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Quantum simulation, the simulation of quantum processes on quantum computers, sug-
gests a path forward for the efficient simulation of problems in condensed-matter physics,
quantum chemistry, and materials science. While the majority of quantum simulation algo-
rithms are deterministic, a recent surge of ideas has shown that randomization can greatly
benefit algorithmic performance. In this work, we introduce a scheme for quantum simulation
that unites the advantages of randomized compiling on the one hand and higher-order multi-
product formulas, as they are used for example in linear-combination-of-unitaries (LCU) algo-
rithms or quantum error mitigation, on the other hand. In doing so, we propose a framework
of randomized sampling that is expected to be useful for programmable quantum simulators
and present two new multi-product formula algorithms tailored to it. Our framework reduces
the circuit depth by circumventing the need for oblivious amplitude amplification required
by the implementation of multi-product formulas using standard LCU methods, rendering
it especially useful for early quantum computers used to estimate the dynamics of quan-
tum systems instead of performing full-fledged quantum phase estimation. Our algorithms
achieve a simulation error that shrinks exponentially with the circuit depth. To corroborate
their functioning, we prove rigorous performance bounds as well as the concentration of the
randomized sampling procedure. We demonstrate the functioning of the approach for sev-
eral physically meaningful examples of Hamiltonians, including fermionic systems and the
Sachdev–Ye–Kitaev model, for which the method provides a favorable scaling in the effort.

1 Introduction
The simulation of quantum processes on quantum computers is one of the most eagerly anticipated use
cases for quantum computing. The ability to simulate a system’s time evolution promises to provide
insights into the dynamics of interacting quantum systems in situations where approximate classical
simulation methods fail and constitutes one of the cornerstones of quantum technologies [1].

This work aims at improving algorithms that simulate the dynamics of expectation values of observ-
ables. The need for developing such machinery stems from the observation that state-of-the-art quantum
devices and early quantum computers are still rather limited in their realizable circuit depths and con-
trol. We, therefore, assume only access to a quantum-oracle machine that implements single-qubit state
preparation, controlled time evolution and quantum measurements and strive for minimizing the required
depth of suitable quantum algorithms. Such a setting explicitly allows for the use of product formulas,
which are the earliest algorithms proposed for the simulation of time-independent local Hamiltonians [2].

Such Trotter-Suzuki methods, as they are called, have evolved from comparably simple prescriptions
for local Hamiltonians to sophisticated schemes able to capture more general sparse time-independent
Hamiltonians [3–5] as well as time-dependent Hamiltonians [6, 7] and open quantum systems [8, 9].
Despite their relative simplicity, product formulas are still at the forefront of Hamiltonian simulation
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Multi-product formulas

Quantum error mitigation [19]Linear-combination-of-unitaries [13,14] Randomized sampling [here]

Figure 1: Multi-product formulas, although introduced with use in the LCU framework in mind, can also be used in
different frameworks, such as quantum error mitigation or randomized sampling, which is the main contribution of this
work.

techniques. A numerical study has shown that product formulas can in practice outperform more complex
techniques [10] and their complexity is better than initial estimates [11] suggest. In fact, product formulas
are nearly optimal for lattice model simulations [12].

Multi-product formulas introduced in the linear-combinations-of-unitaries (LCU) [13] approach have
been built upon previous results of Trotter-Suzuki methods and have recently been improved [14]. The
idea of linearly combining unitaries has led to quantum algorithms with an exponential speedup in pre-
cision [15–18] which have been recently gaining popularity. Besides quantum simulation in the LCU
framework, the mathematical construct of multi-product formulas (see Fig. 1) can also be used in quan-
tum error mitigation [19]. Although these methods have optimal asymptotic error scaling, they inherently
require deep quantum circuits for their implementation and are thus not suitable for applications in near-
term devices or early quantum computers. It is therefore crucial to find algorithms that require shorter
circuits and fewer digital gates.

Recently, a new element has been introduced to aid this search: the element of classical randomness.
The idea of randomization in Hamiltonian simulation has heralded a renaissance of product formula
methods [20–24]. For single steps of such techniques, a rigorous understanding has recently been reached
[24]. Randomized algorithms can also be considered when one is only interested in estimating expectation
values. For such a task we do not need to prepare the time-evolved state (from which the observable will
be measured) perfectly. Instead, a lower-effort randomized algorithm can be used such that the correct
expectation value is obtained only after averaging the measurement outcomes.

The aims of this work are twofold: First, we strive for combining the advantages of higher-order multi-
product formulas with those of schemes of randomized compiling, to create a novel framework in which
multi-product formulas can be put to good use, which we dub “randomized sampling”. Specifically, we
adopt the above scenario of computing expectation values of observables and propose to sample product
formulas from multi-product formulas, by which we circumvent the need to use the LCU framework
and its corresponding methods such as block encodings. Instead, we implement multi-product formulas
on average through random sampling. This results in a notable reduction in algorithmic depth at the
expense of additional circuit evaluations. In this way, we see how notions of randomized compiling and
higher-order multi-product formulas – when suitably brought together – allow for more resource-efficient
notions of quantum simulation amenable to programmable devices and early quantum computers, with a
focus on estimating the dynamics of quantum systems instead of a complete phase estimation procedure.
An overview of this framework can be found in Figure 2. Second, we develop alternative multi-product
formulas tailored to this new framework, which promise to outperform the accuracy of the multi-product
formulas introduced by Childs and Wiebe in Ref. [13] in the regime of short simulation times. We show
that using a quantum device limited to the aforementioned operations can already yield improvements
to fully analog approaches. It is therefore especially useful in the regime of early quantum computers,
when algorithms with a pure focus on noisy-intermediate-scale-quantum devices [25], such as variational
quantum algorithms, reach their limits, but fully digital algorithms on large, fault-tolerant quantum
computers are not yet feasible. The steps required to end up with such a formula are summarized in
Figure 3.

A direct comparison between these newly developed multi-product formulas with those of Childs and
Wiebe and Trotter-Suzuki product formulas is presented in Table 1.

The remainder of this work is organized as follows: After a short review of multi-product formulas
in Section 2, we present the framework of randomized sampling and a summary of our main results in
Section 3. Section 4 then contains a detailed analysis of the proposed randomized sampling framework
and multi-product formulas and gives the proofs of the results discussed in the previous section. To
conclude, we compare the performance of our formulas to that of Trotter-Suzuki product formulas and
Childs and Wiebe type multi-product formulas [13] in Section 5, discussing both their error bounds
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Algorithm Trotter-Suzuki [26]
(Section 2)

Childs-Wiebe [13]
(Section 2)

Novel multi-product formulas [here]
(Section 3.2)

Formula S2χ(t/r)r
∑K+1
q=1 CqS2χ(t/q)q

∏R
r=1

∑2χR
q=0 Cq

(
ν(r), b(r)

)
S2χ

(
b
(r)
q t
)

Free parameters r, χ K, χ R, χ, {b(r)}Rr=1

Dependent
parameters - C(K,χ)

{
ν(r)(R,χ), C

(
ν(r), b(r)

)}R
r=1

Max. depth 2Lr · 5χ−1 2L(K + 1) · 5χ−1 2LR · 5χ−1

Query complexity
per sample O

(
(Λt)1+1/(2χ)

ε1/(2χ) · 5χ−1
)

O
(

ln(ε)
ln(Λt)5χ−1

)
O
(

ln(ε)
ln(Λt)

5χ−1

χ

)
Error scaling O

(
r(Λt/r)2χ+1) O

(
(Λt)2(χ+K)+1) O

(
(Λt)2χR+1)

Sampling overhead 1
(∑K+1

q=1 |Cq|
)2 (∏R

r=1
∑2χR
q=0

∣∣∣Cq(ν(r), b(r)
)∣∣∣)2

Table 1: Comparison of the standard Trotter-Suzuki formula, the multi-product formula used by Childs and Wiebe
and the closed-form/matching multi-product formula introduced in this work for approximating the time evolution
operator exp(−iHt) of a Hamiltonian H =

∑L

k=1 hk. We use Λ =
∑

k
‖hk‖ and provide detailed error bounds in

Section 2 and Theorem 3. Each algorithm provides the choice of some free parameters, dictating their performance and
resource requirements. The multi-product formulas proposed by Childs and Wiebe in Ref. [13] and those introduced
here further come with additional parameters depending on the choice of these free parameters. Since we aim for
a randomized implementation using the framework introduced in Algorithm 1, the maximal circuit depths, query
complexities, and error scalings are slightly different from their implementation in a deterministic, coherent fashion.
Furthermore, implementing them in the randomized sampling framework comes with the stated sampling overheads.
Note that their errors can also exhibit a commutator scaling as discussed in Refs. [11,14] for all of these methods.

and actual performance on several physically plausible and interesting Hamiltonian models of strongly
correlated quantum systems, for which we find a favorable performance over known schemes of quantum
simulation.

2 Multi-product formulas
Multi-product formulas constitute the main ingredient of our work, and hence we will briefly review the
underlying ideas, starting with product formulas. The goal of quantum simulations is to approximate the
quantum dynamics of a complex quantum system described by a many-body Hamiltonian decomposed
as

H =
L∑
k=1

hk (1)

composed of Hermitian Hamiltonian terms {hk} of neither necessarily small nor geometrically local
support defined on a quantum lattice equipped with a Hilbert space H = (Cd)⊗n.

Here, n is the number of degrees of freedom of finite local dimension d. To access the Hamiltonian,
we assume to have oracles Ok(t) implementing time evolutions under each term in the Hamiltonian

Ok(t) |ψ〉 = e−ihkt |ψ〉 (2)

for any k ∈ [1, L] and t ∈ R. In digital quantum simulation, these oracles are built from Clifford gates
and phase rotations, but we do not assume that such a decomposition is available to us, as the oracles
could be implemented by the time evolution of a programmable device. We only require to have control
over the implementation, i.e., that we can apply the oracle Ok(t) depending on the state of a subsystem
encoded as a qubit as

|0〉〈0| ⊗ I + |1〉〈1| ⊗Ok(t) . (3)
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Now, quantum simulation aims at making reliable predictions of the expectation values of observables O
(which in the ideal case are local with a small support on the lattice, but again, this is not a necessity)
at later times T > 0

〈O(T )〉 := tr(U(T )ρU†(T )O) (4)

for initial quantum states ρ, where U is the time evolution operator. In practice, this commonly means
to establish ways to approximate the corresponding time evolution operator

U(T ) = e−iHT . (5)

Although it is worth stressing that a-priori information about the time T and properties of the initial
state ρ, as well as features of the locality of the underlying Hamiltonian H can be exploited to come up
with highly specialized approximations, we do not assume any underlying structure or limitations in this
work.

A simple, yet effective approach to approximating the time evolution operator is that of using product
formulas, which make use of N consecutive evolutions of individual Hamiltonian terms hkj by associated
short time intervals αjt, defined with real coefficients αj such that

∑
j αj = 1. Partial backward evo-

lutions are explicitly allowed, i.e., αj < 0 for some j, even though t > 0. In general, such a formula is
defined as a product of time evolutions

e−iHt ≈
N∏
j=1

e−iαj hkj t (6)

where each single term evolution can be implemented via Ok(t). Here, we distinguish between a direct
evolution by time t and a repeated evolution of short time slices t/r < 1 such that

e−iHt ≈

 N∏
j=1

e−iαj hkj
t
r

r

. (7)

The most accurate known formulas of this type are Trotter-Suzuki formulas [26]. They are recursively
defined for any positive integer χ and any time t by

S1(t) =
L∏
k=1

e−ihkt , (8)

S2(t) =
L∏
k=1

e−ihkt/2
1∏

k=L
e−ihkt/2 , (9)

S2χ(t) =
(
S2χ−2(s2χ−2t)

)2
S2χ−2

(
[1− 4s2χ−2]t

)(
S2χ−2(s2χ−2t)

)2
(10)

with s2χ := (4 − 41/(2χ+1))−1 for any positive integer χ. This specific choice of s2χ ensures that the
Taylor series of S2χ(t) matches that of the actual time evolution U(t) up to O(t2χ+1), which makes it a
good approximation for t � 1. It is important to stress that constructing an O(t2χ+1) approximation
requires the application of 2 · 5χ−1(L− 1) + 1 individual oracles Ok(t), where L is again the number of
Hamiltonian terms. More generally, we would represent them by oracle calls and we will refer to the
number of exponentials Nexp. Using repetitions as in Eq. (7), the number of exponentials of the algorithm
is of O(rL5χ−1) to approximate the actual time evolution U(T ) up to an accuracy of ε ∈ O(r(T/r)2χ+1)
in operator distance.

To enhance the comparability of product formulas with more involved multi-product formulas whose
bounds have not been improved to the same extent, we use the following simple tail bound and note that
better bounds exist, e.g. via commutator relations [11]:

‖U(T )− S2χ(T/r)r‖ ≤ 2r (gχΛT/r)2χ+1

(2χ+ 1)! (11)

Here, gχ = (5/3)χ−14χ/3 originates in the exponential tail of the Trotter-Suzuki terms [13] and Λ =∑L
k=1 ‖hk‖.
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The exponential dependence of the circuit depth on χ can pose a challenge for real-world implemen-
tations, and especially so within the NISQ regime. Altogether, the number of oracle calls needed to
simulate the evolution up to an error ε ≤ 1 is upper bounded by

Noracle ≤
2L5χ−1 (LΛt)1+1/(2χ)

ε1/(2χ) , (12)

as proven in Ref. [4]. An alternative complexity bound using commutator relations of the individual
Hamiltonian terms can be found in Ref. [11].

A known technique to decrease the number of required short time evolutions, i.e., oracle calls, is
the use of multi-product formulas [27, 28]. While the Trotter-Suzuki approximation cancels erroneous
contributions of higher-order terms by adding backward evolutions, multi-product formulas achieve the
same cancellations by superposing different product formulas. Conventionally, one employs multi-product
formulas that describe the same time evolution (up to a fixed order of t), but whose erroneous higher-order
contributions are of different strength and can thus be made to cancel. This is achieved by approximating
the time evolution to the same Trotter-Suzuki order, but considering product formulas different in the
number of time slices [27, 29]. The Childs and Wiebe multi-product formula discussed in Ref. [13] is of
the form

MK,2χ(t) :=
K+1∑
q=1

CqS2χ(t/`q)`q , (13)

where K is an integer defining a cutoff and {`q} is a set of pairwise different integers. The coefficients
{Cq} are determined via

1 1 · · · 1
`−2χ
1 `−2χ

2 · · · `−2χ
K+1

`−2χ−2
1 `−2χ−2

2 · · · `−2χ−2
K+1

...
...

. . .
...

`
−2(K+χ−1)
1 `

−2(K+χ−1)
2 · · · `

−2(K+χ−1)
K+1





C1
C2
C3
C4
...

CK+1


=



1
0
0
0
...
0


, (14)

ensuring the error terms in the multi-product formula vanish up to O(t2(K+χ)), resulting in

‖U(t)−MK,2χ(t)‖ ≤
(

1 + g2(χ+K)+1
χ

K+1∑
q=1
|Cq|

)
(Λt)2(χ+K)+1

(2(χ+K) + 1)! (15)

=O
(

(Λt)2(K+χ)+1
)
,

where we have again stated a simple tail bound for comparability and note that it could also exhibit a
commutator scaling as discussed in Refs. [11, 14].

Unlike Childs and Wiebe, we will henceforth use the simplest version achieved by setting `q = q for
all q since this choice is the most favorable for a randomized implementation, which will become clearer
in Section 3.

In Definitions 2 and 3 and Section 4, we employ a different approach for multi-product formulas and
develop two techniques whose errors scale with O(t2χR+1), and where R is comparable to K + 1.

Multi-product formulas were firstly used for quantum simulation by Childs and Wiebe [13], who devel-
oped the linear-combinations-of-unitaries (LCU) approach to directly implement multi-product formulas
on a quantum system. Note that sums of unitaries are not inherently physical operations since the unitary
group is not closed under addition. Childs and Wiebe use a non-deterministic approach to implement
multi-product formulas that can lead to large algorithmic depth. Berry et al. [15] have implemented
LCU for a truncated Taylor series nearly perfectly but their use of oblivious amplitude amplification
requires an additional register and a complex state preparation procedure. Recently, Ref. [14] has im-
proved the condition number of multi-product formulas and thus extended the use of LCU by amplitude
amplification. However, these improvements have no impact on their asymptotic performance and are
less favorable for randomized implementations.

Using randomized sampling such as proposed in Algorithm 1, we can circumvent the need for these
potentially deep circuits. Randomized compiling of multi-product formulas entails sampling among the
individual terms of Eq. (13) requiring the implementation of just twice the number of oracle calls, rather
than the entire linear combination and the overhead for its implementation.
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Step 1: Prepare multi-product formula for importance sampling:

e−iHt ≈
M∑
k=1
|Ck|

(
sign(Ck)Ṽk

)
ensure probability ensemble−−−−−−−−−−−−−−−−−→

divide by Ξ:=
∑
|Ck|

V =
M∑
k=1

|Ck|
Ξ︸︷︷︸
pk

(
sign(Ck)Ṽk

)︸ ︷︷ ︸
Vk

≈ 1
Ξe
−iHt

Step 2: Repeat the following two steps N times (see Algorithm 1):

(a) Sample V◦, V•
i.i.d.∼ {pk, Vk} via importance sampling, i.e., draw Vk with probability pk.

(b) Run the following circuit and measure outcome oj , with E(oj) = 1
2Tr

(
O(V◦ ρV †• + V• ρV

†
◦ )
)
:

|+〉 •
X ⊗O

ρ / V• V◦

Main Result: For N ≥ 2‖O‖2 ln(2/δ)
ε2 , we find that

∣∣∣ 1
N

∑N
j=1 oj − tr(OV ρV †)

∣∣∣ ≤ ε with confidence δ.

Figure 2: Overview of the randomized sampling framework for estimating the dynamics of observables. After preparing
a multi-product formula for importance sampling, we can run Algorithm 1 to implement it in a simple, randomized
fashion. While this overview already hints toward its use for time evolution and estimating the dynamics of observables,
these results apply to general multi-product formulas.

3 Randomized sampling using multi-product formulas
LCU-type algorithms, despite having a finite failure probability, are deterministic when successfully
applied. In contrast to such deterministic implementations, there is a recent interest in randomized
algorithms [21–24]. These novel results improve the performance of product formulas by randomizing
the order of the short time evolution and introducing the alternative setting of randomized compiling.
With the goal of reducing the circuit depth required for the implementation of multi-product formulas, we
build upon randomized compiling and propose the setting of randomized sampling: Given an observable
O and a quantum system in the initial state ρ, our goal is to find the expectation value of the observable
after a time evolution U = e−iHt governed by the Hamiltonian H =

∑L
k=1 hk. That is, we wish to

compute
〈O(t)〉 = tr(OUρU†) . (16)

In the following, we describe a randomized algorithm for such a task, give convergence guarantees, and
present novel multi-product formulas suited for this framework. Note that we will require one part of
our system to be encoded as a single qubit, while the rest acts as the simulator.

3.1 The randomized sampling framework
We begin by proposing the randomized sampling framework summarized in Figure 2. After rescaling the
coefficients of a given multi-product formula, we can apply the following simple algorithm to estimate
Eq. (16) in a randomized fashion based upon importance sampling:

Algorithm 1 (Randomized sampling). Given an observable O and an ensemble V = { (Vk, pk) }Mk=1 of
M unitaries {Vk} and corresponding probabilities {pk}, we consider N independent repetitions of the
following protocol:

1. Prepare |+〉〈+| ⊗ ρ .

2. Sample V◦
i.i.d.∼ V and apply the anti-controlled unitary |0〉〈0| ⊗ V◦ + |1〉〈1| ⊗ I .

3. Sample V•
i.i.d.∼ V and apply the controlled unitary |0〉〈0| ⊗ I + |1〉〈1| ⊗ V• .

4. Perform a single shot of the POVM measurement associated with the observable X ⊗O .

5. Store the measurement outcomes {oj}.

Accepted in Quantum 2022-09-05, click title to verify. Published under CC-BY 4.0. 6



Note that it is in general sufficient to measure X and O separately and multiply the outcomes, rather
than performing a joint measurement. This could be useful e.g. when the measurement of O is available
in a black-box fashion. As we show in more detail in Section 4, we find the following result for infinitely
many runs of the algorithm:

Corollary 1 (Sample mean convergence). Let O be an observable, ρ be an initial state and let V =
{ (Vk, pk) }Mk=1 be an ensemble of unitaries {Vi } and corresponding probabilities { pi }, such that

EV [Vk] =
M∑
k=1

pkVk = V . (17)

Then, the sample mean of Algorithm 1 converges to the expectation value of the random measurement
outcomes {oj}j, given by

lim
N→∞

1
N

N∑
j=1

oj = tr
(
OV ρV †

)
. (18)

Furthermore, since an infinite number of measurements is infeasible, we give an expression for the
number N of repetitions of Algorithm 1 sufficient for achieving the desired accuracy and confidence for
the goal of randomized sampling. Using Hoeffding’s inequality [30], we can formulate the following result:

Theorem 1 (Randomized implementation of sums of unitaries). Let O be an observable, ρ an initial
state and let V = { (Vk, pk) }Mk=1 be an ensemble of unitaries {Vk } and corresponding probabilities { pk },
such that

EV [Vk] =
M∑
k=1

pkVk = V . (19)

Then, for a fixed accuracy ε ∈ (0, 1) and confidence δ ∈ (0, 1), a total of

N ≥ 2‖O‖2 ln(2/δ)
ε2

(20)

repetitions of Algorithm 1 suffice to accurately approximate the expectation value tr
(
OV ρV †

)
using the

sampling mean estimator, i.e., ∣∣∣∣∣∣ 1
N

N∑
j=1

oj − tr
(
OV ρV †

)∣∣∣∣∣∣ ≤ ε (21)

with probability at least 1− δ.

So far, this framework is fairly general: Given a set V, the algorithm samples from the linear transform
with the unitary V . For quantum simulation, V (a decent approximation to U) and V still have to be
found. This is where multi-product formulas come into play. Multi-product formulas approximate U by
a weighted sum of product formulas, and so the featured product formulas and their weights could make
up the set V. The problem is that we require {pk} to form a probability distribution, i. e., pk > 0 and∑M
k=1 pk = 1. This disqualifies us from identifying the sets {pk} with {Cq} straightforwardly. While∑
q Cq = 1 holds for any multi-product formula per construction (see the first component of Eq. (14)),

the sign of some Cq will be negative [31]. We thus have to absorb the signs of these negative Cq into
their unitaries Vq, but then we find that the operation is not normalized as

∑
q|Cq| > 1. At this point

we introduce the quantity Ξ :=
∑
q |Cq|, that we call resolution factor. The resolution is practically used

to define a probability distribution via pk = |Ck| /Ξ such that Algorithm 1 samples from

1
Ξ2 tr(OUρU†) . (22)

As the time evolution is now approximated by ΞV rather than V , Ξ factors into the number of required
circuit evaluations. With Ξ > 1 requiring to run the algorithm more often to achieve an error comparable
with the situation where Ξ = 1, this resolution factor can be regarded as a penalty. This penalty is further
amplified if a direct time evolution by time t is insufficient and a repeated time evolution of short time
slices t/r < 1 is required. Since each of such repetitions will result in additional factors of Ξ leading to
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an exponential scaling of the resolution factor in the number of repetitions, this behavior prohibits the
use of a large number of repetitions as is usual for product formulas. On the other hand, this randomized
implementation does not rely on post-processing and the increase of some success probability via well-
conditioning as is the case for the deterministic, block-encoding implementation, which in turn would
increase the number of required circuit evaluations drastically. However, especially in the regime of early
quantum computers with capabilities between those of NISQ devices and large fault-tolerant quantum
computers, where one would use few repetitions, a deeper circuit may pose a bottleneck much tighter
than a slightly higher number of circuit evaluations would. We, therefore, envision these results to be of
particular interest in this intermediate regime, where one might be interested in simulating the dynamics
of quantum systems instead of performing full-fledged quantum phase estimation.

We can make the following guarantees for approximating time evolutions in randomized sampling
with a nontrivial resolution and a finite number of measurements:

Theorem 2 (Approximating unitaries with a finite number of measurements,). Let U be a unitary, O
an observable, ρ some initial state and let V = { (Vk, pk) }Mk=1 be an ensemble of unitaries {Vk } with a
corresponding probability distribution { pk } such that EV [Vk] =

∑M
k=1 pkVk = V . Let there be a constant

factor Ξ ∈ R+ such that
‖ΞV − U‖ ≤ ε . (23)

Then, it is sufficient to run

N ≥ 2‖O‖2 ln (2/δ) Ξ4

ε2 (24)

repetitions of Algorithm 1 to achieve∣∣∣∣∣∣Ξ
2

N

N∑
j=1

oj − tr(OUρU†)

∣∣∣∣∣∣ ≤ (1 + 3‖O‖) ε , (25)

with probability at least 1− δ.

3.2 Custom multi-product formulas
The multi-product formulas of Childs and Wiebe can easily be adapted to this randomized sampling
scheme. Since previous improvements of multi-product formulas focused on increasing success probabil-
ities by changing their condition number [14], which has no impact on their asymptotic error scaling,
we can ignore constraints encountered in LCU techniques. Our sole interest lies in a low algorithmic
depth and a moderate resolution, so we choose to set `q = q for all q = 1, . . . ,K + 1 in Eq. (13) and
(14). However, those multi-product formulas make relatively little use of the Trotter-Suzuki order 2χ
of its components. In fact, the only reason not to minimize the depth by using S2(·) blocks is the high
resolution factor. To this end, we present a family of novel multi-product formulas tailored toward the
randomized sampling framework with improved scaling in the Trotter-Suzuki order that can be optimized
for their resolution factor. A brief overview of the process leading to a suitable multi-product formula is
presented in Figure 3

While Childs and Wiebe’s approach manipulates higher-order error terms, we employ a construction
to modulate the entire Taylor expansion.

Definition 1 (Linear combination of time evolution operators). Let χ ≥ 1 and R ≥ 1 be inte-
gers and S2χ(t) a Trotter-Suzuki product formula approximation to U(t) as defined in Eq. (10) with
‖S2χ(t)− U(t)‖ ∈ O(t2χ+1). Then, for any t ∈ R and arbitrary b = (b0, . . . , b2χR)> ∈ R2χR+1 and
ν = (ν0, . . . , ν2χR)> ∈ R2χR+1 , we define the multi-product formula L2χ,R(ν, b, t) as

L2χ,R(ν, b, t) :=
2χR∑
q=0

Cq(ν, b)S2χ(bqt) , (26)
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Use the matching multi-product formula
introduced in Definition 2

Use the closed-form multi-product formula
introduced in Definition 3

Attempt solving the system of nonlinear equations defined in Eq. (29)

Numerically optimize the parameters b using a loss function balancing error bound (see Theorem 3)
and resolution factor Ξ =

∑
q |Cq| impacting the number of circuit evaluations.

This involves inverting the Vandermonde matrix defined in Eq. (27)

Obtain a multi-product formula with
∑
q CqVq ≈ e−iHt

Implement MPF using the newly proposed randomized sampling framework (Section 3.1 and Figure 2)

Succes
s Failure

Figure 3: Overview of the steps necessary to arrive at a suitable multi-product formula as discussed in the following
section. While the matching multi-product formula is superior to the closed-form version, the required solution to this
system of nonlinear equations might not always be available

where 

1 1 · · · 1
b0 b1 · · · b2χR
b20 b21 · · · b22χR
b30 b31 · · · b32χR
...

...
. . .

...
b2χR0 b2χR1 · · · b2χR2χR





C0
C1
C2
C3
...

C2χR


=



ν0
ν1
ν2
ν3
...

ν2χR


(27)

for some (C0, C1, . . . , C2χR)> ∈ R2χR+1.

Here, the coefficients {Cq} are related to the parameters b and ν via the inverse of the corresponding
Vandermonde matrix in Eq. (27) as is discussed in detail in Section 4. The parameters ν will have
an important role in the following construction, whereas b can be tuned to strike a balance between
the resolution factor Ξ, error bound ε, and condition number. While previous approaches focused on
optimizing b for the condition number relevant for the success probability when using block-encodings
and amplitude amplification, we instead numerically optimize them for the resolution factor and obtain
improved error bounds along the way. Note that a similar construction has recently been used to
approximate energy measurements in the fully analog setting [32]. We can now turn toward the definition
of the first new multi-product formula.

Definition 2 (Matching multi-product formula). Let χ ≥ 1 and R ≥ 1 be integers and L2χ,R(ν, b, t) as
defined in Definition 1. Then, for any t ∈ R, we define the multi-product formula M̃ (m)

2χ,R(t) as

M̃
(m)
2χ,R(t) :=

R∏
r=1
L2χ,R

(
ν(r), b(r), t

)
(28)

with ν(r)
k = 0 for k > 2χ and all r = 1 . . . R. The remaining

{
ν

(r)
q

}
are fixed by

∑
k1+k2+...+kR=k

ν
(1)
k1
ν

(2)
k2
· · · ν(R)

kR

k1! k2! · · · kR! = 1
k! (29)

for all 0 ≤ k ≤ 2χR, whereas the parameters {b(r)} can be chosen arbitrarily.
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Multiplying the coefficients Cq of the individual building blocks L2χ,R(ν(r), b(r), t) of the matching
multi-product formula results in a resolution factor of

Ξ(m) :=
∏
r

(∑
q

∣∣∣Cq(ν(r), b(r)
)∣∣∣) . (30)

For the time evolution to work, the set of vectors
{
ν(r)} has to be found satisfying the constraint

in Eq. (29) for different R and 2χ. It is important to note that obtaining the coefficients ν for the
matching multi-product formula requires solving the system of nonlinear equations defined by Eq. (29),
whose complexity scales at least exponentially in χR. In this work, we have used numerical solvers
which converge in a few seconds for χR ≤ 10, which we view as reasonably high as they provide an
approximation up to O(t21), which we view as suitable for early quantum computers.

When solving the system of nonlinear equations becomes unfeasible, be it due to slow convergence or
the desire for significantly better approximations, we can employ a second version of the multi-product
formula in which the

{
ν(r)} are already determined at the cost of a slightly larger resolution factor Ξ:

Definition 3 (Closed-form multi-product formula). Let χ ≥ 1 and R ≥ 1 be integers and L2χ,R(ν, b, t)
as defined in Definition 1. Then for any t ∈ R, we define the multi-product formula M̃ (cf)

2χ,R(t) as

M̃
(cf)
2χ,R(t) :=

R∑
r=1

(
L2χ,R

(
ν(0), b(0), t

))r−1
L2χ,R

(
ν(r), b(r), t

)
(31)

with

ν
(0)
k =

{
1, for k = 2χ
0, else,

(32)

ν
(1)
k =

{
1, for k ≤ 2χ
0, else,

(33)

ν
(n)
k =

{
k!((2χ)!)n−1

(2χ(n−1)+k)! , for 0 < k ≤ 2χ
0, else,

(34)

for all 0 ≤ k ≤ 2χR and 1 < n ≤ R. The parameters {b(r)} can be chosen arbitrarily.

Multiplying the coefficients of the individual L2χ,R(ν(r), b(r), t), results in a resolution factor for the
closed-form multi-product formula of

Ξ(cf) :=
∑
r

(∑
q

∣∣∣Cq(ν(0), b(0)
)∣∣∣)r−1(∑

q

∣∣∣Cq(ν(r), b(r)
)∣∣∣) . (35)

For these multi-product formulas, we can prove the following two results:

Corollary 2 (Low depth unitary approximation). Let M̃2χ,R(t) be a multi-product formula constructed
according to Definition 2 or 3. We then find that∥∥∥U(t)− M̃2χ,R(t)

∥∥∥ = O
(
t2χR+1) . (36)

Theorem 3 (Error bound for custom multi-product formulas). For M̃2χ,R(t) being a multi-product
formula constructed according to Definitions 2 or 3, we have∥∥∥U(t)− M̃2χ,R(t)

∥∥∥ ≤ (1 + ζg2χR+1
χ

) (Λt)2χR+1

(2χR+ 1)! , (37)
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|+〉 •
X ⊗O

ρ / V
(1)
• V

(2)
• · · ·V (R)

• V
(1)
◦ V

(2)
◦ · · ·V (R)

◦

Figure 4: Quantum circuit for randomized sampling with a multi-product formula
∏R

r=1

(∑
k
p

(r)
k V

(r)
k

)
. The unitaries

V
(r)

◦ , V
(r)

• are drawn independently at random from {V (r)
k }k according to the probabilities {p(r)

k }k for all r = 1 . . . R,
such that the circuit samples from E(〈O〉). Again, it is in general sufficient to multiply the measurement outcomes
instead of performing a joint measurement.

with gχ := 4χ
3
( 5

3
)χ−1, Λ :=

∑
k

‖hk‖ and corresponding

ζ(m) :=
2χR∑
q1=0

2χR∑
q2=0
· · ·

2χR∑
qr=0

∣∣∣C(1)
q1
C(2)
q2
· · ·C(R)

qr

∣∣∣ (|b(1)
q1
|+ . . .+ |b(R)

qr |
)2χR+1

(38)

≤Ξ(m)
(
Rmax

q,r
|b(r)q |

)2χR
(39)

ζ(cf) :=
R∑
r=1

2χR∑
q1=0

2χR∑
q2=0
· · ·

2χR∑
qr=0

∣∣∣C(0)
q1
C(0)
q2
· · ·C(0)

qr−1
C(r)
qr

∣∣∣ (|b(0)
q1
|+ . . .+ |b(0)

qr−1
|+ |b(r)qr |

)2χR+1
(40)

≤Ξ(cf)
(
Rmax

q,r
|b(r)q |

)2χR
, (41)

for matching and closed-form multi-product formulas respectively.

Consequently, these formulas can be used for randomized sampling via Theorem 2. A numerical
comparison of the error bounds of all presented formulas can be found in Fig. 5, while an overview of all
relevant quantities is provided in Table 1.

While the formula dependent ζ(m)
χ,R and ζ(cf)

χ,R themselves are not too illuminating, they can be upper
bounded by the corresponding resolution factors multiplied by a term depending on the magnitudes of
the used parameters b. However, these upper bounds are not tight which is why their exact versions
are used in any explicit calculations. Nevertheless, they showcase that a bad choice of b can lead to
significant penalties in the performance of the resulting multi-product formula, further stressing the
need for optimizing with respect to these parameters.

The matching and closed-form multi-product formulas both rely on products of L2χ,R(ν(r), b(r), t).
For Algorithm 1, these products can either be expanded and the resulting operators and coefficients be
identified with the sets {Vk}, {pk}, or sets of (V (1)

◦ , V
(1)
• ), . . . , (V (R)

◦ , V
(R)
• ) be drawn and applied as in

Fig. 4. For the matching multi-product formula, all V (r)
◦ and V (r)

• are drawn independently from each
other while for the closed-form multi-product formula, the set from which V (r+1)

◦/• is drawn depends on

the set from which V (r)
◦/• has been sampled.

Furthermore, since the above framework randomizes only over product formulas, we are not neces-
sarily bound to Trotter-Suzuki formulas and one could also think of a doubly-stochastic version in which
the short-term evolutions comprising the product formulas are sampled randomly as well. In that sense,
it is allowed to construct the multi-product formulas with building blocks of

Ŝ2(t) = 1
2

(
S1(t) + S†1(−t)

)
, (42)

rather than (9). This is not possible for Childs and Wiebe’s multi-product formulas, which require
symmetric building blocks and are thus limited to Trotter-Suzuki formulas.

4 Proofs
In this section, we provide proofs of the statements presented above. In Section 4.1, we are proving our
statements regarding the errors and uncertainty of the randomized sampling procedure. We then turn
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our attention to the matching and closed-form multi-product formula, providing the intuition behind
their construction and verifying their error scaling in Section 4.2. We finally analyze the upper bounds
for their error (which is the error of the average time evolution they describe) in Section 4.3.

4.1 Randomized sampling
Let us start by following Algorithm 1 step by step. The controlled and anti-controlled applications of V◦
and V• are defined as

CV◦ := |0〉〈0| ⊗ V◦ + |1〉〈1| ⊗ I, (43)
CV• := |0〉〈0| ⊗ I + |1〉〈1| ⊗ V• , (44)

and the initial state ρ will be transformed to

ρ̃ = CV•CV◦ (|+〉〈+| ⊗ ρ) (CV◦)†(CV•)† (45)

= 1
2
(
|0〉〈0| ⊗ V◦ ρV †◦ + |0〉〈1| ⊗ V◦ ρV †• + |1〉〈0| ⊗ V• ρV †◦ + |1〉〈1| ⊗ V• ρV †•

)
(46)

after the third step of the protocol. The expectation value for the succeeding measurement of X ⊗ I is
then given by

tr (X ⊗Oρ̃) = 1
2tr
(
O(V◦ ρV †• + V• ρV

†
◦ )
)
. (47)

Here, we note that is in general not necessary to perform a joint measurement but sufficient to multiply
the measurement results. This might be beneficial for cases in which the measurement of O is only
available in a black-box fashion. We now use that V◦ and V• are sampled independently from the same
ensemble

V◦, V•
i.i.d.∼ V = { (Vk, pk) }Mk=1 (48)

such that

EV [V◦] = EV [V•] =
M∑
k=1

pkVk = V . (49)

Then, we can combine the quantum average form Eq. (47) with the classical average from Eq. (49) to
conclude that the expectation value of the random single-shot measurement outcome o is given by

E[o] = EV [tr (X ⊗Oρ̃)] = tr
(
OV ρV †

)
, (50)

which proves Corollary 1.
For real-world applications, we will never achieve a perfect expectation value. It is therefore vital to

inspect the single-shot behavior of Algorithm 1 and give an estimate for the number of iterations required
to achieve the desired precision. Since the possible outcomes of measuring X on the auxiliary qubit are
±1 while the absolute of the outcomes of the O measurement are bounded by ‖O‖, each single-shot
measurement outcome oj ∈ [−‖O‖, ‖O‖] Consequently, by applying Hoeffding’s inequality, we can prove
the validity of Theorem 1.

Proof of Theorem 1. Since the single-shot measurement outcomes {oj} obtained from N iterations of
Algorithm 1 are individually bounded by the interval [−‖O‖, ‖O‖], Hoeffding’s inequality states

Prob

∣∣∣∣∣∣ 1
N

N∑
j=1

oj − tr
(
OV ρV †

)∣∣∣∣∣∣ ≥ ε
 ≤ 2 exp

(
− Nε2

2‖O‖2

)
. (51)

For a fixed accuracy ε ∈ (0, 1) and confidence δ ∈ (0, 1), it is therefore sufficient to perform

N ≥ 2‖O‖2 ln(2/δ)
ε2

(52)

repetitions of Algorithm 1 to achieve the desired accuracy and confidence, concluding the proof.
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Given recent developments, for example in Ref. [33], one might wonder whether substantial improve-
ments are possible by using a more refined estimator, most notably median-of-means. Unfortunately,
this is not very realistic in most scenarios. For observables that obey O2 = I, such as local and global
Pauli observables, the variance of a single-shot outcome oj ∈ [−1, 1] becomes Var [oj ] = 1−E [oj ] = O(1).
In this case, the variance is of the same order as the magnitude and it is impossible to (asymptotically)
improve over Hoeffding’s inequality (asymptotic normality) [34]. However, median-of-means could still
be used in this setting to take advantage of additional information about the variance, in cases where it
is available. Now, we additionally assume that V times the resolution Ξ approximates the time evolution
operator U , i.e.,

‖ΞV − U‖ ≤ ε . (53)

Furthermore, we will use the following result.

Lemma 1 (Closeness of expectation values). Let U be unitary and V and Ξ as given above such that
Eq. (53) holds. Furthermore, fix a state ρ and observable O. Then,∣∣tr (OUρU†)− Ξ2tr

(
OV ρV †

)∣∣ ≤ 3ε‖O‖ . (54)

Proof. We begin by defining Ũ as the difference between the exact and approximated time evolution

ΞV = Ξ
M∑
k=1

pkVk = U + Ũ . (55)

According to Eq. (53) we find that ‖Ũ‖ ≤ ε. Consequently,∣∣tr (OUρU†)− Ξ2tr
(
OV ρV †

)∣∣ =
∣∣∣tr(Ũ†OUρ)+ tr

(
U†OŨρ

)
+ tr

(
Ũ†OŨρ

)∣∣∣
≤ 2‖Ũ‖‖U‖‖O‖+ ‖Ũ‖2‖O‖ (56)
≤
(
2ε+ ε2) ‖O‖ (57)

≤ 3ε‖O‖. (58)

By combining the insights from the previous discussion, we can now tackle Theorem 2:

Proof of Theorem 2. Add and subtract Ξ2tr
(
OV ρV †

)
to find∣∣∣∣∣∣Ξ

2

N

N∑
j=1

oj − tr
(
OUρU†

)∣∣∣∣∣∣ ≤ Ξ2

∣∣∣∣∣∣ 1
N

N∑
j=1

oj − tr
(
OV ρV †

)∣∣∣∣∣∣+

∣∣∣∣∣∣Ξ2tr
(
OV ρV †

)
− tr

(
OUρU†

)∣∣∣∣∣∣ . (59)

By applying Theorem 1 with accuracy ε/Ξ2 to the first term and using Lemma 1, we find that this upper
bound is given by (3‖O‖+ 1)ε.

4.2 Construction of the new multi-product formulas
In Definitions 2 and 3, we propose two alternatives to Childs and Wiebe’s multi-product formulas, which
reduce the number of circuit evaluations required for a randomized implementation and have improved
error scaling. In the following, we will motivate their construction and stress the advantages they provide.
First of all, note that every approximation of the exact time evolution Ũ(t) ≈ e−itH can be written as a
sum of operators Âk such that

Ũ(t) =
∞∑
k=0

Âk t
k , (60)

with Â0 = I. For any approximated time evolution with an error of O(tm+1), we find that Âk = (iH)k/k!
for all k ≤ m. In other words, the Taylor expansion of the exact time evolution and its approximation
has the same Taylor expansion for the first m non-trivial terms.
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For the standard Trotter-Suzuki formula with Ũ(t) = S2χ(t), we have

Âk = (iH)k/k! (61)

for all k ≤ 2χ. For k > 2χ, these operators Âk resemble uncontrolled, erroneous operators. In Defini-
tion 1, we propose a superposition of approximations with differently scaled times S2χ(bnt), introducing
controllable modulation parameters νk up to a Taylor order of 2χR. Its Taylor expansion is given by

L2χ,R(ν, b, t) =
2χR∑
q=0

Cq(ν, b)S2χ(bqt) (62)

=
∞∑
k=0

(2χR∑
q=0

Cq(ν, b) bkq

)
Âkt

k (63)

=
2χR∑
k=0

νk Âkt
k + O

(
t2χR+1) , (64)

where Cq, bq ∈ R and νk = (
∑
q Cq b

k
q ) is fixed via the linear transformation of the coefficients

C = (C0, C1, . . . , C2χR)>

with the Vandermonde matrix Bj,k = bj−1
k , BC = ν as in Eq. (27). The condition number of the

Vandermonde matrix as the product of its Hilbert-Schmidt norm and the norm of the pseudo-inverse can
be bounded from above and below by explicit expressions involving the vector defining the Vandermonde
matrix [35]. Choosing the vector b, we can calculate the coefficients C for a fixed solution vector ν using
the inverse Vandermonde matrix B−1, which is found exactly to be [36,37]

(
B−1)

j,k
= (−1)k−1∏

m∈µ(j)
(bm − bj)

∑
a∈F

2χR
2

|a|=2χR−k

2χR−1∏
i=0

(
bµi(j)

)ai (65)

with µ(j) = (0, 1, . . . , j − 1, j + 1, . . . , 2χR) ,

where the sum runs over all binary strings a = (a0 a1 . . . a2χR−1) of length 2χR and Hamming weight
2χR−k. However, we have found that for numerical purposes, a matrix inversion of B clearly outmatches
the analytical computation of B−1 in terms of runtime.

Using Eq. (64), we can now manipulate the Taylor expansion of a Trotter-Suzuki block S2χ(t) by
replacing it with some L2χ,R(ν, b, t). The key insight here is that while the operators Âk are only correct
for Taylor orders k ≤ 2χ, we gain control of the prefactors up to order 2χR. Consequently, we can
eliminate all erroneous Âk for 2χ < k ≤ 2χR by setting the corresponding νk to zero. This allows us
to construct the matching and closed-form multi-product formulas using blocks of L2χ,R(ν, b, t) with
different ν (and possibly b).

4.2.1 Matching multi-product formula

The first version of our proposed multi-product formula builds upon the multiplication of Rmulti-product
building blocks L2χ,R(ν(r), b(r), t) that according to Eq. (64) can be written as

L2χ,R

(
ν(r), b(r), t

)
=

2χ∑
k=0

ν
(r)
k

k! (−iHt)k +
2χR∑

k=2χ+1
ν

(r)
k Âkt

k +O
(
t2χR+1) , (66)

where we can eliminate the second sum by setting νk = 0 for 2χ < k ≤ 2χR. Their product now yields
R∏
r=1
L2χ,R

(
ν(r), b(r), t

)
=

2χR∑
k=0

µk (−iHt)k +O(t2χR+1) (67)

with

µk =
∑

i1+i2+...+iR=k

ν
(1)
i1
ν

(2)
i2
· · · ν(R)

iR

i1!i2! · · · iR! . (68)

To mimic the exact time evolution up to O(t2χR+1), we require µk = 1/k!, leading to Definition 2.
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4.2.2 Closed-form multi-product formula

The closed-form version of the presented multi-product formula sums products of building blocks L. To
motivate the specific construction, it is useful to take a look at the specific case of 2χ = 4 and R = 3 for
some choice of b and t using the shorthand

L
( ν0

:
ν2χR

)
:= L(ν, b, t), (69)

to get

M̃
(cf)
4,3 = L



1
1
1
1
1
0
0
...


+ 4!L



0
0
0
0
1
0
0
...


L



0
1!/5!
2!/6!
3!/7!
4!/8!

0
0
...


+ (4!)2L



0
0
0
0
1
0
0
...


L



0
0
0
0
1
0
0
...


L



0
1!/9!

2!/10!
3!/11!
4!/12!

0
0
...


, (70)

where the orders 1, . . . , 2χ have been visually highlighted for clarity. In this example, the eleventh order
in t is revealed by multiplying the corresponding terms from the Taylor expansion of L in Eq. (62), with
the corresponding coefficients in (70)

(4!)2 × (−iHt)4

4! × (−iHt)4

4! × 3!/11!× (−iHt)3

3! = (−iHt)11

11! . (71)

The first term of Eq. (70) takes care of the zeroth and the first 2χ order of U . The second term multiplies
all terms of orders t1 . . . t2χ with t2χ and so takes care of the next 2χ terms of the expansion. The third
term multiplies with a O(t2χ) term twice, taking care of the subsequent 2χ terms – a pattern emerges.
In a general setting (with arbitrary 2χ and R) we can write this sum as

M̃
(cf)
2χ,R(t) :=

R∑
r=1

(
L2χ,R

(
ν(0), b(0), t

))r−1
L2χ,R

(
ν(r), b(r), t

)

=
R∑
r=1

2χR∑
j=0

ν
(0)
j

(−iHt)j

j! +O
(
t2χR+1)r−1(2χR∑

k=0
ν

(r)
k

(−iHt)k

k! +O
(
t2χR+1)) (72)

=
R∑
r=1

(
(−iHt)2χ

(2χ)!

)r−1 2χR∑
k=0

ν
(r)
k

(−iHt)k

k! + O
(
t2χR+1) (73)

where we have used Eq. (64) in Eq. (72) and ν(0)
j = δ2χ,j from Definition 3 to collapse the first factor

into (−iHt)2χ(r−1)/(2χ)! in Eq. (73). Considering also that ν(0)
j = 1 for 0 ≤ j ≤ 2χ, the r = 1 term (that

we recognize are the first 2χ orders of the time evolution) can be separated from the sum. Discarding
all terms that vanish due to ν(r)

k = 0 we rewrite Eq. (73) to

M̃
(cf)
2χ,R(t) =

2χ∑
j=0

(−iHt)j

j! +
R∑
r=2

2χ∑
k=1

ν
(r)
k

(−iHt)2χ(r−1)+k

((2χ)!)r−1
k!

+ O
(
t2χR+1) , (74)

for which we consult Definition 3, a last time resolving the remaining ν(r)
k . This leaves us with the correct

time evolution up to order 2χR+ 1, thus proving the definition.

4.3 Error of the averaged operators
Following upon the insights from Section 4.2 we find Corollary 2 already proven by Eq. (66) and Eq. (74)
as long as M̃2χ,R is constructed according to Definition 2 or 3. The proof of Theorem 3 requires a more
involved error analysis.
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Proof of Theorem 3. We first need to bound the remainder terms of the Taylor series expansions of U(t)
and M̃ (m). In the following, R`(f) denotes the remainder term of the Taylor series of an operator-valued
function f truncated at `-th order in t. We thus find that∥∥∥∥∥U(t)− M̃ (m)

2χ,R

∥∥∥∥∥ =

∥∥∥∥∥e−itH −
R∏
r=1

[2χR∑
q=0

Cq

(
ν(r), b(r)

)
S2χ

(
b(r)q t

)]∥∥∥∥∥
≤

∥∥∥∥∥R2χR
(
e−itH)∥∥∥∥∥+

∥∥∥∥∥R2χR

(
R∏
r=1

[2χR∑
q=0

Cq

(
ν(r), b(r)

)
S2χ

(
b(r)q t

)])∥∥∥∥∥ . (75)

Moving forward, we employ some recently established results on the theory of Trotter errors. Specifically,
we make use of the ‘Trotter error with 1-norm scaling’ lemma of Ref. [11]. Building upon these insights
in this fresh context, we find that the exponential remainder of a product formula such as in Eq. (6) can
be bounded by∥∥∥∥∥∥R`

 N∏
j=1

e−iαjhkj t

∥∥∥∥∥∥ = t`+1

(`+ 1)!

∥∥∥∥∥∥
(
∂

∂t

)`+1 N∏
j=1

e−iαjhkj t

∥∥∥∥∥∥ (76)

= t`+1

(`+ 1)!

∥∥∥∥∥∥
∑

x1+···+xN=`+1

(`+ 1)!
x1! · · ·xN !

N∏
j=1

(
∂

∂t

)xj
e−iαjhkj t

∥∥∥∥∥∥
= t`+1

(`+ 1)!

∥∥∥∥∥∥
∑

x1+···+xN=`+1

(`+ 1)!
x1! · · ·xN !

N∏
j=1

(
−iαj hkj

)xj e−iαjhkj t

∥∥∥∥∥∥
≤ t`+1

(`+ 1)!
∑

x1+···+xN=`+1

(`+ 1)!
x1! · · ·xN !

N∏
j=1

∥∥αj hkj∥∥xj · ∥∥∥e−iαjhkj t
∥∥∥︸ ︷︷ ︸

=1

=

(∑N
j=1

∥∥αj hkj∥∥ t)`+1

(`+ 1)! .

This bound can now be applied to (75). For the first term, we obtain

∥∥R2χR
(
e−itH)∥∥ ≤ (Λt)2χR+1

(2χR+ 1)! , (77)

while the second term can be bounded by

∥∥∥∥∥R2χR

(
R∏
r=1

[2χR∑
q=0

C(r)
q S2χ

(
b(r)q t

)])∥∥∥∥∥ ≤
2χR∑

q1,...,qR=0

∣∣∣C(1)
q1
· · ·C(R)

qR

∣∣∣ ∥∥∥R2χR

(
S2χ

(
b(1)
q1
t
)
· · ·S2χ

(
b(R)
qR t

))∥∥∥
≤ (gχΛt)2χR+1

(2χR+ 1)!

2χR∑
q1,...,qR=0

∣∣∣C(1)
q1
· · ·C(R)

qR

∣∣∣( R∑
i=1
|b(i)qi |

)2χR+1

(78)

where we have introduced the factor

gχ := 4χ
3

(
5
3

)χ−1
(79)

to group all terms relating to χ from the Trotter-Suzuki decomposition appearing in Eq. (53) of Ref. [13].
At the same time, we have defined Λ :=

∑
k‖hk‖. Consequently, we can bound the error of the

matching multi-product formula via∥∥∥U(t)− M̃ (m)
2χ,R(t)

∥∥∥ ≤ (1 + ζ
(m)
χ,Rg

2χR+1
χ

) (Λt)2χR+1

(2χR+ 1)! , (80)
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with

ζ
(m)
χ,R :=

2χR∑
q1=0

2χR∑
q2=0
· · ·

2χR∑
qR=0

∣∣∣C(1)
q1
C(2)
q2
· · ·C(R)

qR

∣∣∣ (|b(1)
q1
|+ . . .+ |b(R)

qR |
)2χR+1

(81)

The error analysis of the closed-form multi-product formula follows along similar lines: Again, we bound
the remainder terms of the Taylor series expansions of U(t) and M̃ (cf), finding

∥∥∥U(t)− M̃ (cf)
2χ,R

∥∥∥ =

∥∥∥∥∥e−itH −
R∑
r=1

(
L2χ,R

(
ν(0), b(0), t

))r−1
L2χ,R

(
ν(r), b(r), t

)∥∥∥∥∥
≤

∥∥∥∥∥∥R2χR
(
e−itH)∥∥∥∥∥∥

+

∥∥∥∥∥∥R2χR

 R∑
r=1

[2χR∑
q=0

Cq

(
ν(0), b(0)

)
S2χ

(
b(0)
q t
)]r−1 [2χR∑

q=0
Cq

(
ν(r), b(r)

)
S2χ

(
b(r)q t

)]∥∥∥∥∥∥ , (82)

where the second term can be bounded by∥∥∥∥∥∥R2χR

 R∑
r=1

[2χR∑
q=0

Cq

(
ν(0), b(0)

)
S2χ

(
b(0)
q t
)]r−1 [2χR∑

q=0
Cq

(
ν(r), b(r)

)
S2χ

(
b(r)q t

)]∥∥∥∥∥∥
≤

R∑
r=1

2χR∑
q1=0
· · ·

2χR∑
qr=0

∣∣∣Cq1(ν(0), b(0)) · · ·Cqr−1(ν(0), b(0))Cqr (ν(r), b(r))
∣∣∣

×
∥∥∥R2χR

(
S2χ

(
b(0)
q1

)
· · ·S2χ

(
b(0)
qr−1

)
S2χ

(
b(r)qr

))∥∥∥ (83)

Defining

ζ
(cf)
χ,R :=

R∑
r=1

2χR∑
q1=0

2χR∑
q2=0
· · ·

2χR∑
qr=0

∣∣∣C(0)
q1
C(0)
q2
· · ·C(0)

qr−1
C(r)
qr

∣∣∣ (|b(0)
q1
|+ . . .+ |b(0)

qr−1
|+ |b(r)qr |

)2χR+1
, (84)

Λ :=
∑
k

‖hk‖ , (85)

we find ∥∥∥U(t)− M̃ (cf)
2χ,R(t)

∥∥∥ ≤ (1 + ζ
(cf)
χ,Rg

2χR+1
χ

) (Λt)2χR+1

(2χR+ 1)! , (86)

concluding the proof.

5 Comparison and numerical validation
We will now compare the Trotter-Suzuki product formula algorithm and multi-product formulas in the
randomized sampling framework. To make comparisons as fair as possible, we will assume that each
algorithm uses at most R-fold sequences of S2χ(·) blocks. Product formulas may use repetitions as in
Eq. (7) achieving an error of O((t/R)2χ+1), which is a reliable way to approximate time evolutions for
longer times R � τ > 1. However, repetitions improve the accuracy of shorter time evolutions only
minimally. The situation is different if R is an integer power of five, which allows us to build the next
higher Trotter-Suzuki order and approximate the time evolution up to a leading order of 2(χ+log5R)+1
in t. This means improving the leading power of t comes at an exponential cost for the circuit depth.
The situation can be remedied by sampling from a multi-product formula. Remarkably, the statement
for sampling observable eigenvalues with product formulas is very similar to Theorem 2.

Since the sampling errors of all of these methods are comparable, we disregard them in this comparison
and instead only think about asymptotic limits. The number of required circuit evaluations for the
same accuracy then follows directly from the corresponding resolution factors. The main difference
between product and multi-product formulas is that Trotter-Suzuki algorithms do not have a resolution
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Figure 5: Comparing error bounds for Trotter-Suzuki product formulas as well as several multi-product formulas for
different τ = Λt. The exact formulas for these bounds are provided in Equations (11) and (15) and Theorem 3. We
have chosen 2χ = 4 and r = R = K + 1 = 3 to fix the depth of all methods to be 30 oracle calls. The parameters
{b(r)} have been numerically optimized for the matching and closed-form multi-product formulas with an initial guess
of b = { 1,−1, 2,−2, . . . , 7 }, while we employ `q = q for Childs and Wiebe’s formula as the choice with the lowest
resolution factor. We find the resolution factors for the multi-product formulas to be Ξ(CW) ≈ 3.13, Ξ(m) ≈ 1.22
and Ξ(cf) ≈ 1.36. Consequently, the matching and closed-form multi-product formulas would allow for four to five
repetitions before they require the same amount of circuit evaluations as Childs and Wiebe’s formula. In the black
box optimization, we have used the error bound as the objective function with the modification of using (Ξ(m))20 and
(Ξ(cf))10, instead of ζχ,R respectively, to ensure reasonable resolution factors.

factor. This is equivalent to Ξ = 1 with consequences for sampling complexity and error bounds. This
advantage is, however, quickly outweighed as Childs and Wiebe’s multi-product formula delivers an
improved approximation that is exact up to a leading order of 2(χ+R)− 1 in t. Modifying the leading
power of t is now possible by adding exponentially fewer terms. Here, we consider only the simplest form
of Childs and Wiebe’s multi-product formula with `q = q since their improvements, e.g. those proposed
in Ref. [14], focus on increasing the success probability of their deterministic implementation without
improving their error scaling and lead to significantly worse resolution factors. Furthermore, note that
they require the same circuit depth for R = K + 1 in the randomized sampling framework due to the
final term in Eq. (13). With matching and closed-form multi-product formulas, the approximation can
be further improved to leading order 2χR + 1 in t. This means that only one additional S2χ(·) block
improves the order by 2χ rather than 2 as for multi-product formulas of the prior art. While the scaling
in t of the novel multi-product formulas is superior to those of Childs and Wiebe, their theoretical error
bound is not as tight, leading to a crossover of error bounds at

∑
|hk|t < 1. While it is true that the

error bounds cross over at comparably small errors, it is important to note that the significantly reduced
resolution factors allow for multiple repetitions, i.e., r evolutions of shorter times t/r, until the same
number of circuit evaluations is required as for Childs and Wiebe’s formulas.

We have plotted the error bounds of all formulas for fixed circuit depth between all methods for
one particular optimization of the multi-product formula parameters in Fig. 5. Optimizing the set of
parameters {b(r)}, we tend to achieve noticeably lower resolution factors than obtained using Childs
and Wiebe’s multi-product formula. We generally find the matching multi-product formula to have a
smaller resolution factor than the closed-form multi-product formula. While the matching multi-product
formula has a better resolution, it requires an additional layer of classical optimization.

It is important to note that since we did not find useful bounds relating b to any of the resolution
factors, further improvements of the bounds in Fig. 5 seem possible. In the absence of relations Ξ(b),
it is necessary to numerically optimize all b(r) for a chosen loss function, which is not the case for
Childs and Wiebe’s multi-product formula due to existing, analytical relations. We found that global
optimization using basin hopping combined with Nelder-Mead optimization yields the best results since
the optimization landscape exhibits a large number of local minima. The optimization is also sensitive
to the initial guess for those parameters, with an equal spread of positive and negative integers, i.e.,
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binit = (1,−1, 2,−2, 3,−3, . . . , χR + 1), leading to better results. It is also fruitful to vary the loss
function used for optimization. On the one hand, using the error bound for a fixed τ yields the lowest
error, with the downside that the corresponding resolution factors are too large to be practical. On the
other hand, solely optimizing for the resolution factor might result in resolution factors arbitrarily close
to one with the downside of significantly worse error bounds. We, therefore, found the most fruitful loss
function to be the error bound with the modification of using the resolution factor Ξ directly instead
of γ and amplifying its impact on the loss function by using Ξp for some power p, which allows us to
balance both quantities. Nevertheless, the use of different loss functions could be explored further. We
have also found that bounding each parameter b by the total maximum leads to more robust results.

To corroborate the functioning of the newly proposed multi-product formulas beyond theoretical
bounds, we also compare the actual performance with that of the conventional multi-product formula
and Trotter-Suzuki. Here, we compare the actual operator distance to the ideal time evolution for the
following five physically plausible and meaningful Hamiltonians, with the results shown in Fig. 6: First,
we consider a standard Heisenberg Hamiltonian with periodic boundary conditions, described by

HHeisenberg = −
∑
〈i,j〉

(XiXj + YiYj + ZiZj) + 2
∑
i

Xi. (87)

This is a Hamiltonian that plays an important role in condensed matter physics, as a prototypical
model capturing ferromagnetism. Trotter-Suzuki and Childs-Wiebe formulas perform extremely well, as
the Hamiltonian comprises many commuting terms. Since their performance guarantees rely on nested
commutators [11], this behavior is to be expected and demonstrates the superior performance of these
well studied formulas for lattice Hamiltonians, which is not reached by the newly proposed multi-product
formulas. However, they are less optimal for Hamiltonians with fewer commuting terms. Motivated by
these findings, we now turn to investigate a Hamiltonian comprising mutually anti-commuting terms,
defined as

Hanti =
7∑
i=0

Z⊗i ⊗ (X + Y ) + Z⊗8. (88)

Anti-commuting terms play an important role when using quantum simulation algorithms to investigate
fermionic quantum models. Here, we find a notable and significant advantage of the newly proposed multi-
product formulas over Trotter-Suzuki and Childs-Wiebe already for quite large parameters of τ =

∑
|hk|t.

Consequently, we expect our formulas to work well and exceed previous methods for fermionic systems,
which, once transformed into qubit Hamiltonians using the Jordan-Wigner transformation, will have
fewer commuting terms than standard lattice spin Hamiltonians.

This behavior is confirmed and further corroborated by our results of the Sachdev–Ye–Kitaev (SYK)
model as defined in Ref. [38], whose Hamiltonian is given by

HSYK = 1
4 · 4!

N−1∑
p,q,r,s=0

Jp,q,r,sγpγqγrγs, (89)

where N is the number of Majorana fermion mode operators γp and the Jp,q,r,s are real-valued scalars
drawn randomly from a normal distribution with variance σ2 = 3!/N3. This is an intricate local, but
not geometrically local, model that is believed to provide insights into instances of strongly correlated
quantum materials. It is used in the study of scrambling dynamics and has a close relation with discrete
models that capture aspects of holography in the black hole context.

Again invoking the Jordan-Wigner transformation, N Majorana fermion mode operators can be
mapped onto N/2 qubits. For our simulations, we thus chose N = 10 and N = 14, leading to a five and
seven-qubit model, respectively. Here, we again find a notable and in instances substantial advantage for
large τ and even for large times t. This is a physically highly plausible and interesting model for which
our new simulation methods fare well.

As a further fermionic system, we look at the spinful Hubbard model on two by two sites, defined in
Ref. [39] as

HHub = −t
∑
〈i,j〉,σ

(a†i,σaj,σ + a†j,σai,σ) +U
∑
i

a†i,↑ai,↑a
†
i,↓ai,↓ − µ

∑
i

∑
σ

a†i,σai,σ − h
∑
i

(a†i,↑ai,↑ − a
†
i,↓ai,↓),

(90)
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Figure 6: Numerical comparison of Trotter-Suzuki product formulas, Childs and Wiebe’s multi-product formula, and
the multi-product formulas proposed in this work for different τ =

∑
k
||hk||t. Here, we approximate the time evolution

operator and plot the operator distance between the approximation and the ideal evolution operator for several physically
plausible and interesting local, but not necessarily geometrically local, Hamiltonians, defined in equations (87), (88)m
(89), (90) and (91). The simulated distances (thick, dashed lines) are much smaller than the theoretical bounds (thin,
solid lines), but do have remarkably similar features overall.

with spin σ, tunneling amplitude t = 2, Coulomb potential U = 2, magnetic field h = 0.5 and chemical
potential µ = 0.25. Also, a and a† represent fermionic annihilation and creation operators. These are
comparably small system sizes, but already show the substantial potential of the proposed simulation
method.

Finally, as a last family of examples, in order to gauge the performance of our methods for larger
system sizes, we investigate a system of 200 non-interacting (“free”) fermions with nearest neighbor
interactions and periodic boundary conditions

Hff(h) =
∑
i,j

hi,ja
†
ia
†
j , (91)

with hi,j = 1 if the respective fermions are nearest neighbors and hi,j = 0 otherwise. Note that for
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gauging the performance for free fermions, we do not compare the time evolution operator U(t) = e−iHt

to its approximation, but the Greens function propagator G(t) = e−iht to its approximation.
All comparisons are done in the randomized sampling framework for a Trotter-Suzuki order of 2χ = 4,

the number of repetitions R = 3 and corresponding parameters for all other algorithms, ensuring an equal
depth measured in the number of the required oracle calls. Although the straightforward comparison of
their bounds in Fig. 5 suggests an advantage of our multi-product formulas at about τ = 0.1, we find
that this is the case for much larger τ already on actual systems as shown in Fig. 6. Note also that
since the Hamiltonians we consider are not necessarily geometrically local, known classical simulation
techniques will be heavily challenged even for comparably short simulation times

While the performance of the simple multi-product formula and Trotter-Suzuki is also much better
than their bounds indicate, we find that the presented bounds for our proposed multi-product formulas
are comparably looser. It is also worth noting that the performance of the matching version is slightly
better than that of the closed-form version, although it comes with the penalty of an additional, classical
optimization loop. We also find that the advantages of our multi-product formulas are visible even for
τ > 1; in the case of the SYK model, this holds even for actual simulation times t > 1. Additionally, we
find that this advantage can also be maintained for larger system sizes, as indicated by their performance
on the model of free fermions. The presented numerical studies, therefore, provide strong arguments for
the functioning of our proposed multi-product formulas and their advantage in the presented regimes. It
is also important to note that the corresponding resolution factors required for the randomized sampling
scheme of Ξ(cf) ≈ 1.36 and Ξ(m) ≈ 1.22 are significantly better than the Ξ(CW) ≈ 3.13 of the multi-
product formula proposed by Childs and Wiebe in Ref. [13] and would thus allow for at least four
repetitions before they require the same overhead in circuit evaluations.

6 Discussion and conclusion
In this work, we have brought together two main ingredients of methods of quantum simulation. The
results are notably more resource-efficient ways of performing short-time Hamiltonian simulation. These
are on the one hand higher-order multi-product formulas [13, 14], on the other an element which has
long been underappreciated but recently been of high interest: the element of randomness [20–24, 24].
Overcoming the prejudice that the time evolution has to be completed in each run of a compilation, we
have introduced a novel framework for implementing multi-product formulas, to estimate expectation
values of time-evolved observables.

Concretely, we have proposed a randomized sampling approach that focuses on the time evolution of
the observable, not the state. When implementing multi-product formulas in a randomized fashion rather
than via block encodings in the LCU framework, we can circumvent the need for additional amplitude
amplification or post-selection. The results presented here have been obtained by only requiring access to
a quantum-oracle machine that implements single-qubit state preparation, controlled time evolution, and
quantum measurements. They are thus especially relevant in the regime of early quantum computers in
which NISQ algorithms reach their limits but where full-fledged, digital, long-time evolution algorithms
on fault-tolerant quantum computers are not yet available. Consequently, this work may be seen as
targeting a regime in between the digital and analog setting, where we have some form of parametric
control over a simulator system allowing us to compile the target time evolution with sequences of the
simulator’s time evolutions [40, 41]. This programmable regime then constitutes a departure from the
analog setting with relatively little control over the simulator and is not as strict as digital simulation,
where the control over the quantum system is strong enough to fashion its interactions into quantum
gates.

Within this randomized sampling framework, we have proposed two new multi-product formulas.
These schemes have been equipped with full rigorous performance guarantees. Furthermore, we have
included a detailed estimation of the number of circuit evaluations that are required, a vital metric for
randomized approaches. Comparing the error bounds of these newly introduced algorithms with Trotter-
Suzuki product formulas and Childs and Wiebe’s multi-product formula, we find that they outperform
the latter for a fixed circuit depth in a practically relevant regime.

The use of multiple repetitions of short time evolutions by t/r instead of a single, long time evolution
by t, elementary to achieving long simulation times, comes with a penalty in the number of circuit
evaluations which scales exponentially in r. However, the base of this exponential, the resolution factor
in our case, is only slightly larger than one and could be optimized even further. Even for our toy
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examples, it was in the range of 1.2− 1.4 for the newly proposed multi-product formulas as compared to
3.13 for Childs and Wiebe type multi-product formulas. Thus, at least a few repetitions are still in reach,
rendering these results especially relevant for early quantum computers since we do not solely consider
geometrically local Hamiltonians, for which even comparably short simulation times are a highly difficult
task for known classical simulation techniques.

Benchmarking them on five different Hamiltonians, all of which are physically well motivated and each
interesting in its own right, we have found that this advantage can be expected already at comparably
large simulation times. While lattice Hamiltonians with many commuting terms are most likely best ap-
proximated using Trotter-Suzuki or Childs-Wiebe formulas, the newly proposed multi-product formulas
show a clear advantage for fermionic Hamiltonians and those with a small number of commuting terms.
This insight points to the direction that there might not be a universally optimal quantum simulation
algorithm for digital quantum simulation. Instead, some algorithms could be better suited to capture
the specifics of a given local Hamiltonian model. The downside of the proposed methods is that more
measurements are required to reach the desired precision through the resolution factor. This resolution
factor can be optimized using a classical black-box optimization, which is de facto a requirement for the
functioning of the proposed multi-product formulas.

The present work is essentially bridging the gap between analog and (perhaps error-corrected), fully
digital quantum technology: Not only do we expect there to be other randomized sampling schemes in
digital quantum simulation, but once one can replace the element of randomness with block encodings,
one can switch from these expectation value based algorithm to algorithms based on quantum phase
estimation. Overall, the method introduced gives rise to a less resource-demanding way of performing
Hamiltonian simulation, while also remaining conceptually and technologically simpler than for instance
qubitization [18], bringing such ideas to an extent closer to the resources available in early quantum
computers.

Looking ahead, it remains an open problem to relate the parameters b in Definition 1 to the resolution
factor in a way that would eliminate the need for black-box optimization. So far, we can only connect the
two quantities analytically, and that involves the complicated product with the Vandermonde matrix (27).
Alternatively, one could improve the optimization rather than replace it. We have used only simple
optimizers and loss functions, and expect possible improvements for more involved loss functions and
optimization algorithms. Furthermore, the presented constructions are just two of the plethora of new
multi-product formulas that could be constructed with Definition 1 and might exhibit better error bounds
and resolution.

7 Acknowledgments
This work has been supported by the DFG (CRC 183 project B01 and A03, EI 519/21-1). This work
has also received funding from the European Unions Horizon 2020 research and innovation program
under grant agreement No. 817482 (PASQuanS), specifically dedicated to programmable quantum sim-
ulators. It has also been supported by the BMWK (PlanQK and EniQmA), the BMBF (DAQC on
notions of digital-analog quantum simulation and FermiQP on fermionic quantum processors), the Mu-
nich Quantum Valley (K8), and the Einstein Foundation (Einstein Research Unit on Quantum Devices) .
M. K. acknowledges funding from ARC Centre of Excellence for Quantum Computation and Communica-
tion Technology (CQC2T), project number CE170100012. The authors endorse Scientific CO2nduct [42]
and provide a CO2 emission table in the appendix.

References
[1] A. Acín, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, J. Eisert, D. Esteve, N. Gisin, S. J. Glaser,

F. Jelezko, S. Kuhr, M. Lewenstein, M. F. Riedel, P. O. Schmidt, R. Thew, A. Wallraff, I. Walmsley,
and F. K. Wilhelm. “The quantum technologies roadmap: A European community view”. New J.
Phys. 20, 080201 (2018).

[2] S. Lloyd. “Universal quantum simulators”. Science 273, 1073–1078 (1996).

[3] D. Aharonov and A. Ta-Shma. “Adiabatic Quantum State Generation and Statistical Zero Knowl-
edge”. arXiv:quant-ph/0301023. (2003).

Accepted in Quantum 2022-09-05, click title to verify. Published under CC-BY 4.0. 22

https://doi.org/10.1088/1367-2630/aad1ea
https://doi.org/10.1088/1367-2630/aad1ea
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.48550/arXiv.quant-ph/0301023


[4] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders. “Efficient Quantum algorithms for simulating
sparse Hamiltonians”. Commun. Math. Phys. 270, 359–371 (2007).

[5] N. Wiebe, D. Berry, P. Høyer, and B. C. Sanders. “Higher order decompositions of ordered operator
exponentials”. J. Phys. A 43, 065203 (2010).

[6] N. Wiebe, D. W. Berry, P. Høyer, and B. C. Sanders. “Simulating quantum dynamics on a quantum
computer”. J. Phys. A 44, 445308 (2011).

[7] D. Poulin, A. Qarry, R. Somma, and F. Verstraete. “Quantum simulation of time-dependent Hamil-
tonians and the convenient illusion of Hilbert space”. Phys. Rev. Lett. 106, 170501 (2011).

[8] M. Kliesch, T. Barthel, C. Gogolin, M. Kastoryano, and J. Eisert. “Dissipative quantum Church-
Turing theorem”. Phys. Rev. Lett. 107, 120501 (2011).

[9] R. Sweke, M. Sanz, I. Sinayskiy, F. Petruccione, and E. Solano. “Digital quantum simulation of
many-body non-Markovian dynamics”. Phys. Rev. A 94, 022317 (2016).

[10] A. M. Childs, D. Maslov, Y. Nam, N. J. Ross, and Y. Su. “Toward the first quantum simulation
with quantum speedup”. PNAS 115, 9456–9461 (2018).

[11] A. M. Childs, Y. Su, M. C. Tran, N. Wiebe, and S. Zhu. “Theory of Trotter error with commutator
scaling”. Phys. Rev. X 11, 011020 (2021).

[12] A. M. Childs and Y. Su. “Nearly optimal lattice simulation by product formulas”. Phys. Rev. Lett.
123, 050503 (2019).

[13] A. M. Childs and N. Wiebe. “Hamiltonian simulation using linear combinations of unitary opera-
tions”. Quant. Inf. Comp. 12, 901–924 (2012).

[14] G. H. Low, V. Kliuchnikov, and N. Wiebe. “Well-conditioned multiproduct Hamiltonian simulation”.
arXiv:1907.11679. (2019).

[15] D. W. Berry, A. M. Childs, and R. Kothari. “Hamiltonian simulation with nearly optimal dependence
on all parameters”. 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (2015).

[16] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma. “Exponential improvement in
precision for simulating sparse hamiltonians”. Proceedings of the forty-sixth annual ACM symposium
on Theory of computing (2014).

[17] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma. “Simulating Hamiltonian
dynamics with a truncated Taylor series”. Phys. Rev. Lett. 114, 090502 (2015).

[18] G. H. Low and I. L. Chuang. “Hamiltonian simulation by qubitization”. Quantum 3, 163 (2019).

[19] S. Endo, Z. Cai, S. C. Benjamin, and X. Yuan. “Hybrid quantum-classical algorithms and quantum
error mitigation”. J. Phys. Soc. Jap. 90, 032001 (2021).

[20] E. T. Campbell. “Shorter gate sequences for quantum computing by mixing unitaries”. Phys. Rev.
A 95, 042306 (2017).

[21] E. T. Campbell. “Random compiler for fast Hamiltonian simulation”. Phys. Rev. Lett. 123,
070503 (2019).

[22] A. M. Childs, A. Ostrander, and Y. Su. “Faster quantum simulation by randomization”. Quantum
3, 182 (2019).

[23] Y. Ouyang, D. R. White, and E. T. Campbell. “Compilation by stochastic Hamiltonian sparsifica-
tion”. Quantum 4, 235 (2020).

[24] C.-F. Chen, H.-Y. Huang, R. Kueng, and J. A. Tropp. “Concentration for random product formulas”.
PRX Quantum 2, 040305 (2021).

[25] J. Preskill. “Quantum computing in the NISQ era and beyond”. Quantum 2, 79 (2018).

[26] M. Suzuki. “General theory of fractal path integrals with applications to many-body theories and
statistical physics”. J. Math. Phys. 32, 400–407 (1991).

[27] S. Blanes, F. Casas, and J. Ros. “Extrapolation of symplectic Integrators”. Cel. Mech. Dyn. Astr.
75, 149–161 (1999).

[28] S. A. Chin. “Multi-product splitting and Runge-Kutta-Nyström integrators”. Cel. Mech. Dyn. Astr.
106, 391–406 (2010).

Accepted in Quantum 2022-09-05, click title to verify. Published under CC-BY 4.0. 23

https://doi.org/10.1007/s00220-006-0150-x
https://doi.org/10.1088/1751-8113/43/6/065203
https://doi.org/10.1088/1751-8113/44/44/445308
https://doi.org/10.1103/PhysRevLett.106.170501
https://doi.org/10.1103/PhysRevLett.107.120501
https://doi.org/10.1103/PhysRevA.94.022317
https://doi.org/10.1073/pnas.1801723115
https://doi.org/10.1103/PhysRevX.11.011020
https://doi.org/10.1103/PhysRevLett.123.050503
https://doi.org/10.1103/PhysRevLett.123.050503
https://doi.org/10.26421/QIC12.11-12-1
https://doi.org/10.48550/arXiv.1907.11679
https://doi.org/10.1109/focs.2015.54
https://doi.org/10.1145/2591796.2591854
https://doi.org/10.1145/2591796.2591854
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.7566/JPSJ.90.032001
https://doi.org/10.1103/PhysRevA.95.042306
https://doi.org/10.1103/PhysRevA.95.042306
https://doi.org/10.1103/PhysRevLett.123.070503
https://doi.org/10.1103/PhysRevLett.123.070503
https://doi.org/10.22331/q-2019-09-02-182
https://doi.org/10.22331/q-2019-09-02-182
https://doi.org/10.22331/q-2020-02-27-235
https://doi.org/10.1103/PRXQuantum.2.040305
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1063/1.529425
https://doi.org/10.1023/A:1008364504014
https://doi.org/10.1023/A:1008364504014
https://doi.org/10.1007/s10569-010-9255-9
https://doi.org/10.1007/s10569-010-9255-9


[29] H. Yoshida. “Construction of higher order symplectic integrators”. Physics Letters A 150, 262–
268 (1990).

[30] W. Hoeffding. “Probability inequalities for sums of bounded random variables”. J. Am. Stat. Ass.
58, 13–30 (1963).

[31] Q. Sheng. “Solving linear partial differential equations by exponential splitting”. IMA Journal of
Numerical Analysis 9, 199–212 (1989).

[32] T. A. Bespalova and O. Kyriienko. “Hamiltonian operator approximation for energy measurement
and ground-state preparation”. PRX Quantum 2, 030318 (2021).

[33] H.-Y. Huang, R. Kueng, and J. Preskill. “Predicting many properties of a quantum system from
very few measurements”. Nature Phys. 16, 1050–1057 (2020).

[34] L. Le Cam. “Locally asymptotically normal families of distributions. Certain approximations to
families of distributions and their use in the theory of estimation and testing hypotheses”. Univ.
California Publ. Statist. 3, 37–98 (1960).

[35] F. S. V. Bazán. “Conditioning of rectangular Vandermonde matrices with nodes in the unit disk”.
SIAM J. Mat. An. App. 21, 679–693 (2000).

[36] M. E. A. El-Mikkawy. “Explicit inverse of a generalized Vandermonde matrix”. Appl. Math. Comp.
146, 643–651 (2003).

[37] D.E. Knuth. “The art of computer programming: Fundamental algorithms”. Number v. 1-2 in
Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley. (1973).
subsequent edition.

[38] R. Babbush, D. W. Berry, and H. Neven. “Quantum simulation of the Sachdev-Ye-Kitaev model by
asymmetric qubitization”. Phys. Rev. A 99, 040301 (2019).

[39] J. R. McClean, N. C. Rubin, K. J. Sung, I. D. Kivlichan, X. Bonet-Monroig, Y. Cao, C. Dai, E. S.
Fried, C. Gidney, B. Gimby, P. Gokhale, T. Häner, T. Hardikar, V. Havlíček, O. Higgott, C. Huang,
J. Izaac, Z. Jiang, X. Liu, S. McArdle, M. Neeley, T. O’Brien, B. O’Gorman, I. Ozfidan, M. D.
Radin, J. Romero, N. P. D. Sawaya, B. Senjean, K. Setia, S. Sim, D. S. Steiger, M. Steudtner,
Q. Sun, W. Sun, D. Wang, F. Zhang, and R. Babbush. “OpenFermion: The electronic structure
package for quantum computers”. Quant. Sc. Tech. 5, 034014 (2020).

[40] S. Trotzky, Y.-A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert, and I. Bloch. “Probing
the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas”.
Nature Phys. 8, 325–330 (2012).

[41] A. Parra-Rodriguez, P. Lougovski, L. Lamata, E. Solano, and M. Sanz. “Digital-analog quantum
computation”. Phys. Rev. A 101, 022305 (2020).

[42] R. Sweke, P. Boes, N. Ng, C. Sparaciari, J. Eisert, and M. Goihl. “Transparent reporting of
research-related greenhouse gas emissions through the scientific CO2nduct initiative”. Commu-
nications Physics5 (2022).

A CO2 emission table
Numerical simulations
Total Kernel Hours [h] ≈ 800
Thermal Design Power Per Kernel [W] 5.75
Total Energy Consumption Simulations [kWh] 4.6
Average Emission Of CO2 In Germany [kg/kWh] 0.56
Total CO2-Emission For Numerical Simulations [kg] 2.6
Were The Emissions Offset? Yes

Accepted in Quantum 2022-09-05, click title to verify. Published under CC-BY 4.0. 24

https://doi.org/10.1016/0375-9601(90)90092-3
https://doi.org/10.1016/0375-9601(90)90092-3
https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.1093/imanum/9.2.199
https://doi.org/10.1093/imanum/9.2.199
https://doi.org/10.1103/PRXQuantum.2.030318
https://doi.org/10.1038/s41567-020-0932-7
https://doi.org/10.1137/S0895479898336021
https://doi.org/10.1016/S0096-3003(02)00609-4
https://doi.org/10.1016/S0096-3003(02)00609-4
https://doi.org/10.1103/PhysRevA.99.040301
https://doi.org/10.1088/2058-9565/ab8ebc
https://doi.org/10.1038/nphys2232
https://doi.org/10.1103/PhysRevA.101.022305
https://doi.org/10.1038/s42005-022-00930-2
https://doi.org/10.1038/s42005-022-00930-2

	1 Introduction
	2 Multi-product formulas
	3 Randomized sampling using multi-product formulas
	3.1 The randomized sampling framework
	3.2 Custom multi-product formulas

	4 Proofs
	4.1 Randomized sampling
	4.2 Construction of the new multi-product formulas
	4.2.1 Matching multi-product formula
	4.2.2 Closed-form multi-product formula

	4.3 Error of the averaged operators

	5 Comparison and numerical validation
	6 Discussion and conclusion
	7 Acknowledgments
	A CO2 emission table

