant protein also impedes synaptic activity (López-Erauskin et al., 2018).

Additionally, most ALS associated mutations of FUS occur in its 15th exon, which codes for its nuclear

localisation sequence (NLS) and a considerable portion of its neurotoxic potential has been ascribed

to a gain-of-function related to an increased cytoplasmic localisation of FUS (E�mova et al., 2017).

These aspects indicate that mutant FUS protein most likely induces ALS by a toxic gain-of-function,

which is assumed to be linked to both its propensity towards formation of aggregates (Sun et al., 2011)

and its ability to bind cytoplasmic transcripts that are normally not available to it (Hoell et al., 2011).

Nevertheless, FUS also serves a plethora of other functions, including DNA repair, transcriptional

regulation, splicing, and RNA transport (E�mova et al., 2017), whose impediment through mutations

may also contribute to cellular ALS mechanisms and thereby complicate identi�cation of individual

pathways contributing to disease etiology.
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2.7 Aims of my thesis

The work I have performed for this thesis all revolves around and tries to improve our understanding of

the particulars, mechanisms and implications of RNA localisation in neurons.

Towards this end I aim to leverage newly generated and available public RNA-Seq data and integrate

them into an encompassing and robust summary of a systems level view of localised transcripts based on

both presence and enrichment in neurites. Further, I use this knowledge to design an MPRA to identify

so far unknown zipcode elements within the 3’UTR space of commonly neurite localised transcripts.

Using, �rst, the combination a of data driven selection procedure and curation for reliable signals and,

second, a mutation analysis approach I want to identify the sequences identity and potential mechanisms

of novel candidate zipcode elements.

Additionally, I apply omics analysis of RNA and protein expression in a motor neuron model with the

aim of gaining further insights into potential disease mechanisms of ALS. For this I �rst need to ascertain

the usability of an induced motor neuron (iMN) model generated from controlled di�erentiation of

human induced pluripotent stem cells (hiPSC) by generating a detailed characterisation including the

local transcriptome and proteome. Using di�erential expression analysis between di�erent patient

derived FUS mutant and speci�c isogenic control motor neurons I then aim to identify individual or

groups of genes that show potentially compartment speci�c expression changes linkable to the ALS

associated mutations.
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3 Material and methods

3.1 Comparison of RNA-Seq data from neuronal compartments

All experimental procedures regarding the generation of RNA-Seq data from PCN described in this

section 3.1 were performed by Sayaka Dantsuji.

3.1.1 PCN generation and cell culture

Primary neurons were dissected from cortex of E14 mouse embryos and cultured in neurobasal A media

supplemented with B27 (1:50), Glutamax (1:100) and penicillin-streptomycin (1:1000). For subsequent

separation of neurons, cells were grown on microporous membrane �lter insets, which also allowed

cells to be grown in co-culture with astrocytes, which were as well obtained from mouse embryos and

placed in the wells before culture of neurons began. Medium was changed regularly and after 9 days in

vitro (DIV9) cells were �xed with 100% methanol prior to compartment separation and RNA extraction.

3.1.2 Compartment separation and generation of RNA-Seq libraries

For separation of neuronal compartments, �rst the soma growing on top of the �lter insets were collected

with cold PBS and transferred into Trizol (Thermo Fischer) after removal of PBS. The �lters were cleaned

using cotton swabs and then also transferred to Trizol (see Ludwik et al. (2019) for a detailed protocol).

RNA was extracted from Trizol using chloroform/isopropanol extraction according to manufacturers

recommendations. Integrity of collected RNA samples was analysed using Bioanalyser and e�ciency of

compartment separation was ascertained based on qPCR.

RNA sequencing libraries were generated in triplicates from 120ng of total RNA using the TruSeq

Stranded Total RNA library kit (Illumina, RS-122-2201) according to manufacturers protocol. The �nal

libraries were sequenced using an Illumina NextSeq500 machine with 151 single end read cycles.

3.1.3 RNA-Seq analysis using PiGx

For publicly available RNA-Seq data from compartment separated neurons, I obtained raw data deposited

with the NCBI GEO repository from the following studies: Briese et al. (2016), Cajigas et al. (2012),

Ciolli Mattioli et al. (2019), Farris et al. (2019), Middleton et al. (2019), Minis et al. (2014), Nijssen et al.

(2018), Poulopoulos et al. (2019), Taliaferro et al. (2016), Tóth et al. (2018), Tushev et al. (2018), and

Zappulo et al. (2017). For datasets without available fastq data, I used the un-normalised counts provided

in the supplementary �les of the respective studies (Maciel et al. (2018) and Rotem et al. (2017)). For

processing of fastq �les, I used the PiGx RNA-Seq pipeline (version 0.0.10) (Wurmus et al., 2018), which

included quality and adapter trimming performed with trim_galore, genome mapping with STAR
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(Dobin et al., 2013) and read counting with R (GenomicAlignemts::summarizeOverlaps). The

necessary genome and transcriptome �les were downloaded from ENSEMBL: Mus musculus, GRCm38,

version 96; Rattus norvegicus, 6.0, version 98; Homo sapiens, GRCh38, version 97. Genes from human or

rat datasets were assigned to orthologous mouse genes based on biomaRt annotation (Durinck et al.,

2009) with exclusion of many-to-many orthologs and genes without any orthologs. In the case of

multiple human or rat genes orthologous to a single mouse gene, I only assigned the highest expressed

gene as an ortholog to mouse. To obtain TPM values, I normalised read counts of all samples to average

transcript length based on respective genome annotation and to total reads per sample. Then I averaged

TPM values for datasets and compartments and only retained genes with an average TPM>1 in a given

dataset for comparison.

Additionally RNA-Seq libraries from PCN were generated by Sayaka Dantsuji. I processed these data as

described above using PiGx, however the data also showed evidence of DNA contamination so I only

used genes with htseq-based log2 read counts ratios of exon/intron>2.5 and sense/antisense strand>2

for any further analysis of this dataset.

3.1.4 Di�erential expression analysis

I performed di�erential expression analysis for samples from neurite and soma compartments individ-

ually within each dataset on raw counts of all genes with average TPM>0 (across all samples) using

DESeq2 (Love et al., 2014). Genes with signi�cant (adj. p-value <0.05) enrichment with log2 fold change

(log2fc) at least 0.5 I considered as localised (for either compartment).

In order to perform di�erential expression analysis on all datasets at the same time, I removed unwanted

variation between the datasets using the RUVs approach (Risso et al., 2014). Using kBET, a k-nearest

neighbour test method for batch e�ects (Büttner et al., 2019), I determined k=14 to be best number

of factors of unwanted variation to remove, as it showed the smallest di�erence between expected

and observed batch e�ect. I then used DESeq2 with a model considering all 14 numerical factors as

determined by RUVs as well as the dataset-identity as covariates to determine the di�erential expression

between neurites and soma for all datasets.

In addition to di�erential expression I also extracted variance stabilised counts from the DESeq2 model

and used those for principle component analysis.
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3.2 Neuronal zipcode ident�cation protocol (Nzip)

All experimental procedures described in this section 3.2 were performed by colleagues from the

Chekulaeva lab and MDC: Sayaka Dantsuji generated all Nzip library pools, obtained PCN and performed

sequencing of Nzip libraries (3.2.2-3) as well as small RNA libraries (3.2.6); Marina Chekulaeva performed

RNA a�nity pulldown with help from Nadja Zerna (3.2.7); Samantha Mendonsa generated PCN protein

lysate for mass spectrometry (3.2.7); and Marieluise Kirchner (from the lab of Philipp Mertins) performed

mass spectrometry measurements and raw data processing (3.2.7-8). Additional analysis of miRNAs

counts in small RNA-Seq data and of Nzip mutation libraries was performed by collaborators from the

Weizman institute (Maya Ron, Igor Ulitsky).

3.2.1 Design of Nzip reporter library

For the selection of genes with a potentially unknown zipcode in the 3’UTR , I used neurite and soma

compartment separated RNA-Seq data both from the PCN data generated in our group and from other

published datasets derived from primary neurons (Briese et al., 2016; Middleton et al., 2019; Minis et al.,

2014; Rotem et al., 2017; Taliaferro et al., 2016; Tushev et al., 2018). I considered genes localised to

neurites in a given dataset if they had log2fc >0 with an adj. p-value <0.05. For the selection across

datasets I also calculated the average and median of all signi�cant log2fc values across the datasets

and classi�ed genes as unanimously neurite localised if no signi�cant enrichment in soma (log2fc

<0, adj. p-value <0.05) existed. Then I selected genes with both consistent and su�ciently strong

neurite localisation by taking those that showed: (1) neurite localisation in at least 4 datasets with a

median log2fc >1 and either unanimous neurite enrichment or an average log2fc >1; or (2) neurite

localisation in at least 5 datasets with median log2fc >0 and additionally either mean or median log2fc

>1 or unanimous neurite localisation. To ensure compatibility of this resulting Nzip selection with our

PCN model system I then removed all genes that did not have a signi�cant neurite enrichment in our

PCN data (log2fc >0, adj. p-value <0.05). Further manual curation of this gene list was performed to: (1)

ensure inclusion of genes with described zipcodes or neurite localisation elements: Actb (Kim et al., 2015;

Kislauskis et al., 1994), Arc (Kobayashi et al., 2005), Bc1 (Muslimov et al., 2006), Bdnf (An et al., 2008; Oe

& Yoneda, 2010), Camk2a (Blichenberg et al., 2001; Huang et al., 2003; Mori et al., 2000; Subramanian

et al., 2011), Cdc42 (Ciolli Mattioli et al., 2019), and Map2 (Blichenberg et al., 1999)); (2) add genes with

strong or consistent neurite localisation in other non-primary datasets, either published (Taliaferro

et al., 2016; von Kügelgen & Chekulaeva, 2020; Zappulo et al., 2017) or in-house: Rab13, Net1, Hmgn5,

2410006H16Rik, Pfdn5, Tagln2, Pfdn1, Cryab, Rpl14, Eef1b2, and Eef1a1; (3) remove genes with functions

in nucleus or translation (Pola1 - DNA polymerase, Ezh2 - Polycomb complex, Smc4 - Chromosome

structure, Cenpb - Centromere structure, Ncl - nucleolus, Pink1 - mitochondrial damage response; and
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(4) restrict the number of ribosomal proteins in list of enriched transcripts to a smaller subset, also with

su�ciently long 3’UTR to use for tiling (Rplp2, Rpl12, Rpl39, Rpl37, Rps28, Rpsa, Rps24, Rps23, Rps18).

I used the biomaRt ENSEMBL interface (Durinck et al., 2009) to download the 3’UTR sequences of

all transcript isoforms annotated to these genes. For all di�erent isoforms of the same gene I merged

the overlapping sequences to obtain continuous unique sequences of each. For genes with multiple

sequences obtained in this manner I relied on transcript annotation as well as genome browser tracks

from the PCN data to select a single expressed and functional 3’UTR sequence. In the case of C�ar and

Cdc42 I included two di�erent 3’UTR sequences in the selection each derived from alternative last exons.

For the genes Hdac5 and Arhgap11a I obtained di�erent but partially overlapping or heavily repetitive

3’UTR sequences, which I manually merged into a single one containing all unique sequence elements.

This resulted in a �nal set of 99 3’UTR sequences derived from 97 di�erent genes (Table S3).

For each of these sequences I generated 75nt or 100nt tiles for sequences with total length above 500nt

with 15 or 25nt o�sets so that each sequence was covered from start (5’) to end (3’). For the last remaining

part of each sequence I either extended the last tile to a maximum size of 80nt or 110nt respectively or

added an additional shortened tile. Additionally I added 5 scrambled (randomised) tiles for each of the

�rst tile of Camk2a, Actb and Bc1. The �nal set encompassed 4813 tiles and was ordered including 3’

and 5’ cloning adapters.

3.2.2 Generation of Nzip reporter library pools

The synthesized oligo tile pool was PCR ampli�ed based on the cloning adapters and then cloned into

the 3’UTR of a synapsin promoter driven GFP cassette in a plamsid allowing for lentiviral packaging

(Addgene #20945).

Lentiviral particles were generated in HEK 293T cells and concentrated using Lenti-X concentrator

(631232 Takara Bio) before application to cortical neurons at around DIV5.

3.2.3 Generation of Nzip sequencing libraries

RNA material from PCN transfected with the Nzip reporter library was collected as described above (see

3.1.2) in two initial experiments at DIV14 or in one (con�rmation) experiment at DIV9. For the two initial

experiments neurons were inhibited with 50µM AP5 and 10µM NBQX for 16h before harvesting of RNA

material. In one of these experiments the neurons were depolarized after the silencing treatment with

55mM KCl for 1h. Additionally, the material obtained from soma compartment of these experiments was

further separated using NE-PER nuclear and cytoplasmic extraction reagents (Thermo Fisher Scienti�c)

to obtain RNA from these compartments.
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For preparation of Nzip sequencing libraries 600ng total RNA treated with DNAse and a custom

protocol utilising Superscript III (Thermo Fischer) was used with speci�c �rst and second strand primers

designed to only bind and amplify the common adapter sequence of all tiles and add UMI sequences

with staggered lenghts to the 3’ start of each sequence fragment (Table S1). Final ampli�cation of

the library was performed using NEBNext High-Fidelity 2X PCR Master Mix and added the binding

sequences for Illumina sequencing and barcoding to the libraries. The �nal libraries were sequenced

after puri�cation and dilution using an Illumina NextSeq 500 sequencer with either paired-end 76nt

reads (initial experiments) or single-end 151nt reads (con�rmation experiment). All experiments were

performed in triplicates.

3.2.4 Nzip reporter library data analysis

To obtain read and UMI counts from the Nzip libraries I build a data processing work�ow utilising

umi_tools (Smith et al., 2017) for identi�cation and error correction of UMIs and salmon (Patro et

al., 2017) for mapping reads to the full sequence set of all tiles. First I extracted the UMIs encoded

in the second strand library generation primers (Table S1) using umi_tools with the following regu-

lar expression pattern: "(?P<umi_1>.9)(?P<umi_2>(CA|AGC|TCGC|GGCTC|CCAGCACCA)?)

(?P<discard_1>GCCATAA)s<=1". After using the PiGx pipeline to obtain quality trimmed reads and

building a salmon index of all tile sequences including the cloning adapters, I mapped reads to the tiles

using salmon with the options --validateMappings -z --recoverOrphans --skipQuant

(salmon version 1.1). I further processed the obtained bam �les using bash scripts relying on samtools

and awk to pad the UMI sequences for each read, so that all UMIs had the same length needed for

umi_tools processing, and to assign a new attribute �ag to the primary mapped location of each read.

Next, I used umi_tools group to add error corrected UMIs and their group identi�ers to the bam

�le entries, before I �nally used an awk|sort|uniq -c based bash pipe to count the occurrence of

all unique read mapping states separated by error corrected UMI groups, relative tile position and read

length. Finally, I summarised count tables for all samples using custom R scripts to obtain the complete

UMI counts for each tile. Reads not mapping to the tile start were almost non existent and I did not

remove reads not spanning a full tile (or without a mapped read mate) to retain comparability of my

pipeline with that from our collaborators.

After initial tests to rule out negative in�uence of di�erent tile mapping states, as well as assertion

that modelling of size factors worked similarly as on transcriptomic data, I proceeded with di�erential

expression analysis using DEseq2 (Love et al., 2014). For this I calculated enrichment of tiles between

neurite compartment and either soma or cytoplasm, from all three replicate samples. Only in the case
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of the initial experiment with depolarized PCN I removed one sample due to bad comparability with

replicates.

From each experiment I de�ned peaks of overlapping neurite enriched tiles by selecting all groups of

consecutive tiles that showed a neurite enrichment with log2 fold change >0.5 and had at least one tile

with signi�cant adj. p-value (p<0.05) and one with log2 fold change >0.75.

3.2.5 Design of Nzip mutation library

Using preliminary analysis of the initial Nzip experiments provided by collaborators (Igor Ulitsky,

Maya Ron) I determined neurite enriched tile groups with candidate zipcodes. For this I relied on the

neurite/cytoplasm log2 ratios as well as nucleus/cytoplasm ratios or on p-values I obtained from running

DEseq on the raw counts of neurite and cytoplasm samples. I considered a group of tiles as a peak if

(1) at least 2 consecutive tiles had a median neurite/cytoplasm ratio >0.5 and nucleus/cytoplasm ratio

between -3 and 0.5, while at least one tile in a given group had a neurite/cytoplasm ratio >0.75 or if (2)

at least 3 consecutive tiles had either a mean neurite/cytoplasm ratio >0.5 or a mean neurite/cytoplasm

ratio >0 with a signi�cant adj. p-value (<0.05), while at least two tiles in a given group had a signi�cant

adj. p-value and a neurite/cytoplasm ratio >0.75. Based on these peaks from either or preferentially both

of the initial Nzip experiments, the following 16 tiles were chosen to be further studied by mutational

analysis: Bdnf tile 56, Cald1 tile 58, Camk2n1 tile 12, Cox5b tiles 6&7, Golim4 tile 56, Kif1c tile 80, Mcf2l

tile 7, Msn tile 48, Ndufa2 tiles 11&12, Rassf3 tile 91, Rps23 tiles 11&12, and Utrn tile 61. (see also Table

S4).

For each of these tiles I generated: (1) every possible single point mutation, (2) transversion mutations in

non-overlapping 2, 5 and 10nt windows each, so that every position was covered by one window of each

size, and (3) three scrambled (randomised) control tiles. All of these tiles together with non-mutated

WT tiles were combined into the second Nzip mutation library and also ordered with added 3’ and 5’

cloning adapters.

The mutation reporter library and viral vectors were generated in the same manner as before and se-

quencing libraries were obtained following the same protocol as the con�rmation experiment. Processing

and generation of tile counts for these libraries was performed by collaborators.

3.2.6 miRNAs quanti�cation from small RNA-Seq

Small RNA-Seq sequencing was performed by extracting short RNAs from 500ng of total RNA from

PCN compartments separated as described before and then using 100ng of the shorter RNAs as input for

TruSeq Stranded Total RNA library kit (Illumina, RS-122-2201) according to manufacturers instructions.

Triplicate libraries were sequenced on Illumina NextSeq 500 machine with 151nt single end reads.
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Identi�cation and counting of miRNA sequences and sequence families was performed by collaborators.

Due to no known normalisation markers with similar relative expression in the small RNA-Seq reads,

no di�erential expression analysis between miRNAs and no relative expression strength of mRNA and

miRNAs could be performed.

3.2.7 RNA a�nity pulldown and mass spectrometry

For a�nity pulldown of proteins binding the (AU)8 element, DNA constructs with carrying (AU)8-boxB

or mutated-(AU)8-boxB were generated from synthetic oligos corresponding to Rassf3 tile 91 or a mu-

tated version, where (AT)8 was replaced with GTACATACATGTACAT, by annealing and cloning into a

vector containing boxB sites. RNA probes for the pulldown essay were generated using T3 Megascript

in vitro transcription kit (Thermo AM1338) according to the manufacturer’s recommendations. RNA

a�nity pulldown was performed following a modi�ed gRNA chromatography protocol (Chekulaeva

et al., 2006; Czaplinski et al., 2005): �rst GST-lambdaN fusion peptide was immobilized on Glutathione-

Sepharose 4B (Amersham, 17075601); then beads were incubated with �rst 25pmol of either (AU)8-boxB

or mutated-(AU)8-boxB RNA and second with 3mg of protein lysate prepared from P0 mouse brain, with

in-between washing steps; and after �nal washing proteins were eluted from the beads with 0.15µg

RNAse A and recovered by centrifugation after precipitation from the eluate.

To obtain total protein lysate from neurite and soma compartment of PCN the cells were grown and

separated as before, but instead of using Trizol for lysis and sample collection bu�er (8M UREA, 0.1M

Tris-HCl pH7.5) was used instead.

Both eluate from RNA a�nity pulldown and total protein lysate from PCN compartments were

further processed using in solution digest with trypsin and desalted peptides were then analysed

with liquid chromatography-tandem mass spectrometry (LC-MS/MS) using a Q Exactive HF-X mass

spectrometer coupled to an Easy nLC 1200 system (Thermo Scienti�c). All samples were measured in

triplicates.

3.2.8 Mass spectrometry data analysis

Raw mass spectrometry data was processed using MaxQuant software (1.6.3.4) (Tyanova et al., 2016)

with false discovery rate (FDR) for peptide identi�cation set at 1%. Identi�ed proteins were �ltered to

exclude reverse database hits, potential contaminants, and proteins only identi�ed by site.

Analysis of protein enrichment in the eluates of RNA a�nity pulldown from intact and mutated (AU)8
element was performed by Marieluise Kirchner: �rst LFQ intensity values were used to remove proteins
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not present in at least one eluate group with a minimum value of 3, before performing imputation for

missing values using a random noise distribution to simulate the detection limit of the mass spectrometer.

Proteins with signi�cantly di�erent presence between the two eluates were determined using Student’s

Two sample t-test with equal variance and permutation based FDR, which was corrected fo multiple

testing by the Benjamini-Hochberg (BH) approach.

For analysis of mass spectrometry data from neurite and soma compartments of PCN, I used the

iBAQ values from the preprocessed MaxQuant output and the DEP R package (X. Zhang et al., 2018).

First, I removed all proteins, which were detected in fewer than half of all samples irregardless of

compartments, and the performed imputation using random draws from a Gaussian distribution centred

on a minimal expression values (DEP MinProb algorithm). For normalisation I used the housekeeping

gene GAPDH as a reference and for each compartment divided all iBAQ values by the median GAPDH

expression. Finally, I performed di�erential expression analysis between compartments based on a

generalised linear model by using the DEP implementation of limma and added p-value correction with

the BH approach.

3.3 Characterisation of iMN and analysis of iMN with FUS mutantions

Experiments for generation of iMN derived data (3.3.1-3) were performed by Katarzyna Ludwik (wild type

iMN) and Samantha Mendonsa (FUS mutant iMN) with help of Tommaso Mari for mass spectrometry

processing and anaylsis (3.3.5).

3.3.1 Generation of hiPSC NIL lines

Human iPSC lines were derived from patient �broblasts by the MDC stem cell score (Dr. Diecke) or

Applied StemCell, Inc. (USA, California). Fibroblasts originated from patients with either no known

ALS background (wild type (WT)); a FUS P525L mutation, but no diagnosed ALS; or a FUS R244RR

mutation and ALS disease. For each of the hiPSC lines carrying FUS mutations an isogenic control

line with a corrected FUS gene was generated using the CRISPR/Cas9 system by Axol Bioscience Ltd

(UK). An expression cassette for doxycycline induction of NIL (NGN2, ISL1, LHX3) factors, designed by

Fernandopulle et al. (2018) (Addgene plasmid #105841), was stably inserted into the CLYBL locus using

TALEN mediated insertion (TALEN’s from Addgene plasmids #62197 and #62196).

3.3.2 Cell culture and di�erentiation of hiPSC

For general cell culture hiPSC lines were maintained in E8 media. Before the start of di�erentiation of

hiPSC into iMN, at day 0, the cells were passaged with Accutase and plated on Geltrex coated dishes
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in E8 media with Rock inhibitor. At the start of di�erentiation, day 1, cells were changed to induction

media (IM), which includes doxycycline. At day 3, cells were replated into IM supplemented with FuDR

onto Geltrex coated 6-well dishes for total cell material or �lter membrane inserts for separation of

compartments. From day 4 on di�erentiating cells were maintained in motor neuron media (MM) with

supplements. Following that media was partially exchanged every 2-3 days, after day 9 MM without

B27 and N2 supplements was used.

E8 media:

DMEM Nutirent Mix F12 (500ml, Thermo Fischer)

Sodium Bicarbonate Sol (3.6ml, Thermo Fischer)

Stem cell supplements (provided by MDC stem cell core facility)

Induction media (IM):

DMEM/F12 w/ HEPES (Thermo Fischer)

N2 supplement (1:100, Thermo Fischer)

Non-Essential Amino Acids (1:100, Sigma)

Glutamax (1:100, Thermo Fischer)

ROCKi (10µM) (1:1000, Selleck Chem)

Doxycycline (2µg/ml) 1:1500

Compound E (0.1µM) 1:10000

Motor neuron media (MM):

Neurobasal medium (Thermo Fischer)

B27 supplement (1:50, Thermo Fischer)

N2 supplement (1:100, Thermo Fischer)

Non-Essential Amino Acids (1:100, Sigma)

Glutamax (1:100, Thermo Fischer)

Laminin (1µg/ml) (1:1000, Sigma Aldrich)

10ng/ml each BDNF, CNTF, GDNF

3.3.3 Generation of iMN sequencing libraries and proteomics samples

Throughout the di�erentiation of WT iMN samples from total cells were collected on days 1, 2, 4, 7, 14, and

21. RNA samples were collected in Trizol and processed according to manufacturers recommendations

and protein samples were collected in 8M UREA, 0.1M Tris-HCl (pH7.5) bu�er. For total cell samples

of FUS mutant iMN and compartment separation of all lines samples were collected at day 21 of the

di�erentiation. Separation of neurite and soma compartments was performed in the same manner as

described above for PCN, only that two membrane �lters were combined for a single neurite sample.

For generation of RNA sequencing libraries 100ng of total RNA from total cells, neurite or soma

compartment with added ERCC RNA spike-in mix (Ambion) were used as input for Truseq stranded

mRNA library prep kit (Illumina 20020594). All libraries were prepared in triplicate and sequenced on

an Illumina NextSeq 500 machine with single-end 151 single end read cycles.

For mass spectrometry triplicate samples were processed for in-solution protein digestion (Mertins

et al., 2018). Then digests were acidi�ed and centrifuged to remove the precipitated urea, before the

resulting peptides were de-salted via stop-and-go extraction (Rappsilber et al., 2007). Finally, samples

were loaded on acetonitrile and formic acid activated C18 material (3M Empore) and washed twice
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with tri�uoroacetic acid and formic acid before elution. For mass spectrometry approximately 1µg of

peptides per sample was online-separated on an EASY-nLC 1200 (Thermo Fisher Scienti�c) and acquired

on a Q-Exactive HFx (Thermo Fisher Scienti�c).

3.3.4 RNA-Seq analysis for iMN

I processed the RNA-Seq data from all iMN samples with PiGx as described above (3.1.3), except that

I included the codon optimised LHX3 sequence of the NIL cassette in the transcriptome annotation

for analysis of total cell samples from the di�erentiation time course. Also, I used the transcriptome

quanti�cation output of salmon (Patro et al., 2017) for all downstream analysis.

For data from the WT di�erentiation I removed one of three replicates each from the days 2, 4 and 21 due

to low quality and similarity to the remaining replicates. Furthermore, I only retained genes detected

with a TPM value of at least 1 in 2 or more replicates for analysis and visualisation. I calculated the

compartment enrichment between neurites and soma using the DESeq2 (Love et al., 2014) implementation

within the PiGx environment and again �ltered genes with the same criteria.

For analysis of the iMN with mutated or corrected FUS genes I used tximport (Soneson et al., 2015) and

DEseq2 (Love et al., 2014) to perform di�erential expression analysis between individual compartments

of FUS mutant lines and their respective isogenic controls for all comparisons in parallel to bene�t from

normalisation across a multitude of samples. This analysis also included mutant and control samples

from a third patient, which was excluded from the �nal results because chromosomal aberrations were

detected in one of these hiPSC lines.

3.3.5 Mass spectrometry analysis for iMN

All raw mass spectrometry data was processed with MaxQuant (Tyanova et al., 2016) version 1.6.3.4

using the MaxLFQ quanti�cation method (Cox et al., 2014). Proteins were identi�ed from the human

uniprot databases (Jan 2020) with a 5% FDR cuto� and hits from the reverse database, only identi�ed by

modi�ed site or with less than two peptides were removed. The protein data was the �ltered so that only

proteins detected either in all replicates of one time point for the WT di�erentiation data or in at least

two out of three replicates for other experiments were retained. Missing values were the imputed by

randomly selecting replacement values from a normal distribution with 30% the standard deviation of

known values and shifted downwards by 1.8 standard deviation units (Hein et al., 2015). Imputation and

normalisation of LFQ values was performed across timepoints for WT di�erentiation data and within

compartments (neurite, soma and total) for all other experiments.

For analysis of neurite/soma protein enrichment in the WT line a t-test was used to evaluate whether

di�erences between (log scale) LFQ values were signi�cant. For di�erential expression between FUS
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mutant lines and isogenic controls I used the limma R package (Ritchie et al., 2015) to �t a linear model

and obtain log2 fold change and p-values for each pair of patient line with control and compartment.

Finally, I mapped uniprot identi�ers to Ensembl gene ids and resolved many-to-one mapping con�icts

by only taking values from the protein detected in the most samples using highest overall detection as a

tie breaker.

3.4 Celltype deconvolution for iMN

Raw fastq �les from sequencing libraries of individual neurons with accompanying action potential

(AP) type classi�cation based on electrophysiology measurements were provided by Cedric Bardy et al.

(2016). I processed these �les using PiGx and imported raw counts from salmon using tximport. Then I

used the Seurat R package (Stuart et al., 2019) to process (CreateSeuratObject, parameters: min.cells=3)

and normalise counts. For this I only used cells with AP type 1-5 and grouped the types 1-3 together.

Finally I determined di�erentially expressed marker genes between AP type groups (1-2-3, 4 and 5)

using the FindAllMarkers function (parameters: logfc.threshold=0.25 and min.pct=0.25).

I used all genes identi�ed this way as signature markers for celltype deconvolution of total cell time

points day 4 to day 21 with CIBERSORTx (Non-default signature matrix settings: 25-300 barcode genes;

single cell min. expression 1, replicates 0 and sampling 0; 500 permutations used for statistical analysis

in cell fraction imputation) (Newman et al., 2019).

3.4.1 Functional enrichment analysis

I performed gene ontology (GO) term enrichment analysis of functional terms among genes with

signi�cant enrichment in speci�c compartments or di�erential expression between FUS mutant iMN

lines and controls using the gpro�ler2 R package (Kolberg et al., 2020) with default settings except for

setting a custom background of all detected genes.

For analysis of the WT line iMN I used proteins and transcripts enriched in either neurite or soma

compartment (adj. p-value <0.05 and log2fc >1 or <-1) for GO term analysis (using the gene ontology

release from 2020-06). I �ltered the terms enriched in the groups of localised genes for overlap between

the analysis of both localised proteins and transcripts, a maximum of 1000 annotated genes and at least

25 genes overlapping with the localised groups before applying an additional �lter based on graph of

GO term relationships to focus remove enriched but functionally related terms (see below).

In case of the FUS mutant lines I performed GO analysis for all proteins di�erentially expressed

in any compartment of either FUS mutation separately for up and down regulated proteins (using the

gene ontology release from 2022-01). Then I �ltered for enriched GO terms with at least 2 di�erentially

expressed proteins and further with the graph based approach (see below), before taking the 5 most
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signi�cant terms from each GO domain, direction (up/down), compartment and FUS mutation line.

For �ltering based on the graph structure of the GO terms I relied on the parent and daughter

relationships of only the enriched terms from a given analysis (including direction, compartment and

mutation line): within one analysis from all enriched terms I selected only those terms that had either

no direct daughter terms enriched or no direct parental terms enriched. This approach removes terms

which are neither start nor end nodes in a connected subtree of functionally enriched terms.

3.4.2 Analysis of genes disrupted by FUS mutations

Based on the di�erential expression analysis between FUS mutant iMN lines and their isogenic controls

for both RNA and protein data (see above), I assigned a di�erential expression score for each gene.

This score represents the sum of instances in which there is signi�cant (adj. p-value <0.05) di�erential

expression with a log2fc >1.5 counted as one (1) score point and log2fc >1 (but ≤1.5) counted one half

(½) score points. Points from di�erential expression in all compartments, data modalities (RNA and

protein) and FUS mutations (P525L and R244RR) were combined together.

To compare the log2 fold change values of transcripts with di�erent features, I �rst assigned

di�erent sequence based and functional annotation to genes: for direct binding by either wild type

or mutant (cytoplasmic localised R521G or R521H) FUS I relied on CLIP hits as determined by Hoell

et al. (2011). The presence of a G-quadruplex motif I determined by searching for the presence of

sequence motif GGGN0−6GGGN0−6GGGN0−6GGG (Subramanian et al., 2011) in the most expressed

transcript (based on salmon quanti�cation) of each gene. I obtained information about the presence

of a signal peptide in a given gene from the signalp database (Armenteros et al., 2019) accessible by

biomaRt (Durinck et al., 2009). For annotation of �nal localisation of gene products I relied on GO

annotation (GO 2022/01 release mapped to ensembl gene ids by uniprot identi�ers): plasma membrane

(PM) components (combined from the GO terms: integral component of plasma membrane, GO:0005887;

intrinsic component of plasma membrane, GO:0031226; anchored component of plasma membrane,

GO:0046658; extrinsic component of plasma membrane, GO:0019897; and spanning component of plasma

membrane, GO:0044214), extracellular (GO:0005576), and extracellular matrix (ECM, GO:0031012). To

test for an e�ect of these gene features on di�erential expression between FUS mutant iMN and controls

within one compartment, I used t-tests to compare the log2fc values of genes with a certain feature to

those without the feature. For an overlap of the G-quadruplex motif with GO annotation features or for

the ECM sub-group of extracellular proteins I compared against all genes that had both features (all

ECM annotated genes were also annotated as extracellular) and compared them against the broader

group of GO annotated genes. Finally, I adjusted all calculated p-values using the BH approach.
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4 Results

The work I am presenting in my thesis is grouped into three parts: �rst, the comparison of di�erent RNA-

Seq datasets to describe the composition of a core transcriptome present in neurites and to determine

transcripts commonly localised to neurites across di�erent model systems. Second, the analysis of

the Nzip MPRA to uncover novel zipcode element candidates and identify their sequence identity and

potential modes of action. And �nally, the characterisation of human motor neurons induced from

expression of transcription factors NGN2, ISL1 and LHX3 as well as the analysis of transcriptome

and proteome of such iMN carrying ALS associated FUS mutations to identify genes involved in the

molecular disease etiology.

4.1 Commonly neurite localized mRNAs

4.1.1 The core neurite transcriptome

The study of subcellular localization of mRNA in neurons is a wide research �eld with many di�erent

contributors spanning both diverging motivations and approaches. While several previous works have

stated similarities among studies, no encompassing overview or comparison of the available data had been

performed until I addressed this issue in one of my previous works and provided a �rst comprehensive

resource including most published datasets available at that time (von Kügelgen & Chekulaeva, 2020).

Observable trends, which individually have also been mentioned by previous studies, but generally apply

across all datasets include the common neurite localisation of mRNAs encoding ribosomal proteins,

cytoskeleton associated proteins and proteins with functions in mitochondria (Turner-Bridger et al.,

2020). Here I am presenting an analysis building on this work, which excludes microarray data, but

does include additional RNA-Seq datasets, especially one from mouse primary cortical neurons (PCN),

which was generated by colleagues and analysed by me (von Kügelgen et al., 2021). This strand speci�c

RNA-Seq dataset had several genes with comparatively few but strand unspeci�c reads, indicating

weak background contamination with genomic DNA. Therefore, I �ltered genes based on the ratios of

exon/intron and sense/antisense reads to remove those not distinguishable from contaminating noise

before further analysis (Figure S1).

Figure 1 : Core neurite transcriptome of published RNA-Seq datasets.
(A) Table listing the datasets and studies included in analysis of a core neurite transcriptome. Di�erent neuronal models,
compartments and species represented by each dataset are also listed. (B) Barplot showing the number of genes detected
(with TPM >1) in neurites in each dataset. Detected genes are grouped by the total number of datasets in which they were
detected as indicated by the hue of the bars. A dashed line separates datasets with high coverage from those that were
excluded from comparative analysis. A similar version of this analysis has been published in von Kügelgen and Chekulaeva,
2020. (C,D) Principle component analysis of normalised and batch corrected (RUV-seq) expression values in neurite (C) and
soma (D) compartments from high coverage datasets. The neuronal cell type used in each dataset is indicated by color and
source of neuronal cells by shapes of the dots representing each dataset. The PCN data from von Kügelgen et al., 2021 was
obtained by Sayaka Dantsuji and all other data is publicly available.
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The collection of RNA-Seq datasets from separated neuronal compartments, that I am comparing to

determine a core transcriptome generally present in the neurite compartment, encompasses 18 dataset

in total and includes: 6 from primary murine neurons (Briese et al., 2016; Middleton et al., 2019; Minis

et al., 2014; Rotem et al., 2017; Taliaferro et al., 2016; von Kügelgen et al., 2021), 3 from hippocampal

tissue slices (rat or mouse) (Cajigas et al., 2012; Farris et al., 2019; Tushev et al., 2018), 1 from sorted

growth cones from mouse brain (Poulopoulos et al., 2019), 6 from in vitro murine or human stem cell

derived neurons (Ciolli Mattioli et al., 2019; Maciel et al., 2018; Nijssen et al., 2018; Tóth et al., 2018;

Zappulo et al., 2017) and 2 from murine neuroblastoma lines (Taliaferro et al., 2016) (Figure 1A). The

number of transcripts detected in neuronal outgrowths (classi�ed as either neurites, axons or neuropil

by the respective studies) ranges from around 1,000 in only a few datasets with comparatively low

detection limits to well over 10,000 or even 15,000 in most datasets. Furthermore, a large number of

transcripts (approximately 7500) is detected in at least three quarters of the datasets (12/18). This set of

transcripts outlines the size and complexity of the core neurite transcriptome generally present across

most datasets and also identi�es the subset of RNA-Seq datasets with high enough coverage capture the

majority of this core neurite transcriptome to allow comparative and quantitative analysis (Figure 1A,

above dotted line).

As in my previous work (von Kügelgen & Chekulaeva, 2020), I compared the expression signatures of

high coverage datasets using principle component analysis (PCA). However, the comparison presented

here utilises an integrative analysis with a combined di�erential expression model as well as a batch

correction approach to reduce the e�ects of noise within individual datasets. For batch correction I

identi�ed and removed unwanted variation not associated with compartments using the RUVs approach

(Risso et al., 2014), so that di�erential expression analysis with DESeq2 can directly apply corrections

to values from all datasets. While no clear clustering of datasets by the neuronal cell types can be

observed in the PCA, there is preferential separation between datasets derived from primary and those

from in vitro neurons both for expression in neurites (respective PC2) and in soma (respective PC1).

Notably, the di�erences within primary datasets span at least double the range of the ones from induced

neurons on the corresponding separating PCs, even as both groups are separated from one another.

These observations generally replicate the results I obtained before, however it is striking that the PCA

based on the batch corrected model shows no strong separation of any individual dataset based on

potentially biasing features, which I did observe when not applying batch correction (see Figure 2A,B

from von Kügelgen and Chekulaeva, 2020).
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Figure 2: RNA enrichment in neurites across di�erent datasets.
(A) Scatterplots showing the neurite/soma enrichment (log2 fold change) from the batch corrected model (RUV-Seq) of all
high coverage datasets (x-axis, see also Fig. 1) as well as the enrichment based on individual datasets (y-axis, values above 5
or below -5 were restricted to the area, only genes with average TPM>10 across all datasets are used). Genes that were
chosen for inclusion in the Nzip MPRA based on a subset of datasets are marked with grey borders (see also Table S3). The
hue of the dots represents the number of individual datasets in which a gene is signi�cantly neurite enriched (absolute
log2fc >0.5, p.adj<0.05). The legend for these colours also includes the number of genes enriched in individual datasets or in
the combined model. The Pearson correlation coe�cient (R) for the comparison of individual datasets to the integrated
model also shown for all genes (black) and the di�erent groupings based on signi�cant enrichment across datasets. The
inset graphs and panel (B) display the density distribution of log2 fold change values from (A) individual datasets or (B)
the integrated model. The enrichment values of genes included in the Nzip MPRA are indicated by small black dots inside
the density distribution of respective datasets or the integrated model. The PCN data from von Kügelgen et al., 2021 was
obtained by Sayaka Dantsuji and all other data is publicly available.
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4.1.2 Integrated model for RNA enrichment

In addition to the analysis of expression values from transcripts detectable in neurites, RNA-Seq datasets

of separated compartments also allow to calculate the enrichment on transcripts in either compartment

using di�erential expression analysis. In my previous work, the neurite enrichment of transcripts was

only summarised based on the number of individual datasets that reported them as such. However,

the batch corrected integrated model also allows to determine a single neurite/soma enrichment log2

fold change value on the basis of all datasets together. While the enrichment values from some indi-

vidual datasets show comparatively wide distributions or tails from larger groups of genes enriched

in one particular compartment (Figure 2A, insets), this is not the case for the values calculated with

the integrated model. Additionally, there is no observable trend for stronger or weaker correlation of

the combined model with individual datasets with wide or narrow distributions and with or without tails.

While a comparison of the integrative analysis with the enrichment values calculated from individual

datasets indicates on overall agreement between all datasets, the correlation in any individual dataset

in not very strong if based on all analysed genes (Figure 2A, black R ≲ 0.4). However, transcripts

with signi�cant neurite enrichment in at least 7 datasets show a much higher correlation (orange/red

R ≈ 0.5 − 0.8) for most of the datasets. Additionally, a much higher percentage of genes with signi�cant

enrichment in at least 7 datasets is also signi�cantly enriched based in the integrated model and respec-

tively 2/3rd of the neurite enriched genes from this model also show neurite enrichment in at least 7

individual datasets (Table 1).

These genes that show signi�cant neurite enrichment in the combined model include several coding for

ribosomal and mitochondrial proteins (Table 1 and S2), groups which both have been noted before in

my (von Kügelgen & Chekulaeva, 2020) as well as other work (Turner-Bridger et al., 2020). Several other

enriched transcripts belong to groups among which others have also been reported as neurite enriched

before including cytoskeleton organisation cytoskeleton organisation and associated transport (Cgnl1,

Cdc42bpg, Nes, Kif1c, Kif1a, Kif5c; Gumy et al., 2011; Turner-Bridger et al., 2020; von Kügelgen and

Chekulaeva, 2020) or membrane tra�cking (Rab13, Cep128; Costa et al., 2021). However, the combined

analysis of the datasets also uncovers the neurite enrichment of transcripts coding for genes with nuclear

function (Hmgn5, Trir), or others with elusive but still important functions in neurites (Ybx1; Lyabin

et al., 2014; Nijssen et al., 2018; and Fth1/Ftl1, Reinert et al., 2019).
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Table 1: Genes with signi�cant (adj. p-value<0.05) enrichment in neurites based on the integrated model of all high sensitivity
datasets. Columns list gene names, number of individual datasets with signi�cant enrichment in neurites, neurite/soma
log2 fold change (log2fc) from the combined model, adjusted p-value from the combined model and mean expression. Only
genes that are not ribosomal proteins, encoded in mitochondria and are not unnamed (Gm) are shown sorted by descending
neurite/some log2fc values. A list of all genes with signi�cant enrichment in either neurite or soma can be found in the
supplementary table S2.

Gene
name

Datasets
with neu-

rite en-
richment

Neurite/
Soma
log2fc

Adj.
p-value

Mean ex-
pression

(TPM)

Rab13 8 2.322 0.0020 94.9
Sh3pxd2a 8 2.138 0.0025 41.7
Synpo 1 1.996 0.0350 36.0
Cep128 8 1.702 0.0087 29.0
Cgnl1 6 1.696 0.0001 11.5
Kif1c 8 1.485 0.0468 114.7
Cdc42bpg 8 1.481 0.0105 14.1
Nes 7 1.348 0.0218 655.7
Gab2 4 1.315 0.0423 66.6
Pabpc4 7 1.296 0.0019 82.5
Arhgap11a 8 1.250 0.0085 65.2
Hmgn5 5 1.238 0.0059 22.0
Kif1a 7 0.947 0.0119 445.6
Fth1 10 0.936 0.0106 944.8

Gene
name

Datasets
with neu-

rite en-
richment

Neurite/Soma
log2fc

Adj.
p-value

Mean ex-
pression

(TPM)

Kif5c 6 0.917 0.0020 403.0
Eef1b2 9 0.804 0.0020 613.0
Trir 2 0.773 0.0420 66.5
Ftl1 10 0.756 0.0058 1,971.6
Dynll2 4 0.755 0.0266 261.9
Cox6a1 11 0.742 0.0066 431.3
Ndufa1 8 0.727 0.0117 127.4
Txn1 6 0.672 0.0166 238.7
Ybx1 11 0.666 0.0415 1,836.2
Ftl1-ps1 10 0.645 0.0356 1,421.1
Pomp 4 0.597 0.0089 84.6
Cox8a 10 0.594 0.0327 480.4
Cox7c 9 0.564 0.0307 348.2
Ndufs5 7 0.516 0.0194 221.5
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4.2 Neuronal zipcode localisation protocol (Nzip)

With the Nzip MPRA our group designed an approach to uncover novel zipcode sequences by investi-

gating the potential of the 3’UTR region fragments of selected neurite enriched transcripts. The initial

attempts at such an MPRA made by colleagues of my group were based on random fragmentation of

3’UTR amplicons (Yartseva et al., 2017) and transcripts selected from only a single dataset (Zappulo et al.,

2017). However, this resulted in uneven coverage of reads and a low signal to noise ration for neurite

enrichment. Therefore, switching to a design based on de�ned, overlapping, and in vitro generated tiles

as well as a gene selection based on multiple data source, allowed me to aim for cleaner readouts. This

was combined with depolarisation of neurons expressing the MPRA library, since this can also a�ect

RNA localisation (Mofatteh, 2020). Additionally, the soma compartment was further separated into

nuclei and cytoplasm as part of a collaboration project for the analysis of nuclear localised RNA. Later

an additional experiment without these further parameters was added to con�rm results in the baseline

context of neurite/soma enrichment.

4.2.1 Gene selection and identi�cation of candidate regions

To select transcripts with potential zipcodes to be investigated with Nzip, I relied both on the RNA-Seq

enrichment data from the PCN model system, which I analysed for these experiments (Figure S1), and

on public data from other, mostly primary, neuronal model systems. Focusing on genes with signi�cant

enrichment in our PCN system as well as a majority of these public datasets (Briese et al., 2016; Middleton

et al., 2019; Minis et al., 2014; Rotem et al., 2017; Taliaferro et al., 2016; Tushev et al., 2018), I generated,

after additional manual curation, a list of 99 transcripts to be included in the Nzip MPRA (Table S3 and

Figure 2, highlighted dots). This list includes many genes of the functional classes with many enriched

transcripts noted above, but due to di�erences in the analysis approach and included datasets does

not have strong overlaps with the exact set of genes designated as commonly neurite enriched by my

integrated model.

Figure 3 : Nzip MPRA indenti�es neurite localisation sequences.
A) Scheme portraying the design as well as experimental and analysis strategy for the Nzip MPRA. First, genes with neurite
localisation in both the PCN data as well as at least 3 other published datasets were chosen (see Table S3). The 3’UTR
sequences of these genes were divided into 75 or 100nt tiles overlapping by 15/25nt each. All tiles were generated in
vitro and cloned into a lentiviral reporter library. Reporter speci�c RNA-seq libraries where generated from neuronal
compartments of library transfected PCN and after mapping of reads to tile sequences neurite/soma ratios were calculated
from UMI counts for each tile.
B) Graphs displaying the neurite/soma enrichment (y-axis, log2 fold change) across the 3’UTR of selected genes fo the Nzip
MPRA. The dots represent enrichment of individual tiles, while colours indicate from which experiment a value originates
(initial, initial with depolarisation or con�rmation); the borders around each dot indicate whether the corresponding
enrichment value is signi�cant (p.adj<0.05, red border) or not (grey border). Sets of consecutive tiles with su�cient
enrichment to meet threshold criteria (see methods) were preselected (grey highlight boxes), the coloured bars below these
boxes designate from which experiment the pre-selection was done. The tiles manually selected for further investigation in
the mutation library are marked with an orange border. A similar version of this analysis has been published in von Kügelgen
et al., 2021 and data was obtained by Sayaka Dantsuji.
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After gene selection, collection of 3’UTR sequences, and design of the tiled Nzip reporter library,

the 3’UTR tiles were cloned into a plasmid construct, transfected into the PCN model system and

after separation of compartments and generation of libraries sequenced (Figure 3A). Due to adapters

surrounding the tile inserts, only reads for the tiles were generated, which I then mapped to the full

sequence collection of tiles with salmon before de-duplication with umi_tools and �nally calculated

enrichment of tiles in compartments with DESeq2. Based on this analysis I designated groups of at least

2 partially overlapping neurite localised tiles with su�ciently strong localisation as peaks (log2fc of all

tiles >0.5, with at least one >0.75 and one signi�cant). The neurite enrichment of all tiles from several

genes is shown in Figure 3B with the pre-selected peaks highlighted (grey background boxes), while the

full list of all 54 peaks I could identify across all 3 Nzip experiments is given in Table S5.

No zipcode candidates were found that showed strong neurite enrichment only in the Nzip experiment

including depolarisation treatment. Instead, the two experiments, which were performed in parallel to

one another, had very similar results, especially including neurite enrichment for all designated zipcode

candidate peaks. Additionally, the later added experiment con�rmed the neurite enrichment of these

peaks, even if the similarity of log2 fold change values for other tiles was not as high.

4.2.2 Mutational analysis of candidate regions

In order to identify the exact cis-active zipcode sequence elements a mutational analysis approach

was used. Selection of 90-100nt peaks with zipcode candidates was based on the neurite/cytoplasm

ratios of the initial two experiments, derived from preliminary analysis performed by collaborators.

My peak selection criteria were similar to the �nal analysis, however, p-values and log2 ration were

initially not directly linked, so I used them to get two selection sets of peaks. Additionally, tiles with

positive enrichment in nucleus compared to cytoplasm or with overly strong de-enrichment were not

considered for peaks. This resulted in a �nal and manually curated selection yielded 16 genes, for which

one or two central tiles of the main peaks containing a candidate zipcode were chosen. The neurite

enrichment of all tiles from the following Nzip included 3’UTR regions are exemplarily shown for all 3

Nzip experiments in Figure 3B: Cald1, Camk2n1, C�ar (isoform 1), Cox5b, Mcf2l, Msn, Rassf3 and Utrn.

The complete list of genes from which tiles from selected peaks were chosen for further analysis includes

Bdnf, Cdc42 (isoform 2), C�ar (isoform 2), Golim4, Kif1c, Map2, Ndufa2 and Rps23 and is listed in Table S4.

As the introduction of mutations into zipcode impacts their functionality, I generated all possible

point mutations for each candidate sequence. Since multiple neighbouring or larger mutations can help

with the exact de�nition and sequence speci�city of the cis-active elements, I also added transversions
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Figure 4: Nzip mutation libraries uncover zipcode sequence identity.
A) Scheme explaining the design strategy for mutational analysis using the Nzip MPRA approach. For neurite enriched
candidate tiles from the Nzip MPRA all possible single point mutations as well as base transversions in 2, 5 and 10nt
windows are created. After generation and analysis of the mutation library those tiles that show reduced neurite localisation
compared to the WT sequence indicate the disturbation of an important zipcode sequence element.
B,C) Graphs displaying median neurite/soma ratios (n=3) for all mutations of exemplarily chosen candidate tiles. The
new identity of each mutation is indicated by color of each dot (green - A, red – C, yellow – G, blue - T) or bar (cyan –
transversion). Horizontal lines indicate the neurite/soma ratio of the WT tile (orange) or controls with a scrambled sequence
(grey). Sequence stretches with a common motif that showed reduction of neurite/soma ratio in mutations are highlighted
by grey background boxes, the sequences are (B) (AU)6−8 and (C) CUACCUC. A similar version of this analysis has been
published in von Kügelgen et al., 2021, data was obtained by Sayaka Dantusji and processed by Maya Ron and Igor Ulitsky.

(A↔T, C↔G) in 2, 5 and 10nt windows covering the sequence without overlaps to overall generate a

second Nzip mutation library (Figure 4A). From this second Nzip MPRA library, containing all mutated

candidate tiles as well as the original sequences and controls, the neurite enrichment of all mutated tiles

was determined by collaborators,with experience in this approach (Lubelsky & Ulitsky, 2018).
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The resulting traces of neurite/soma log2 ratios revealed that most mutations in the selected candi-

date tiles showed neurite enrichment similarly to the non-mutated tiles. Especially the tiles of Rassf3 (no.

91) and Cox5b (no. 6,7) show strong enrichment in neurites (median N/S log2 ratio ≈2 − 3) similarly to

the WT tiles from either experiment (mutation library ≈4, initial libraries ≈2). However, any mutations

in an AU-repeat sequence as well as the randomised scramble control sequences show no enrichment in

neurites at all (Figure 4B). Additionally, the introduction of additional A’s into U-stretches �anking the

AU-repeat in the Cox5b tile even led to an increase in neurite enrichment (Figure 4B, green dots) and

mutations to G or C in the repeat lead to a slightly stronger reduction of enrichment. For the candidate

tiles of Mcf2l, C�ar (isoform 1) and Utrn neurite enrichment of most mutated tiles is somewhat weaker

than for the WT tile, however all 3 carry one or more copies of a common CUACCUC sequence motif for

which neurite/soma log2fc values are 0 or lower, corresponding to scramble controls (Figure 4C). In this

way both the (AU)n-repeat sequence as well as the CUACCUC motif are identi�ed as potential zipcodes.

4.2.3 let-7 miRNA seed as a zipcode

Interestingly, the CUACCUC motif could be identi�ed as an exact match to the seed sequence of the

let-7 micro RNA. Since the primary e�ect of miRNAs binding their matching seed sequence is the

degradation of their binding target, the destabilisation of tiles carrying an intact let-7 motif can be

expected. Comparison of the mean count values from tiles carrying an intact or mutated let-7 seed

sequenced in both compartments shows not only the expected strong reduction of RNA levels for tiles

with an intact let-7 seed, but also indicates that, contrarily to tiles with a mutated seed, counts for tiles

with the let-7 seed are signi�cantly lower in soma compared to neurites (Figure 5A). Such preferential

destabilisation in one subcellular compartment may induce RNA localisation and thereby provide a

potential mechanism that allows the let-7 seed to act as a zipcode. With reason to assume that the let-7

seed is indeed a functional zipcode, we also con�rmed that transcripts with one or more let-7 binding

sites are indeed more likely to show neurite enrichment compared to those without one (Figure 5B).

Because localisation by targeted degradation requires stronger activity in one compartment the dis-

tribution of miRNA and their associated degradation machinery across the PCN model system was

investigated. Based on small RNA-Seq data from PCN, we identi�ed let-7 as the most expressed miRNA

in both the neurite and soma compartment by a far margin (Figure 5C), even if relative enrichment could

not be determined due to missing normalisation controls. Furthermore, using mass spectrometry data

from compartment separated PCN, I was able to determine that the AGO and TNRC6 proteins, which

facilitate miRNA mediated RNA degradation, are indeed enriched in the soma compartment (Figure 5D).
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Figure 5: let-7 miRNA is active in neurons and may act as a zipcode through preferential RNA degradation in soma.
(A) Boxplots displaying the normalised mean counts for tiles from the mutation library with an intact (red) or mutated (grey)
let-7 seed site for each compartment. The p-values (two-sided t-test) for comparison between the compartments within
each group of tiles are shown as well. (B) Cumulative distribution plot (ECDF) of transcript neurite/soma log2 fold change
values strati�ed by the number of let-7 seed sites in the 3’UTR. The p-value for comparison of the distributions for di�erent
number of let-7 sites using the Wilcoxon rank sum test is shown as well. Only the most abundant transcript isoform for
each gene was considered for analysis. (C) Pie charts displaying the relative abundance of di�erent miRNA species in both
soma and neurite compartment of PCN, based on counts from small-RNA-Seq data. The proportions of the top10 expressed
miRNAs are designated by colours as shown. (D) Volcano plot displaying the mass spectrometry derived neurite/soma
enrichment of proteins in PCN (log2 fold change of GAPDH-normalised log(iBAQ) values, x-axis) against the negative
log-transformed p-values (BH adjusted, y-axis). Histone proteins with nuclear localisation are marked blue, proteins with
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mediated mRNA degradation are marked and labelled in red. This analysis has already been published in von Kügelgen
et al., 2021. Data for A-C was obtained by Sayaka Dantsuji and processed by Maya Ron and Igor Ulitsky, data for D was
obtained by Samantha Mendonsa and processed by Marieluise Kirchner.
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4.2.4 (AU)n zipcode activity and binding proteins

For the AU-repeat zipcode no trans-factor with binding speci�city is currently known. Since endogenous

transcripts with long AU repeats of at least 6 repetitions also show a tendency for increased neurite

enrichment (Figure 6A), e�ects of the motif presence in tiles on counts in was analysed similarly to the

e�ect of the let-7 seed: an intact (AU)≥5 repeat strongly reduced mean read counts from tiles indicating

a destabilising e�ect and the reduction was also higher in soma compartment (Figure 6B).

To identify proteins that can bind the AU-repeat zipcode and facilitate the localisation, an RNA a�nity

pulldown experiment was performed. The (AU)8 repeat of the selected Rassf3 candidate tile as well as a

mutated version without the repeat motif were cloned into a bait construct with a boxB element for

binding to GST-tagged lambdaN protein (Czaplinski et al., 2005). Using this setup, proteins from mouse

brain lysate were captured and quanti�ed using mass spectrometry and I identi�ed several proteins,

that showed preferential binding to the bait containing the (AU)8 element. Among those proteins are 5,

which also have known roles in RNA stability control: Elavl2,3 and 4 (HuB,C and D) are known to bind

AU rich elements (ARE) in the 3’UTR of neuronal transcripts and thereby stabilise their targets (Allen

et al., 2013; Ratti et al., 2006); Hbs1l is part of the no-go decay pathway (Doma & Parker, 2006), which

can lead to mRNA degradation (Pisareva et al., 2011); and Rc3h2 (Roquin-2) is an RBP with speci�city

for a stem loop in the constitutive decay element (CDE) and thus leads to degradation of its targets by

the Ccr4/Not complex (Leppek et al., 2013).
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Figure 6: Potential e�ects and e�ectors of the (AU)n zipcode motif.
(A) Cumulative distribution plot of transcript neurite/soma log2 fold change values strati�ed by the longest AU repeat in the
3’UTR. The p-value for comparison of the two distributions using the Wilcoxon rank sum test is shown as well. Only the
most abundant transcript isoform for each gene was considered for analysis. (B) Boxplots displaying the normalised mean
counts for tiles from the mutation library with an intact (blue) or mutated (grey) (AU)≥5 element from each compartment.
The p-values (two-sided t-test) for comparison between the compartments within each group of tiles are shown as well.
(C) RNA a�nity pulldown schematic. RNA with both a boxB and either an (AU)8 containing 3’UTR tile from Rassf3 or a
mutated version without the (AU)8 are combined with mouse brain protein lysate. After proteins with speci�city for the
(AU)8 element are bound to the RNA, probe complexes are recovered via glutathione-S column and the GST-lamdaN-boxB
unit and �nally identi�ed using mass spectrometry. (D) Volcano plot displaying enrichment in pulldown of the WT (AU)8 or
the mutated probe (x-axis) and negative log-transformed p-values. Proteins with signi�cant adj. p-values (p.adj<0.1) are
coloured in light blue, proteins with signi�cant enrichment (p.adj<0.05 & log2fc>1) are coloured dark blue and labelled.
Proteins of speci�c interest with function in RNA stability control (Elavl2,3&4, Hbs1l, Rc3h2) (Allen et al., 2013; Leppek
et al., 2013; Pisareva et al., 2011; Ratti et al., 2006) have highlighted labels. This analysis has already been published in
von Kügelgen et al., 2021. Data for A-B was obtained by Sayaka Dantsuji and processed by Maya Ron and Igor Ulitsky, data
for D was obtained by Marina Chekulaeva and processed by Marieluise Kirchner.
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4.3 Human induced motor neuron model for the study of FUS-mutant neurons

The study of human neurons and neuronal diseases like ALS is challenging not only because of their

complexity, but also because the non-proliferative nature of neurons prevents e�ective use of cell lines

and other sources of cells are scarce. Therefore, the in vitro generation of neurons from human stem

cells or hiPSCs is a promising approach to reach insight into the molecular processes in human neurons.

In order to be able to rely on the analysis of in vitro generated motor neurons, it is important to check

that the transcriptome and proteome of these cells recapitulates the known core characteristics of motor

neurons.

4.3.1 Characterisation of motor neurons generated from hiPSCs

Di�erentiation of stem cells into motor neurons can be achieved either by activation of the endogenous

expression programs through the exposure of cells to growth factors that activate lineage speci�c

transcription programs or through the controlled expression of transcription factors that were made

inducible by gene editing. For human motor neurons a protocol that relies on doxycycline (DOX) induced

expression of the transcription factors NGN2, ISL1 and LHX3 (NIL) has been developed, which drives

cells into a natural progression to a mature motor neuron fate (Fernandopulle et al., 2018; Mazzoni et al.,

2013) (Figure 7A). However, no extensive characterisation of the transcriptome and proteome of iMN

derived from this protocol exists so far.

The di�erentiation of iMN based on the NIL protocol takes 21 days and throughout this time course

both protein and RNA expression was measured using mass spectrometry and RNA-Seq methods re-

spectively. PCA shows that the overall expression signatures continuously change throughput the

di�erentiation (Figure S2A,B). To asses the characteristics of the cells at di�erent time points I investi-

gated the relative expression levels of selected marker genes for stem cells, motor neuron precursors,

neuronal cells and mature motor neurons at each measured time point (Figure 7B). The expression of

stem cell markers that maintain pluripotency (NANOG, OCT4) rapidly decreases after di�erentiation is

initiated by DOX addition. Notably, their protein expression is abolished faster than respective RNA

expression levels. Early lineage markers of motor neuron precursor stages (OLIG1, OLIG2, SOX3) are

expressed together with the DOX induced transcription factors NGN2, ISL1 and LHX3. Indeed their

expression levels all subside, when DOX is removed and the cells reach an early motor neuron stage

from which they continue to di�erentiate. HB9 is a marker of early postmitotic motor neurons (Arber

et al., 1999) and peaks in expression during di�erentiation of the NIL-iMN at day 4 and 7. Furthermore,

HB9 RNA expression can also be detected shortly before and continuously after these time points albeit

at lower levels. Both HB9 and LHX3 are transcription factors that in vivo are primarily expressed in
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developing spinal motor neurons of the median motor column (Dasen et al., 2008). Another transcription

factor a�ecting the development of motor neuron lineages is FOXP1, which is usually expressed in

neurons of the lateral motor column that are negative for LHX3 and HB9. Therefore the co-expression

of HB9, LHX3 and FOXP1 in the NIL-iMN is an unusual combination of motor neuron lineage markers,

which is further accompanied by a complete lack of expression of HOX genes that in vivo a�ect both

rostro-caudal and motor column patterning (Dasen et al., 2008) (data not shown).
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Figure 7: Characterisation of NIL induced human motor neuron di�erentiation based on transcriptome and proteome.
(A) Scheme displaying the di�erentiation protocol for induced motor neurons (iMN) from human induced pluripotent stem
cells (hiPCS) using doxycycline inducible expression NGN2, ISL1 and LHX3 over the course of 21 days. (B) Heatmaps of
z-score normalised mean protein (left, log2 LFQ values) and RNA (right, log2 TPM values) expression of di�erent marker
genes at the indicated timepoints of the di�erentiation protocol. The displayed genes are grouped into markers of stem cells,
motor neuron precursors, neuronal cells and mature motor neurons. (C) Celltype deconvolution of di�erentiation timepoints
to di�erent action potential types. Single cell sequencing data from patch clamped neurons links di�erent action potential
(AP) types (provided by Bardy et al. (Bardy et al., 2016), schematic adapted from Fig1D) with RNA expression markers for
electric activity (heatmap, left). Cell type deconvolution of neuronal progenitor and neuronal stages with CIBERSORTx
(Newman et al., 2019) estimates percentages of di�erent AP types at di�erent stages of di�erentiation (bar plot, right). iMN
data was obtained by Katarzyna Ludwik.
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Together with the motor neuron lineage marker HB9 other neuronal genes (MAP2, NEFL (Neuro�la-

ment), TUBB3) are also detectable from day 4 on and reach mostly stable levels by day7. Similarly, general

synaptic proteins (SYN1, SYP, SNAP25, PSD95) and motor neurons markers of the cholinergic system

(CHAT, SLC10A4, VACHT) increase in epxression from day 7 throughout the remainder of the di�erentia-

tion time course. Again, the expression level increase at the mRNA level precedes that at the protein level.

The most important hallmark of neuronal maturity is the ability to conduct electric signals through

continuous de- and re-polarisation. Using a single cell RNA-Seq dataset for which electric action poten-

tials (APs) were measured and classi�ed in individual neurons, the transcriptome signatures associated

with neurons that show a functional AP type classi�cation can be established (Bardy et al., 2016). Using

these transcriptome signatures I performed cell type deconvolution with CIBERSORTx (Newman et al.,

2019) to estimate the potential for electric activity at di�erent stages of our motor neurons and precursors

(Figure 7C). This indicates that from day 14 onwards a large majority of the NIL-iMN are likely capable

of conferring action potentials.

4.3.2 Transcriptome and proteome of iMN sub-compartments

In addition to characterisation of iMN throughout the di�erentiation time course the subcellular tran-

scriptome and proteome in soma and neurites of mature iMN was also analysed and I could see clear

distinction between the compartments based on principle component analysis (Figure S2C,D). Speci�cally

enriched transcripts and proteins included nuclear splicing factors (SRSF1-3) with respective somatic

localisation and, for neurite enrichment, commonly neurite enriched genes (RAB13, KIF1C, KIF1A,

KIF5C, NES; Table 1), synaptic markers (SYN1, PSD95) and neurite abundant cytoskeleton proteins

(NEFL, NEFM, GAP43) (Figure 8A,B). Both the neurite RNA expression and neurite/soma enrichment

values from iMN show positive correlation with values from the integrated analysis of other neuronal

datasets (Figure 8C,D). This correlation is generally higher for genes with a strongly signi�cant p-value

for enrichment, which also coincides with a higher overall expression in iMN. For the neurite/soma

enrichment of proteins in iMN no encompassing comparative reference data is available, so instead

I used functional enrichment analysis to determine the association of neurite enriched proteins with

annotated functions. Terms signi�cantly associated with localised proteins that are also enriched in

neurite localised transcripts are mostly associated with functions at the synapse, cytoskeleton or in

outgrowth development, while metabolic and basic molecular functions are more common in soma

(Figure 8E).
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Figure 8: iMN display typical subcellular proteome and transcriptome.
(A,B) MA-plots displaying the relationships and distributions of mean expression and neurite/soma enrichment (log2fc)
values for (A) RNA and (B) proteins. Proteins and RNA are coloured based on signi�cant (p.adj<0.05) enrichment (absolute
log2fc >1) in either compartment (neurites: green, soma: blue). Values exceeding the y-axis were restricted to the displayed
values and overlap with the grey borders. Markers for soma (nuclear: SRSF1,2,3) and neurites (commonly enriched: RAB13,
KIF1C, KIF1A, KIF5C, NES; cytoskeleton: NEFL,NEFM,GAP43; synapses: SYN1, PSD95) are labelled. (C,D) Correlation of
(C) mean RNA expression and (D) neurite/soma enrichment (log2fc) between iMN (y-axis) and other neuronal datasets
(see �gures 1 and 2; x-axis). Genes are coloured by brackets of adj. p-values from iMN. Pearson correlation coe�cient
for all values (black) or by adj. p-value (by colour) are given as well. In (D) values exceeding the y-axis were restricted to
the displayed values and overlap with the grey borders. (E) GO enrichment analysis was performed for proteins and RNA
localised to either compartment and enriched terms were �ltered for overlap between both analyses, a size no more than 1000
annotated genes and overlapping with at least 25 localised proteins. Finally all terms with directly related enriched terms in
the GO graph relationship were removed. The box plots show the neurite/soma enrichment for all proteins annotated to the
�nal �ltered terms. Data was obtained by Katarzyna Ludwik and partially processed by Tommaso Mari.
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4.3.3 Di�erential expression in iMN compartments due to mutant FUS protein

ALS is a neurodegenerative disease, in which dying of motor neurons starts at the tips of their axons all

the while many molecular mechanisms including RNA metabolism and localisation are disrupted by the

disease (J. P. Taylor et al., 2016). The use of the NIL-iMN system coupled with separation of subcellular

compartments is a promising approach to identify potential disease mechanisms of ALS given the high

importance of molecular processes in the axons. Therefore the di�erentiation protocol based on NGN2,

ISL1 and LHX3 induction was used to create iMN from hiPSC lines with ALS associated mutations as

well as from isogenic control lines. These hiPSC lines derived from one ALS patient carrying a FUS

R244RR mutation and another patient not diagnosed with the disease, but carrying the P525L mutation

that is known to usually cause ALS (E�mova et al., 2017). From these lines the transcriptome and

proteome of totals cells as well as separated soma and neurites were measured by RNA-Seq and mass

spectrometry. Based on principle component analysis all samples of the same compartment clearly show

overall similarities, while the RNA expression signatures in neurites also somewhat di�ers between the

hiPSC donor origins (Figure S3).

To compare the iMN of either FUS mutations to their isogenic controls I performed di�erential

expression analysis in each of the three compartments for both the protein and RNA expression data.

Based on the combined magnitude of signi�cant di�erential expression I highlighted the top 15 genes

with the strongest changes across transcriptome and proteome in each compartment and FUS mutation

(Figure 9). To identify genes with consistent changes across all data modalities and compartments I also

assigned a score to each gene based on the signi�cance and magnitude of the di�erential expression

between FUS mutant and control samples. This score is the sum of 0.5 or 1 points given for signi�cant

di�erential expression on RNA or protein level in any compartment of either FUS mutation (adj. p-value

<0.05 and log2 fold change >1 or >1.5 respectively). All genes with a score >2 are listed in Table S6,

corresponding to strong di�erential expression in at least 3 independent measurements or weaker

di�erences in at least 5.

Among the genes that show both a high di�erential expression score and a strong di�erential

expression in individual compartments are GPR50 and PCSK1, which both show a lower expression

upon FUS mutation, especially in neurites. GPR50 is an orphan G protein-coupled receptor (GPCR) that

can inhibit the melatonin receptor MT1 (Levoye et al., 2006) and has also been reported to a�ect the

outgrowth of neurites in the hypothalamus (Grünewald et al., 2009). PCSK1 is an essential protein for

the regulation of neuroendocrine signalling, as it activates extracellular or plasma membrane bound

hormones and neuropeptides by cleavage. Previous studies have also identi�ed down regulation of

PCSK1 as associated with ALS and attributed this to reduced glucose availability through non-cell
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Figure 9: E�ect of ALS associated FUS mutations on iMN proteome and trancriptome.
The di�erential expression on protein (x-axis) and RNA (y-axis) level between iMN with ALS associated FUS mutants
and their isogenic controls are shown for two di�erent mutations (P525L and R244RR) and three di�erent compartments
(neurites, soma, total cell). Enrichment values were restricted to the displayed values (-6 to 6) in this plot (higher values
overlap the grey borders). Genes are coloured based on an enrichment score summarising the number of signi�cant changes
with a minimal magnitude across each cell line, compartment and expression modality (score increased by 0.5 or 1 for each
signi�cant change with log2 fold change >1 or >1.5 respectively). The total number of genes in di�erent brackets of the
enrichment score are shown in the colour legend. The 15 genes with the highest sum of signi�cant absolute enrichment
values in each panel are labelled; genes with an enrichment score of at least 6 are labelled in bold. Data was obtained by
Samantha Mendonsa and partially processed by Tommaso Mari.

autonomous reduction of insulin secretion (Lederer et al., 2007). Other genes that show lower expression

upon FUS mutations, especially in neurite compartment, and have potentially important functions

in neurons or ALS include LAMA5, a neuron speci�c laminin gene involved in the formation of the

neuromuscular junction (Maselli et al., 2018; Nishimune et al., 2008) and SNAP47, a membrane protein

facilitating the fusion of vesicles with the plasma membrane, but does not result in neurotransmitter

release (Arendt et al., 2015).

Genes with a high di�erential expression score that are also strongly up-regulated across both mutation

lines include COMT, which is up-regulated in neurites and other compartments, as well as TXNRD2,

GREB1L, and PDLIM1, which are only di�erentially expressed in soma and total cells. Among these,

the transcripts of COMT, TXNRD2, and GREB1L are all direct targets of FUS based on CLIP data from
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the wild type protein (see Table S6; Hoell et al., 2011). The enzyme COMT inactivates catecholamine

neurotransmitters and chemically related hormones by methylation. While the protein itself has no

known connection to ALS, its catalysed reaction depends on the the co-factor S-adenosly methionine

(SAM), which can only be recovered by regeneration of methionine from homocysteine by the rate

limiting MTHFR enzyme. Mutations in the enzymes of this pathway as well as increased homocys-

teine levels have been linked to neurotoxicity and neurodegenerative disease (Bhatia & Singh, 2015;

McCaddon et al., 2002). TXNRD2 is a mitochondrial reductase that disposes of reactive oxygen species

(Prasad et al., 2014) and regulates overall redox metabolism, which is commonly disturbed in ALS

and speci�cally an isozyme of TXNRD2 has been linked to the disease (Mitchell et al., 2009). The last

of the up-regulated direct FUS tragets, GREB1L, is a membrane protein with important functions in

the development of sensory neurons of the inner ear as well as other tissues (Schrauwen et al., 2020).

Another gene with consistent up-regulation, though only very strongly in soma of the P525L mutant

iMN, is the cytoskeleton adaptor PDLIM1, which regulates neurite extension at growth cones (Ohno

et al., 2009), is present at synapses (Ríos et al., 2020), and has also been predicted to be relevant for ALS

based on feature extraction from gene expression data (Taguchi et al., 2015). Furthermore two other

genes, LRRC4B and SHANK1, which functions at the synapse, also show much stronger expression

especially in neurites of iMN with the P525L FUS mutation. Both of these genes play roles in the

structural organisation of the synapse, either by mediating contacts with other cells (LRRC4B) or by

a�ecting synaptic structure and organisation (SHANK1). Interestingly, several other genes with high

di�erential expression in R244RR mutant iMN or with high scores (Table S6) have similar functions:

both MFGE8 and TAGLN2 mediate cell-cell interactions and TAGLN2, KIF1C, and FCHSD1 all interact

with the cytoskeleton. Finally, another gene with a high DE score, but only strong up-regulation in the

R244RR iMN is PNPO, an enzyme involved in the metabolic cycle that produces hydrogen peroxide and

regenerates the cofactor pyridoxal phosphate (PLP), which has various functions including the synthesis

of several neurotransmitters (Wilson et al., 2019).

4.3.4 Functional associations of di�erential genes in FUS mutant iMN

In order to identify groups of proteins with similar functions I performed GO term enrichment analysis

for all proteins up- or down-regulated between either of the mutant FUS iMN and their controls in

any compartment. The top terms from the cellular compartment domain with the most signi�cant

enrichment are listed in �gure 10A. Proteins that have lower expression in neurites or total iMN of

mutant FUS are enriched for presence or function the basement membrane and other large extracellular

complexes, especially including laminin. In addition to these the term ’neuromuscular junction’ was
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Figure 10: Functional analysis of di�erential expression between FUS mutants and wild type iMN.
(A) GO analysis of proteins with di�erential expression between FUS mutant and isogenic control iMN. The 5 terms from
the GO cellular compartments domain (y-axis) with lowest p-value (highest negative log-transformed p-value, x-axis) are
shown for each set of compartment, mutation and direction of di�erential expression. Before top5 selection, GO terms
enriched in the initial analysis (gPro�ler2) were removed if they had only one overlapping di�erential protein and then
those that had enriched directly related terms above or below them were removed. (B) log2 fold change density distributions
(horizontal violin plots) for di�erent subsets of transcripts. The di�erential expression values between FUS mutant and
isogenic controls for di�erent mutations and compartments are divided into di�erent groups based on features present on
the RNA (G-quadruplex motif in the strongest expressed transcript isoform; CLIP peaks from mutant FUS or CLIP peaks
from WT FUS (Hoell et al., 2011) or protein level (signal peptide from signalp-database (Armenteros et al., 2019; Durinck
et al., 2009), plasma membrane component (GO:0005887, GO:0031226, GO:0046658, GO:0019897, GO:0044214), extracellular
region (GO:0005576) or extracellular matrix (ECM, GO:0031012) GO annotation). Each set of values is compared to the
remaining background or encompassing set and BH corrected p-values from two-sided t-test of all comparisons are shown
as well. Data was obtained by Samantha Mendonsa and partially processed by Tommaso Mari.
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also enriched due to lower expression of SLC5A7, EPHA4, LAMA5, EPHA7, SERPINE2, and LAMB2 in

neurites of the R244RR FUS mutant. Up-regulated proteins have enriched terms for presence at synapses

or synaptic membranes in neurites in both FUS mutants or for nuclear and DNA-associated complexes

in soma and total cells of iMN R244RR FUS.

Because FUS is a known RBP, I compared the distribution of di�erential expression values of genes

that have been identi�ed as targets of mutant or WT FUS (Hoell et al., 2011) with the remaining

background set of all other genes. I also performed such comparisons for genes whose transcripts have

a G-quadruplex motif, which is a zipcode motif (Maltby et al., 2020; Subramanian et al., 2011) that has

been reported to be bound by FUS (Imperatore et al., 2020), those with a signal peptide (signalP database,

accessed via biomart (Armenteros et al., 2019; Durinck et al., 2009)) or those that are components of

the plasma membrane, extracellular region or extracellular matrix based on gene ontology annotation.

Furthermore, for the last 3 groups I added comparisons of subsets of these genes with those that also

carry the G-quadruplex motif (Figure 10B).

The trends of RNA log2 fold change values I observed from these selected gene groups di�er between

iMN with the P525L or R244RR FUS mutations. In case of the P525L mutation transcripts that can

be bound by FUS directly have reduced expression in neurites, but are centred around log2fc 0 in

soma or total cells, where the remaining transcripts show an overall lower expression compared to the

background of all other genes. For the R244RR mutation no signi�cant changes from background can be

observed in soma or total cells, while direct FUS targets in neurites are also zero-centred the remaining

transcripts show an overall reduction in the context of this mutation. Genes with the G-quadruplex

motif, signal peptides or protein function at the plasma membrane or extracellular regions show overall

similar changes between FUS mutant iMN and controls: with the P525L mutation their expression

is reduced compared to the background in every compartment, while no signi�cant changes can be

observed with the R244RR mutation. Further more, genes that are part of the extracellular matrix show

an even stronger reduction than other extracellular genes with the P525L mutation. Finally, those

genes that have annotation for a signal peptide or speci�c localised protein function and also carry the

G-quadruplex motif show no di�erence to ones without the motif in all compartments of the P525L

mutant iMN. With the R244RR mutation however, the genes with both of these two features do show

reduced expression compared to genes that have the localised function but not the structural RNA motif,

but this e�ect is only signi�cant in total cells.
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5 Discussion

5.1 The transcriptome of neurites

Together with the �rst discovery of mRNA in the processes of neurons many new questions emerged: is

mRNA being locally translated? How many di�erent transcripts are present in neurites? How is the

localisation of transcripts controlled? And, what is the importance of localised mRNA in health and

disease? While the occurrence of local translation in neurites is now indisputable (Besse & Ephrussi,

2008; Costa et al., 2021; Holt & Schuman, 2013; Shigeoka et al., 2016), the full extent and the percentage

of localised and locally translated RNA species is not yet exactly determined, even if it has indeed been

shown that local translation is major determinant of protein localisation in neurites (Zappulo et al.,

2017). However, few of the remaining questions have conclusive answers so far. Using my research I

hope to answer at least some of these open questions.

The �rst microarray based transcriptomics studies of neurites reported only a few hundred localised

transcripts (Poon et al., 2006). However, with continuously improving sensitivity of transcriptomics

methods, especially in RNA sequencing approaches, the number of detectable transcripts quickly rose

thousands into the ten thousands. Based on my comparison of most of the available public RNA-Seq

datasets, the true extent and complexity of transcripts present in neurites ranges from a minimal core

neurite transcriptome of around 7500 transcripts present in most neurites to potentially twice that

number.

Whether this number is accurate or if the di�erences between measurements of neurites from

di�erent neurons are actually correct is di�cult to asses. Generally one can not fully exclude the

possibility that the separation of neurites and soma is not clean enough to remove all contribution of

the somatic transcriptome to the RNA material obtained for neurites, especially given the sensitivity

of modern sequencing approaches. However, the transcripts detection cuto� of TPM>1 that I used

in my analysis is generally assumed to be a reasonable lower limit for truly expressed genes (Wagner

et al., 2013) and at least in the data that I processed myself this also correlates well with the actual

detection limit as determined by ERCC spike-in controls. Additionally my comparison encompasses

datasets using several di�erent techniques of separating neurites and soma, ranging from reliance on

brain tissue organisation (neuropil) to micro�uidic chambers channels with only a few microns width

that are supposed to allow only growth of axons and I did not observe any indication that di�erences

between these methods a�ect the number of detectable transcripts or the similarity between datasets

positively or negatively.

One likely explanation for di�erences between neurites from di�erent datasets is the existence of

cell type speci�c neurite transcriptomes. However, I was only able to identify di�erences between

neurites from primary or in vitro generated neurons with a PCA based analysis. Given that I observed
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considerable variance between total expression values in neurites, especially among datasets from

primary sources, it could also be possible that speci�cally designed analysis approach focusing on

genes with variance corrected for cell types or species would allow a clearer distinction of neurite

transcriptomes. In this line, controlling for the baseline expression of a core neurite transcriptome and

focusing only the remaining or deviating genes, which are possibly unique to speci�c cell types, may

prove a promising approach to identify cell type speci�c signatures. However, the di�erences between

neurites from primary and in vitro sources might still confound such an analysis if they are not carefully

controlled for.

Of course, it is also possible that there are indeed no identi�able di�erences across neurite tran-

scriptomes from di�erent cell types, even if some sources of variance clearly exist. While in vitro

generated neurons may simply lack some characteristics of cultured primary or in vivo ones, there is

also the possibility that the transcriptome in neurites is not homogeneous, but instead has further local

di�erences of smaller subunits, which could di�erently a�ecting datasets. One possible indication for

this is that studies focussing on sub-compartments like axonal growth cones (Poulopoulos et al., 2019)

or other small neurite volumes obtained from nano-biopsies (Tóth et al., 2018) detect a much smaller

number transcripts (≈1100−3700). While these approaches need to work with very low amounts of RNA

and therefore likely have lower detection capabilities than broader RNA-Seq, it does pose the question

of how di�erent transcript sub-populations are distributed along neurites. It has also been proposed

in the so called ’sushi belt model’ that neurons dynamically shift the distribution of mRNA and RNPs

dependent on the need of local translation at individual synapses (Doyle & Kiebler, 2011), which would

provide an explanation for di�ering transcriptomes of smaller neurite sections.

5.2 RNA enrichment in neurites

Apart from the high detection sensitivity, one major advantage of RNA sequencing methods for the study

of RNA localisation in subcellular compartments is the possibility to determine highly accurate relative

expression level di�erences of individual transcripts between compartments. This allows one not only to

determine which transcripts are very or commonly abundant in neurites, but also to designate localised

RNA based on their relative enrichment in the neurite compartment. The tools used to determine this

enrichment are the same used for calculation of di�erential expression in other circumstances and

generally assume that the majority of transcripts does not show strong di�erences, whereas a few select

ones do. This assumption might be counter-intuitive to the traditional view that RNA localisation to

neurites is dependent on a machinery speci�cally dedicated to all or at least most localised transcripts,

since the DE approach assumes that most transcripts, while not enriched, are at present to a similar

degree in the compared groups. However, nearly all studies utilising RNA-Seq methods have used such
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a di�erential expression approach and none saw reason to abandon it or use a di�erent model due to

sparser distribution of transcript counts from neurites. Indeed, for most datasets in my comparison I

could observe a approximately normal distribution of log2 fold change values for neurite/soma ratios.

While this is a strong indication that the default di�erential expression approach is indeed suitable for

RNA-Seq data from separated compartments, it does not mean the majority of transcripts is present

at similar absolute amounts in neurites and soma. Since the sequencing libraries are generated from

the same amount of total RNA, the log2 fold change values for compartment localisation have to be

interpreted as relative values between two equal sized in vitro samples and not within a neuron or

culture. Accordingly, the total amount of RNA obtainable from neurites, while variable and dependent

on the experimental setup, is around 5 to 10-fold lower than that available from soma. Furthermore,

the used models may also shift the real distribution of log2 fold change values towards the assumed

expectation and thereby mask smaller deviations that could very well exist.

There is a discrepancy between a traditional view on RNA enrichment, which would predict fewer

transcripts present or enriched in neurites, and the actual observations, which show a tendency towards

equal relative expression. This is in addition to what I have already noted in my previous work: mRNA

that are often considered neurite markers or ’gold standard’ localised transcripts, are not actually

enriched in neurites (von Kügelgen & Chekulaeva, 2020). This can be explained by the fact that nearly all

of these marker transcripts were identi�ed by mRNA localisation studies utilising imaging approaches,

which allowed the identi�cation of transcripts that are very abundant in neurites, but not necessarily

also enriched. One good example for this is the mRNA for β-Actin, which carries the �rst identi�ed

zipcode motif (Kislauskis et al., 1994) and, while being one of the most abundant transcripts in neurites,

is not consistently enriched in neurites, but rather equally distributed (von Kügelgen & Chekulaeva,

2020). While enrichment of Actb mRNA at growth cones and other sites is functionally important for the

growth of the actin cytoskeleton, there are several of these points across a cell, so a relative enrichment

should maybe not be expected. This is contrasted by transcripts of other genes, with functions that are

concentrated in neurites or synapses: both Camk2a mRNA, which is known to locally translated upon

synaptic activity (Bagni et al., 2000; Dahm et al., 2007; Miller et al., 2002), and Bdnf mRNA, which has

been known to be regulated by neuronal activity (An et al., 2008; Tongiorgi et al., 1997), are enriched in

neurites of several datasets.

Based on these general assumptions, RNA localisation de�ned by di�erential expression of RNA

between neurites and soma is only expected for transcripts with a functional role in neurites, since a

cellular mechanism is needed to generate such an asymmetric distribution. Combined with the fact

that di�usion or experimental inaccuracies might lead to spurious detection of transcripts in proximal
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neurites this implied functional relevance of relative RNA enrichment has often been used as the

primary determinant for RNA localisation in sequencing based studies, especially with larger numbers of

transcripts detected in neurites over all. However, the term RNA localisation also often implies strong or

consistent presence of a transcript in neurites, like it is the case several marker transcripts. Additionally,

some experimental contexts, like imaging based studies, may assay RNA localisation without taking

relative enrichment into consideration at all.

Even more than expression levels of transcripts their relative enrichment values from di�erent studies

have rarely been compared across a multitude of datasets before. Even though I relied on analysis of

all raw data together, coupled with a batch correction approach to achieve harmonised integration of

the enrichment values from di�erent sources, my analysis does not show very strong correlation of the

integrated model with any one individual dataset. However, there is a much stronger agreement for

genes that are signi�cantly neurite enriched also individually in multiple datasets. This indicates that

neurite enrichment based on di�erential expression calculated from a default number of 3 biological

replicates is likely in�uenced by many confounding factors and sources of noise and even an integrative

approach, that should allow a systems view on neurite enrichment, still su�ers from this noise between

datasets. Di�erences in the neurite localised transcriptome of di�erent neuronal cell types have been

known to exist for a long time, but also e�ects from di�erent in vitro culture and experimental conditions

across the available datasets can not be excluded (Steward, 1997; Turner-Bridger et al., 2020). Without

several independent samples or even datasets for each of these variables it is therefore di�cult to

properly adjust the model for all these factors in an integrated analysis approach. Therefore, I may

have only been able to �nd consistent localisation for those transcripts that are neurite enriched with

few exceptions in the currently available datasets. Interestingly, my approach identi�ed a few genes

with overly strong soma enrichment values (log2fc < -15, Table S2), which seem to represent transcripts

exclusively detected in soma compartment of datasets, but never in neurites. In individual datasets, such

an occurrence is often not statistically signi�cant without a larger number of replicates, highlighting

another strength of the integrated analysis.

As with any data analysis approach, the interpretation of numerical values or ranks for genes or

transcripts, which anyway represent an aggregation from many di�erent molecules, is di�cult. Even

if signi�cant neurite enrichment in my integrated analysis does correlate with a higher number of

enrichments across individual datasets, high log2fc values for neurite enrichment from either integrated

or individual dataset analysis do not show an increased rate of clear correlation with signi�cant neurite

enrichment. This can be expected for individual studies where confounding factors are hard to control.

However, it also means that even with an integrative approach it is ill advisable to focus on a certain

number genes with the highest enrichment values, since those may well not be the most reliable or most
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consistently enriched genes. Therefore, the need for independent and, ideally, experimental validation

of neurite localisation of individual transcripts will continue to exists, while further improvements of

the RNA-Seq analysis used to label transcripts as localised can also be made. For example, independent

assessment of detection thresholds for true biological transcript expression in neurites and soma,

may allow a better classi�cation and normalisation of transcript levels in neurites. Furthermore, the

di�erential expression models used to determine relative neurite enrichment could potentially be

expanded to account for the lower expression signal to noise ratios of neurites and the higher likelihood

of transcripts not being present there at all.

5.3 Neuronal zipcode identi�cation protocol

Even though the question of exactly how to de�ne a transcripts localisation state in neurites may

require a clearer de�nition of RNA localisation and potentially additional research, the amount of

neurite localised transcripts by far outnumbers the transcripts with known zipcode elements. While

some examples of zipcodes or neurite localisation elements have been very well described, for most

localised transcripts no speci�c molecular machineries controlling their transport or enrichment are

known or understood. To tackle this problem the Nzip MPRA was designed such that speci�ed 3’UTR

pieces are inserted into a repoter construct to assay their in�uence of RNA enrichment in neurites. This

approach o�ers several advantages, but also some limitations: while the use of in silico designed sequence

fragments o�ers a lower resolution for the exact position of any zipcodes candidates identi�ed, it is also

much easier to process both experimentally and computationally. Compared to random fragmentation of

full 3’UTR sequences, the limited number of individual designed fragment makes experimental dropouts

much more unlikely and does not necessitate extensive coverage controls. Additionally, the mapping

and quanti�cation of reads from known and clearly de�ned sequences is much easier than mapping

fragments of endogenous sequences back to their original position in the genome and averaging counts

over windows. Independently of the tile design approach, the reliance on RNA-Seq means that RNA

localisation of the reporter has to be quanti�ed based on neurite enrichment values.

In my selection of 3’UTR sequences to include into the Nzip MPRA I was careful to speci�cally take

those genes, for which I had already determined neurite localisation in our PCN model system based

on RNA-Seq data as well as other datasets, to ensure biological validity and robustness of the reporter

signal. However, this selection was based on an earlier version of my comparison of neurite localised

transcripts across datasets, so it is possible that a selection procedure based on more datasets and also

including a batch correction approach could produce a better gene selection from which even more

candidate zipcodes might be identi�ed.
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While incremental improvements in the determination of the core neurite localised gene set can

likely always be made and utilised, the Nzip library we did use proved successful as I was able to identify

54 candidate zipcode regions within 33 out of the 99 3’UTR sequences included in the Nzip library,

of which several were also identi�ed in multiple experiments. My peak selection criteria included a

requirement of at least two neighbouring neurite enriched tiles, which ensures a sequence overlap of

at least 75nt and therefore reduces the likelihood of false positive candidates. This approach has been

proven successful for the analysis of localisation elements before (Lubelsky & Ulitsky, 2018) and I further

relied on the signi�cance test from the statistical model, which is the most common approach to select

candidate tiles from an MPRA (Mikl et al., 2021; Rabani et al., 2017; Shukla et al., 2018). Alternative

analysis approaches focusing on read counts within smaller non-overlapping windows across multiple

tiles exist and can also identify larger regions spanning multiple tiles (Shukla et al., 2018). However, the

setup for Nzip is not well suited to investigate candidate regions with di�erent sizes, so it proved easier

to rely on the �xed tiles, which also makes experimental validation of selected candidates easier, since

they can be ampli�ed directly from the MPRA pool.

Keeping in mind that the enrichment based analysis of localisation in an MPRA like Nzip also a�ects

how zipcodes can be identi�ed, one should also remember that RNA localisation can not only be de�ned

by relative enrichment. Indeed, among several of the transcripts known to be localised, only some

were included in the Nzip library due to commonly detected neurite enrichment (Camk2a, Bdnf), while

other’s were only included as manually selected additions (Actb). However, even the known zipcodes of

neurite enriched Bdnf and Camk2a transcripts were identi�ed using imaging analysis (An et al., 2008;

Huang et al., 2003; Subramanian et al., 2011) and I could not validate the same active elements in tiles

overlapping them using Nzip. Given the di�culty of replicating previous results not based on RNA en-

richment in neurites, it was also uncertain whether the common approach of sequence motif enrichment

analysis within the zipcode candidates sequences would have reliable results. While this analysis is

nearly always possible computationally, the results can be heavily impacted by irregularities and unmet

assumptions in the input sequence set, which can make interpretation di�cult. I chose not to rely on

prediction of relevant sequences from motif analysis, because I had no way of mitigating the potential

impact of several such factors: sequences overrepresented from overlapping tiles, structural motifs not

easily detected, multiple motifs within candidate regions contributing di�erently to enrichment strength

and signi�cance, and possibly present localisation elements not contributing to enrichment in the MPRA

context.

Instead of a computational approach to uncover a sequence identity for the zipcode candidates,
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I designed the mutation library based on 16 of the candidates chosen from the analysis of the initial

experiments. Inclusion of all possible point mutations for both maximal positional accuracy and

sensitivity to sequence features allowed the identi�cation of two zipcodes motifs: CUACCUC and (AU)n.

Additionally, I used mutations across larger stretches in order to allow the detection of zipcodes that are

resistant to single nucleotide changes, which could include binding sites for RBPs with promiscuous

binding. However, no motifs with a clear reduction of localisation e�ects only due to longer mutations

could be identi�ed. In addition to the identi�ed motifs, the behaviour of the control tiles included in the

Nzip mutation library allow some relevant insights: nearly all the control tiles with randomised sequences

show a neurite log2fc of around 0, so an equal distribution between neurite and soma compartment.

While this is of course expected from the statistical model, which assumes a equal distribution for most

tiles and normalises read counts accordingly, it does also show that even exogenous GFP transcripts

with random 3’UTR sequences will be present and detectable in neurites equally to soma. Since the

Nzip system used the neuron speci�c synapsin1 promoter to avoid overexpression of the reporter, an

unspeci�c baseline localisation of these GFP coding transcripts has to occur. While this replicates the

behaviour of most endogenous transcripts in DE analysis, it also hightlights one shortcoming of relative

enrichment measurements: contrary to house keeping genes in whole transcriptome measurements, the

Nzip MPRA sequencing libraries do not contain any reads for which a clearly established equal ratio

exists. This means that one can not exclude the possibility of count normalisation impacting the log2

fold change ratios, even if the relations between them are not a�ected by any bias.

Contrary to the randomised control tiles that show no enrichment to either neurite or soma compartment,

the positive controls without mutations in the sequence of the selected zipcode candidate tiles, almost

all show a stronger neurite enrichment than any of the tiles with single point mutations introduced to

them. While mutations enhancing a neurite localisation signal should not be expected, they can occur

for example by extending an (AU)n motif if it has nearby A or T stretches. However, if all mutations

are assumed neutral, even a baseline variability of random measurement �uctuations should mean that

most mutations are similar to and potentially even higher than the non-mutated control. Since all tiles

within in Nzip were generated and treated in a single pool, no characteristic exists that should separate

the non-mutated tiles from the mutated ones. Therefore, the fact that such di�erence is observable can

be taken as an indication that not just the identi�ed zipcode motifs themselves, but also their whole

sequence context strongly contribute to the observed neurite enrichment of Nzip tiles. This could mean

the identi�ed motifs interact with sequence context clues like base distributions or some undetected

structural features, possibly outside of the tile sequence itself.
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5.4 Identi�ed zipcode motifs

Using the Nzip mutation library two zipcode motifs that also correlate with localisation of endogenous

transcripts could be identi�ed: both the let-7 miRNA binding site and the (AU)n repeat control localisa-

tion most likely through a�ecting stability of the mRNA. The reduction of read counts observed in soma

strongly indicates that preferential degradation of let-7 targets in soma induces their relative neurite

enrichment. Since let-7 is the most abundant miRNA in both neurites and soma, the mRNA localisation

is likely driven by the somatic enrichment of proteins involved in the miRNA degradation pathway or

potentially by other factors controlling the activity of this pathway in a compartment speci�c manner.

Furthermore, it is also possible that let-7 was the only miRNA for which an e�ect on localisation could

be identi�ed, because it is the only one with strong enough expression levels and therefore, potentially,

the only one to cause a measurable e�ect on localisation. Indeed, the neurite enrichment of non-mutated

let-7 target tiles in the Nzip mutation analysis was only around 2-fold (log2fc≈1), which is just around

the level for which a clear e�ect can be ascertained or even validated and much lower than that of tiles

with the (AU)n motif.

The e�ect of mutations in the (AU)n stretches are a very strong match to the expectation of a

mutation zipcode in the candidate tiles. Similarly to tiles with a let-7 binding site, tiles with the intact

(AU)n motif showed much a lower amount read counts, especially in soma, indicating that this motif

might also a�ect localisation through changes in mRNA stability. Compared to let-7, however, both

the neurite enrichment and the change in read counts is much stronger, which could be linked to more

asymmetric stability control or to additional features of this yet unidenti�ed pathway. Several RNA

binding proteins with the potential to bind the (AU)n motif in the Rassf3 candidate tile could be identi�ed

and more than one of those can a�ect the stability of its targets. Among these the Elval2,3 and 4 (also

known as HuB, HuC and HuD) are known both to play important roles during the di�erentiation of

neurons (Deschênes-Furry et al., 2003; Ratti et al., 2006) and to bind several neurite localised transcripts

such as Bdnf and Gap43 (Allen et al., 2013; Beckel-Mitchener et al., 2002). However, these proteins

also generally bind all AU-rich elements (ARE) and should not be overly sensitive to A↔T mutations

within the (AU)n motif. Furthermore, they are known to stabilise their mRNA targets, rather than the

destabilisation observed for the (AU)n zipcode motif (Allen et al., 2013; Beckel-Mitchener et al., 2002;

Deschênes-Furry et al., 2003). Therefore, it is unlikely the Elavl proteins directly mediate the zipcode

activity of the (AU)n motif, even if they probably do bind it and might thereby regulate its activity as a

zipcode. While little is known about the Hbsl1 protein, except that it leads to degradation of transcripts

with stalled ribosomes in the no-go decay pathway (Doma & Parker, 2006; Pisareva et al., 2011), initial

experiments carried out by my colleagues indicate that it does indeed a�ect (AU)n mediated localisation
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(von Kügelgen et al., 2021). Whether Hbs1l-linked destabilisation of (AU)n bearing transcripts truly

occurs and if it would also be linked to translation, or potentially the common pattern of translation

repression during mRNA transport (Pimentel & Boccaccio, 2014; Wells, 2006), is still unknown. Finally,

Rc3h2, or Roquin-2, is a protein that binds the so called constitutive decay element (CDE) and thereby

leads to the degradation of its tagrets via the Ccr4-Not complex. The minimal functional feature of the

CDE is a stemloop, rich in U-A pairs with 3 free nucleotides that are most often UGU, but can also be

UAU (Leppek et al., 2013). Given that a su�ciently long (AU)-repeat could quite easily assume such a

stem loop structure, it is very plausible that the (AU)n zipcode mediated degradation is at least partially

facilitated by roquin-2. However, as roquin-2 also has a secondary binding site for dsRNA as well as an

E3 ubiquitin ligase function (Tan et al., 2014; Q. Zhang et al., 2015) and has even been shown to bind

and stabilise some miRNAs (Srivastava et al., 2015), it is di�cult to speculate on possible ways, in which

it interacts with other factors that might also a�ect neurite enrichment of its targets.

Without further experiments it is not possible to say how exactly the RBPs with the ability to bind

(AU)n and a�ect stability contribute to its function as a zipcode. It might even be possible that control of

RNA degradation and localisation are independent e�ects of the RBPs, even though this seems unlikely

as stronger somatic degradation was observed. Since it is often the case that many di�erent RBPs bind a

single transcript, it is very well possible that multiple factors also use the same binding site (Iadevaia &

Gerber, 2015). Indeed, it was also shown that both in the case of the β-Actin mRNA, whose localisation

is mainly facilitated by ZBP1, and with an ARE element in Gap43 3’UTR the Elavl4 protein (HuD) can

bind the same zipcode region and potentially a�ect neurite localisation (Kim et al., 2015; Yoo et al., 2013).

The potential interplay of multiple trans-factors binding the (AU)n zipcode motifs are nearly impossible

to predict, but could provide complex regulation or even enhancement of the localisation e�ect leading

to stronger enrichment than caused through degradation or di�erential let-7 activity alone.

5.5 Model of neurite localisation control

Similarly to other studies investigating RNA localisation signals in neurons, Nzip is built based on the

understanding that the localisation of transcripts is controlled by many di�erent factors each with their

own binding site, target spectrum and one of several potential mechanisms (Turner-Bridger et al., 2020).

The results I obtained from Nzip are mostly in accordance with these assumptions, as I was able to

identify a relatively large number of potential zipcode candidate regions across many of the studied

transcripts. Additionally, it is also generally assumed that most transcripts can have multiple zipcodes

working together to control localisation and while I only found one potential localisation element for

most transcripts included in the assay, it is not really clear how many one should expect to �nd. It has
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also been suggested that, especially in the complex control networks utilised by neurons, many RBPs

only show relatively weak binding speci�city for individual transcripts to allow faster scanning and

collaborative post-transcriptional control in combination with other RBPs or e�ector protein (Achsel &

Bagni, 2016). This theory also �ts the �ndings of a recent study by Mikl et al. (2021), which also utilised

an MPRA to look for zipcode elements and raises the point that the e�ect of many RBPs on localisation

is not strong enough to induce localisation by themselves even if they do provide a potentially necessary

contribution to that e�ect. These e�ects of course also explain why the binding sites of such RBPs are

very hard to identify as zipcodes using Nzip or similar MPRAs: since individually assayed tiles will most

often carry only one RBP site or zipcode element, they need to be exceptionally strong to be biologically

active. Considering the potential extent of zipcodes or RBP binding sites with weak signal strength and

the general experimental variability inherit to any MPRA study, the results obtained with the �rst Nzip

library are therefore overall very satisfactory.

A striking observation from my results is that both of the zipcodes discovered using the Nzip

mutation library seem to drive localisation by inducing compartment speci�c increased degradation in

soma. This raises the questions whether this mechanism of inducing neurite enrichment is potentially

more prevalent in neurons or at least in the PCN model. For most other neuronal zipcodes mechanisms

described so far, it is assumed if not shown that they link their bound transcripts as RNPs to the trans-

port machinery (Song et al., 2015; Turner-Bridger et al., 2020), while RNA localisation through local

degradation has mainly been described in systems such as drosophila oocytes. Another possibility that

can not be excluded is of course, that the Nzip system itself may be biased towards detecting zipcodes

utilizing a degradation based localisation mechanism.

Without any other explanation for the observed Nzip results, it is interesting to consider whether a

potential bias for detecting stability induced localisation might be caused by reliance of enrichment

as a measure of localisation. One possible explanation for such a connection could be the existence of

di�erent functional classes of zipcodes, that cause RNA localisation which either manifests through

relative enrichment across a whole compartment or through transport induced presence at a speci�c

site. Indeed, if this were the case one should expect localisation induced by di�erential stability to be

more easily detectable by enrichment analysis, compared to other mechanisms, that increase the rate of

active transport towards speci�c sites, like the β-Actin mRNA accumulating at growth cones, but do

not necessarily a�ect the ratio of transcript between compartments.

Di�erent classes of zipcodes that control distinct modes of RNA localisation do not neatly �t into a

traditionally two-sided model of RNA localisation, in which subcellular localisation to a compartment

like neurites has only a single state: either transcripts are actively localised somewhere or they are not
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and mostly remain in soma. Based on this view, both the enrichment strength and relative localisation

frequency of individual transcripts are then secondary measures further describing the already assigned

localisation state. However, such a view of RNA localisation also does not accommodate the fact that

the number of transcripts consistently detectable in neurites is very high: with at leas 7.500 and up to

15.000 transcripts, nearly a quarter or even half of the genome might be in some way localised neurites.

Considering that often only a part of the whole genome is transcribed in a given cell, this means that,

based on the number of transcripts detected by RNA-Seq measurements, a large majority of neuronal

transcripts should be considered localised to neurites in a certain fashion. Furthermore, the enrichment

analysis across datasets identi�es only relatively few transcripts as enriched in soma and even fewer with

exclusively somatic expression, which many assume to be the default state of any unspeci�c transcript

and control tiles with randomised sequence inserts were also not soma enriched in Nzip.

To provide an explanation for the lacking overlap between gold standard localisation markers and

commonly enriched RNAs as well as the presence of a very large number of transcripts in neurites and

possibly the existence of di�erent classes of zipcodes, I propose to use a more elaborate model for de-

scribing RNA localisation in neurons. If one assumes that the neurite localisation of any given transcript

is always possible with a certain probabilistic distribution, the detection of most transcripts in neurites

would be expected, potentially even that of all transcripts not speci�cally retained in soma. However,

only transcripts for which mechanisms exist that increase the probability or extend of localisation into

neurites, can become relatively enriched in neurites. Additionally, separate mechanisms could facilitate

the transport or otherwise induced accumulation of speci�c transport to speci�c sites in either neurites

or soma, without directly a�ecting the general propensity towards general enrichment.

This view is supported, and indeed also partially inspired, by a recently published theoretical model of

RNA and protein localisation by Fonkeu et al. (2019), which relies on production, di�usion, transport and

degradation rates of transcripts and proteins. The model presented by these authors uses such values

reported for the strongly localised Camk2a mRNA with the use of probability distributions derived from

solved di�erential equations. Due to the nature of this mathematical derivation, the model generates and

predicts continuous density distributions values for RNA localisation along dendrites, but does in fact

conclude that RNA concentrations are most likely continuously decreasing with distance in dendrites,

but are still su�cient to achieve steady distribution of proteins due to local translation. However, if

one extends the model to other genes, it still implies that most transcripts can reach at least proximal

neurites, even with lower transport speeds. Furthermore, Fonkeu et al. (2019) also note that both changes

in mRNA transport rates and in mRNA stability are poised to have strong e�ects on localisation of both

RNAs and proteins. These two features of a transcript can of course strongly be in�uenced by zipcodes
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whose associated trans-factors could connect transcripts to transport machinery to improve median

transport speeds or a�ect degradation rates directly. Compared to degradation, the RBP facilitated

connection to transport complexes might be weaker and also reversible, so that the e�ects of stability

changes on RNA localisation may be easier to detect with enrichment based analysis, especially if the

stability is a�ected disproportionally across compartments.

Finally, this model view of RNA localisation I am proposing does not only have to explain observations

from experiments, but also match the biological reality and needs of neurons. One often mentioned

requirement for directly controlled transport dependent localisation of RNAs in neurons is the length of

human axons, which can reach up to nearly 1 meter. This could be taken as a potential counterargument

for an RNA localisation model based on enrichment distributions reaching an equilibrium state, in

which RNA levels likely decrease with distance. However, one has to keep in mind that neuronal RNA

localisation is an evolutionary conserved process and indeed �rst evidence of functional mRNA in

synapses was detected in the invertebrate sea slug Aplysia (Martin et al., 1997; Moccia et al., 2003).

Also more recent work on the subcellular transcriptome of neurons from C. elegans showed typical

agreement with singular studies from mammalian systems (Arey et al., 2019). This strongly indicates

that the mechanisms for RNA localisation in neurons are evolutionary far older than the emergence of

tetrapods or mammals with neurons that would require special mechanisms to accommodate for their

extraordinary length. Additionally, one should keep in mind that all large RNA-Seq datasets generated so

far use either in vitro cultured neurons or hippocampal tissue slices, neither of which allow for neurites

longer than a few hundred microns. Therefore, it could well be the case that additional cellular systems

exist that ensure proper localisation of transcripts along very long axons, which have not yet been

identi�ed, or that only select transcripts do reach such distances, where the theoretical models might

not apply accurately.

5.6 Characterisation of NIL induced iMN

One large motivation for uncovering zipcodes and how they function is to deepen our understanding of

how RNA localisation works. This is meaningful, because RNA localisation plays an important role for

the health and function of neurons and many neurodegenerative diseases have been associated with

disruption of normal RNA localisation. While it is not yet known whether this disruption is cause or

e�ect of other facets of the diseases, studying them with an eye on RNA localisation is still worthwhile.

To properly study the role of RNA localisation in human neurodegenerative diseases like ALS, one

needs a good model system of human motor neurons that also allows investigation of RNA localisation.

In order to set up such a system, colleagues from the Chekulaeva lab established a di�erentiation protocol
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of hiPSCs using doxycycline inducible expression of neurogenic transcription factors NGN2, ISL1 and

LHX3. My analysis of the transcriptome and proteome of these iMN throughout their di�erentiation in

this protocol revealed that they do express the expected marker genes of developing (HB9) and mature

(CHAT, VACHT) motor neurons. However, the markers that usually distinguish di�erent populations of

the spinal motor columns are either not expressed at all (HOX genes) or have combinations not observed

in vivo like the co-expression of LHX3 and FOXP1 (Dasen et al., 2008; Davis-Dusenbery et al., 2014).

This is not overly surprising, given that the spatial patterning of developing motor neurons depends

on tightly controlled gradients of retinoic acid and sonic hedgehog, which are not used at all in the

NIL-iMN di�erentiation protocol. Nonetheless, the iMN express the typical markers of only spinal motor

neurons (HB9, FOXP1) and not those of cranial motor neurons (PHOX2A) (Mazzoni et al., 2013), even if

one has to assume that they either form a mixed population of di�erent subtypes or represent a spatial

expression pattern not present for spinal motor neurons developing in vivo.

Further on, the iMN from the NIL protocol reach maturity after already 21 days of di�erentiation

and cell type deconvolution against single cells with electrophysiology measurements suggests that a

majority of the iMN has the capability for electric signal transduction. However, this correlation based

prediction still has to be con�rmed with experiments to fully characterise the iMN system. Given that

the purpose of the iMN system is the analysis of bulk samples traditional patch clamping assays may not

be able to give a full overview over whole iMN cultures. Instead, other approaches like multi electrode

arrays (Kapucu et al., 2022) or imaging based analysis of dyes sensitive to intracellular calcium levels

(Farsi & Woehler, 2017) would be more suited to provide a more reliable and statistically interpretable

overview of the electrophysiologic capabilities of the iMN bulk culture.

Analysis of the enrichment of transcripts in the subcellular transcriptome of either neurites or

soma from iMN mostly showed the expected results: genes with previously described localisation,

speci�c function, or localisation were found enriched in their respective compartments. Additionally,

the correlation of expression and enrichment values with those from the integrated analysis of many

datasets is on a similar level to correlation of individual studies included in the integrated model. For the

comparison of proteomics data only very few possible reference datasets exist (Zappulo et al., 2017), but

none from human or primary neurons. Instead, I assessed functional associations for localised proteins

using GO analysis, where I found expected enrichment of terms for synapses and neuronal projections

in neurites. Additionally, the overall log2 fold change distribution of all proteins annotated to terms

enriched in neurite or soma localised genes followed the same pattern, indicating a clear preference of

localisation according to function.
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5.7 E�ects of FUS mutations on subcellular transcriptome and proteome of iMN

The iMN system allows for the study of both healthy and disease model human motor neurons in parallel,

which is not possible with other systems. Mutations in the FUS gene are known to cause ALS, and while

many hallmarks of this disease have been described well, including the dying back of axons starting

the NMJ, the exact molecular mechanism through which FUS or other proteins contribute to disease

etiology are still a matter of active research.

My analysis of data from compartment separated iMN with di�erent FUS mutations and their

isogenic controls might uncover new insights speci�cally in neurites. Given the combination of multiple

compartments and FUS mutations, any approach with the gaol of identifying genes with a potential

in�uence of the disease, needs to integrate the di�erent layers of data. To achieve this several approaches

are possible, however I chose the simplest one and considered mainly those genes with overlapping

di�erential expression between FUS mutant and control iMN across RNA and protein measurements

from di�erent compartments and mutations. More sophisticated models for the calculation of di�er-

ential expression, that allow the consideration of interaction or dependency of di�erential expression

on compartments or mutations directly can be constructed. However, formulating such a model also

requires a speci�c hypothesis regarding the type of the interaction and is therefore not well suited for

initial explorative analysis. Additionally, protein and RNA expression data can not easily be used as

input into one singular analysis, especially for di�erential expression with methods like DESeq2, since

they normally use di�erent identi�ers and more importantly have di�erent numerical scales. However,

changes in proteins levels are often easier to interpret in terms of their functional implications, while

it is also known that RBPs like FUS a�ect the RNA homeostasis in cells. Therefore, I feel con�dent

that genes with an overlapping di�erential expression across both di�erent data types and biological

models of ALS associated FUS mutations is a good approach to identify genes important in the disease

progression.

Based on GO term enrichment analysis I identi�ed distinct functional terms associated with both

down and up regulated genes in FUS mutant iMN. Contrary to genes with lower expression in iMN with

mutant FUS, which are mainly associated with laminins and the basement membrane, the functional

associations of up-regulated genes are quite diverse. My analysis indicates synaptic function for some

genes in neurites, but also chromosome and DNA replication associated proteins for soma and total cells.

The latter group is unexpected as neurons should have no need for nuclear DNA replication, however it

is also not represented by any of the individual up-regulated genes with high enrichment scores. Given

that several other up-regulated proteins with high scores are direct targets of FUS, it is also possible
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that these results stem from indirect consequences of the FUS mutations on gene expression or from

o�-target e�ects introduced during the generation of the di�erent hiPSC lines. Interestingly, uniquely

in neurites of the P525L iMN the FUS protein itself, but not its mRNA, is also up-regulated (Figure 9,

upper left panel). However, this can most likely by explained by the loss of nuclear FUS localisation in

this particular mutation and does not necessarily imply changes in FUS expression.

First among the up-regulated genes with synaptic function is COMT, an enzyme that inactivates cate-

cholamine neurotransmitters like adrenaline by methylation. While motor neurons are not known to

utilise these neurotransmitters, changes in catecholamine metabolising enzymes have previously been

associated with ALS (Ekblom et al., 1993) and by-products of oxidative catecholamine catabolism, which

is not mutually exclusive with methylation inactivation, have been implicated as relevant neurotoxic

agents (Salauze et al., 2005). Interestingly, another gene related to neurotransmitters, the glutamate

transporter SLC17A6, better known as VGLUT2, is also up-regulated (see table S6), especially in the

context of the R244RR mutation. Increased glutamate levels can induce excitotoxicity in motor neurons,

which is known to often occur in ALS (Foran & Trotti, 2009). Additionally, it was shown that reduced

VGLUT2 levels improve motor neuron health in ALS, even though this does not halt disease progression

and was so far mainly associated with transport level dependent glutamate release by other cell types

(Schütz, 2005; Wootz et al., 2010).

Other functional associations of the diverse group of up-regulated and partially synapse localised genes

include regulation of neurite growth, cell-cell contacts, the cytoskeleton and metabolism. Additionally,

several individual up-regulated genes have mutations linked to ALS or a�ect some of common disease

associated phenotypes. This diversity of up-regulated genes and ALS associated mechanisms highlights

the multifaceted nature and complexity of FUS functionality especially in ALS progression, but also

makes distinction between causative e�ects relevant for disease etiology and indirect or disease support-

ing e�ects harder. Interestingly, several of the most di�erential up-regulated transcripts can be bound by

wild type FUS (Table S6), which makes it likely that most of these genes are perturbed due to irregularities

of their usual regulation by FUS. Therefore, I think it is more likely that most of these diverse e�ects do

not directly contribute coherently to disease etiology, but are rather indirect e�ects of FUS mutation and

likely contribute to ALS progression and cellular stress levels through a perturbation of normal functions.

For the genes down regulated in FUS mutant iMN, I identi�ed mainly laminins and other associa-

tions with the basement membrane as enriched functional associations. This was particularly evident

in the neurite compartment containing the axons, where also proteins with association to the NMJ

were less expressed than in control iMN. There is clear evidence that a proper build-up of the basal

lamina and extracellular matrix around the NMJ is crucial for its maturation and synaptic function
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(Heikkinen et al., 2020). Among the proteins with lower expression in FUS mutant iMN is also the

neuron speci�c laminin 5 protein, which is particularly important for both maturation of the NMJ and

neuromuscular signal transmission (Maselli et al., 2018; Nishimune et al., 2008). Interestingly, among

the proteins with reduced expression both the ones with a strong score across all analyses (GPR50,

PCSK1, LAMA5, SNAP47) and the remaining ones associated with the NMJ (SLC5A7, EPHA4, EPHA7,

SERPINE2, LAMB2) are all either transmembrane proteins located in the plasma membrane or otherwise

associated with secretory vesicles. Furthermore, aberrant splicing of transcripts coding for proteins

with functions in cell-matrix adhesion, speci�cally of transmembrane or secreted ones, has previously

also been associated with ALS (Rabin et al., 2010). Therefore, I believe that there exists a defect in the

FUS mutant iMN that, especially in neurites, reduces expression of proteins which have to cross the

secretory pathway, including several with important functions for the maturation of the NMJ. Indeed,

the presence and function of an axonal secretory pathway composed of both endoplasmic reticulum

and structures with golgi function has been uncovered over the last years (Luarte et al., 2018; Merianda

et al., 2009). It is therefore possible that speci�c mechanisms linked to FUS or other ALS associated

proteins might interfere with a neurite speci�c secretory pathway, which could o�er an explanation of

how ALS a�icted motor neurons are not able to maintain activity of NMJs and thereafter start degrading.

Based on this theory I also investigated the distributions of di�erential expression values from

transcripts coding for proteins travelling through di�erent stages of the secretory pathway. In addition, I

performed the same analysis for direct mRNA targets of mutant and wild type FUS as well as transcripts

with a G-quadruplex motif, which is a connecting point of several ALS associated proteins and can be

bound by both FUS and TDP43 (Imperatore et al., 2020; Ishiguro et al., 2016). This analysis revealed

that, indeed, the transcripts which code for proteins of the secretory pathway or those that carry a

G-quadruplex motif show a trend of lower expression in iMN with the FUS P525L mutations. This shift

of log2fc values is very similar to that on transcripts, which are known binding targets of wild type or

mutant FUS protein, further indicating that disturbance of these gene sets might indeed be linked to

FUS mutations and potentially play an important role in the disease progression of ALS. Interestingly,

the di�erence I observed between these speci�c gene sets and their background is not only stronger in

neurites, but also barely visible for the R244RR iMN and only signi�cant for the P525L mutation, which

abolishes the nuclear localisation of FUS. Therefore, the mutation speci�c reduced expression of these

genes could be a toxic gain-of-function of FUS localised to the cytoplasm. While it is relatively clear

that FUS could a�ect G-quadruplex carrying transcripts by direct interaction, there is so far not much

evidence or any explanation of how it could directly interfere with transcripts designated for passage

through the secretory pathway. While I observed marginally stronger log2fc shifts for transcripts with
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both a G-quadruplex and coding for genes passing the secretory pathway, this e�ect was not signi�cant.

However, even though I did not test for this speci�cally, it might nonetheless be possible that there

exists a big enough overlap between these two groups, which would lead to FUS a�ecting them in a

similar way. Another possibility is that FUS interferes with neurite localisation or local translation of

all these transcripts: since the G-quadruplex motif is known to act as a zipcode (Maltby et al., 2020;

Subramanian et al., 2011), binding by FUS could block this function. Furthermore, transport to neurites

and local translation of transcripts is known to occur in association with lysosomal and endosome

vesicles (Cioni et al., 2019; Liao et al., 2019). Interestingly, the study by Liao et al. (2019) not only showed

that disruption of ANXA11 mediated tethering between RNA and lysosome is linked to ALS, but also

that FUS is another protein able to interact both with liquid phase separated RNA and with this type of

lysosome. This provides another potential mechanism of how FUS can disrupt certain subsets of the

local transcriptome and translatome speci�cally linked to the secretory pathway.

Taken together my exploratory analysis of the e�ects of FUS mutations show that there are many

e�ects on the transcriptome and proteome which can be grouped and preliminarily attributed to distinct

modi of FUS actions. Most striking in my eyes is the disruption of extracellular matrix and other genes

that have to pass the secretory pathway, since they are not only more strongly a�ected in neurites, but

also only a�ected by the cytoplasmic localised FUS mutant, which makes this most likely a toxic gain of

function e�ect. However, this theory still requires considerable further investigations, since I can not

clearly say whether there exists and overlap of FUS a�ected transcripts with the G-quadruplex motif

and those coding for proteins of the secretory pathway. Additionally, the reduced expression of these

genes in neurites could be a�ected at di�erent stages of RNA localisation and local translation. While

e�ects of FUS on transport and translation of RNA have been described before (Yasuda et al., 2013),

potential e�ects on local translation of proteins that need to pass the secretory pathway are much harder

to address since the possibility of local translation at the axonal endoplasmic reticulum (ER) is still

controversial (González et al., 2018). Still, the dysfunction of local translation into an axonal ER might

prove to be an explanation to the elusive etiology of ALS, not only because it is an so far understudied

phenomenon, but also because the contact between ER and mitochondria or ER calcium storage could

provide further links to other hallmark features of ALS like redox stress and glutamate excitotoxicity.

77



5.8 Conclusions & Outlook

In my work I have shown that the number of transcripts consistently detectable in neurites is very large

and nearly in the same order of magnitude as the total transcriptome. However, modern de�nition of

RNA localisation also relies on relative enrichment of transcripts in neurites, which encompasses a much

smaller set of transcripts that is distinct from many top expressed neurite markers. Furthermore, the

analysis of the Nzip MPRA led to the identi�cation of two novel zipcode elements, the let-7 miRNA seed

sequence and an (AU)n repeat sequence, both of which most likely lead to enrichment of transcripts in

neurites by somatic RNA destabilisation. Contrarily, using enrichment based analysis I could not observe

strong localisation signals for several known zipcodes included in the Nzip MPRA. These two key

observations lead me to the hypothesis that the neuronal RNA localisation machinery might separately

control the presence and enrichment of transcripts in neurites and that consequently zipcodes may

a�ect either or both of these measures independently.

Strati�cation of localised RNA into groups of enriched transcripts and strongly expressed ones may

allow for easier discovery of sequence motifs that are enriched in those distinct groups, but not all

localised transcripts. Additionally, motif discovery for RNA localisation could likely be improved if a

baseline probability of transcript presence in neurites is accounted for, since many tools available from

genomics assume that motifs derive from a selection driven by a single factor. Furthermore, experiments

with the aim to validate zipcode activity a�ecting two di�erent measures of RNA localisation separately,

should not only uncover whether there indeed exist distinct mechanisms to control enrichment and

presence of RNA in neurites, but also improve sequence or motif based predictions about the compart-

mental distribution of a given transcript. Thus knowledge about zipcodes and their potential e�ects on

transport speeds or stability could be integrated with a stochastic model of RNA localisation, in which

any transcripts distribution depends on its probability to reach an equilibrium with a given percentage

of molecules in neurites.

As the second part of my work I analysed transcriptomic and proteomic data from human NIL induced

motor neurons �rst to characterise this model system, which proofed to show expected motor neuron

and maturity hallmarks as well as similarities to other neuronal model systems including, compartment

speci�c expression signatures. Building on this, I assessed the di�erential expression induced by ALS

associated FUS mutations to identify sets of genes with strong responses across compartments and data

modalities. This uncovered several di�erent up-regulated genes with partially direct binding targets

of FUS and often known ALS associations, as well as a larger trend of reduced expression of secretory

pathway targeted genes especially in neurites of iMN with cytoplasmic P525L-FUS, speci�cally including

extracellular matrix proteins important for the formation and function of the NMJ. A disruption of local
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translation at the ER in axons could provide a mechanism for a toxic gain of function of FUS but also

other ALS related genes, since it also provides possible links to other processes that are known to be

disrupted in ALS. Additionally, I observed that transcripts with the G-quadruplex motif, which can

be linked to ALS associated RBPs FUS and TDP43 as well as C9ORF repeats, show similar expression

changes in the context of the cytoplasmic FUS mutant.

Building on these insights, further studies to determine the relevance of the axonal ER and nearby

RNA clusters therefore seem to be a promising next step. This should include the determination of

whether transport of RNA, local translation or export of proteins from a locally present ER in axons is

most a�ected. Utilisation of the already existing data might allow targeted identi�cation of proteins

known to pass the secretory pathway, which are a�ected speci�cally on the level of localised transcripts

or proteins. Furthermore, proximity labelling of RNA and proteins nearby the ER or other vesicular

structures speci�cally in neurites as well as detection of newly translated transmembrane or secreted

proteins in neurites could allow a better distinction of the exact genes processed through a local secretory

pathway.
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Figure S1: Quality control plots for RNA-Seq data from PCN.
(A) Log2 ratios of reads from exons and introns (x-axis) and sense and anti-sense orientation (y-axis) of all genes. Genes
with log2 ratios for exon/intron >2.5 and sense/antisense >2 are marked in dark grey and are the only ones used for any
analysis of this data. (B) MA plot of di�erential expression between neurite and soma compartment (x-axis: log10 mean
expression, y-axis log2 fold change). Genes with a signi�cant change (adj. p-value <0.05) are marked red and genes selected
for inclusion in the Nzip library are marked black. Data was generated by Sayaka Dantsuji.

Table S1: Primer sequences used for generation of Nzip reporter and sequencing libraries. The 2nd strand primer for generation
Nzip sequencing libraries was used as a pool of 6 primers with di�erent lengths of UMI inserts.

Primer Sequence

Tile ampli�cation (fw) cggcatggacgagctgtacaagccaTAATTCGATATCCGCATGCTAGC
Tile ampli�cation (rev) cttcagaaataagtttttgttccaAGACGTGTGCTCTTCCGATC
Nzip library, 1st Strand GTGACTGGAGTTCAGACGTGTGCTCTTCCGATC
Nzip library, 2nd Strand, with UMI ACACTCTTTCCCTACACGACGCTCTTCCGATCT-

-HNCHNTNNNgcca- or
-HNCHNTNNNcagcca- or
-HNCHNTNNNagcgcca- or
-HNCHNTNNNggctcgcca- or
-HNCHNTNNNccagcagcca-

TAATTCGATATCCGCATGCTAGC
Final library generation, fw (with
Illumina adapter and barcode)

AATGATACGGCGACCACCGAGATCTACAC-nnnnnnnn-
ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Final library generation, rev (with
Illumina adapter and barcode)

CAAGCAGAAGACGGCATACGAGAT-nnnnnnnn-
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATC
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Table S2: All genes with signi�cant enrichment in either soma or neurite compartment based on the combined model of
all high sensivity datasets. In the last column, the identity of individual datasets, that show sig. enrichment in a given
compartment, is abbreviated as follows (datasets identi�ed by �rst author of the study): Briese - 1, Middleton - 2, Farris - 3,
Maciel - 4, Minis - 5, Rotem - 6, Matiolli - 7, Nijssen - 8, Taliaferro (PCN) - 9, Tushev - 10, Taliaferro (CAD) - 11, Taliaferro
(N2A) - 12, vonKügelgen - 13, Zappulo - 14

Ensembl gene ID Gene name Enrichment
(log2fc) in
combined

model

Adjusted
p-value in
combined

model

Average
expression

(mean
TPM)

No. of
datasets
with sig.

enrich-
ment

Datasets with sig. enrich-
ment in Soma or Neurite

ENSMUSG00000000532 Acvr1b -1.099 0.0177 28.3 7 Soma: 1,3,5,7,8,13,14
ENSMUSG00000003153 Slc2a3 -1.332 0.0180 75.2 4 Neur: 14; Soma: 3,5,7,8
ENSMUSG00000004508 Gab2 1.315 0.0423 66.6 4 Neur: 3,5,6,7; Soma: 8
ENSMUSG00000004891 Nes 1.348 0.0218 655.7 7 Neur: 1,3,5,6,7,9,11; Soma:

14
ENSMUSG00000005362 Crbn -1.196 0.0053 27.8 5 Soma: 2,3,5,8,14
ENSMUSG00000007892 Rplp1 0.886 <0.0001 778.2 9 Neur: 1,2,3,5,6,7,8,11,13
ENSMUSG00000011257 Pabpc4 1.296 0.0019 82.5 7 Neur: 3,5,6,7,11,13,14;

Soma: 8
ENSMUSG00000013662 Atad1 -0.848 0.0325 54.2 6 Soma: 3,5,7,8,11,14
ENSMUSG00000014602 Kif1a 0.947 0.0119 445.6 8 Neur: 1,2,3,5,6,8,13; Soma:

14
ENSMUSG00000015189 Casd1 -1.428 0.0332 55.0 8 Soma: 1,2,3,5,7,8,11,14
ENSMUSG00000016427 Ndufa1 0.727 0.0117 127.4 8 Neur: 2,4,5,6,7,8,11,13
ENSMUSG00000017778 Cox7c 0.564 0.0307 348.2 9 Neur: 2,3,4,5,6,7,8,11,13
ENSMUSG00000020086 Macroh2a2 -1.235 0.0359 87.0 5 Neur: 5; Soma: 2,7,8,14
ENSMUSG00000020483 Dynll2 0.755 0.0266 261.9 5 Neur: 5,6,9,11; Soma: 7,14
ENSMUSG00000020589 Fam49a -1.090 0.0126 27.1 5 Neur: 5; Soma: 3,7,8,14
ENSMUSG00000020607 Lratd1 -1.747 0.0297 12.5 5 Neur: 5; Soma: 2,3,7,14
ENSMUSG00000020821 Kif1c 1.485 0.0468 114.7 9 Neur: 3,4,5,6,7,9,13,14;

Soma: 8
ENSMUSG00000021546 Hnrnpk -0.665 0.0117 681.4 2 Soma: 3,8
ENSMUSG00000022661 Cd200 -1.428 0.0126 154.0 7 Soma: 1,2,3,5,7,9,14
ENSMUSG00000024661 Fth1 0.936 0.0106 944.8 10 Neur: 1,2,3,5,6,7,8,9,13,14
ENSMUSG00000024769 Cdc42bpg 1.481 0.0105 14.1 8 Neur: 3,4,5,6,7,11,13,14
ENSMUSG00000025290 Rps24 0.832 <0.0001 803.1 10 Neur: 1,2,3,4,5,6,7,8,11,13
ENSMUSG00000025508 Rplp2 0.705 0.0012 743.9 9 Neur: 1,2,3,5,6,7,8,11,13,14
ENSMUSG00000025967 Eef1b2 0.804 0.0020 613.0 9 Neur: 2,4,5,6,7,8,11,13,14
ENSMUSG00000026664 Phyh -1.529 0.0056 35.8 4 Neur: 3,13; Soma: 2,7,14
ENSMUSG00000026739 Bmi1 -1.302 0.0350 49.0 6 Soma: 2,3,7,8,11,14
ENSMUSG00000026764 Kif5c 0.917 0.0020 403.0 5 Neur: 4,5,6,7,8,13; Soma: 14
ENSMUSG00000027498 Cstf1 -1.156 0.0225 25.7 2 Soma: 2,3
ENSMUSG00000027935 Rab13 2.322 0.0020 94.9 8 Neur: 3,4,5,6,7,11,13,14
ENSMUSG00000028367 Txn1 0.672 0.0166 238.7 6 Neur: 4,5,7,11,13,14; Soma:

3
ENSMUSG00000028389 Zfp37 -1.076 0.0352 14.4 7 Neur: 7; Soma: 2,3,5,8,11,14
ENSMUSG00000028495 Rps6 0.510 0.0323 1,591.6 7 Neur: 1,3,4,5,6,7,11,13
ENSMUSG00000028524 Sgip1 -1.019 0.0304 30.8 8 Soma: 1,2,3,5,7,8,11,14
ENSMUSG00000028639 Ybx1 0.666 0.0415 1,836.2 9 Neur: 1,2,3,4,5,6,7,8,9,13,14
ENSMUSG00000028648 Ndufs5 0.516 0.0194 221.5 6 Neur: 2,5,6,7,8,11,13
ENSMUSG00000029649 Pomp 0.597 0.0089 84.6 3 Neur: 5,6,11,13; Soma: 3
ENSMUSG00000031066 Usp11 -1.029 0.0327 86.4 5 Soma: 2,3,7,8,13,14
ENSMUSG00000031245 Hmgn5 1.238 0.0059 22.0 6 Neur: 5,6,7,11,13; Soma: 8
ENSMUSG00000031696 Vps35 -0.745 0.0018 119.8 5 Soma: 2,3,5,8,11,14
ENSMUSG00000031703 Itfg1 -0.886 0.0470 66.6 6 Soma: 1,3,5,7,8,11,14
ENSMUSG00000032232 Cgnl1 1.696 0.0001 11.5 7 Neur: 3,4,5,6,7,14; Soma: 8
ENSMUSG00000032262 Elovl4 -0.977 0.0464 24.8 6 Soma: 2,3,5,7,8,14
ENSMUSG00000032518 Rpsa 0.749 0.0046 1,226.8 11 Neur: 1,2,3,5,6,7,8,9,11,13,14
ENSMUSG00000033948 Zswim5 -0.706 0.0275 14.0 5 Soma: 3,5,7,11,14
ENSMUSG00000034586 Hid1 -1.223 0.0310 32.6 7 Soma: 1,2,3,5,7,8,13,14
ENSMUSG00000034648 Lrrn1 -1.938 0.0243 92.6 6 Soma: 3,5,6,7,8,14
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ENSMUSG00000034892 Rps29 0.867 0.0003 464.5 11 Neur: 1,2,3,4,5,6,7,8,11,13,14
ENSMUSG00000035885 Cox8a 0.594 0.0327 480.4 9 Neur: 1,2,3,5,6,7,8,11,13,14
ENSMUSG00000036052 Dnajb5 -1.466 0.0054 32.1 5 Soma: 2,3,7,8,13,14
ENSMUSG00000036291 Ap5m1 -1.390 0.0196 20.8 4 Soma: 2,5,6,8,14
ENSMUSG00000036473 Tbc1d24 -1.040 0.0179 15.0 6 Neur: 14; Soma:

1,2,3,5,7,8,13
ENSMUSG00000038900 Rpl12 0.774 0.0018 292.9 10 Neur: 1,2,3,5,6,7,8,11,13,14
ENSMUSG00000039001 Rps21 0.676 0.0148 407.7 9 Neur: 2,3,4,5,6,7,8,11,13
ENSMUSG00000039678 Tbc1d13 -1.191 0.0352 52.3 2 Soma: 5,7,8
ENSMUSG00000040952 Rps19 0.602 0.0215 884.7 10 Neur: 1,2,3,4,5,6,7,8,11,13
ENSMUSG00000041203 Trir 0.773 0.0420 66.5 1 Neur: 5,9; Soma: 3
ENSMUSG00000041219 Arhgap11a 1.250 0.0085 65.2 9 Neur: 1,4,5,6,7,9,13,14;

Soma: 8
ENSMUSG00000041483 Zfp281 -1.268 0.0175 16.9 5 Soma: 3,5,6,8,11,14
ENSMUSG00000041544 Disp3 -1.252 0.0257 10.6 3 Soma: 6,7,14
ENSMUSG00000041658 Rragb -0.989 0.0356 31.4 4 Soma: 1,3,5,14
ENSMUSG00000041697 Cox6a1 0.742 0.0066 431.3 11 Neur: 1,2,3,4,5,6,7,8,11,13,14
ENSMUSG00000041775 Mapk1ip1 -1.212 0.0497 33.2 6 Soma: 2,3,5,7,8,14
ENSMUSG00000041841 Rpl37 0.672 0.0093 391.5 9 Neur: 1,2,3,4,5,6,8,11,13
ENSMUSG00000043079 Synpo 1.996 0.0350 36.0 1 Neur: 6
ENSMUSG00000044533 Rps2 0.679 0.0132 1,263.5 12 Neur:

1,2,3,4,5,6,7,8,9,11,13,14
ENSMUSG00000045071 E130308A19Rik -1.657 0.0217 13.9 7 Neur: 3,13; Soma:

2,7,8,11,14
ENSMUSG00000045435 Tmem60 -1.082 0.0299 22.5 6 Soma: 2,3,5,6,8,14
ENSMUSG00000048970 C1galt1c1 -1.395 0.0196 11.4 6 Soma: 2,3,5,7,8,14
ENSMUSG00000049517 Rps23 0.753 0.0132 386.5 11 Neur: 1,2,3,4,5,6,7,8,9,11,13
ENSMUSG00000050132 Sarm1 -1.086 0.0273 17.7 6 Soma: 1,2,5,7,8,14
ENSMUSG00000050708 Ftl1 0.756 0.0058 1,971.6 10 Neur: 2,3,4,5,6,7,8,9,11,13
ENSMUSG00000053617 Sh3pxd2a 2.138 0.0025 41.7 7 Neur: 1,3,4,5,6,7,9,14
ENSMUSG00000055447 Cd47 -0.989 0.0017 40.5 5 Soma: 2,3,5,7,8,14
ENSMUSG00000056459 Zbtb25 -1.445 0.0299 10.9 3 Soma: 5,6,8,14
ENSMUSG00000057244 Gm6139 0.979 0.0246 87.6 9 Neur: 1,2,3,5,7,8,9,11,14
ENSMUSG00000057322 Rpl38 0.676 0.0010 569.0 10 Neur: 1,2,3,4,5,6,7,8,11,13
ENSMUSG00000057657 Rps18-ps3 0.958 0.0144 12.2 3 Neur: 5,8,11
ENSMUSG00000057716 Tmem178b -1.240 0.0407 26.6 6 Soma: 1,5,7,8,11,13,14
ENSMUSG00000059291 Rpl11 0.978 0.0002 891.7 8 Neur: 1,3,4,5,6,7,11,13
ENSMUSG00000060143 Gm10076 0.759 0.0013 469.7 9 Neur: 1,2,3,5,7,8,11,13,14
ENSMUSG00000060198 Gm11353 0.836 0.0243 13.8 6 Neur: 3,5,7,8,11,14
ENSMUSG00000061533 Cep128 1.702 0.0087 29.0 8 Neur: 2,3,4,5,6,7,13,14;

Soma: 8
ENSMUSG00000061833 Gm6311 1.146 0.0052 101.9 8 Neur: 1,3,5,7,8,9,11,14
ENSMUSG00000061983 Rps12 0.755 0.0233 674.5 10 Neur: 1,2,3,5,6,7,8,9,11,13
ENSMUSG00000062382 Ftl1-ps1 0.645 0.0356 1,421.1 9 Neur: 2,3,4,5,7,8,9,11,13,14
ENSMUSG00000064341 mt-Nd1 1.202 0.0018 2,392.0 9 Neur: 1,2,3,4,5,7,8,13; Soma:

14
ENSMUSG00000064345 mt-Nd2 1.085 0.0154 2,001.0 8 Neur: 1,2,3,4,5,7,13; Soma:

14
ENSMUSG00000064356 mt-Atp8 1.856 <0.0001 55.5 7 Neur: 2,3,4,5,7,8; Soma: 14
ENSMUSG00000064357 mt-Atp6 1.073 0.0249 1,231.9 8 Neur: 1,2,3,4,5,7,8; Soma: 14
ENSMUSG00000064360 mt-Nd3 1.050 0.0154 399.9 7 Neur: 1,2,3,4,5,7,11
ENSMUSG00000064363 mt-Nd4 1.043 0.0126 1,352.3 9 Neur: 1,2,3,4,5,7,8,13; Soma:

14
ENSMUSG00000064367 mt-Nd5 1.332 0.0003 1,647.6 7 Neur: 1,2,3,4,5,7,8
ENSMUSG00000064368 mt-Nd6 1.463 0.0007 259.3 8 Neur: 1,2,3,4,5,7,9; Soma: 14
ENSMUSG00000065430 Mir26a-2 -19.074 0.0225 103.6 0
ENSMUSG00000065518 Mir423 -19.330 0.0196 164.7 0
ENSMUSG00000065519 Mir10a -17.628 0.0467 59.4 0
ENSMUSG00000065542 Mir224 -17.499 0.0496 99.5 0
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ENSMUSG00000065602 Mirlet7f-2 -19.854 0.0145 717.9 1 Soma: 1
ENSMUSG00000065613 Mir92-2 -18.060 0.0370 152.5 0
ENSMUSG00000067288 Rps28 0.805 0.0007 237.8 9 Neur: 1,2,3,5,6,7,8,11,13
ENSMUSG00000068747 Sort1 -1.187 0.0388 67.3 7 Soma: 2,3,5,6,7,8,13,14
ENSMUSG00000069682 Gm10275 0.808 0.0327 13.4 8 Neur: 2,3,5,7,8,11,13,14
ENSMUSG00000071415 Rpl23 0.573 0.0174 926.9 7 Neur: 2,3,4,5,6,7,13
ENSMUSG00000072789 Gm10420 1.067 0.0323 58.1 7 Neur: 1,3,5,7,8,9,14
ENSMUSG00000073702 Rpl31 0.771 0.0033 622.7 10 Neur: 1,2,3,5,6,7,8,9,11,13
ENSMUSG00000075918 n-R5s2 -30.000 <0.0001 13.7 0
ENSMUSG00000081926 Gm15536 0.920 <0.0001 71.8 5 Neur: 2,3,5,7,11,14
ENSMUSG00000082762 Gm12366 0.883 0.0289 77.1 8 Neur: 2,3,5,7,8,9,11,14
ENSMUSG00000083863 Gm13341 1.150 0.0237 47.8 5 Neur: 1,2,3,5,8
ENSMUSG00000084289 Gm6977 2.197 0.0009 11.2 6 Neur: 2,3,5,8,11,13
ENSMUSG00000090516 Rps11-ps1 0.606 0.0352 19.8 6 Neur: 2,3,5,11,13,14
ENSMUSG00000093674 Rpl41 0.754 0.0006 2,431.0 10 Neur: 1,2,3,5,6,7,8,9,11,13
ENSMUSG00000095427 Rps2-ps6 1.036 0.0370 100.3 8 Neur: 1,3,5,7,8,9,11,14
ENSMUSG00000096842 Gm10736 1.136 0.0347 1,714.2 9 Neur: 1,2,3,5,7,8,11,13,14
ENSMUSG00000100131 Gm28439 1.554 0.0011 1,593.8 7 Neur: 1,2,3,5,7,8; Soma: 14
ENSMUSG00000100922 Gm8520 1.894 0.0123 11.0 3 Neur: 3,5,9,14
ENSMUSG00000101939 Gm28438 1.367 0.0049 516.1 6 Neur: 1,2,3,5,7,11
ENSMUSG00000106847 Peg13 -1.435 0.0268 27.0 6 Soma: 1,3,5,7,8,11,13
ENSMUSG00000109610 Gm7432 1.001 0.0229 26.0 8 Neur: 1,3,5,7,8,9,11,14
ENSMUSG00000112567 Gm32899 1.779 0.0030 16.8 7 Neur: 2,3,5,7,8,11,14
ENSMUSG00000118164 Gm20570 1.632 0.0033 156.2 4 Neur: 5,7,8; Soma: 14

Table S3: Genes selected for inclusion in the Nzip reporter library.
The table lists all genes selected for the Nzip reporter library, based on the analysis of neurite localisation in primary cortical
neurons (von Kügelgen et al., 2021) and publicly available datasets (Briese et al., 2016; Middleton et al., 2019; Minis et al.,
2014; Rotem et al., 2017; Taliaferro et al., 2016; Tushev et al., 2018). Listed are the ensembl gene IDs, gene names, number
of generated tiles, total length or 3’UTR region covered and the number of datasets in which a gene showed signi�cant
enrichment in either compartment.

Ensembl gene ID Gene name No. of tiles 3’UTR length Datasets with
sig. enrich-

ment in Soma
or Neurite

ENSMUSG00000001289 Pfdn5 18 524 7
ENSMUSG00000004945 Tmem242 29 499 6
ENSMUSG00000006699 Cdc42 (isoform 2) 53 1407 2
ENSMUSG00000006699 Cdc42 (isoform 1) 28 768 2
ENSMUSG00000007950 Abhd8 28 478 6
ENSMUSG00000008668 Rps18 7 160 8
ENSMUSG00000008855 Hdac5 55 1437 5
ENSMUSG00000009073 Nf2 92 2378 4
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ENSMUSG00000013076 Amotl1 230 5826 6
ENSMUSG00000014294 Ndufa2 12 235 7
ENSMUSG00000014313 Cox6c 5 137 8
ENSMUSG00000014602 Kif1a 117 2993 8
ENSMUSG00000015222 Map2 140 3576 8
ENSMUSG00000016252 Atp5e 6 153 8
ENSMUSG00000016427 Ndufa1 5 133 8
ENSMUSG00000017778 Cox7c 4 119 9
ENSMUSG00000018593 Sparc 40 1085 8
ENSMUSG00000018819 Lsp1 23 649 3
ENSMUSG00000019820 Utrn 77 2000 9
ENSMUSG00000020022 Ndufa12 20 582 4
ENSMUSG00000020163 Uqcr11 9 189 6
ENSMUSG00000020431 Adcy1 349 8791 7
ENSMUSG00000020684 Rasl10b 96 2473 10
ENSMUSG00000020821 Kif1c 120 3085 9
ENSMUSG00000020914 Top2a 18 511 5
ENSMUSG00000021215 Net1 79 2052 6
ENSMUSG00000022354 Ndufb9 2 82 7
ENSMUSG00000022594 Lynx1 132 3379 4
ENSMUSG00000022602 Arc 64 1668 -
ENSMUSG00000022623 Shank3 75 1938 5
ENSMUSG00000024346 Pfdn1 26 721 4
ENSMUSG00000024617 Camk2a 132 3372 4
ENSMUSG00000024661 Fth1 7 156 10
ENSMUSG00000025290 Rps24 44 1173 10
ENSMUSG00000025508 Rplp2 15 277 9
ENSMUSG00000025794 Rpl14 13 260 8
ENSMUSG00000025795 Rassf3 101 2586 6
ENSMUSG00000025967 Eef1b2 32 874 9
ENSMUSG00000026031 C�ar (isoform 2) 196 4962 6
ENSMUSG00000026031 C�ar (isoform 1) 32 865 6
ENSMUSG00000026547 Tagln2 24 672 7
ENSMUSG00000026605 Cenpf 77 1993 6
ENSMUSG00000027935 Rab13 29 802 8
ENSMUSG00000028333 Anp32b 17 503 8
ENSMUSG00000028416 Bag1 9 189 7
ENSMUSG00000028639 Ybx1 24 418 9
ENSMUSG00000028998 Tomm7 32 869 7
ENSMUSG00000029580 Actb 24 683 5
ENSMUSG00000029761 Cald1 87 2245 7
ENSMUSG00000031207 Msn 74 1918 6
ENSMUSG00000031245 Hmgn5 20 575 6
ENSMUSG00000031442 Mcf2l 106 2728 8
ENSMUSG00000031818 Cox4i1 3 100 7
ENSMUSG00000032060 Cryab 6 141 6
ENSMUSG00000032330 Cox7a2 9 186 6
ENSMUSG00000032518 Rpsa 32 875 11
ENSMUSG00000034109 Golim4 115 2947 4
ENSMUSG00000034485 Uaca 4 125 6
ENSMUSG00000035203 Epn1 23 398 6
ENSMUSG00000035674 Ndufa3 12 235 7
ENSMUSG00000035885 Cox8a 12 236 9
ENSMUSG00000036751 Cox6b1 13 248 8
ENSMUSG00000037742 Eef1a1 15 285 5
ENSMUSG00000038539 Atf5 21 591 6
ENSMUSG00000038690 Atp5j2 6 141 7
ENSMUSG00000038900 Rpl12 17 500 10
ENSMUSG00000038976 Ppp1r9b 59 1541 4
ENSMUSG00000040842 Szrd1 108 2761 4
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ENSMUSG00000041219 Arhgap11a 112 2849 9
ENSMUSG00000041697 Cox6a1 10 201 11
ENSMUSG00000041841 Rpl37 17 504 9
ENSMUSG00000042066 Tmcc2 45 1191 8
ENSMUSG00000043279 Trim56 270 6812 -
ENSMUSG00000044894 Uqcrq 42 1134 7
ENSMUSG00000045328 Cenpe 21 372 6
ENSMUSG00000046447 Camk2n1 130 3335 5
ENSMUSG00000047721 Bola2 23 404 6
ENSMUSG00000048482 Bdnf 111 2855 -
ENSMUSG00000049517 Rps23 14 267 11
ENSMUSG00000050708 Ftl1 7 163 10
ENSMUSG00000050856 Atp5k 1 68 6
ENSMUSG00000053332 Gas5 162 4118 6
ENSMUSG00000054452 Aes 24 669 8
ENSMUSG00000059534 Uqcr10 10 203 6
ENSMUSG00000060126 Tpt1 24 424 10
ENSMUSG00000061315 Naca 5 130 7
ENSMUSG00000061518 Cox5b 21 372 7
ENSMUSG00000063015 Ccni 39 1044 7
ENSMUSG00000063882 Uqcrh 8 175 7
ENSMUSG00000067288 Rps28 10 207 9
ENSMUSG00000067847 Romo1 2 87 5
ENSMUSG00000068220 Lgals1 18 321 8
ENSMUSG00000071528 Usmg5 3 105 7
ENSMUSG00000071644 Eef1g 21 377 4
ENSMUSG00000079523 Tmsb10 14 271 7
ENSMUSG00000079641 Rpl39 8 181 8
ENSMUSG00000086841 2410006H16Rik 27 462 5
ENSMUSG00000098234 Snhg6 83 2160 5
ENSMUSG00000115783 Bc1 7 168 7
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Table S4: Tiles with candidate zipcodes selected for mutational analysis.
The gene names and numbers for all tiles selected for mutational analysis based on the initial Nzip experiment (see �gure 3
as well as (upper table) the neurite/soma log2 fold change (log2fc) ratios from the Nzip experiments (including neurite/soma
median log2 ratio of the WT control tile from mutation Nzip experiment) and (lower table) the sequences of the selected
tiles are listed.

Gene name Tile No. Median log2fc (WT
tile, Mut. library)

log2fc (Con�rmation
exp.)

log2fc (initial exp.,
depolarisation)

log2fc (initial exp.)

Bdnf 56 1.101 1.891 0.829 0.543
Cald1 58 0.908 1.761 1.348 1.336
Camk2n1 12 3.037 2.395 1.174 1.306
Cox5b 6+7 0 2.558; 2.054 1.035; 0.709 1.426; 1.15
Golim4 56 0.717 0.843 1.04 1.272
Kif1c 80 0.603 0.692 -0.638 0.233
Mcf2l 7 1.367 1.879 1.783 2.264
Msn 48 0.559 1.348 1.579 1.254
Ndufa2 11+12 1.255 1.199; -0.225 1.118; 0.557 1.774; 1.477
Rassf3 91 4.163 2.293 0.683 0.727
Rps23 11+12 0.783 1.549; 0.335 1.017; 1.131 1.18; 0.884
Utrn 61 1.434 1.791 1.441 1.321

Gene name Tile no. Tile sequence

Bdnf 56 CCTTCTGCTTTAAGTGCCTACATTACCTAACAGTGCTCAAGAGGTTCTCGATTGGAGAA
CCACACTCAAATCCATTTATAGCCTCCATCCCATTTCTAAA

Cald1 58 ACTCTAGTGTCTTACAAAAATGTTCTTATCTAGAACATTCTATGCATACAGCGTCATTGT
ACAAACTCATACCTCAGCTGACTTAACCAAAATTATCTTA

Camk2n1 12 AAAAACAAAAGTTAAAAAAAAACACACAAAAAGTAAAAAAATAAAATAAAAAAAATA
AAAATCACTATATACACACATATAAAAGAAAAAAGTCTCAGTT

Cox5b 6+7 CATAGCTGGCTAGTCTTATGTCTATAGTCTTTTTTTTTTTAATATATATATATTGAGACC
ACCTATCTCTTAATACTAGTTTGGCATCCA

Golim4 56 TTATGTATAAAAGCCCCATATGTAATGTAAAATGTATTATATTGTACATAAATACTCAG
AATACAATTATTTTGGTAAATTAGTTTGTATTTTTAATGTC

Kif1c 80 TGATAGAGTCCAAAGGTCTCTGCAGTCAGGGTGAGCTGTGTGGTGCAACGTAGGAGAG
TCCAGATGGGGGGTGGCGGGGAATGCCAGTCTCAGCTACCAC

Mcf2l 7 GACATGACCTATGTGTTCCTACCTCAGACATGTCCATCACACACGAATGACCTGTGTGT
TCCTACCTCAGACATGACCATGTGTGTTCCTACCTCAGATA

Msn 48 CTGCTGGGTATTCTGGCCTTGTCCCTTCACACCCCCACACCCTTTTCTCCACTTTGGAGC
AGCTGCTCCCCCTTTTTTGTCACATGTGTGCTCTTTTAAT

Ndufa2 11+12 CAACACTGAGGCAAAGTAGTTTTATATAAAAATACTCCTTTATTTCTCCTCAAAAAAAA
AAAAAAAAAAAACCCACCAGGTGCCA

Rassf3 91 ATAAAGGAAGCATAAAGCATAAGGGAAGAAAAGGAGCCCCAGAGGCCAAAGAGATAT
ATATATATATATTTTAAACCGTTGTTCAGATTCTCCGGTAAAG

Rps23 11+12 ATAACACTGCAATAAGTGGACACTGTCAACATGTGCAGTATTCTAAATGTGCCTTGAAT
TTCTATTGTTCCTTGGCAATTGTCAAGTTTA

Utrn 61 AGCATAGATATTTTGAGACGAAGAAAATTGTTTTATATAAGGGGAGAGCCATGATCAC
CTTTCTACCTCAGAACCACCTTCCTCCATTGTGTTGGACATA
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Table S5: Genes with peaks of neurite enriched tiles across all 3 Nzip experiments.
The table lists the gene names, ID numbers of tiles, mean GC-content of all peaks identi�ed in any of the 3 Nzip experiments,
as well as the number of experiments in which a peak was found and the enrichment found in each experiment. Peaks are
summarized from all consecutive groups of 2 or more tiles with neurite enrichment of at least log2fc >0.5, from which at
least one had log2fc >0.75 and adj. p-value <0.05. Overlapping peaks from di�erent experiments were merged. The last
column gives the average and maximum neurite enrichment within a peak as well as the most signi�cant p-value [≈avg
(max.), p-value] for each dataset, in which the peak was detected.

Gene name Peak tiles mean GC [%] No. ex-
periments

Enrichment

Abhd8 1 - 4 13.3 1 Initial [ 0.909 (0.956), p<0.001]
Actb 3 - 6 3.5 1 Con�rmation [ 2.292 (4.498), p=0.039]
Adcy1 28 - 29 7.5 1 Con�rmation [ 1.064 (1.561), p=0.001]
Adcy1 139 - 141 3.7 1 Con�rmation [ 0.619 (0.779), p=0.004]
Amotl1 229 - 230 4.5 2 Initial-depolarized [ 1.421 (1.495), p<0.001];

Initial [ 1.227 (1.342), p<0.001]
Amotl1 16 - 17 2.0 1 Con�rmation [ 0.859 (0.862), p=0.001]
Anp32b 3 - 5 6.0 3 Con�rmation [ 0.801 (0.951), p<0.001];

Initial-depolarized [ 0.803 (1.002), p=0.025];
Initial [ 0.777 (0.95), p<0.001]

Arc 18 - 20 12.7 1 Con�rmation [ 0.701 (0.787), p=0.008]
Arc 31 - 32 7.5 1 Con�rmation [ 0.708 (0.861), p<0.001]
Bdnf 108 - 110 1.7 1 Initial [ 1.455 (1.758), p<0.001]
Bola2 18 - 19 5.3 1 Con�rmation [ 0.675 (0.756), p=0.003]
Cald1 58 - 60 3.0 3 Con�rmation [ 1.162 (1.761), p<0.001];

Initial-depolarized [ 0.959 (1.348), p<0.001];
Initial [ 0.947 (1.336), p<0.001]

Cald1 74 - 76 6.3 1 Initial [ 0.633 (0.784), p<0.001]
Cald1 41 - 42 1.5 1 Con�rmation [ 1.082 (1.606), p=0.003]
Camk2a 54 - 56 9.0 1 Initial [ 0.668 (0.792), p<0.001]
Camk2n1 7 - 8 4.0 1 Initial [ 0.741 (0.757), p<0.001]
Camk2n1 12 - 13 1.0 1 Initial [ 0.929 (1.306), p<0.001]
C�ar (iso 1) 13 - 16 0.3 3 Con�rmation [ 1.095 (1.738), p<0.001];

Initial-depolarized [ 1.31 (1.877), p<0.001];
Initial [ 1.354 (1.538), p<0.001]

C�ar (iso 2) 51 - 52 4.5 1 Initial [ 0.8 (0.843), p<0.001]
C�ar (iso 2) 5 - 7 6.7 1 Con�rmation [ 0.723 (0.968), p=0.002]
C�ar (iso 2) 100 - 103 0.5 1 Con�rmation [ 0.893 (1.301), p<0.001]
Cox5b 4 - 8 3.5 2 Con�rmation [ 1.505 (2.558), p<0.001];

Initial [ 1.085 (1.671), p<0.001]
Gas5 159 - 160 3.5 2 Con�rmation [ 1.621 (2.335), p=0.009];

Initial [ 1.218 (1.734), p<0.001]
Golim4 4 - 6 1.0 2 Initial-depolarized [ 1.272 (1.711), p<0.001];

Initial [ 0.941 (1.053), p<0.001]
Golim4 56 - 57 1.0 1 Initial [ 0.963 (1.272), p<0.001]
Golim4 77 - 80 2.3 1 Con�rmation [ 0.681 (1.076), p=0.020]
Kif1c 2 - 3 8.0 1 Con�rmation [ 0.914 (1.139), p=0.019]
Map2 4 - 5 1.5 1 Initial [ 0.762 (0.823), p<0.001]
Mcf2l 56 - 57 1.0 1 Initial [ 0.734 (0.946), p<0.001]
Mcf2l 3 - 13 0.2 3 Con�rmation [ 1.125 (1.879), p<0.001];

Initial-depolarized [ 1.238 (1.856), p<0.001];
Initial [ 1.362 (2.264), p<0.001]

Mcf2l 32 - 33 12.0 1 Con�rmation [ 0.829 (1.031), p=0.020]
Mcf2l 99 - 100 10.0 1 Con�rmation [ 0.704 (0.83), p=0.010]
Msn 48 - 49 5.0 1 Initial [ 1.198 (1.254), p=0.016]
Ndufa2 11 - 12 1.4 1 Initial [ 1.626 (1.774), p<0.001]
Rasl10b 16 - 17 3.5 1 Con�rmation [ 0.756 (0.993), p<0.001]
Rasl10b 37 - 39 7.3 1 Con�rmation [ 0.702 (0.801), p<0.001]
Rassf3 4 - 5 7.0 1 Con�rmation [ 0.659 (0.796), p=0.005]
Rassf3 90 - 93 5.5 2 Con�rmation [ 1.448 (2.293), p<0.001];

Initial [ 0.871 (1.271), p=0.001]

Continued on next page
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Table S5 – continued from previous page
Gene name Peak tiles mean GC [%] No. exp. Enrichment

Rps23 10 - 14 4.0 2 Initial-depolarized [ 1.038 (1.161), p=0.006];
Initial [ 0.926 (1.18), p<0.001]

Rps24 20 - 22 4.7 1 Initial [ 0.688 (0.879), p=0.001]
Shank3 29 - 33 6.6 1 Con�rmation [ 0.623 (0.767), p=0.004]
Shank3 46 - 47 7.5 1 Con�rmation [ 0.757 (0.921), p<0.001]
Shank3 70 - 71 3.5 1 Con�rmation [ 1.259 (1.58), p=0.001]
Snhg6 19 - 20 4.5 1 Initial [ 0.744 (0.766), p=0.008]
Snhg6 80 - 83 2.7 1 Con�rmation [ 1.99 (3.239), p<0.001]
Szrd1 4 - 5 5.5 1 Con�rmation [ 0.952 (0.953), p<0.001]
Szrd1 52 - 53 9.0 1 Con�rmation [ 0.769 (0.8), p=0.001]
Szrd1 91 - 95 8.4 1 Con�rmation [ 0.737 (0.938), p<0.001]
Tagln2 19 - 20 9.0 1 Con�rmation [ 0.809 (0.901), p<0.001]
Tagln2 4 - 9 4.3 1 Con�rmation [ 0.676 (0.812), p<0.001]
Tmcc2 38 - 39 3.0 1 Initial [ 2.285 (3.421), p=0.002]
Trim56 267 - 270 4.4 3 Con�rmation [ 0.884 (1.192), p=0.006];

Initial-depolarized [ 1.041 (1.892), p<0.001];
Initial [ 1.061 (1.829), p<0.001]

Trim56 142 - 144 3.0 1 Initial [ 1.047 (1.93), p=0.006]
Utrn 60 - 63 4.3 3 Con�rmation [ 0.948 (1.791), p<0.001];

Initial-depolarized [ 1.27 (1.573), p<0.001];
Initial [ 1.231 (1.364), p<0.001]
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Figure S2: Principle component analysis of wild type iMN.
(A,B) PCA of (A) protein and (B) RNA expression data from di�erent time points throughout the NIL di�erentiation protocol.
(C,D) PCA of (C) protein and (D) RNA expression data from neurite (Neur.) and soma compartment of iMN at day 21. The
�rst two principle components are shown on x- and y-axis, along with their contribution to the total variance. Data was
generated by Katarzyna Ludwik.
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Figure S3: Principle component analysis of FUS mutant and control iMN.
PCA of (A) RNA and (B) protein expression data from neurite or soma compartment, or total cells from both P525L and
R244RR FUS mutant or respective isogenic control iMNs. Replicate samples have the colour and respectively coloured labels
indicate which mutation (P525L/R244RR), state of FUS (mut/IsoCtrl) and compartment (Neur, Soma, Total). The �rst two
principle components are shown on x- and y-axis, along with their contribution to the total variance. Data was generated
by Samantha Mendonsa.
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Table S6: All genes with a di�erential expression score above 2 based on the e�ect of P525L and R244RR FUS mutations on
RNA and protein in neurite, soma and total cells. The table includes Ensemble gene ID; gene name; RNA annotation features
(left to right: G-quadruplex motif in any top expressed transcript, any wild type FUS CLIP peak, any mutant FUS CLIP
peak (Hoell et al., 2011)); functional annotation of proteins (based signal-p database (Armenteros et al., 2019) or GO cellular
compartment terms for plasma membrane components (GO:0005887, GO:0031226, GO:0046658, GO:0019897, GO:0044214) or
extracellular proteins (GO:0005576); di�erential expression score (sum of 0.5 or 1 points for signi�cant (adj. p-value < 0.05)
di�erential expression (log2fc >1 or >1.5) across RNA and protein values in all compartments of both mutations); and for
both FUS mutant lines (P525L and R244RR) indication of increased (Up) or reduced (Down) expression in any of the three
compartments (N - neurite, S - soma, T - total) for either protein (P) or RNA (R) level or both (P+R).

Ensemble gene
ID

Gene
name

RNA
features

Functional
annotation

Score Di�. expr. P525L Di�. expr. R244RR

ENSG00000093010 COMT - ✔ - 9 Up (N: P+R, S: R, T: R) Up (N: P, S: P+R, T: P+R)
ENSG00000108439 PNPO - - - 7.5 Down (N: R, T: R) Up (N: P+R, S: P+R, T:

P+R)
ENSG00000175426 PCSK1 ✔ - - Signal-

Peptide
6.5 Down (N: P+R, S: R, T:

P+R)
Down (N: P, S: P)

ENSG00000102195 GPR50 - - - PM comp. 6 Down (N: P+R, S: R, T: R) Down (S: R, T: R)
ENSG00000107438 PDLIM1 - - - 6 Up (N: R, S: R, T: R) Up (N: P+R, S: P+R, T: R)
ENSG00000141449 GREB1L - ✔ - 6 Up (N: R, S: R, T: R) Up (S: P+R, T: P+R)
ENSG00000184470 TXNRD2 - ✔ - 6 Up (S: R, T: R) Up (S: P+R, T: P+R)
ENSG00000091664 SLC17A6 - - - 5.5 Up (N: R) Up (N: P+R, S: P+R, T: R)
ENSG00000115457 IGFBP2 - - - Signal-

Peptide;
extracellular

5.5 Down (T: R) Down (N: P+R, S: P+R, T:
R)

ENSG00000173698 ADGRG2 - - - PM comp. 5.5 Up (N: R, S: R, T: R) Up (N: R, S: R, T: R)
ENSG00000197948 FCHSD1 - - - 5.5 Up (S: R, T: R) Up (N: P+R, S: R, T: R)
ENSG00000013364 MVP ✔ - - extracellular 5 Down (N: R, T: P) Down (N: P, S: P, T: P)
ENSG00000114200 BCHE - - - Signal-

Peptide;
extracellular

5 Up (N: R, S: R, T: R) Up (N: R, S: R)

ENSG00000140545 MFGE8 - - - Signal-
Peptide;
PM comp.;
extracellular

5 Up (N: P, S: P+R, T: P+R)

ENSG00000158710 TAGLN2 - - - extracellular 5 Down (T: R) Up (N: P+R, S: R, T: P+R)
ENSG00000166426 CRABP1 - - - 5 Down (N: R, S: R, T: R) Up (N: P+R, T: P)
ENSG00000180543 TSPYL5 ✔ - - 5 Up (N: R, S: R, T: R) Up (N: R, S: P+R, T: R)
ENSG00000184144 CNTN2 - - - Signal-

Peptide
5 Up (N: P, S: P+R, T: P+R)

ENSG00000006128 TAC1 - - - Signal-
Peptide;
extracellular

4.5 Down (N: R, S: R, T: R) Down (S: P+R)

ENSG00000135111 TBX3 - ✔ ✔ 4.5 Up (N: R, S: R, T: R) Up (S: R, T: R)
ENSG00000140945 CDH13 - - - Signal-

Peptide;
extracellular

4.5 Down (S: R, T: R) Down (N: P, S: P, T: P+R)

ENSG00000152192 POU4F1 ✔ ✔ - 4.5 Up (N: R, S: R, T: R) Up (N: R, S: R)
ENSG00000170893 TRH - - - Signal-

Peptide;
extracellular

4.5 Down (S: R, T: R) Down (N: R, S: P+R, T:
P+R)

ENSG00000253953 PCDHGB4 ✔ - - Signal-
Peptide;
PM comp.

4.5 Up (N: R, S: R, T: R) Down (N: P+R, S: R, T: R)

ENSG00000049247 UTS2 - - - Signal-
Peptide;
extracellular

4 Up (N: R, S: P+R, T: R)

ENSG00000104313 EYA1 - ✔ - 4 Up (N: R, S: R, T: R) Up (N: R)
ENSG00000109107 ALDOC - - - extracellular 4 Down (N: P+R, S: P, T:

P+R)
ENSG00000127399 LRRC61 - - - 4 Up (N: R, S: R) Up (N: R, T: R)
ENSG00000129824 RPS4Y1 - - - 4 Down (S: P+R, T: P+R)

Continued on next page
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Table S6 – continued from previous page
Ensemble gene
ID

Gene
name

RNA
feat.

Annotation Score Di�. expr. P525L Di�. expr. R244RR

ENSG00000134115 CNTN6 - - - Signal-
Peptide

4 Up (T: R) Up (N: P, S: R, T: P)

ENSG00000156466 GDF6 ✔ - - Signal-
Peptide

4 Up (N: R) Up (N: R, S: R, T: R)

ENSG00000196233 LCOR ✔ ✔ ✔ 4 Down (N: R) Up (N: R)
ENSG00000198417 MT1F - - - 4 Up (N: R) Down (N: R, S: R, T: R)
ENSG00000203867 RBM20 - ✔ - 4 Up (N: R, T: R) Up (N: R, T: R)
ENSG00000214076 CPSF1P1 - - - 4 Down (S: R, T: R) Up (S: R, T: R)
ENSG00000275342 PRAG1 - - - 4 Down (N: R, S: R, T: R) Down (N: R)
ENSG00000070808 CAMK2A ✔ - - 3.5 Up (S: P+R, T: P+R)
ENSG00000076003 MCM6 - ✔ ✔ 3.5 Up (N: R) Up (N: R, S: P, T: P);

Down (N: R, S: P, T: P)
ENSG00000130226 DPP6 ✔ - - 3.5 Down (N: R) Up (N: R, S: R, T: R)
ENSG00000130287 NCAN - - - Signal-

Peptide;
ECM

3.5 Down (N: R) Up (N: R, S: P, T: P)

ENSG00000139220 PPFIA2 - - - 3.5 Down (N: P+R, S: P+R, T:
P)

ENSG00000142798 HSPG2 - - - Signal-
Peptide;
extracellular

3.5 Down (T: P) Up (N: P, S: P, T: P);
Down (N: P, S: P, T: P)

ENSG00000146242 TPBG - - - Signal-
Peptide;
PM comp.

3.5 Down (T: P) Down (N: P, S: R, T: R)

ENSG00000147065 MSN - - - 3.5 Down (S: R, T: R) Up (N: R, S: R)
ENSG00000165731 RET - - - Signal-

Peptide;
PM comp.

3.5 Up (N: R, T: R) Up (N: P, S: P+R, T: P)

ENSG00000170421 KRT8 - - - 3.5 Down (T: R) Up (N: R, S: R, T: R)
ENSG00000198729 PPP1R14C - ✔ ✔ 3.5 Down (N: R, T: R) Down (N: R, S: R, T: R)
ENSG00000009694 TENM1 - ✔ - PM comp.;

extracellular
3 Down (T: R) Down (N: P, T: P)

ENSG00000010292 NCAPD2 - ✔ - 3 Up (N: R, S: P, T: P)
ENSG00000011201 ANOS1 - ✔ - Signal-

Peptide;
ECM

3 Up (N: P, S: P, T: P)

ENSG00000066248 NGEF ✔ - - 3 Down (N: R, S: R, T: R)
ENSG00000072501 SMC1A - ✔ ✔ 3 Down (N: R, S: R, T: R) Up (N: R, T: P);

Down (N: R, T: P)
ENSG00000077092 RARB - ✔ - 3 Up (N: R, T: R) Up (N: R)
ENSG00000080345 RIF1 ✔ ✔ ✔ 3 Up (N: R, S: P, T: P)
ENSG00000087494 PTHLH - - - Signal-

Peptide;
extracellular

3 Down (T: R) Up (N: R, T: R)

ENSG00000104738 MCM4 - ✔ ✔ 3 Up (N: R, S: P, T: P);
Down (N: R, S: P, T: P)

ENSG00000106536 POU6F2 - - - 3 Up (N: R, T: R) Up (S: R)
ENSG00000115461 IGFBP5 ✔ - - Signal-

Peptide;
extracellular

3 Down (T: R) Down (S: R, T: R)

ENSG00000118407 FILIP1 ✔ - - 3 Up (N: R, S: R, T: R)
ENSG00000124313 IQSEC2 - - - 3 Down (N: R, S: R, T: R) Down (N: R)
ENSG00000125630 POLR1B - - - 3 Up (N: R) Up (N: R, T: P)
ENSG00000128610 FEZF1 - - - 3 Up (N: R) Up (S: R, T: R)
ENSG00000131409 LRRC4B - - - Signal-

Peptide
3 Up (N: P, T: P+R)

ENSG00000131914 LIN28A - - - 3 Up (S: R) Up (N: R, S: P, T: P)
ENSG00000133135 RNF128 - - - Signal-

Peptide
3 Down (T: R) Up (N: R, T: R)
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RNA
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Annotation Score Di�. expr. P525L Di�. expr. R244RR

ENSG00000133789 SWAP70 ✔ - - 3 Up (N: R, S: P, T: P);
Down (N: R, S: P, T: P)

ENSG00000135069 PSAT1 - ✔ ✔ 3 Down (N: R) Up (N: R, S: P, T: P)
ENSG00000137766 UNC13C - - - 3 Down (N: R, S: R, T: R)
ENSG00000143429 LSP1P4 - - - 3 Up (N: R, S: R, T: R)
ENSG00000146469 VIP - - - Signal-

Peptide;
extracellular

3 Down (S: R) Down (S: R, T: R)

ENSG00000147036 LANCL3 - - - 3 Up (T: R) Up (N: P+R, T: P)
ENSG00000147256 ARHGAP36 - - - Signal-

Peptide
3 Down (N: R, S: R, T: R)

ENSG00000154146 NRGN ✔ - - 3 Up (N: R, S: R, T: R)
ENSG00000157005 SST - - - Signal-

Peptide;
extracellular

3 Up (T: R) Up (N: R, S: R)

ENSG00000160801 PTH1R - - - Signal-
Peptide;
PM comp.

3 Up (N: R, S: R, T: R) Down (T: R)

ENSG00000161681 SHANK1 - - - 3 Up (N: R, S: R, T: R)
ENSG00000164093 PITX2 - - - 3 Down (N: R, S: R, T: R)
ENSG00000164106 SCRG1 - - - Signal-

Peptide
3 Down (N: R, S: R, T: R)

ENSG00000164853 UNCX - - - 3 Down (N: R, S: R, T: R)
ENSG00000165675 ENOX2 - ✔ - 3 Down (T: R) Up (N: R, S: R)
ENSG00000165985 C1QL3 ✔ - - Signal-

Peptide
3 Down (N: R, T: R) Down (N: P)

ENSG00000166573 GALR1 - - - PM comp. 3 Down (N: R, S: R, T: R)
ENSG00000167244 IGF2 ✔ - - Signal-

Peptide;
extracellular

3 Down (N: R, S: R, T: R)

ENSG00000169851 PCDH7 - ✔ ✔ Signal-
Peptide;
PM comp.

3 Up (N: R) Down (N: P+R, T: P+R)

ENSG00000169860 P2RY1 - - - PM comp. 3 Down (N: R, S: R, T: R)
ENSG00000170430 MGMT - ✔ - 3 Up (N: R, S: R, T: R)
ENSG00000172346 CSDC2 ✔ - - 3 Down (N: R, S: R, T: R)
ENSG00000175183 CSRP2 - ✔ - 3 Down (N: R) Up (S: P, T: P)
ENSG00000179520 SLC17A8 - - - 3 Down (T: R) Down (S: R, T: R)
ENSG00000179598 PLD6 - - - 3 Up (N: R, S: R, T: R)
ENSG00000182836 PLCXD3 - - - 3 Up (N: R, S: P+R, T: P)
ENSG00000183337 BCOR - ✔ ✔ 3 Down (N: R, S: R, T: R)
ENSG00000183379 SYNDIG1L - - - 3 Up (N: R, S: R, T: R)
ENSG00000183688 RFLNB ✔ - ✔ 3 Down (N: R, S: R, T: R)
ENSG00000184261 KCNK12 ✔ - - PM comp. 3 Up (N: R, S: R, T: R)
ENSG00000184445 KNTC1 - ✔ - 3 Up (N: R) Up (S: P, T: P)
ENSG00000196083 IL1RAP - - - Signal-

Peptide;
PM comp.;
extracellular

3 Down (N: R, T: R) Up (N: R)

ENSG00000224597 SVIL-
AS1

- - - 3 Up (S: R, T: R) Up (N: R)

ENSG00000243970 PPIEL - - - 3 Down (S: R, T: R) Up (N: R)
ENSG00000273748 NA - - - 3 Up (N: R, S: R, T: R)
ENSG00000068784 SRBD1 - ✔ - 2.5 Down (N: R) Up (N: R, T: P)
ENSG00000078549 ADCYAP1R1 - - - Signal-

Peptide;
PM comp.

2.5 Down (N: R) Down (N: R, T: R)

ENSG00000099250 NRP1 - ✔ - Signal-
Peptide

2.5 Up (N: R, T: R);
Down (N: R, T: R)

Up (N: R, T: R)
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ENSG00000102038 SMARCA1 - - - 2.5 Down (N: R, T: R) Up (T: P)
ENSG00000104299 INTS9 - ✔ - 2.5 Down (N: R) Up (N: R, T: P)
ENSG00000105287 PRKD2 ✔ - - 2.5 Up (N: R, S: P, T: P)
ENSG00000105894 PTN ✔ - - Signal-

Peptide;
extracellular

2.5 Up (N: R, S: R, T: R) Up (N: R)

ENSG00000107731 UNC5B ✔ - - Signal-
Peptide

2.5 Up (N: R, S: R, T: R)

ENSG00000112232 KHDRBS2 - - - 2.5 Down (S: P, T: P+R)
ENSG00000114115 RBP1 - - - 2.5 Up (N: R, S: R, T: P+R)
ENSG00000116962 NID1 - - ✔ Signal-

Peptide;
extracellular

2.5 Down (T: P) Down (N: P, T: P)

ENSG00000117154 IGSF21 - - - Signal-
Peptide

2.5 Down (N: R, S: R) Down (N: R, T: R)

ENSG00000122254 HS3ST2 - - - 2.5 Down (N: R) Down (S: R, T: R)
ENSG00000122971 ACADS ✔ - - 2.5 Down (N: R) Up (N: R, S: P);

Down (N: R, S: P)
ENSG00000123360 PDE1B ✔ - - 2.5 Down (N: R) Up (N: R, T: P)
ENSG00000123570 RAB9B - - - 2.5 Down (N: R, S: R, T: P+R)
ENSG00000130158 DOCK6 - - - 2.5 Up (N: R) Up (S: P, T: P)
ENSG00000130702 LAMA5 ✔ - - Signal-

Peptide;
extracellular

2.5 Up (N: P+R, T: P);
Down (N: P+R, T: P)

ENSG00000140836 ZFHX3 ✔ ✔ - 2.5 Down (N: R, T: R) Down (N: R)
ENSG00000141433 ADCYAP1 - - - Signal-

Peptide;
extracellular

2.5 Down (N: R, S: R, T: R)

ENSG00000145868 FBXO38 - ✔ - 2.5 Down (N: R) Up (N: R, T: P)
ENSG00000151376 ME3 - - - 2.5 Up (N: P, S: P, T: P)
ENSG00000153922 CHD1 - ✔ ✔ 2.5 Up (N: R) Up (N: R, T: P);

Down (N: R, T: P)
ENSG00000157483 MYO1E - ✔ - 2.5 Down (N: R) Up (S: P, T: P)
ENSG00000159167 STC1 - - - Signal-

Peptide
2.5 Down (N: R, S: R, T: R)

ENSG00000159713 TPPP3 - - - 2.5 Up (N: R) Up (N: R, S: R, T: P)
ENSG00000163918 RFC4 - ✔ - 2.5 Up (N: R) Up (S: P, T: P)
ENSG00000165966 PDZRN4 - - - Signal-

Peptide
2.5 Up (N: R) Down (S: R, T: R)

ENSG00000166407 LMO1 - - - 2.5 Up (T: R) Up (N: R, S: R)
ENSG00000173473 SMARCC1 - ✔ ✔ 2.5 Up (N: R) Up (N: R, T: P);

Down (N: R, T: P)
ENSG00000182568 SATB1 - ✔ - Signal-

Peptide
2.5 Up (N: R, T: R) Down (N: R)

ENSG00000185532 PRKG1 ✔ ✔ ✔ 2.5 Up (T: P) Up (N: R, S: P, T: P);
Down (N: R, S: P, T: P)

ENSG00000186522 SEPTIN10 - - - 2.5 Down (N: R) Up (S: P, T: P)
ENSG00000196104 SPOCK3 - - - Signal-

Peptide;
extracellular

2.5 Up (N: R) Up (N: R, S: P, T: P);
Down (N: R, S: P, T: P)

ENSG00000196482 ESRRG - - - 2.5 Up (N: R, T: R) Up (N: R)
ENSG00000198586 TLK1 - ✔ - 2.5 Down (N: R) Up (N: R, S: P);

Down (N: R, S: P)
ENSG00000204131 NHSL2 - - - 2.5 Down (N: R, T: R) Up (N: R)
ENSG00000043355 ZIC2 ✔ - - 2 Down (S: R, T: R)
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