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Abstract: The dynamics of fractional population sizes yi = Yi/N in homogeneous compartment
models with time-dependent total population N is analyzed. Assuming constant per capita birth
and death rates, the vector field Ẏi = Vi(Y) naturally projects to a vector field Fi(Y) tangent to the
leaves of constant population N. A universal formula for the projected field Fi is given. In this way,
in many SIR-type models with standard incidence, all demographic parameters become redundant
for the dynamical system ẏi = Fi(y). They may be put to zero by shifting the remaining parameters
appropriately. Normalizing eight examples from the literature this way, they unexpectedly become
isomorphic for corresponding parameter ranges. Thus, some recently published results turn out to
have been covered already by papers 20 years ago.
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1. Introduction

The classic SIR model was introduced by Kermack and McKendrick in 1927 [1] as one
of the first models in mathematical epidemiology. The model divides a population into
three compartments with fractional sizes S (Susceptibles), I (Infectious) and R (Recovered),
such that S + I + R = 1. The flow diagram between compartments, as given in Figure 1,
leads to the dynamical system

Ṡ = −βSI, İ = βSI − γI, Ṙ = γI. (1)

Figure 1. Flow diagram of the SIR model.

Here, γ denotes the recovery rate and β the effective contact rate (i.e., the number of
contacts/time leading to infection of a Susceptible, given the contacted was infectious).
Members of R are supposed to be immune forever. Due to (1), S decreases monotonically,
eventually causing βS < γ and İ < 0. At the end, the disease dies out, I(∞) = 0, and one
stays with a nonzero final size S(∞) > 0, thus providing a model for Herd immunity.

To construct models also featuring endemic scenarios one needs enough supply of
susceptibles to keep the incidence βSI ongoing above a positive threshold. The literature
discusses three basic methods to achieve this, see Figure 2.

• Heathcote’s classic endemic model adds balanced birth and death rates µ to the SIR
model and assumes all newborns are susceptible. This leads to a bifurcation from a
stable disease-free equilibrium point to a stable endemic scenario when raising the
basic reproduction number r0 = β/γ above one [2–4].
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• The SIRS model adds an immunity waning flow, αRR from R to S, to the SIR model,
leading to the same result.

• The SIS model considers recovery without immunity, i.e., a recovery flow γS I from I to
S, while putting R = 0. Again, this leads to the same result.

(a) Heathcote’s model

(b) SIRS model (c) SIS model
Figure 2. Standard models featuring endemic equilibria.

In what follows the reader is assumed to be familiar with the basic notions in these
models. For a comprehensive and self-contained overview of the history, methods and
results in mathematical epidemiology see the textbook by M. Martcheva [5], wherein an
extensive list of references to original papers is also given.

As a starting point for this paper, observe, from Figure 3, that Heathcote’s model
could equivalently be reformulated by disregarding birth and death rates and instead
introducing a combined SI(R)S ≡ SIRS/SIS model with flow rates γS = αR = µ. More
generally, adding Heathcote’s balanced birth and death rates µ to a SI(R)S model with inde-
pendent parameters (γS, αR) apparently becomes equivalent to considering the SI(R)S
model without birth and death rates and with shifted parameters γ̃S = γS + µ and
α̃R = αR + µ [6].

(a) Heathcote’s model

∼=

(b) SI(R)S model
Figure 3. Equivalence of models using µ− µS = µI + µR.

The aim of this paper is to generalize this observation to homogeneous three-compartment
models with the following:

(A) positive susceptibility of the R-compartment describing incomplete immunity (in
which case it makes sense to rename S ≡ S1 and R ≡ S2),

(B) a non-trivial birth matrix and a time varying population size N due to the compartment-
dependent constant per capita birth and death rates.

As a result, we see that, for coinciding birth minus death rates in compartments S1 ≡ S
and S2 ≡ R, in the dynamics of fractional variables, all demographic parameters become
redundant by shifting the remaining parameters appropriately. In particular, transmission
coefficients βi describing Si-susceptibility are replaced by β̃i = βi−∆µI , where ∆µI denotes
the excess mortality in compartment I. Hence, β̃i may possibly become negative.

This result leads to a unifying normalization prescription when always considering
these models without vital dynamics and, instead, with two distinguished, and possibly
also negative, incidence rates β̃i ∈ R. When normalized this way, seemingly different mod-
els in the literature become isomorphic at coinciding shifted parameters. As an example,
the recent results in [7] follow from earlier results in [8] (for β̃2 > 0) and [9] (for β̃2 < 0).



Fractal Fract. 2023, 7, 313 3 of 8

2. Compartment Models

For simplicity, all maps are supposed to be C∞. Let V = Rn and V : V → V be
a homogeneous vector field, V(λY) = λV(Y) for all λ ∈ R+ and Y ∈ V . Denote V∗
the dual of V and 〈·|·〉 : V∗ ⊗ V → R the dual pairing. Let φt : V → V be the lo-
cal flow of V. For functions f : V → R we denote their time derivative along φt by
ḟ := d/dt|t=0( f ◦ φt) = 〈∇ f |V〉. Let 0 6∈ P ⊂ V be a cone and N : P → R+ be a homoge-
neous function, N(λY) = λN(Y), satisfying ∇N 6= 0 on P . In this case, the local flow φt
naturally projects to a local flow ψt, leaving the leaves {N = const.} invariant.

ψt(Y) := N(Y)N(φt(Y))−1φt(Y)

Using φt(λY) = λφt(Y) one immediately checks

ψ0 = id, ψt+s = ψt ◦ ψs, N ◦ ψt = N .

The vector field F : P → Rn generating ψt is given by

F(Y) := V(Y)− Ṅ
N

Y =⇒ ψ̇t = F ◦ ψt . (2)

Clearly, F is also homogeneous and by putting y := Y/N we have ẏ = F(y).
Now, let us focus specifically on compartment models,= where Yi gives the population

in compartment i, N(Y) := ∑i Yi the total population and P := Rn
≥0 \ {0}. To guarantee P

being forward invariant one also needs Yi = 0⇒ Vi(Y) ≥ 0.

Definition 1. The compartment model Ẏ = V(Y) is said to have constant per capita demographic
rates, if there exists ν = (ν1, · · · , νn) ∈ V∗, such that Ṅ = ν, i.e., ∑i Vi(Y) = ∑i νiYi. We call νi
the total birth minus death rate in compartment i.

In such models, one usually decouples the time development of N and analyzes the
dynamics of fractional variables y = Y/N, ẏ = F(y). The main observation of this paper
states that, in many standard models, the correction term N−1ṄY in Equation (2) can be
absorbed by redefining the parameters determining V.

Lemma 1. Assume Ṅ = ν and denote Qijk = [δij(νk − νj) + δik(νj − νk)]/2. Putting Qi(Y) :=
∑j,k QijkYjYk we have

Ṅ
N

Yi = νiYi +
1
N

Qi(Y) (3)

Proof. Use yi = 1−∑j 6=i yj and, therefore, 〈ν|y〉 = νi +∑j(νj− νi)yj, for all i = 1, · · · , n.

Let us apply this to vector fields V of the form

Vi(Y) = ∑
j

LijYj + ∑
j

MijYj +
1
N ∑

j,k
ΛijkYjYk , (4)

where Λijk = Λikj, ∑i Mij = ∑i Λijk = 0 and Lij = Bij − δijµj. Here, µj ≥ 0 is the mortality
rate in compartment j, BijYj ≥ 0 denotes the number of newborns from compartment j
landing in compartment i, and the parameters Mij and Λijk determine the population flow
from compartment j to i, due to infection transmission, recovery, loss of immunity, vaccina-
tion, etc. Thus, δj := ∑i Bij is the total birth rate in compartment j and νj = ∑i Lij = δj − µj.
Forward invariance of the non-negative orthant P for zero birthrates requires (a) M to
be essentially non-negative, i.e., Mij ≥ 0 for i 6= j, whence Mjj = −∑i 6=j Mij ≤ 0, and
(b) ∑k 6=i Λijk ≥ −Mij for i 6= j. Now put
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M̃ij := Mij + Lij − δijνj ≡ Mij + Bij − δijδj , Λ̃ijk := Λijk −Qijk . (5)

Using Bij ≥ 0, Qijk = Qikj, ∑i Qijk = 0 and Qijk = 0 for j 6= i 6= k, the new parameters M̃
and Λ̃ have the same properties as M and Λ and we obtain

Fi(Y) = ∑
j

M̃ijYj +
1
N ∑

j,k
Λ̃ijkYjYk . (6)

Hence, in the dynamics for fractional variables y = Y/N, all birth and death rates may
be absorbed by redefining M and Λ. Note that standard models typically satisfy Λijj = 0,
which is consistent with Qijj = 0. On the other hand, Λ̃iik = Λ̃iki might change sign as
compared to epidemiological requirements.

Remark 1. If the vector field V is of the form (4), with µi replaced by ∆µi + f (Y) for some function
f , and constant excess mortality ∆µi, then V is no longer homogeneous but still ẏ = N−1F(Y).
In this case, Equation (3) still holds with νi := δi − ∆µi − f (Y). Hence, the function f does not
appear in the definition of M̃ and Λ̃ in (5), implying that F in Equation (6) is independent of f and
still homogeneous, whence ẏ = F(y).

3. The Three-Compartment Master Model

As a kind of master example, consider an abstract SI(R)S-type model consisting of
three compartments, S1, S2 and I, with total population N = S1 + S2 + I. Members of I
are infectious, members of S1 are highly susceptible (not immune) and members of S2 are
less susceptible (partly immune). The flow diagram between compartments is completely
symmetric with respect to permuting 1↔ 2, and is depicted in Figure 4.

Figure 4. Flow diagram of the master model. B = δ1S1 + δ2S2 + (1− pI)δII denotes the number of
newborns who are not infected per unit of time.

The parameters in this model are:

α1: Vaccination rate.
α2: Immunity waning rate.
βi: Number of effective contacts per unit time of a susceptible from Si.
γi : Recovery rate from I→ Si.
µi: Mortality rate in Si.
µI : Mortality rate in I.
pI : Probability of a newborn from I to be infected.
δI : Rate of newborns from I.
δi: Rate of newborns from Si. These newborns are not supposed to be infected.
B: Sum of newborns who are not infected, B = δ1S1 + δ2S2 + (1− pI)δII.
qi: Portion of newborns who are not infected landing in Si, q1 + q2 = 1. So, q2 is the

portion of newborns who are not infected and who are vaccinated.
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All parameters are assumed to be non-negative. Furthermore, pI ≤ 1, q1 + q2 = 1, β1 + β2 > 0
and γ1 + γ2 > 0. Putting B := δ1S1 + δ2S2 + (1− pI)δII the dynamics is given by

Ṡ1 = q1B + γ1I− [µ1 + α1 + β1I/N]S1 + α2S2 (7)

Ṡ2 = q2B + γ2I− [µ2 + α2 + β2I/N]S2 + α1S1 (8)

İ = [β1S1/N + β2S2/N − γ1 − γ2 − µI + pIδI ] I (9)

So, in total, this model counts 14 independent parameters. A list of prominent exam-
ples is discussed below. Let us now cast this model into the formalism of Section 2. Putting
Y = (S1,S2, I)T and Λi(Y) = ∑j,k ΛijkYjYk we have

M =

−α1 α2 γ1
α1 −α2 γ2
0 0 −γ1 − γ2

 L =

q1δ1 − µ1 q1δ2 q1(1− pI)δI
q2δ1 q2δ2 − µ2 q2(1− pI)δI

0 0 pI δI − µI

 (10)

Λ(Y) =

 −β1S1I
−β2S2I

(β1S1 + β2S2)I

 Q(Y) =

(νI − ν1)S1I+ (ν2 − ν1)S1S2
(νI − ν2)S2I+ (ν1 − ν2)S1S2
[(ν1 − νI)S1 + (ν2 − νI)S2]I

 (11)

Here νi = δi − µi, νI = δI − µI and we get Ṅ = ν1S1 + ν2S2 + νII. So now introduce

α̃1 := α1 + q2δ1 , α̃2 := α2 + q1δ2 ,
γ̃1 := γ1 + q1(1− pI)δI , γ̃2 := γ2 + q2(1− pI)δI ,
β̃1 := β1 + νI − ν1 , β̃2 := β2 + νI − ν2 .

(12)

to conclude from (5)

M̃ =

−α̃1 α̃2 γ̃1
α̃1 −α̃2 γ̃2
0 0 −γ̃1 − γ̃2

 Λ̃(Y) =

 −β̃1S1I
−β̃2S2I

(β̃1S1 + β̃2S2)I

+ S1S2

ν1 − ν2
ν2 − ν1

0

 (13)

In summary, denoting fractions of the total population by Si = Si/N and I = I/N,
and assuming the condition ν1 = ν2 =: ν, the dynamics for fractional variables becomesṠ1

Ṡ2
İ

 =

−α̃1 α̃2 γ̃1
α̃1 −α̃2 γ̃2
0 0 −γ̃1 − γ̃2

S1
S2
I

+

 −β̃1S1 I
−β̃2S2 I

(β̃1S1 + β̃2S2)I

 (14)

So, for ν1 = ν2 = ν, all birth and death rates become redundant and may be absorbed
by redefining βi, αi and γi. The price to pay is that β̃i = βi + νI − ν might become
negative. Hence, the space of admissible parameters for the system (14) becomes (Due to
the permutation symmetry 1↔ 2, there is no loss, assuming β̃1 > β̃2. The case β̃1 = β̃2 is
ignored, since, in this case, putting S = S1 + S2 one can easily check that (S, I) obeys the
dynamics of a SIS model, which can immediately be solved by separation of variables.):

A := {(α̃i, β̃i, γ̃i) ∈ R6 | α̃i ≥ 0, γ̃i ≥ 0, γ̃1 + γ̃2 > 0, β̃1 > β̃2} (15)

Concerning the dynamics of fractional variables, any two models mapping to the same
set of shifted parameters a ∈ A become isomorphic. In particular, the case of constant
population, νi = νI = 0, yields β̃i = βi. In summary, we get

Proposition 1. Referring to the parameter transformation (12) and the normalized dynamics of
fractional variables (14), assume ν1 = ν2 =: ν, and put ∆νI := ν− νI .

(i) If ∆νI < β2 the model with variable population is isomorphic to a model with constant
population and transmission coefficients β′i = βi − ∆νI > 0.

(ii) If ∆νI > β2 it is isomorphic to a variable population SI(R)S model with two recovery flows
I → S1 and I → S2 and parameters β′2 = 0, β′1 = β1 − β2 and ∆ν′I = ∆νI − β2.
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(iii) If ∆νI = β2 it is isomorphic to a SI(R)S model as in ii) with constant population.

4. Examples from the Literature

For simplicity, from now on let us assume the rate of newborns who are not infected
to be compartment-independent, δ1 = δ2 = (1− pI)δI = δ, implying B = δN. In this case,
one may without loss assume pI = 0 by redefining µI . Hence, ν1 = ν2 ⇔ µ1 = µ2 =: µ and,
in this case, ∆νI = ∆µI := µI − µ gives the excess mortality in the infectious compartment.

Below there is a list of prominent examples from the literature. Table 1 maps these
examples to the present set of parameters.

Heth Heathcote’s classic endemic model [2–4] by putting δ = µi = µI > 0, q1 = 1,
β1 > 0, γ2 > 0 all other parameters vanish.

BuDr The 7-parameter SIRS model with time varying population size in [10], adds to
Heathcote’s model an immunity waning rate α2 and allows non-balancing mortality
and birth rates δ 6= µi 6= µI .

SIRI The 6-parameter SIRI model of [11], replaces the immunity waning rate α2 in [10]
with the transmission rate β2 > 0 and also requires µ1 = µ2.

SIRS The 8-parameter constant population SI(R)S model with vaccination and two recov-
ery flows I → S1 and I → S1. Hence δ = µi = µI and β2 = 0.

HaCa The 6-parameter core system in [12], with transmission and recovery rates βi, γi > 0,
a vaccination term α1 > 0 and a constant population with balanced birth and death
rates, δ = µi = µI > 0 and q1 = 1.

KZVH The 7-parameter vaccination model of [8] adds an immunity waning rate α2 > 0 to
the model in [12].

LiMa The 8-parameter SIS-model with vaccination and varying population size of [9]
keeps only γ2 = β2 = 0 and assumes µ1 = µ2 = µ. (Actually the authors let
µ1 = µ2 = µ = f (N) be a function of N and put µI = µ + ∆µI with constant excess
mortality ∆µI . Still, µ = f (N) disappears when passing to tilde parameters (12),
see also Remark 1.)

AABH The 8-parameter SIRS-type model analyzed recently by [7], keeps only γ1 = q2 = 0
and all other parameters are positive. The authors allow a varying population size
by first discussing the general case of all mortality rates being different and then
concentrating on µ1 = µ2 6= δ and ∆µI > 0.

Table 1. Mapping models in the literature 1 to the present choice of parameters. The column # counts
the number of free parameters in the original models. Passing to fractional variables (S1, S2, I) and
tilde parameters, Equation (12), #eff counts the number of effectively independent parameters as
determined in Equations (16)–(22).

α1 α2 β1 β2 γ1 γ2 δ µ1 µ2 µI q1 q2 # #eff

Heth 0 0 X 0 0 X δ = µ1 = µ2 = µI 1 0 3 3

BuDr 0 X X 0 0 X X X X X 1 0 7 5 2

SIRI1 0 0 X X 0 X X µ1 = µ2 X 1 0 6 4

SIRI2 0 0 X X X 0 X µ1 = µ2 X 0 1 6 4

SIRS X X X 0 X X δ = µ1 = µ2 = µI X X 7 5

HaCa X 0 X X X X δ = µ1 = µ2 = µI 1 0 6 6

KZVH X X X X X X δ = µ1 = µ2 = µI 1 0 7 6

LiMa X X X 0 X 0 X µi = f (N) X X X 8 6

AABH1 X X X X 0 X X µ1 = µ2
3 X 1 0 8 6

AABH2 X X X X X 0 X µ1 = µ2
3 X 0 1 8 6

1 SIRI and AABH come in two versions, since the authors also allow β1 < β2. The subscript 1 refers to β1 > β2
and 2 to β1 < β2. 2 Referring to the sub-case µ1 = µ2 in BuDr. 3 The bulk of results in Sections 5 and 6 of AABH [7]
assume µ1 = µ2.
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Assuming µ1 = µ2, and applying the transformations (12), we acquire a classification in
terms of the redundancy-free 6-parameter set A.

ASIRS = A∩ {β̃2 = 0} (16)

AHeth = A∩ {α̃1 = 0 ∧ γ̃2 > 0 ∧ γ̃1 = α̃2 ∧ β̃2 = 0} (17)

ASIRIi = A∩ {α̃i = 0 ∧ γ̃j > 0 ∧ γ̃i = α̃j, j 6= i} (18)

ABuDr = A∩ {α̃1 = 0 ∧ γ̃2 > 0 ∧ β̃2 < 0}† (19)

AKZVH = A∩ {β̃2 > 0} = AHaCa † † (20)

ALiMa = A∩ {β̃2 < 0 ∧ γ̃1 > 0} † †† (21)

AAABHi = A∩ {γ̃j > 0, j 6= i} (22)

†: To be comparable, Equation (19) refers to the sub-case µ1 = µ2 in BuDr, so β2 = 0 implies
β̃2 = −∆µI ≤ 0. Also, γ̃1 = δ as in SIRI1, but α̃2 = α2 + δ 6= γ̃1 becomes independent.
††: For q1 > 0 one of the three parameters (γ1, α2, δ) always is redundant. So AKZVH =
AHaCa.
† † †: For q2 = 1 the mapping (α1, α2, γ1, δ) 7→ (α̃1, α̃2, γ̃1, γ̃2) is bijective.

The dimensions of these parameter spaces are listed in the last column of Table 1. In
summary, we arrive at

Corollary 1. Consider the dynamics of fractional variables in the models of Table 1, for BuDr and
AABH under the restriction µ1 = µ2. Disregarding boundary configurations γ̃i = 0 in parameter
space A, the following relations hold.

(i) The model of AABH [7] is isomorphic to the master model (14) and covers all other models.
(ii) The SIS-type model of LiMa [9], with time-dependent population size, coincides with the

subcase min{β1, β2} < ∆µI of AABH [7].
(iii) The constant population model of KZVH [8] coincides with the subcase min{β1, β2} > ∆µI

of AABH [7].
(iv) The subcase min{β1, β2} = ∆µI of AABH [7] reduces to the SI(R)S model (16).
(v) The models of HaCa [12] and KZVH [8] are isomorphic.

5. Summary

We have seen in Lemma 1 that, in a large class of homogeneous compartment models
with constant per capita demographic rates and time-dependent total population N, the
dynamics of fractional variables y = Y/N can be rewritten such that all demographic
parameters become redundant. In this way, various prominent SI(R)S-type models with
standard incidence, demographic parameters and possibly susceptible R-compartments
may be normalized, such that the dynamics of fractional variables appear as a sub-case
of a master model with zero birth and death rates, see Equations (16)–(22). Since, appar-
ently, none of the original papers used the identity (3) of Lemma 1, these relations were
not realized before. The price to pay is that, in the normalized master model, infection
transmission rates β̃i may also be negative. As a particular example, recent results on back-
ward bifurcation in models with time-varying total population N(t), coinciding mortality
rates µ1 = µ2 and an excess mortality 0 < ∆µI < min{β1, β2} by AABH [7] were already
covered by the isomorphic model with constant population of KZVH [8], published in 2000.
The complementary case ∆µI > min{β1, β2} turns out to be isomorphic to the variable
population SIS model with β2 = 0, published by LiMa [9] in 2002.

The normalized master model (14) is also the starting point of an ongoing analysis of
symmetry operations in these kinds of models, giving rise to further parameter reductions,
see the work in progress in [13,14].
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