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Abstract
For modeling extreme rainfall, the widely used Brown–Resnick max-stable model extends the concept of the variogram to

suit block maxima, allowing the explicit modeling of the extremal dependence shown by the spatial data. This extremal

dependence stems from the geometrical characteristics of the observed rainfall, which is associated with different mete-

orological processes and is usually considered to be constant when designing the model for a study. However, depending

on the region, this dependence can change throughout the year, as the prevailing meteorological conditions that drive the

rainfall generation process change with the season. Therefore, this study analyzes the impact of the seasonal change in

extremal dependence for the modeling of annual block maxima in the Berlin-Brandenburg region. For this study, two

seasons were considered as proxies for different dominant meteorological conditions: summer for convective rainfall and

winter for frontal/stratiform rainfall. Using maxima from both seasons, we compared the skill of a linear model with spatial

covariates (that assumed spatial independence) with the skill of a Brown–Resnick max-stable model. This comparison

showed a considerable difference between seasons, with the isotropic Brown–Resnick model showing considerable loss of

skill for the winter maxima. We conclude that the assumptions commonly made when using the Brown–Resnick model are

appropriate for modeling summer (i.e., convective) events, but further work should be done for modeling other types of

precipitation regimes.
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1 Introduction

The statistical modeling of extreme precipitation is essen-

tial for designing public hydrological infrastructure and

urban planning worldwide (Durrans 2010). This approach

typically combines observed information from past events

with models from extreme value theory (EVT) to give a

probabilistic estimate of the magnitude and frequency of

future extreme precipitation events (Coles 2001). Infor-

mation about past events usually comes from ground

observations (e.g., rain gauges), operated mainly by local

weather services. For a typical EVT application, informa-

tion from rain gauges is used to fit the parameters of a max-

stable distribution [such as the generalized extreme value

(GEV) distribution], from which information on the mag-

nitude and frequency of events in the far-right tail of the

distribution can be elicited. The ultimate goal of EVT

analyses is then to provide adequate estimates of these

values along with their uncertainties. These estimates are

commonly communicated to decision-makers either in the

form of return periods for certain return levels (i.e., ‘‘1-in-n

years event’’) or as a more general quantity like the prob-

ability of exceedance and risk of failure over a given design

life period (Serinaldi 2015; Rootzén and Katz 2013).

A common problem when modeling extreme rainfall is

that no observations exist in many locations where
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information from statistical modelling of extreme events

would be useful. However, on many occasions, observa-

tions exist near unobserved locations. This setting is the

same as in Geostatistics, except that the focus is on

extremes and max-stable distributions in this case. This

problem has given way to different EVT models that allow

interpolation of estimates to unobserved locations, usually

englobed within the term ‘‘Spatial Extremes’’. Spatial

Extremes models follow a very similar theoretical back-

ground to the methods of Geostatistics and can be thought

of as extensions of Geostatistics, but for extremes (Davison

and Gholamrezaee 2012).

Most Spatial Extremes and Geostatistical models use the

so-called first law of Geography: ‘‘everything is related to

everything else, but near things are more related than dis-

tant things.’’ (Tobler 1970). In other words, there exists a

particular covariance function that depends on the distance

between points with observations. Spatial models use the

observations from the different locations to fit a covariance

function that describes how much two or more variables

change as a function of some distance metric. Thus,

covariance functions describe the spatial dependence

between the observed locations. In the case of Spatial

Extremes, the corresponding analog to the covariance

function (e.g., the tail-dependence function) is combined

with an appropriate model for extremes to fit a joint dis-

tribution for the different locations and, in some cases, to

also obtain the estimates of the marginal parameters in

each location. Interpolation to unobserved locations is then

achieved by combining the fitted tail-dependence function

with the fitted model.

When dealing with block maxima stemming from

observations fixed in space (e.g., rain gauges), a commonly

used spatial extremes model is a max-stable process

(Davison and Huser 2015). Max-stable processes are an

extension to infinite dimensions of univariate EVT models

for block maxima (Padoan et al. 2010). Unlike univariate

EVT models, there does not exist a single parametric

family of max-stable processes to which block maxima

always converge. Nevertheless, diverse parametric families

with different tail-dependence functions have been pro-

posed. For the spatial modeling of extreme precipitation, a

commonly used family of max-stable processes is the

Brown–Resnick family (Le et al. 2018; Davison et al.

2012; Buhl and Klüppelberg 2016). Brown–Resnick mod-

els are based on Gaussian processes with a tail dependence

function that includes the geostatistical concept of the

(semi-)variogram. Assuming that the underlying Gaussian

process possesses stationary increments (i.e., it is only a

function of the distance between different stations), the

spatial dependence structure can be modeled exclusively

with the variogram.

In previous studies using Brown–Resnick models for

extreme rainfall, the focus has been mostly on annual

maxima, which virtually always stem from summer events

(see, for example, Tyralis and Langousis, 2019; Jurado

et al. 2020). This choice is typically justified as rainfall

events in summer are usually the events with the largest

magnitude and, thus, the ones with the most significant

impact. Extreme rainfall events in summer are usually

associated with convective activity, which for many mid-

latitude regions is the predominant rainfall-generating

mechanism in summer (Berg and Haerter 2013). Never-

theless, little work has been done to model extreme rainfall

resulting from other types of events, in particular slow-

moving cyclonic events, which lead to stratiform rainfall.

These events are relevant, as they could be the dominant

types in other regions of the planet or of interest to different

stakeholders. An essential aspect of our study is that these

events differ significantly in terms of spatial and temporal

extent, which likely leads to different spatial dependence

structures, creating a need to research and improve our

understanding of modeling extreme rainfall for maxima

that originates from different types of events.

The present study aims to investigate how the extremal

dependence changes for different rainfall-generating

mechanisms and how this change influences the estimation

of return levels. The modeling of the extremal dependence

is done via a Brown–Resnick max-stable process that

accounts for the spatial variability of precipitation maxima

in the Berlin-Brandenburg region. Instead of taking annual

block maxima, we obtain semmi-annual block maxima

from two seasons: winter and summer. Winter is defined in

this study as the NDJF months; summer is defined as the

MJJA months. We hypothesize that summer block maxima

come mainly from convective events, while winter block

maxima come from slow-moving storms that lead to

stratiform and frontal events. This choice is justified based

on the results of Ulrich et al. (2021) who for the Wuppertal

region in Germany found that convective events dominated

in the summer months, while stratiform/frontal events

dominated in the winter months. By using the semi-annual

from the two seasons to fit the Brown–Resnick model, we

estimate how the dependence changes with different rain-

fall-generating mechanisms. Moreover, we selected two

temporal scales for each season to investigate the impact of

processes with different time scales. We fit a Bayesian

distributional linear model that assumes independence in

space as a reference to our spatial model to discern the

effects of the change in dependence on the estimated return

levels. This reference model is compared with the spatial

model within a verification framework.

This study is organized as follows: first, we present a

review of the different types of rainfall-generating mech-

anisms that dominate in our study region. Then, we present
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the EVT methods we used to model extreme rainfall.

Afterward, we introduce a verification framework to

compare the different models, from which we present the

results to determine whether a considerable change in the

extremal dependence was observed and their consequences

on the reported return levels.

1.1 Extremal dependence in rainfall data

Rainfall is the result of complex processes and interactions

in the hydro- and atmosphere, involving processes from a

wide range of temporal and spatial scales. In particular, for

the midlatitude region, rainfall characteristics are heavily

associated with the synoptic weather situation present

when the event happened. Walther and Bennartz (2006)

classifies rainfall events as either frontal or convective

based on synoptic-scale considerations. The synoptic-scale

is usually defined as a length scale of around 2000–

20,000 km, involving events that last from days to weeks.

The distinction between synoptic or convective rainfall is

relevant for the statistical modeling efforts, as rainfall

events associated with fronts (i.e., synoptic-scale) have

very different temporal and spatial characteristics than

those associated with isolated convective (typically

mesoscale) events. By way of illustration, Orlanski (1975)

characterizes thunderstorms as events lasting from half an

hour up to a few hours covering areas of several km2, and

frontal events as having a lifetime of more than a day with

a spatial spread of hundreds of km. These spatiotemporal

characteristics can also influence the magnitude and the

timing of extreme rainfall events; for example, Bohnen-

stengel et al. (2011) found that for a 25 km � 25 km region

to the southeast of Berlin, extreme precipitation events

occur more often in times of convective events than during

times with frontal precipitation.

In the midlatitudes region, the type of dominant rainfall-

generating mechanism changes during the year. For

example, Berg and Haerter (2013) found that synoptic

observations of convective events dominated during the

summer seasons in four stations across Germany. In con-

trast, they found that most rainfall in the winter months

resulted from stratiform clouds (commonly associated with

frontal events). Thus, we predict that when looking at

seasonal block maxima for a study region in Germany,

summer maxima will originate mainly from convective

events, while winter maxima will primarily originate from

frontal ones. An example of this can be seen in Fig. 1,

which shows the daily precipitation height in the Berlin-

Brandenburg region for a convective event in summer (left)

against that of a frontal/stratiform event in winter (right).

For most stations in the domain, the semi-annual block

maxima in the two corresponding seasons were attained for

these two particular events, meaning they can be seen as

extreme events. Extremal dependence in space arises when

an extreme event is large enough to impact several rain

gauges simultaneously. Therefore, the extremal depen-

dence heavily depends on the spatial characteristics pre-

sented by the rainfall generating mechanisms. Thus, if

these mechanisms change seasonally during the year, we

expect the dependence structure to also change throughout

the year.

2 Methods and data

In this study, we perform the statistical modeling of

extreme rainfall using the block maxima approach. This

approach is based on the Fisher–Tippett–Gnedenko theo-

rem, which states that, whenever they are attracted by a

non-degenerate distribution, the block maxima of a suffi-

ciently large block length of independently and identically

distributed random variables can be approximately mod-

eled by the generalized extreme value (GEV) distribution.

In particular, this is true for random variables with the most

commonly used continuous distributions. For this study we

use exclusively block maxima with a block length of a

season within one year (i.e., annual block maxima). When

dealing with rainfall extremes, block lengths of one month

have been proven to be long enough to assure convergence

to the GEV distribution (Fischer et al. 2017). Therefore, we

assume that the choice of annual block maxima is justified.

Annual block maxima can then be used to fit the parame-

ters of the GEV for each rain gauge individually, resulting

in the ‘‘zeroth-order’’ approach to modeling extreme rain-

fall in space. This pointwise approach, however, does not

pool any information across stations and, therefore, cannot

predict values for ungauged sites. Prediction of ungauged

sites can be achieved by extending the pointwise GEV

approach to include spatial covariates, which pools infor-

mation from different locations, typically resulting in

reduced uncertainties for the estimated parameters of the

GEV (Ulrich et al. 2020). Nevertheless, this second

approach ignores the spatial dependence in the data,

resulting in a misspecified likelihood that consistently

underestimates the uncertainty of the estimates. Our study

extends this approach by using a max-stable process (de-

scribed in Sect. 2.3.2) to include spatial dependence.

2.1 Data

We used accumulated hourly and daily precipitation height

measurements (in mm) from 53 rain gauges belonging to

the German Meteorological Service (DWD) in the Berlin-

Brandenburg region of Germany (Fig. 2). The data was

acquired through the German Meteorological Service
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(DWD) Open Data Server using the R-package rdwd

(Boessenkool 2021). The stations were chosen to include

only those that contained measurements with both hourly

and daily periods. This choice reduced the available

number of stations with daily measurements from 300 to

53. Reducing the total number of stations was considered

necessary to ensure the fairness of the comparisons with

results using stations with hourly measurements and to

lower the computational burden needed to fit the models.

The raw data contains further information about the type of

precipitation measured (liquid or solid), but for the purpose

of this study no discrimination was done with regard to

precipitation type.

Two different periods were considered for this study:

from 1970–2020 for the daily observations and 2004–2020

for the hourly observations. These periods were chosen in

order to minimize the number of invalid pairs when using

the pairwise likelihood (see Appendix A).

At the location sj 2 S, where S represents the geo-

graphical domain and j ¼ 1; . . .; n is an index denoting the

rain gauge, the data contains the accumulated rainfall

values ðrd;1ðsjÞ; . . .; rd;kjðsjÞÞ in mm, where d 2 f1; 24g is

an index for the duration of the considered precipitation

events, namely, hourly or daily. Different gauges can have

different lengths for the measurement period, so that kj
depends on the location sj. The accumulated rainfall values

were transformed to the average hourly/daily intensity

values ðfd;1ðsjÞ; . . .; fd;kjðsjÞÞ in mm/h.

Following Koutsoyiannis et al. (1998), the average

hourly intensity data fd¼1;sðsÞ (where s represents the time

(in hours) of the observation) were aggregated to create the

12-h accumulated precipitation intensity time series

fd¼12;sðsÞ (in mm/h). This aggregation was necessary

because a visual inspection of the pairwise extremal coef-

ficient resulting from the hourly series strongly suggested

that the data was asymptotically independent, which vio-

lates a major assumption for using max-stable processes.

The lowest aggregation duration that did not show

asymptotic independence was 12 h. The 12-h aggregated

series is obtained using

fd¼12;sðsÞ ¼
1

12

X11

i¼0

fd¼1;s�iðsÞ; ð1Þ

which can be seen as a moving average with a time window

of 12 h. The aggregation described in Eq. (1) was done

using the package IDF (Ulrich et al. 2020).

Fig. 1 Map showing daily accumulated precipitation height for two extreme precipitation events chosen arbitrarily for demonstration). Left: A

summer convective event. Right: A winter frontal event. Data comes from the RADOLAN database made available from the DWD

Fig. 2 Map showing the location inside the Berlin-Brandenburg area

of the DWD weather stations included in this study (red dots). The

lower left inset shows the location of the study domain within

Germany. Diamonds indicate the reference stations used for the

results shown in Sect. 3.4
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The 12-h f12ðsjÞ and daily f24ðsjÞ average precipitation

intensity series are then used to get four series of semi-

annual block maxima series ðild;t¼1ðsjÞ; . . .; ild;t¼Nj
ðsjÞÞ. In

this case, the index t can be seen as indicating the year.

These four series result from combining the two durations

d 2 f12; 24g and the two seasons l 2 fsum;wing using the

corresponding abbreviations for sumer and winter,

respectively. The semi-annual block maxima were obtained

using

ild;tðsÞ ¼ max
l�t \s\lþt

fd;sðsÞ; ð2Þ

where l�t and lþt correspond to the beginning and end of

either winter or summer for each year t. For this work, we

consider summer as May, June, July, and August; winter is

considered to be the months of January, February,

November, and December. In order to avoid having winter

block maxima that come from disconnected months, we

shifted the fdðsÞ values of November and December to the

following year, making the four winter months of any

given calendar year come from the same ‘‘meteorological’’

winter. Note that for each instance of s within the same

type of season, i.e. summer or winter, and for each fixed

duration d 2 f12; 24g, we perceive fd;sð�Þ as independent

realizations of some stochastic process fXðsÞ : s 2 Sg
which will be the justification for the use of GEV distri-

butions and max-stable processes for modeling the distri-

bution of ild;tðsÞ below.

Figure 3 shows the temporal distribution of the semmi-

annual block maxima for summer, i.e. isum
12 ðsÞ and isum

24 ðsÞ,
and winter, i.e. ðiwin

12 ðsÞ and iwin
24 ðsÞÞ over the 53 stations.

From Fig. 3, it is apparent that the magnitude of the

maxima changes depending on the season, with consis-

tently larger values for summer events. The final length of

the daily series is 50 years, while for the 12-h series, it is

26 years.

2.2 Characterizing extremal dependence

To explore how the bivariate extremal dependence changes

for the block maxima derived from the summer and winter

seasons, we used an estimate of the empirical pairwise

extremal coefficient hðsj; sj0 Þ, which is a summary measure

of dependence of a random two-dimensional vector

ðXðsjÞ;Xðsj0 ÞÞ (Coles 2001; Ribatet et al. 2016). The pair-

wise extremal coefficient can take values in the rage ½1; 2�,
where 1 denotes complete dependence and 2 asymptotic

independence.

For each pair ðsj; sj0 Þ of locations of gauged stations, we

estimate the empirical extremal coefficient ĥNPðsj; sj0 Þ using

the non-parametric method proposed by Marcon et al.

(2017), which Vettori et al. (2018) found to have the best

overall performance compared to other empirical estima-

tors. The estimation of ĥNPðsj; sj0 Þ is done with the R-

package ExtremalDep (Beranger et al. 2021). This

method requires the specification of a polynomial order, for

which a graphical analysis (not shown) found that a fixed

value of k ¼ 20 yielded the most appropriate values of

ĥNPðsj; sj0 Þ for the different ildðsÞ series.

2.3 Modeling of extreme rainfall

We follow a two-step approach to model the ildðsÞ series. In

the first step, we model the marginal distribution of the

pooled data from all stations by including spatial covariates

within a Bayesian distributional model (DM). For the

second step, we extend the model of the first step with a

max-stable process, allowing the model to capture the so-
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Fig. 3 Boxplots showing the distribution of the rainfall semi-annual block maxima for the 53 stations included in this study. a 12-h summer

maxima, b daily summer maxima, c 12-h winter maxima, and d daily winter maxima
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called ‘‘residual dependence’’ left from the first-step that

arises from the extremal dependence (Cooley et al. 2012).

We then compare the models from both steps using a

forecast verification framework to study how the extremal

dependence influences the estimates of the model param-

eters. We consider the BDM approach to act as a ‘‘control’’

compared to the max-stable process approach, allowing us

to explore how the seasonal difference in the extremal

dependence affects the estimates.

Estimations made within the framework of extreme

value statistics are usually made with small data samples,

as extreme events are by definition rare. The small sample

size, in turn, leads to high uncertainty of all estimates, a

problem compounded by the fact that most applications of

EVT focus on the very far right of the distribution, where

estimates already have high levels of uncertainty. There-

fore, any EVT study must include information about the

uncertainty that can be easily interpreted and adapted for

the final-user applications. Uncertainty in this study is

exclusively obtained using Bayesian methods for inference,

which allow a straightforward and intuitive interpretation

of their values.

The following sections explore the two approaches used

for this study: First, the approach that includes spatial

covariates but assumes independence in space (henceforth

denoted as the DM approach), and second, the approach

that uses a Brown–Resnick max-stable process to account

for the spatial dependence (henceforth denoted as the BR

approach).

2.3.1 Using a Bayesian distributional model

A simple but effective approach to model the variability of

extreme rainfall in space is to pool information from all

stations in the study region and assume that all values are

independent and identically distributed. This approach

assumes that observations at each station are independent

of those at any other station. Instead, information is pooled

from different stations using spatial covariates, such as the

position of each station, as a predictor within a model. The

resulting model can then characterize extremal behavior at

unobserved locations simply by using their position in the

covariates.

In this study, we use an analog of Vector Generalized

Linear Models known in the Bayesian literature as distri-

butional models (DMs), or sometimes, as Bayesian distri-

butional regression (Umlauf and Kneib 2018).

Distributional models allow for the simultaneous linear

modeling of all distributional parameters. This is in con-

trast to standard GLMs, where only the location parameter

is modeled. Furthermore, DMs allow the use of distribu-

tions from outside the exponential family, such as the GEV

distribution. DMs can be seen as the Bayesian equivalent of

Vector Generalized Linear Models (VGLMs), which also

extend GLMs to be able to model all distributional

parameters with distributions outside of the exponential

family. Extending a GLM to be a Bayesian DM is

straightforward, as one requires only to add the additional

log-likelihood contribution from the additional parameter

models in the MCMC steps. Using these models, we can

incorporate spatial covariates into linear models for every

parameter of the marginal distributions.

For every rain gauge j located at sj, the block maxima

ildðsjÞ ¼ ðild;1ðsjÞ; . . .; ild;Nj
ðsjÞÞ are assumed to be i.i.d. and,

as the Fisher–Tippett–Gnedenko Theorem for block max-

ima suggests, follow the generalized extreme value (GEV)

distribution, which following Coles (2001) is given by

GðxÞ ¼
exp � 1 þ n

x� l
r

� ��1=n

þ

� �
n 6¼ 0;

exp � x� l
r

h i
n ¼ 0;

8
>><

>>:
ð3Þ

where l 2 R; r[ 0; n 2 R are the location, scale, and

shape parameters, respectively, and xþ ¼ maxð0; xÞ. This

assumption is verified for all stations using Quantile–

Quantile plots (not shown).

We then follow Fischer et al. (2017) and describe the

spatial variation of location l and scale r using a linear

combination of Legendre polynomials of longitude and

latitude as covariates. Legendre polynomials form a set of

orthogonal basis functions on ½�1; 1�, ensuring that their

evaluations at the covariates—normalized to that inter-

val—will be linearly independent. Our model is restricted

only to the northing and easting coordinates, ignoring the

altitude. This choice was made due to the flatness of the

domain, which shows no prominent orography. This choice

is further justified by the results of Fischer et al. (2017),

who for the same domain found that a model selection

procedure resulted in the terms containing altitude to be

dropped. Thus, we are left with the distributional model

lðsÞ ¼ bl0 þ
XJ

j¼1

blj;xPjðx0Þ þ
XK

k¼1

blk;yPkðy0Þ; ð4Þ

logðrðsÞÞ ¼ br0 þ
XJ

j¼1

brj;xPjðx0Þ þ
XK

k¼1

brk;yPkðy0Þ; ð5Þ

n ¼ n; ð6Þ

where s ¼ ðx0; y0Þ, and a logarithmic link function is used

for the scale parameter r to ensure positivity. Pið�Þ denotes

the ith order Legendre Polynomial. We transform the

coordinates from longitude and latitude to Universal

Transverse Mercator (UTM) x and y coordinates (UTM

zone 33N) so that the distances between stations are

measured in meters instead of degrees, simplifying the

1968 Stochastic Environmental Research and Risk Assessment (2023) 37:1963–1981
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analysis. The (x, y) coordinates are then shifted and scaled

to the ðx0; y0Þ coordinates within the ½�1; 1� � ½�1; 1�
square in order to compute the respective Legendre

Polynomials.

The shape parameter n is left constant throughout the

domain, as other studies have found that this parameter is

complicated to estimate properly and can strongly impact

the model’s performance (Cooley et al. 2012). A justifi-

cation for this choice can be found in Appendix E.

Model selection The linear model in Eqs. (4) and (5)

requires an order for the Legendre Polynomials to be

specified. The order is chosen within the model selection

framework using the Widely Applicable Information Cri-

teria (WAIC) (Vehtari et al. 2017). A total of 140 possible

combinations of up to order P5ð�Þ were fitted, and the

model with the lowest WAIC value was chosen. Further-

more, a regularizing prior (detailed below) was used to

lower the risk of overfitting.

2.3.2 Using a max-stable process

For the second step of our study, we expanded the model

for the marginal distribution presented in Sect. 2.3.1 by a

simple max-stable process. The latter was chosen to cap-

ture the extremal dependence in the rainfall maxima. Max-

stable processes are extensions to infinite dimensions of

finite-dimensional Extreme Value Theory models, arising

as ‘‘the pointwise maxima taken over an infinite number of

(appropriately rescaled) stochastic processes’’ (Ribatet

2013).

More precisely, let X(s) be a random variable repre-

senting the daily precipitation height at site s 2 S (for some

fixed duration d and season l); that is fXðsÞ : s 2 Sg is a

stochastic process modeling the precipitation at each site in

the spatial domain S. If we have i.i.d. replicates fXiðsÞ :
s 2 Sg of the process such as precipitation heights for

different days within the same season, then as already

discussed at the beginning of Sect. 2, under fairly general

conditions, the Fisher–Tippett–Gnedenko Theorem states

that, for each site s and sufficiently large n, the distribution

of maxi¼1;...;n XiðsÞ may be approximated by a GEV dis-

tribution with spatially varying location and scale param-

eters, lðsÞ and rðsÞ, respectively, and spatial constant

shape parameter n. Assuming that not only the marginal

distributions, but also the spatial dependence structures

converge, by a spatial extension of the Fisher–Tippett–

Gnedenko theorem the block maxima process

fmaxi¼1;...;n XiðsÞ : s 2 Sg can be approximated by a max-

stable process fZ 0ðsÞ : s 2 Sg, given that n is large enough

(Ribatet et al. 2016). Thus, max-stable processes do not

only allow for arbitrary GEV marginal distributions

Z 0ðsÞ�GEVðlðsÞ; rðsÞ; nÞ, but also provide a flexible way

of modeling the dependence structure of the maxima of the

Xi random fields.

Consequently, we will assume that the semi-annual

block maxima ildðsjÞ form realizations of a max-stable pro-

cess fZ 0ðsÞ : s 2 Sg at the gauged sites sj 2 S. It is com-

mon in extreme value theory to transform the original

block maxima data ildðsjÞ into standardized maxima zldðsjÞ
following unit Fréchet marginal distributions (i.e., the case

where l ¼ r ¼ n ¼ 1 in Eq. 3). Transformation of the

margins to the unit Fréchet distribution does not affect the

dependence structure. This transformation is performed via

the relationship

zld;tðsÞ ¼ 1 þ n ild;tðsÞ �
llðsÞ
rlðsÞ

� �� �1=n

þ
: ð7Þ

As this transformation can be easily reversed, it then allows

us to focus on the max-stable process fZðsÞ : s 2 Sg
without any loss of generality. For such standardized max-

stable processes, a variety of parametric submodels has

been developed including the popular Brown–Resnick

max-stable process model (Kabluchko et al. 2009).

In our study, the marginal standardization requires the

specification of response surfaces for llðsÞ and rlðsÞ to link

zldðsÞ to ildðsÞ. We chose the response surfaces to have the

same expressions as the model resulting from the model

selection of Eqs. (4) and (5), with the shape parameter

assumed to be constant over the entire domain.

In theory, max-stable process models can be used to

model the joint distribution of all semi-annual block

maxima ðild;1ðsjÞ; . . .; ild;Nj
ðsjÞÞ, j ¼ 1; . . .; 53, and their

standardized analogues ðzld;1ðsjÞ; . . .; zld;Nj
ðsjÞÞ,

j ¼ 1; . . .; 53, respectively. In practice, however, the

resulting likelihood terms are intractable for even relatively

low-dimensional settings. This is why a common strategy

is to restrict the process to the bivariate case, where the

distribution functions and their corresponding densities are

well-known. The bivariate joint probability for the rescaled

maxima PrfZl
dðsÞ� z1; Z

l
dðsþ hÞ� z2g is then modeled

using the bivariate distribution of the Brown–Resnick max-

stable process model (Kabluchko et al. 2009, see Appendix

A). For the Brown–Resnick model, the extremal spatial

dependence is a function only of the variogram c, which,

with a slight abuse of notation, for this study has the fol-

lowing theoretical model:

cðs; sþ hÞ ¼ cðhÞ ¼ khk
q

� �a

; ð8Þ

Here, khk is the Euclidean distance between the two

locations considered, q is the range parameter, and a is the

smoothness parameter. The range parameter q can be seen

as the distance for which the dependence is still effective
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and takes values ðq[ 0Þ. The smooth parameter a has no

straightforward interpretation and is constrained to be

a 2 ½0; 2�. For this study, we restrict the variogram to be

isotropic and stationary, i.e. cðs; sþ hÞ depends on khk
only. The two Brown–Resnick parameters ða; qÞ contain

the information regarding the pairwise dependence struc-

ture. To compare the Brown–Resnick dependence esti-

mated from the model with the empirical dependence

shown by the data, we also obtain a parametric estimate of

the bivariate extremal coefficient hðsj; sj0 Þ using the ðq; aÞ
parameters of the Brown–Resnick model. This parametric

estimate hBRðsj; sj0 Þ is computed from the Brown–Resnick

variogram cðhÞ obtained in Eq. (8) using the following

relationship:

hBRðsj; sj0 Þ ¼ 2Uðcðksj � sj0 kÞ=2Þ1=2Þ; ð9Þ

where U represents the standard normal distribution

function.

An important issue to consider is the validity of the

domain size for fitting the Brown–Resnick model. The

domain for the Brown–Resnick model, shown in Fig. 2 has

a relatively square shape with sides of around 230 km.

Furthermore, the average distance between all station pairs

was approx. 95 km with a range of ½4; 245� km. The main

limitation to the domain size is related to the implicit

assumption of asymptotic dependence; domains that are

much larger than the distance for which this assumption

still holds would lead to poor results from the max-

stable model. For our particular model, we found that

asymptotic dependence for the different datasets was valid

for distances of around 150 km (see Sect. 3.1 for a more

in-depth discussion). Therefore, we considered our choice

of domain size to be appropriate for the chosen Brown–

Resnick model.

2.3.3 Statistical inference

The estimation of the posterior distribution of the ðb0; bi;PÞ
coefficients for the DM approach and the response sur-

faces, as well as for the BR dependence parameters ða; qÞ,
was carried out using Bayesian inference. Given a random

variable or vector Y and a probabilistic distribution func-

tion Gð/Þ such that one assumes that Y �Gð/Þ (where /
represents the distributional parameters), Bayesian infer-

ence assumes that the parameters / also follow a proba-

bility distribution. The quantity of interest is the so-called

posterior distribution of probable values for / given

observations y from the random variable Y, which is

obtained using Bayes’ rule: pð/ j yÞ / pðy j /Þpð/Þ: The

uncertainty of the estimates is then directly obtained from

the posterior distribution pð/ j yÞ. Furthermore, the likeli-

hood pðy j /Þ is derived from the model, and has the same

mathematical expression as the likelihood used for MLE

methods. Finally, the so-called prior pð/Þ includes the

information known about the parameters / before

observing the data y. For studies involving extremes, the

choice of pð/Þ is of particular importance, as the small size

of the data sample typically results in a strong influence of

the prior over the posterior. Stephenson (2016) provides

current strategies to choose appropriate priors when per-

forming inference of the GEV distribution.

For the inference of the parameters in this study, we

used a Markov Chain Monte Carlo (MCMC) sampling

scheme. MCMC sampling requires that the right-hand side

of Bayes’ rule is known up to a multiplicative constant, for

which it is enough to know the expression for the likeli-

hood pðY j /Þ and the prior distribution pð/Þ.
The likelihood term of the DM approach given by

Eqs. (4)–(6) is directly obtained from the GEV distribution

[Eq. (3)]. For the BR approach, using the full likelihood is

unfeasible as the data’s high dimensionality made the full

likelihood intractable; we chose instead to use the pairwise

likelihood from Padoan et al. (2010) (see Appendix A for

details). The expression for the pairwise likelihood of the

Brown–Resnick model included both the marginal and

dependence parameters so that each MCMC step updated

the value of all / ¼ fq; a; bl0 ; b
r
0 ; b

n
0; b

w
i;Pg parameters

simultaneously, where bwi;P denotes all potential relevant

coefficients for w ¼ l; rf g aside from their intercepts bl0 or

br0.

The last step to perform Bayesian inference is to propose

a prior distribution for all parameters. For the DM

approach, this includes the three intercepts ðbl0 ; br0 ; b
n
0Þ and

all the possible coefficients bwi;P, where w 2 fl; rg.

The covariates were recentered around zero so that the

value of the intercepts can be interpreted as the value when

all other covariates are set to their mean values. Based on

the study of Fischer et al. (2017), who did a similar anal-

ysis for the same region, we use the following priors for the

location and scale intercepts:

bl0 �Normalð1:54; 0:6166Þ ð10Þ

br0 �Normalð0:4166; 0:4166Þ ð11Þ

The prior for the shape parameter n is a rescaled Beta-

distribution bn0 �Betað2; 2Þ that has support in ½�0:5; 0:5�.
This choice was made as this prior has already been used

by Dyrrdal et al. (2015) and also in the operational appli-

cation used by MeteoSwiss (Fukutome et al. 2018). For the

bwi;P, we use the prior bwi;P � Student � tð2; 0; 1Þ, which is a

regularizing prior (Kruschke 2014), preventing overfitting.

For the BR approach, the priors for the marginal

response surfaces were the same as those used for the DM
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approach described above. Using the same priors for the

two models was done to simplify the comparison between

them. Additionally, the prior for the range parameter q and

the smooth parameter a were elicited from typical values of

these parameters in other studies (Zheng et al. 2015;

Stephenson et al. 2016) and were chosen to be pðqÞ ¼
Normalð30;000; 7000Þ and pðaÞ ¼ Exponentialð2:5Þ,
respectively. The scales of the parameters for pðqÞ are in

meters.

MCMC sampling was performed using the software

Stan (Stan Development Team 2022). A total of 4 chains

with 2500 post-warmup samples per chain using 1000

samples as warmup was used. A visual analysis of the ridge

and trace plots was performed for all models to detect

issues with MCMC chain convergence.

A known issue when using pairwise likelihoods for

Bayesian inference is that the resulting posterior distribu-

tions will severely underestimate the spread of the distri-

bution (Ribatet et al. 2012, 2016; Chan and So 2017). The

underestimation occurs because the pairwise likelihood

over-uses the data by including each location in n/2 terms

of the objective function rather than just one, as would be

the case with the full likelihood, resulting in a likelihood

function that is far too sharply peaked (Ribatet et al. 2012).

While this issue does not severely affect the overall median

of the posterior distribution (Chan and So 2017), the esti-

mated credible intervals of the parameters will be strongly

underestimated. To tackle this issue, we applied the Open

Faced-Sandwich (OFS) correction proposed by Shaby

(2014) to all posterior MCMC samples from the Brown–

Resnick model. The OFS-corrected samples produce

credible intervals that have proper coverage values. How-

ever, it is worth noting that while the resulting posterior

samples fulfill the desired coverage properties, they are no

longer truly Bayesian. Appendix C shows a comparison

between the raw MCMC samples and the OFS-corrected

ones.

2.3.4 Prediction of return levels

Once a posterior distribution of the marginal GEV

parameters is obtained from the MCMC samples, it is

straightforward to calculate qpðsÞ quantile levels for any

probability p of non-exceedance (i.e., return levels) via the

quantile function of the GEV distribution

qpðsÞ ¼
lþ r

n
½ð� log pÞ�n � 1� n 6¼ 0;

l� r logð� log pÞ n ¼ 0:

8
<

: ð12Þ

For each one of the S MCMC sampled parameter values,

we calculate a value of qpðsÞ with probability p. This

results in a distribution of S return levels. We report the

median of these return levels as the estimated return level.

Their uncertainty is calculated as the 2.5% and 97.5%

quantiles of the S return levels, forming 95% credibility

intervals. Note that the resulting return levels no longer

stem from a GEV distribution but rather from a mixture of

many GEV distributions.

2.4 Verification and model comparison

We use the quantile score (QS) (Bentzien and Friederichs

2014) as a measure of accuracy for both the marginal and

the Brown–Resnick models. Given a series for a single rain

gauge of semi-annual block-maxima observations

ðild;1ðsjÞ; . . .; ild;Nj
ðsjÞÞ with Nj years of data for the j-th

gauge and the corresponding prediction for the quantile

level qlp;dðsjÞ with probability p for the same location sj,

duration d and season l, the QS is defined as:

QSlp;d ¼
1

N

XN

t¼1

qpðild;tðsjÞ � qlp;dðsjÞÞ;

where qpðuÞ ¼ ½juj þ ð2p� 1Þu�=2:

ð13Þ

The QS is always positive and reaches an optimal value at

zero. We obtain the QS values for both the marginal and

the Brown–Resnick model for probability levels of

p ¼ ð0:9; 0:95; 0:98; 0:99Þ, corresponding to return periods

of ð10; 20; 50; 100Þ years.

To compare the performance of two models, Ulrich

et al. (2020) defined the Quantile Skill Index (QSI), a

measure derived from the Quantile Skill Score QSS (cf.

Wilks, 2011, for an introduction to skill scores). Given the

QS for a model to be tested (QSmodel) and the QS for a

reference model ðQSrefÞ, the QSI is defined as

QSI ¼
1 � QSmodel

QSref

; if QSmodel\QSref

� 1 � QSref

QSmodel

� �
; if QSmodel �QSref

8
>><

>>:
: ð14Þ

Positive (negative) values of the QSI indicate a gain (loss)

of skill for the tested model over the reference. The

advantage of the QSI over the QSS is that the interpretation

of negative or positive values is equivalent (which is not

the case for skill scores). For this study, the tested model is

the Brown–Resnick max-stable process model, and the

reference model is the marginal distributional model.

To get an estimation of the out-of-sample performance

for the QSI, we applied 10-fold cross-validation in space to

estimate the QS values. The folds were constructed such

that in each one, 90% of the stations were used for training

the model and the remaining 10% for validation. Each

station appears in a given validation set once and only

once. This specific cross-validation scheme gives an esti-

mate of how good the model is at predicting values at
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ungauged sites, and it does not give any information on the

model’s skill at predicting future observations. Considering

the sizeable computational load needed to perform MCMC

sampling for all 8 models for all 10 folds, we opted to use

maximum likelihood instead of Bayesian inference for this

step. Using MLE instead of full Bayesian inference was

considered a fair assessment as we are only interested in

point estimates of return levels when calculating the QS

using Eq. (13). A separate analysis (not shown) revealed

that the QS point estimates obtained from maximum like-

lihood were almost always very similar to the median QS

values obtained from the full posterior distribution.

3 Results

3.1 Extremal dependence

The estimated bivariate extremal coefficient ĥNPðsj; sj0 Þ for

the i
ðsum;winÞ
12 ðsjÞ and the i

ðsum;winÞ
24 ðsjÞ block maxima series is

shown in Fig. 4. The main feature is that winter maxima

(blue) consistently show lower average values (i.e., higher

extremal dependence) until a distance of around

h ¼ 150 km. For distances h[ 150 km this relationship is

inverted. Furthermore, the average distance where the

pairwise maxima still show asymptotical dependence is

shown to be lower than 150 km. The difference between

seasons is larger for the 12-h series, possibly reflecting

differences in the rainfall generating mechanisms at this

timescale compared to the 24-h series.

Estimates of the extremal coefficient based on the

Brown–Resnick model (ĥBRðsj; sj0 Þ) are also shown in

Fig. 4 as the solid lines with the shaded regions repre-

senting 50% credibility intervals. We compare the values

from the Brown–Resnick model to the empirical ĥNPðsj; sj0 Þ
to get an idea of how well the BR approach captures the

pairwise dependence shown by the data. For the 12-h series

(left), this comparison shows that for winter, the model

consistently overestimates the strength of the dependence

for h[ 100, while for summer, the average dependence is

properly captured for h.150 km; for greater distances, the

dependence is underestimated. The overestimation in the

winter model can also be seen for the daily series (right);

however, it is much less pronounced, with most of the

average ĥNPðsj; sj0 Þ falling inside of the 50% CIs. In both

time series, the 50% CIs are larger for winter; this could

suggest that the extremal dependence for winter is more

complex than for summer, resulting in the winter model

exploring a greater range of values for the dependence

parameters. Additionally, the daily series shows less vari-

ability than the 12-h series. This difference in variability

may be due to the increased length of observations for the

daily series.

An initial inspection of the ĥNPðsj; sj0 Þ values would

suggest that the data shows asymptotic dependence for all

series for distances up to h� 150 km. Therefore, the

assumption of asymptotic dependence necessary for using a

max-stable process should be justified. Further discussion

about this topic can be found in Appendix D.

3.2 Model building

3.2.1 Model selection

The procedure to choose the orders for the Legendre

Polynomials of Eqs. (4)–(6) results in the models described

in Table 1. Basic prior and posterior predictive checks

were performed to detect any misspecification issues; some

examples for the reference stations described below can be

found in Appendix F. A visual analysis of the prior and

posterior checks showed a couple of over- and under-es-

timation issues in the 95% Highest Density Interval for

some stations, like in Potsdam, but we judged that the tail

Fig. 4 Empirical values of the extremal coefficient ĥNPðsj; sj0 Þ (dots)

and estimated values from the resulting Brown–Resnick variogram

ðhBRðsj; sj0 Þ (solid lines, shaded regions represent the 50% CI). Colors

represent the season: blue for winter and red for summer. The left

panel shows results from the 12-hourly data; the right panel shows

results for the daily data. hðsj; sj0 Þ 2 ½1; 2�, where one is complete

dependence and two is complete independence
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behavior was well captured, as shown in the QQ-plots,and

therefore assume the results are valid.

3.3 Parameter estimates

Parameter estimates for the dependence and shape param-

eters are reported in Table 2 as median and 95% credibility

intervals for each parameter. A distinct difference can be

seen in the value of the range parameter q (in meters)

between summer and winter, as the value in winter is

always significantly larger than for summer, regardless of

the time scale. This result is consistent with the behavior of

the extremal coefficient seen in Fig. 4, where the values of

h consistently remain lower for winter when compared

with summer. These results may indicate that the rainfall

events leading to the block maxima in winter are, on

average, larger than those in summer. Furthermore, the

shape parameter shows a difference for winter and summer,

regardless of the time scale.

3.4 Marginal parameters and return levels

Four reference stations were chosen to illustrate the dif-

ferences in the marginal GEV parameters and return levels

from the DM and the BR models (respective locations of

the reference stations are given by red diamonds in Fig. 2).

We chose the two stations with the longest time series

(hourly: 21 years, daily: 51 years) (Potsdam and Linden-

berg), which are surrounded by at least 8 other stations in a

radius of 50 km; a station with a long time series (hourly:

17 years, daily: 51 years) that is relatively isolated (less

than 4 stations nearby in a radius of 50 km) from other

stations (Meyenburg); and a station with a short time

record (hourly: 16 years, daily: 29 years) which is sur-

rounded by 8 stations in a radius of 50 km (Luebben-

Blumenfelde). Figures 5 and 6 show the GEV parameter

estimates and the resulting return levels with 95% credi-

bility intervals, respectively. Furthermore, pointwise GEV

estimates and their resulting return levels with 95% cred-

ibility intervals were added for reference; these estimates

were obtained using the same priors for the intercepts

described in Sect. 2.3.3. The credibility intervals calculated

for all models were computed as the 2.5 and 97.5%

quantiles of the resulting MCMC samples.

Table 1 Maximum chosen

orders of Legendre Polynomials

for the distributional model in

Eqs. (4)–(5)

l r

Summer

(24 h)

2 1

Winter (24 h) 3 2

Summer

(12 h)

2 1

Winter (12 h) 3 2

Table 2 Bayesian estimates of

the Brown–Resnick max-

stable model parameters

q a n

12 h (s) 413, 4896, 11,997 0.17, 0.40, 0.64 0.05, 0.18, 0.31

12 h (w) 3596, 43,870, 104,192 0.31, 0.78, 1.24 � 0.01, 0.08, 0.20

24 h (s) 4722, 22,993, 43,936 0.39, 0.54, 0.69 0.15, 0.24, 0.33

24 h (w) 6801, 53,228, 109,265 0.57, 0.83, 1.12 � 0.01, 0.09, 0.21

Posterior medians are reported along with their 95% credible interval limits on either side as (lower,

median, upper). The coefficients corresponding to the Legendre Polynomials were omitted from this table

Fig. 5 Estimated values of the

location l, scale r, and shape n
parameters of the GEV

distribution for station Potsdam.

The symbols’ shape and color

indicates the model used for

estimation: circle (blue) = BR,

triangle (green) = DM, square

(gray) = pointwise GEV. The

left column a shows results

from 12-hourly data, while the

right column b shows results

from daily data
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Concerning the GEV parameters, Fig. 5 shows that the

pointwise estimates (taken here as the median value of the

posterior distributions) are similar for the DM and the BR

models. This similarity was expected, as the marginal

parameters are only vaguely affected by the spatial

dependence through their incorporation in the likelihood

term of Eq. (A1). However, when comparing the models, a

pattern concerning the uncertainty of the estimated

parameters (taken here to be the 95% credibility intervals)

is visible. For summer (and in the case of n, also winter),

the highest uncertainty is always seen for the pointwise

GEV model, followed by the BR model and the DM model,

which consistently show the smallest uncertainty. In con-

trast, the largest uncertainty for location and scale in winter

can be seen for the BR model, followed by the pointwise

GEV and the distributional models. This phenomenon can

be observed in other stations (not shown). We infer that the

uncertainty estimated for the marginal parameters is

strongly affected by the underlying spatial dependence,

which changes according to the rainfall-generating mech-

anisms dominant in the respective season.

To further delve into the last point, Fig. 6 presents how

the return levels for different non-exceedance probabilities

for the BR and DM approaches differ. As before, we

compare different seasons and two different durations. The

median return level is generally similar across the different

models, with increasing differences for larger probabilities

of non-exceedance. In contrast, the uncertainty is notice-

ably different for each model, which is consistent with the

results of the GEV parameters. In summer, the uncertainty

is always largest for the pointwise GEV model, followed in

order by the BR and the DM models. This changes in

winter, when the uncertainty is largest typically for the BR

model, with a few exceptions. Surprisingly, it would appear

that the inclusion of the max-stable dependence on the

model for winter resulted in an overall increase in the

uncertainty, even when compared to the pointwise model

that contains no information about other stations. This

result may be associated with a loss of skill for the BR

model when modeling block maxima in winter, an aspect

that will be explored in the next section.

3.5 Model comparison

We now explore how the seasonal differences in the

extremal dependence affect the accuracy of the return

levels estimates using the BR model. We use the DM

approach as reference in the QSI to assess how much the

dependence influences the return level estimates. Positive

(negative) QSI values mean that the predicted return levels

for ungauged sites have better (worse) QS values for the

dependent BR model than for the independent DM one. For

this study, our main focus is on the QSI difference between

seasons, as we believe this arises from a change in the

extremal dependence when analyzing the semi-annual

block maxima from different meteorological regimes.

Figure 7 depicts the distribution of the cross-validated

QSI values over all stations. The 12-hourly data shows an

Fig. 6 Return level of precipitation intensity (mm/h). Color denotes

the model used: Blue for the BR model, green for the DM model, and

gray for the pointwise GEV. Shaded regions represent pointwise 95%

credibility intervals. a 12-h data, b daily data. For reference, the

probabilities of non-exceedance p ¼ ð0:96; 0:98; 0:99; 0:995Þ corre-

spond to the (25, 50, 100, 200) year return periods, respectively
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overall average loss of skill for the winter and summer

models when using the BR model. This loss of skill

increases as the non-exceedance probability increases, with

the winter model showing substantially lower average QSI

values than the summer model. Furthermore, the variability

in QSI values is noticeably larger for winter than summer;

in fact, the highest QSI value is always found within an

outlier of the winter model. For the daily data, the winter

model shows the same decrease in skill with increasing

non-exceedance probabilities with high variability; how-

ever, in this case, the summer model consistently shows

QSI values close to zero with very low variability. Finally,

a noteworthy difference between average QSI values can

be observed between summer and winter for both periods.

This difference increases with the non-exceedance

probability, but it remains constant between the 12-hourly

and daily periods.

To further explore the difference in QSI values for both

seasons and durations, Fig. 8 shows the spatial distribution

of QSI values, i.e. values for every station. No apparent

pattern is visible from the different configurations, as QSI

values appear to be largely random. Nevertheless, the

lowest QSI appear mostly at stations close to the domain’s

border, suggesting that the BR model performs better when

a station is surrounded on all sides by other stations. This

effect is admittedly not very reliable, as stations with very

low values of QSI can also be found within the middle of

the domain. A closer inspection of the difference between

seasons reveals a subtle pattern: similar QSI values seem to

cluster in summer, while the distribution is predominantly

random in winter. This change could be attributed to the

Fig. 7 Boxplots showing the

distribution of the Quantile Skill

Index for all stations for a 12-

hourly and b daily data. The

colors indicate the season.

Positive (negative) values

indicate an increase (decrease)

in skill for the BR approach

compared to the DM one

Fig. 8 Spatial distribution

within Berlin-Brandenburg

(solid line) of QSI values for the

12-hourly (leftmost two

columns) and daily (rightmost

two columns) data. Boxplots

below each map show the

distribution of QSI values as in

Fig. 7

Stochastic Environmental Research and Risk Assessment (2023) 37:1963–1981 1975

123



difference in the rainfall generating processes, as will be

discussed in the following.

4 Discussion

The results described in the last section provide compelling

evidence that the extremal dependence shown by the data

changes sufficiently enough to have a noticeable effect in

the resulting marginal estimates when using a model cap-

able of capturing such dependence (the BR model in our

case). This difference was mainly observed when com-

paring different marginal quantities from two seasons: the

estimated GEV parameters (with their respective return

levels) and the cross-validated Quantile Score (QS), an out-

of-sample performance measure for the predicted return

levels for ungauged sites.

The observed difference in marginal estimates when

using a spatial model is consistent with previous extreme

rainfall studies; Stephenson et al. (2016), for example,

reports that the incorporation of the max-stable process

dependence led to an overall shift towards heavier tailed

marginal distributions across their study location. They

also found that the uncertainty for the estimated marginal

quantities was larger for the max-stable process model than

for the independent model, which is in good agreement

with our results for summer maxima estimated return

levels. Additionally, the spatial distribution of the QSI falls

in line with Le et al. (2018), who found that return levels

estimated from a max-stable process presented noticeable

differences in their spatial distributions compared to an

unconditional model. However, these studies did not esti-

mate the impact of this difference on the model perfor-

mance. Our study then provides insight into the operational

use of Brown–Resnick max-stable models by first exam-

ining how different types of rainfall-generating mecha-

nisms affect the marginal estimates and then applying a

model validation framework for the out-of-sample

ungauged model accuracy.

A comparison of the uncertainty in the GEV parameters

and the return levels showed that when modeling summer

maxima, the uncertainty resulting from the BR model

appeared to be a middle point between the DM and the

pointwise GEV models. However, the significant reduction

in uncertainty for the DM model compared to the pointwise

GEV model signals that this model underestimates the

natural variability in the rainfall data. Thus, it seems

plausible that the larger uncertainty seen in the BR model

is a more accurate representation of such variability. In

contrast, when dealing with winter maxima, the uncertainty

obtained by the BR model appears to have been consis-

tently overestimated compared to the pointwise approach.

From our results, it is not completely clear why this is the

case, but it may be speculated that the isotropic Brown–

Resnick dependence model was misspecified for the

extremal dependence structure in the winter data. A pos-

sible source of error is the assumption that the dependence

structure is isotropic, which might be a better approxima-

tion for convective events than for synoptic/mixed events

that occur in winter. On the other hand, the larger values

estimated for the range and smooth parameters indicate that

the dependence is stronger for winter than in summer;

however, these parameters do not say anything about the

isotropic/anisotropic structure. This larger dependence in

winter could be attributed to frontal events being generally

larger and more elongated than convective events. Thus,

more stations are simultaneously affected by the same

event, increasing the dependence. Figure 9 in Appendix B

reports how many unique daily events resulted in block

maxima being chosen from the daily series in winter and

summer. This table supports the idea that the events are

larger in winter, as the number of unique events is con-

sistently lower in winter than in summer. However, Fig. 4

also reveals a surprising increase in dependence for dis-

tances larger than 120 km; this may suggest that some

underlying weather patterns from a larger scale than the

convective scale influence the dependence.

Our findings report that the Brown–Resnick model is

mostly as good as the unconditional DM model when

modeling summer block maxima, whereas the BR model

presents a remarkable loss in skill compared to the DM

model when modeling winter block maxima. It is worth

noting that past studies have primarily focused on summer

maxima, as the convective nature of the rainfall-generating

mechanisms in this season typically leads to the annual

maxima events to occur in summer. Our findings suggest

Fig. 9 Boxplots showing the

difference in unique daily

events for the different seasons

studied. Only the 24 h data is

shown
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that the isotropic Brown–Resnick dependence model is an

adequate first approximation when dealing with block

maxima resulting from convective events. On the other

hand, the loss in skill for the winter maxima model pro-

vides further evidence that this model is misspecified when

dealing with either synoptic, stratiform, or a mixture of

synoptic/convective events.

We acknowledge potential limitations to this study. An

important question for future studies is to determine the

effect of anisotropy in the results, which, as discussed

above, is expected to have an important role in modeling

the spatial dependence for synoptic events. Furthermore,

previous studies have shown that rain gauge networks are

typically too scarce to resolve convective cells properly

(Lengfeld et al. 2019). Thus, in order to get a better rep-

resentation of the spatial dependence, future work should

make use of radar networks to complement rain gauge data.

A significant limitation of our work was the use of the

pairwise likelihood instead of the full likelihood of the

Brown–Resnick model within the Bayesian framework.

While some of the most known issues with this approach

were tackled by using the Open-Faced Sandwich approach

of Shaby (2014), it would be beneficial instead to use a

full-likelihood approach such as that of Dombry et al.

(2017). Furthermore, due to the high computational

demand of performing Cross-Validation within a Bayesian

setting, the QS and QSI results reported in the results come

from a maximum likelihood estimation. Moreover, we

assumed that the data was stationary, ignoring the possible

effects of climate change. The effect of this non-station-

arity on the extremal dependence should be explored in

further studies, as it has been shown that accounting for

non-stationarity results in a measurable effect on the return

level estimates (Ganguli and Coulibaly 2017). Our study

indirectly classified precipitation types based on dominant

types for different seasons. Further studies should use a

direct classification of event types, which would avoid the

mixing of convective and frontal events in winter. Some

work in classifying extreme events already exists, for

example, that of Lengfeld et al. (2021). Furthermore, the

use of max-stable processes requires that the data present

asymptotic tail dependence, an assumption that does not

hold for aggregation durations lower than 12 h. For a more

in-depth study of convective events shorter durations

would be needed; in this case, a more flexible model that

can capture both asymptotic tail dependence and inde-

pendence would be needed, such as the one proposed by

Wadsworth and Tawn (2019), which was applied to hourly

rainfall data by Richards et al. (2021).

This study indicates that different rainfall mechanisms

can strongly influence the spatial dependence presented by

the block maxima. This change in the dependence structure

can, in turn, result in significant misspecification of the

model if not accounted for properly. Thus, it is essential to

understand the types of rainfall-generating mechanisms in

the domain of study when using max-stable models.

Appendix A: Inference from the Brown–
Resnick max-stable process

Inference is done using the pairwise log-likelihood (Padoan

et al. 2010), which for our study is

Lð/ j ild;1ðs1Þ; . . .; ild;NðsJÞÞ

¼
XN

t¼1

XJ�1

j¼1

XJ

j0¼jþ1

log f ðild;tðsjÞ; ild;tðsj0 Þ j /Þ;
ðA1Þ

where / ¼ fq; a; bl0 ; b
r
0 ; b

n
0; b

w
i;Pg represents the parameters

to estimate, ild;tðsjÞ is the observed semi-annual block

maxima for the duration d and season l at location sj for

year t, and each term f ð�; �Þ is the appropriately transformed

bivariate density function derived from the bivariate dis-

tribution function for the Brown–Resnick process given by
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Here z follows a unit Fréchet distribution, U denotes the

standard normal distribution function, h is defined as the

euclidean distance between s1 and s2, and the variogram c
is defined in Eq. (8). In Eq. (A1) it is assumed that the

number of years N is equal for all J-stations. However, this

is not the case, as some stations have longer records than

others. We took N to be the one from the station with the

longest records, and whenever a station did not have data

for the t-th year, we made the corresponding term in the

log-likelihood to be zero. However, the time period used

for all stations was chosen to minimize the number of

paired stations with no data.

Appendix B: Number of events per year

Figure 9 shows how many unique daily events that resulted

in block maxima were seen from the daily i
ðsum;winÞ
24;l series.

Overall, the number of unique events in summer is larger

than in winter. In this paper, the amount of unique events is

defined as the number of different days in any given year

being present in the block maxima. For example, a year

with only 10 unique events had block maxima stemming
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from only 10 different days. This plot does not give any

indication of the duration of each individual event.

Appendix C: OFS correction for Bayesian
inference using composite likelihood

A comparison between the uncorrected raw samples from

the MCMC sampling using Stan with the pairwise likeli-

hood of Eq. (A1) and the corresponding samples corrected

using the Open-Faced Sandwich (OFS) correction from

Shaby (2014) is shown in Fig. 10. It can be seen that the

uncorrected samples grossly underestimate the uncertainty

shown by the 95% credibility intervals. On the other hand,

the OFS corrected samples keep the same median but

‘‘stretch’’ the resulting uncertainty so that the desired 95%

coverage of the intervals is achieved.

Appendix D: Analysis of asymptotic
dependence using extremal coefficient

Figure 11 shows the distribution of bootstraped samples for

ĥNPðsj; sj0 Þ, where the estimation method is the same as the

one used for Fig. 4. The bootstraped samples provide an

estimate of the uncertainty that allows us to judge the

asymptotic dependence conditions present in the data.

The figure shows that for the daily series, both seasons

show a value of the extremal coefficient below 1.75 for

h� 150 km, suggesting that the data is asymptotically

dependent at least for this distance. After 150 km, the

coefficient goes close to 2, but not immediately. On the

other hand, the situation is different between summer and

winter for the hourly frequency. Here, the uncertainty is

much larger, which could be a reflection of the smaller

number of years. Furthermore, while the winter series

behaves similar to the daily winter series having reasonably

strong dependence for distances up to 150 km, the hourly

summer series tends very quickly to lower dependence

levels. This again suggests that the events in summer are

typically smaller in size that those in winter. Asymptotical

dependence can be reasonably suggested for the hourly

winter data, but for hourly summer, one could argue this is

true only for relatively short distances. However, the

uncertainty is rather large, wit a lot of values still falling

under the strong dependence case. Therefore, we make the

assumption for asymptotical dependence for all four series.

Fig. 10 Density plots for the

raw MCMC samples (dashed

line) and the resulting OFS

corrected samples (continuous

lines) for 4 selected parameters

from the daily summer results

Fig. 11 Boxplots showing the

distribution of bootstraped

samples (N ¼ 500) of the non-

parametrical estimate of the

extremal coefficient ĥNPðsj; sj0 Þ.
The width of the boxplots is

proportional to the amount of

data
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Appendix E: Behaviour of shape parameter
for all stations

The model described in Eqs. (4)–(6) allows for spatial

variation in the location and scale parameters, but keeps the

shape parameter constant in space. To justify the choice of

leaving the shape parameter constant, Fig. 12 shows the

behavior of the shape parameter when estimated using the

pointwise GEV for all stations.

This figure shows that for all datasets, the shape

parameter does not vary greatly in space, especially when

considering the large uncertainty shown by all stations. The

shape parameter is typically the most difficult to estimate

(Coles 2001), and since Fig. 12 did not show any strong

indication for variation in space, we decided to simplify the

model and keep it as a constant.

Additionally, the red dashed line shows the value esti-

mated by the DM approach, where the shape parameter is

fixed in space. It can be seen that this value is inside most

of the credibility intervals, with a couple of exceptions for

the hourly data. We find that this further justifies our choice

of leaving the shape parameter as constant.

Fig. 12 Pointwise-GEV

estimated values of the shape

parameter n for all stations and

datasets. The intervals denote

95% credibility intervals. For

reference, the red-dashed line

represents the value of n
estimated from the DM

approach for each dataset

Fig. 13 Top row: Q–Q plots for the four reference stations. Middle

row: Posterior predictive check for the DM model. Bottom row:

Posterior predictive check for the BR model. For the middle and

bottom row, the dashed line shows the observed density, and the grey

lines show 100 samples from 20 GEV distributions with parameters

sampled from the respective posterior distributions
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Appendix F: Model diagnostic and posterior
predictive checks for reference stations

We obtained Quantile–Quantile plots and Posterior pre-

dictive checks to assure that our model adequately repre-

sents the observed data. Some of these are shown in

Fig. 13. The included plots come from the hourly summer

data.

The QQ plots for the different stations provide evidence

that the GEV is mostly appropriate for modeling the mar-

ginal distributions, with some minor exceptions. Similarly,

the posterior predictive checks allow us to see how well the

posterior distributions for the DM and BR models would be

at capturing the original data. In this case, both models’

original data seems well-captured.
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