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ABSTRACT Achieving satisfactory results with Convolutional Neural Networks (CNNs) depends on how
effectively the filters are trained. Conventionally, an appropriate number of filters is carefully selected,
the filters are initialized with a proper initialization method and trained with backpropagation over several
epochs. This training scheme requires a large labeled dataset, which is costly and time-consuming to obtain.
In this study, we propose an unsupervised approach that extracts convolutional filters from a given dataset
in a self-organized manner by processing the training set only once without using backpropagation training.
The proposed method allows for the extraction of filters from a given dataset in the absence of labels.
In contrast to previous studies, we no longer need to select the best number of filters and a suitable filter
weight initialization scheme. Applying this method to the MNIST, EMNIST-Digits, Kuzushiji-MNIST,
and Fashion-MNIST datasets yields high test performances of 99.19%, 99.39%, 95.03%, and 90.11%,
respectively, without applying backpropagation training or using any preprocessed and augmented data.

INDEX TERMS Convolutional neural networks, feature extraction, unsupervised learning.

I. INTRODUCTION
Convolutional Neural Networks (CNNs) have become a
widely used method for image classification tasks in recent
years owing to their remarkable performance. Many tech-
niques related to both the architecture and supervised training
of CNNs have been proposed to obtain impressive state-of-
the-art performance. New initialization techniques, activa-
tion functions, hyperparameter optimization methods, layer
designs, skip connections, and data preprocessing are only
a few examples that aim to achieve better performance via
supervised learning. In each of these approaches, conver-
gence depends on carefully built and complex architectures
that require a sophisticated initialization scheme and opti-
mization of hyperparameters.

Modern artificial neural networks(ANN) are convention-
ally trained using gradient-based error backpropagation. Prior
to backpropagation, the features were handcrafted by domain
experts. Backpropagation [1] enables the hidden layers of
ANNs to learn features automatically based on a labeled
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input training set. This development has enabled the eventual
emergence and success of CNNs in image classification.

Research on CNNs concentrates on supervised learning by
proposing mechanisms to avoid the vanishing gradient prob-
lem [2] of backpropagation training. Collecting and anno-
tating datasets large enough for supervised training is costly
and error-prone because it depends on the perception of the
person who labels the data. Methods attempting to reduce
the number of labeled examples using active learning for
the training of CNNs have been proposed [3], [4]. However,
an oracle (supervisor) is still required for label queries in such
systems. Moreover, humans naturally observe and learn in an
unsupervised manner as mentioned in [5] so CNNs should
be able to mimic this because the more complicated the
architecture the more labeled data they require for training.

One requirement of gradient-based approaches is suitable
initialization of weights. The convergence of the stochas-
tic search to achieve the best feature extractors depends on
careful initialization of the filter weights. Simple Gaussian
initialization was shown [6] to be a poor choice for the initial-
ization of the weights. Thus, the initialization of the weights
is commonly carried out by picking random values from a
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specific distribution [6], [7] regardless of the input domain.
Depending on how the network is initialized, a stochastic
search may overlook the crucial visual cues in the training
set.

Hyperparameter tuning is another crucial factor affecting
the performance of CNNs. Several optimization techniques
[8], [9], [10], [11], [12] have been proposed to configure
hyperparameters. However, hyperparameter optimization is
tedious and time consuming. The running time of the opti-
mization increases exponentially as the number of hyperpa-
rameters increases. An unsupervised learning approach can
decrease the number of hyperparameters that must be tuned,
thereby reducing the search time.

Unsupervised learning methods that have been proposed in
recent years revolve around generative networks, clustering,
and self-supervised learning, in which a new unlabeled task
is defined and solved for training CNNs via pseudo-label-
based backpropagation. We follow a different path from the
existing unsupervised approaches for training the filters in the
convolutional layers.

In this study, we propose an unsupervised backpropaga-
tionless training approach that does not use any pretext tasks,
pseudo-labels, or generative models to train the filters of the
convolutional layers. Our method can extract features from
a given dataset without backpropagation, and the extracted
filters perform close to purely supervised methods when
used in a CNN model. This unsupervised method trains one
convolutional layer at a time. The training starts with an
empty layer, which is gradually filled with the discovered
filters. The filters are discovered simply by taking a single
look at the training images using a filter discovery rule based
on the similarities of the features in the input domain. The
contributions of this study are as follows:

• We show that an unsupervised backpropagationless
training algorithm can train convolutional layers by
looking at training samples once without the need for
any labels.

• Our approach allows weight initialization methods to be
discarded because the filters are extracted heuristically
from the input domain, and the weights of the filters are
determined by our unsupervised training algorithm.

• With our approach, there is no need to use costly hyper-
parameter optimization methods to set the number of
filters because the number of filters hyperparameter is
determined during training by our algorithm.

We applied our unsupervised algorithm to the rawMNIST,
EMNIST-Digits, Kuzushiji-MNIST, and Fashion-MNIST
datasets. Our approach achieves 99.19%, 99.39%, 95.03%,
and 90.11% accuracy on the MNIST, EMNIST-Digits,
Kuzushiji-MNIST, and Fashion-MNIST datasets, respec-
tively, without any preprocessing or data augmentation. The
remainder of the paper is organized as follows: Section II
recounts the related work; Section III discusses the method-
ology employed for the development of the proposed algo-
rithm; Section IV discusses the datasets used in the study,

implementation of experiments, and their results; Section V
discusses related to the proposed work; and Section VI con-
cludes the paper.

II. RELATED WORK
Although research on deep networks is dominated by super-
vised learning, research on unsupervised learning has also
been conducted in this field. Unsupervised methods can be
classified into self-supervised learning, cluster-based learn-
ing, and generative models.

In self-supervised learning, data labels are replaced with
pseudo-labels by performing pretext tasks. The main idea is
to exploit the visual data for labeling. Surrogate classes are
generated [13] by applying transformations such as transla-
tion, scaling, rotation, and contrast manipulation to randomly
sampled seed image patches containing object or object
parts in them. Subsequently, the surrogate classes are labeled
and a CNN is trained with backpropagation to discriminate
between these surrogate classes. Relative positions of the
image patches are used as a pretext task by [14] and [15],
which cut the images into pieces and shuffles them to create
a jigsaw from which the network learns to solve the puzzle.
Image colorization is applied as a pretext task by [16], [17],
and [18], whereas [19] learns to predict pixels based on the
surrounding pixel information via image in-painting. Video
frames are tracked as a pretext task for motion cues by [20]
and [21]. Stereo images are combined [22] to obtain drivable
space and surface normals data to generate pseudo-ground
truths as a pretext task. Ranking is used as a pretext task to
assess the image quality in [23].

Cluster-based unsupervised learning methods often
involve k-means [24] or Gaussian Mixture Models (GMM).
The aim is to generate clusters for pseudo-labeling the
training examples and training the network with backprop-
agation using these pseudo-labels. Thus, the performance
of the models depends on the clustering accuracy because
pseudo-labels are used in backpropagation. Agglomerative
clustering is applied to the outputs of a CNN [25], and both
the CNN and clusters are updated jointly on each backward
pass based on the cluster labels until a stopping condition
is met. A similar joint update of clusters and CNN weights is
proposed by [26]. In Deep Embedded Clustering (DEC) [27],
stacked auto encoders (SAE) are used to map input images to
the feature space. K-means clustering is then applied to the
outputs of the deep neural network to initialize the cluster
centroids. This is followed by applying Kullback-Leibler
(KL) divergence to refine the clusters. In [28], clusters are
generated using GMM after dimension reduction is applied
to the spatial vector output from a randomly initialized CNN.
The generated cluster assignments are then used to update
the CNN. The features are extracted using the trained CNN.
Instead of using all the pseudo-labels of clusters, [29] trains
multiple Auto Encoders (AE) in parallel and only selects
the agreed-upon cluster pseudo-labels for training. ResNet-
50 [30] is trained with the ImageNet [31] dataset by [32]
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using the self-supervised learning method proposed in [15]
and [33]. This pretrained network is used to generate clusters
from another dataset via k-means and assigns pseudo-labels
to these clusters. As the last step, a new model with the same
architecture as Resnet-50 is trained using the new dataset and
pseudo-labels from scratch by minimizing cross-entropy.

Generative models include AEs and Generative Adver-
sarial Networks (GAN). AEs learn the mapping between
the input data and their lower dimensional latent represen-
tation by unsupervised training of the network based on
reconstruction. Convolutional Auto Encoder (CAE) is pro-
posed [34] to learn localized feature representations which
are subsequently used for weight initialization in CNNs. Hou
et al. [35] applies CAE to finger-vein verification. Stacked
denoising AEs are shown [36] to learn Gabor-like edges
and performs better in classification of the MNIST digits
than ordinary stacked AEs. In contrast to reconstructing from
all hidden units, k-sparse AE [37] selects the top-k hidden
units and discards others for better classification accuracy.
GANs [38] consist of two networks: a generative model and
a discriminative (adversary) model. The generative model
generates new images from a given dataset to fool the dis-
criminative model, and the adversary attempts to distinguish
between real and generated samples. The mutual information
between the GAN’s noise variables and observations is max-
imized [39] for learning meaningful representations without
labels. DCGAN [40], a new generator-discriminator CNN
architecture which is used as an unsupervised feature extrac-
tor while [41] learns features from synthetically generated
images using GAN.

In summary, the unsupervised literature can be catego-
rized into three main categories: self-supervised learning,
cluster-based learning, and generative models. Even though
we refer to some unsupervised research in the previous para-
graphs, they all still use backpropagation in the training,
as opposed to our proposal of no backpropagation train-
ing. Both self-supervised and cluster-based learning meth-
ods in the literature assign pseudo-labels to their training
data using either pretext tasks or clustering methods. These
pseudo-labels are used to train the models using backprop-
agation. There are two networks in generative models. The
generative model attempts to generate new images that can be
as close to the original training images as possible to fool the
discriminative model. The discriminative model attempts to
distinguish between generated and real data. Both generative
and discriminative models use backpropagation during the
training.

III. METHOD
The method we propose is pure unsupervised training of
convolutional layers, inspired by Fukushima’s Winner-Take-
All(WTA) [42] and Add-if-Silent(AiS) [43] rules. The train-
ing of convolutional layers depends on the discovery of new
features based on a measure of similarity between the discov-
ered features and the observation.

The more similar an input is to a feature, the higher the
similarity score. This may seem similar to how Siamese Net-
works learn the similarity function among image triplets [44].
Unlike Siamese networks, we work only with a single CNN
model that calculates the similarity of a candidate feature to
any of the discovered features using dot product. Based on
this similarity score, our method declares this candidate as a
new feature or supporter of an existing feature. If the similar-
ity score of the candidate is lower than a predefined similarity
threshold, a new feature is discovered; otherwise the most
similar (i.e., the winner) feature’s weights are updated in an
unsupervised manner. This discovery scheme allows us to
remove the number of filters hyperparameter from the CNN
architecture.

Contrary to the conventional CNN approach, in which
thousands of epochs are required for training, our method
discovers the filters from the training set in a self-organizing
manner by looking at each training sample only once.
This allows us to completely ignore the filter initializa-
tion techniques and the subsequent training of the filters
via backpropagation due to the random initialization of
the weights.

In this section, we begin with a brief introduction to the
Neocognitron architecture, WTA, and AiS rules. We continue
with the details of our unsupervised approach.

A. NEOCOGNITRON
The first CNN architecture based on the findings of [45] is
proposed by Fukushima [46] in 1980. In contrast to the most
recent CNN implementations, Fukushima’s Neocognitron is
not trained using a gradient based algorithm. The architecture
is composed of S and C cell planes, which are the predeces-
sors of the convolutional and pooling layers in modern CNNs.

Early Neocognitron architecture training is shaped around
the WTA approach. According to the WTA, when an input
pattern is introduced to the system, simple cells compete
with each other to be the winner. The simple cell with the
highest response to the input becomes the winner of the
cell plane that it belongs to. Simple cell planes eventually
become selectively sensitive to specific features due to the
self-organization provided by the WTA algorithm. In [42],
the WTA rule is utilized with a similarity threshold to deter-
mine the generation of new filters.

Later, in 2013, Fukushima proposes another training rule
for Neocognitron termed AiS [43]. According to the AiS
algorithm, when none of the current simple cells are activated
for an input stimulus, this stimulus is used to form a new
simple cell. The values of the stimulus vector that generates
a new cell are used as the weights of the new cell. The
weights of this cell are fixed and never updated. Therefore,
the AiS rule maps all features in the input stimuli as simple
cells.

In our approach, we integrate the ideas of theWTA andAiS
rules for the discovery of convolutional layer filters among
filter candidates drawn from the training images. We update

VOLUME 11, 2023 49395



T. Erkoç, M. T. Eskil: Novel Similarity Based Unsupervised Technique for Training Convolutional Filters

the weights of the discovered filters in an unsupervised man-
ner in contrast to the AiS rule.

B. CONVOLUTIONAL FILTER DISCOVERY
We employ an unsupervised two-step evaluation process for
the filter extraction from a given dataset. The first step
involves the extraction of filter candidates from the training
dataset. The second step is the unsupervised selection of
filters from the candidates based on a similarity threshold.
The entire process examines the training images only once,
in contrast to backpropagation, in which multiple passes of
the training images are required to train the filters. After
the proposed method examines each image in the training
set once, the training of the filters in the current convolu-
tional layer is considered complete and no additional weight
updates are applied to the discovered filters. The first step is
executed on the CPU, whereas convolution and max-pooling
operations are executed on the GPU. The details of the imple-
mentation of these two steps are explained in the following
sections.

1) CENTER OF GRAVITY BASED CANDIDATE FILTER
EXTRACTION
Convolutional filters are feature detectors that operate on a
receptive field. Based on this fact, we extract the filter candi-
dates from the input training images by cropping patches with
strides of 1, as in our previous study [47]. However, cutting
out patches from training images in this fashion leads to a
very high number of candidates that often include no useful
information. The number of the candidates directly affects
the filter extraction running time because the similarities are
calculated using computationally intensive cross-correlation
in [47]. Thus, we propose an elimination process to maintain
the set of filter candidates at an acceptable size while preserv-
ing crucial information. This elimination process is composed
of variance and center of gravity (CoG) based elimination
procedures. In combination with a reduced candidate set,
we also calculate the similarities using dot product instead
of cross-correlation, which leads to a huge speed gain (up
to 16 times) while improving the accuracy compared to our
previous work [47].

Before the first elimination step, all possible image patches
are cut out from the input images with a specified stride and
shape. However, some patches are expected to carry no useful
information consisting of only the background. Therefore,
we discard image patches with a variance of 0.

The second elimination step is based on the CoG of the
image patch. While cutting out the image patches, if the
stride value is small, several image patches containing the
same feature in different positions are obtained. To remove
redundant image patches, we calculate the CoG for each
image patch. If the calculated CoG value is not within the
range of ± 0.5 pixels in both the x and y axes from the
center of the image patch, it is discarded. The remaining
image patches form a set of filter candidates. The eliminations

Algorithm 1 Unsupervised Filter Learning
Input: images/feature maps
Output: filter weights matrix WL

1: f0 ← True
2: if L ̸= 0 then
3: Obtain feature maps
4: end if
5: for each image/feature map do
6: Obtain candidate filters set C
7: if L is empty then
8: Set weights of the new filter WL

0 with C0
9: Set supporter count such that ςL0 ← 1
10: Set number of filters such that ηL ← 1
11: continue
12: end if
13: for each candidate Ci do
14: Calculate similarity scores S⃗
15: if highest similarity score S⃗j > threshold then
16: Update weights of the similar filter WL

j with (1)

17: Increment supporter count such that ςLj ← ςj + 1
18: else
19: Set weights of the new filter WL

n with Ci
20: Set supporter count such that ςLn ← 1
21: Increment number of filters such that ηL ← ηL + 1
22: end if
23: end for
24: end for
25: for each WL

j do

26: Stretch filter weights WL
j to [−1, 1]

27: Update filter positive weights with (2)
28: Update filter negative weights with (3)
29: end for
30: WL.trainable← False

applied to the image patches ensure that attention is on the
features that are useful in extracting the key elements from the
training images. The same filter candidate extraction process
is applied to the feature maps in the deeper layers.

2) EXTRACTION OF FILTERS FROM THE CANDIDATES SET
After obtaining the filter candidates set C from the input
images (or feature maps in the hidden layers), the next step is
the extraction of the filters among the candidates.

In the proposed method, the convolutional layers always
start as a blank slate, and the filters are discovered dynam-
ically from the data observed in C. The training algorithm
depends on the similarity between the candidate and current
layer filters to discover new ones. We train the convolutional
layers one at a time using Algorithm 1.

The first convolutional layer is the input layer, which
receives the training images as inputs. Thus, unprocessed
training images are used to obtain the filter candidates set
C. According to our method, each layer L is initially empty.
Thus, the first candidate filter selected from set C becomes
the first discovered filter.

Each filter has a supporter count, which is crucial for
the weight updates. This signifies the number of times the
associated filter becomes the winner (i.e., the most similar
filter to the candidate with a similarity beyond the threshold
value) when a candidate is presented to the layer. Its initial
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value is set to 1 when the candidate is established as a new
filter for the current layer.

After the first filter is discovered, the algorithm starts
judging the remaining candidates one by one against the
discovered filters to decide whether they carry features that
are different enough to become new filters. To determine
whether a candidate Ci can become a new filter, similarity
scores S⃗ are calculated for the candidateCi with all previously
discovered filtersWL of the current layer L. The similarities
are calculated with dot product instead of cross-correlation
which leads to a large speed gain with the reduced candidate
set (up to 16 times) while improving the accuracy compared
to [47]. Each discovered filter in layerLwants to represent the
remaining candidates. To represent a candidate, the filterWL

j
must be the most similar filter to that candidate. Therefore,
the filter with the highest similarity score S⃗j becomes the
winner for candidate Ci. However, being the most similar fil-
ter is not sufficient to represent the candidate. The similarity
score S⃗j must also be above a predefined similarity threshold,
which indicates that the candidate Ci carries a pattern that
has already been encountered in the past. Thus, this candidate
cannot become a new filter, but a supporter of an existing
filter (i.e., the winner). In this case, our algorithm updates
the weights of the winner filterWL

j according to (1), and the
supporter count of the winner filter is incremented by one.

WL
j ←WL

j +
Ci −WL

j

ςLj + 1
(1)

If the similarity score S⃗j is less than the similarity threshold
value, the algorithm determines that the candidate Ci carries
a pattern that has not been previously encountered. Thus,
candidate Ci is a new discovery for the current layer L. The
filter weights are set with weights of Ci and the supporter
count becomes 1. This process is illustrated in Fig.1. The
filter discovery scheme is repeated until all candidates in C
are processed.

After all candidates are processed, we apply a normal-
ization routine to the discovered filters as opposed to our
previous work [47]. The normalization routine begins by
stretching the filter weights to the [-1,1] interval. Then, the
positive and negative filter weights are updated separately
using (2) and (3). The last step of the proposed algorithm is to
set the filter weights WL as nontrainable, because we do not
allow training these filters any further with backpropagation.

WL(+)
j ←WL(+)

j /|
∑

WL(+)
j | (2)

WL(−)
j ←WL(−)

j /|
∑

WL(−)
j | (3)

In order to utilize the output of our algorithm, we create
a Keras [48] Sequential model and add a convolutional layer
to this model. Keras expects hyperparameter values for the
constructor of the convolutional layer. One such hyperpa-
rameter is the number of filters and the other is the weight
initialization scheme. Because our algorithm discovers and

FIGURE 1. The proposed filter extraction process. When filter candidate
Ci is selected from the set of candidates, similarity scores between Ci and
all previously discovered filters of the current convolutional layer are
calculated. In the figure, the highest similarity is between candidate Ci
and filter f2. If the similarity is greater than the similarity threshold, filter
f2 is updated and the candidate Ci is discarded. Otherwise, candidate Ci
becomes a new filter for this convolutional layer.

trains a number of filters, we need neither initialize nor train
the filters of the convolutional layer of the Keras model via
backpropagation. We set the number of filters parameter as
the number of filters ηL discovered by our algorithm. The
weights of the convolutional layer are then set with the output
of our algorithmWL. We configure the trainable parameter of
the convolutional layer L as False to prevent further training
of the convolutional layer in the Sequential model. If the
model requires a max-pooling layer following the convolu-
tional layer, a MaxPool2D layer is added to the Sequential
model.

The process of filter discovery is slightly different for the
subsequent convolutional layers. In the deeper layers, instead
of the training images, feature maps are processed to form the
candidate setC. The remainder of the filter discovery process
is the same.

IV. IMPLEMENTATION AND EXPERIMENTS
The proposed method is applied to different CNN models to
evaluate its feature extraction performance. The experiments
are conducted with handwritten character and digit datasets
MNIST [49], EMNIST [50], Kuzushiji-MNIST [51], and
fashion items dataset Fashion-MNIST [52].

A. EXPERIMENTAL SETUP
Experiments are conducted using models with different
architectures, as shown in Table 1. All models in our experi-
ments are implemented using Keras with Theano [53] back-
end. Aside from the configuration of convolutional layers,
Keras handles the execution of convolution and max-pooling
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TABLE 1. CNN model types that are used in experiments. Convolutional
layers are shown with filter size n × n where n is one of 3 or 5. Max
pooling layers apply maxpooling operation to feature maps on m × m
windows with strides of 2 where m is 2.

operations on GPU. On all models, the fully connected lay-
ers are trained by Keras. ReLU is chosen as the activa-
tion function for all layers except the last one. Categorical
cross-entropy is chosen for the evaluation of the loss, and
Adadelta [54] is used for weight updates on fully connected
layers. All convolutional layer filter weights are set with the
output of our proposed method, and they are frozen (i.e.,
untrainable) so that they cannot be trained anymore by Keras.
The fully connected layers are trained for 50 epochs. Experi-
ments are run on a desktop computer using a GTX1050 GPU
with 2GBs of VRAM and a 3.6 GHz Intel Core i7 7700 CPU.
Further implementation details of the models used in the
experiments is shared in the Appendix A.

B. DATASETS
The following datasets are used in the experiments to evaluate
the performance of the proposed approach without applying
any preprocessing or data augmentation on them.

1) MNIST
MNIST is a handwritten digit dataset. It consists of
60000 training and 10000 test images. For our experiments,
the training set is divided into 50000 training and 10000 val-
idation images. The validation set is randomly selected and
separated from the original training set. The distribution of
the classes is unbalanced in both the training and validation
sets.

2) EMNIST-DIGITS
Extended Modified NIST (EMNIST) is an extended ver-
sion of the MNIST dataset, which includes both hand-
written digits and letters gathered from the NIST Special
Database 19 dataset. It is organized into different subsets
such as EMNIST-Letters, EMNIST-Digits, and EMNIST-
Balanced. We use EMNIST-Digits subset in our experiments.
The EMNIST-Digits subset contains 240000 training and
40000 test samples. The last 40000 images of the training
set has already been arranged as a validation set [50]. The
distribution of the classes is balanced in the preseparated
validation set.

3) KUZUSHIJI-MNIST
Kuzushiji MNIST is a dataset for old cursive Japanese that
contains ten different hiragana classes. In cursive Japanese,
each hiragana has more than one drawing style because they
are derived from different kanjis. Thus, each class is repre-
sented bymore than one character with a completely different
drawing style. It is a challenging dataset compared to the
original MNIST dataset with extensive intraclass variations.
The training, validation, and test set image counts are the
same as the original MNIST. The validation set is randomly
selected and separated from the original training set. Thus,
the distribution of classes is unbalanced in both training and
validation sets.

4) FASHION-MNIST
Fashion-MNIST is an MNIST-like dataset which contains
images of fashion products. The dataset provides a training
set of 50000 images and a test set of 10000 images. We parti-
tion the dataset into training, validation, and test sets applying
the same procedure used on the MNIST dataset.

C. PERFORMANCE METRICS
To assess the performance of the proposed method, we cal-
culated accuracy (4), precision (5), recall (6), specificity (7)
and F1-score (8) for each class of the given dataset per model.
To calculate these metrics for classi, we assume that
• True Positive (TP): number of images that belong to
classi and are correctly identified as classi;

• True Negative (TN): number of images that belong to
other classes and are correctly identified as other classes;

• False Positive (FP): number of images that belong to
other classes but are incorrectly identified as classi;

• False Negative (FN): number of images that belong to
classi but incorrectly identified as other classes.

We also report the overall accuracy of all models.

accuracy =
TP + TN

TP + TN + FP + FN
× 100 (4)

precision =
TP

TP + FP
(5)

recall =
TP

TP + FN
(6)

specificity =
TN

TN + FP
(7)

F1-score = 2×
precision× recall
precision + recall

(8)

D. RESULTS
Experiments are conducted by tuning the similarity threshold
to evaluate the performance of our proposed method. The
value of the similarity threshold is selected from the inter-
val [0, 1], which corresponds to 0%-100% similarity. The
threshold values are selected with steps of 0.1 using grid
search to find the best threshold values for convolutional
layers. The values below 0.5 for the similarity threshold do
not perform well because the number of filters extracted from
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TABLE 2. Number of 5 × 5 filters extracted in each layer and classification
accuracy of CNN models on the MNIST dataset with different similarity
thresholds. Only the best performance is reported for each model.

TABLE 3. Confusion matrix of Model type A for MNIST dataset.

the datasets decreases significantly. We avoid preprocessing
or data augmentation of any kind to assess our approach in
isolation. Each model is trained five times and the best results
are presented in the following sections.

1) PERFORMANCE ON MNIST
We apply various combinations of similarity thresholds to
each model, as shown in Table 1. In Table 2, we show
the similarity threshold value used for the first convolutional
layer as T1, the similarity threshold value used for the first
convolutional layer as T2, etc. The number of filters extracted
for the first convolutional layer when the similarity threshold
value T1 is used is shown in the table with FC1. We use
the same analogy for the remaining convolutional layer filter
counts as FC2, FC3, etc.

We observe that the 5 × 5 filters provide higher accuracy
values in the experiments compared to the smaller 3×3 filters.
Model type A achieved the best classification performance
on the MNIST dataset with 99.19% accuracy, as shown in
Table 2. The filter extraction process for the convolutional
layers and training of the best-performing model are com-
pleted within 30 minutes.

Ourmodel makes 81 incorrect predictions out of 10000 test
images. The confusion matrix for the model is presented in
Table 3. We observe that the best predicted digit class is 1,
whereas the most confusing class is digit 9, as presented in
Table 4.

2) PERFORMANCE ON EMNIST-DIGITS
We observe that using a filter size of 5 × 5 results in higher
accuracy values in the EMNIST-Digit experiments as in the

TABLE 4. Performance metrics of Model type A for MNIST dataset.

TABLE 5. Number of 5 × 5 filters that are extracted in each layer and
classification accuracy of CNN models on the EMNIST-Digits dataset with
different similarity thresholds. Only the best performance is reported for
each model.

TABLE 6. Confusion matrix of Model type A for EMNIST-Digits dataset.

MNIST experiments. The best performing model is again
Model type A with 99.39% accuracy on the test set, as shown
in Table 5.

Our model incorrectly predicts 244 of 40000 test images.
A confusion matrix is presented for this model in Table 6.
The best predicted class is digit 6, whereas digit 8 is the most
confusing class for the model, as shown in Table 7.

3) PERFORMANCE ON KUZUSHIJI-MNIST
We observe that selecting a filter size of 3 × 3 yields better
results in the Kuzushiji-MNIST dataset compared to the filter
size of 5×5 used in the MNIST and EMNIST-Digit datasets.
The best performance is observed on model type B, with an
accuracy of 95.03%(see Table 8).
The total number of errors in the test set prediction is 497.

A confusion matrix for the best model is presented in Table 9.
The best predicted class is class 3, whereas class 2 is the
most confusing character for our model, with a recall of 0.91,
as can be seen in Table 10.
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TABLE 7. Performance metrics of Model type A for EMNIST-Digits dataset.

TABLE 8. Number of 3 × 3 filters extracted in each layer and classification
accuracy of CNN models on Kuzushiji-MNIST dataset for different
similarity thresholds. The best performance is reported for each model.

TABLE 9. Confusion matrix of Model type B for Kuzushiji-MNIST dataset.

TABLE 10. Performance metrics of Model type B for Kuzushiji-MNIST
dataset.

4) PERFORMANCE ON FASHION-MNIST
Weobserve that the experiments achieved better results with a
filter size of 3×3 that with 5×5 filters. The best-performing
model is Model type B with 90.11% accuracy, as shown in
Table 11.

TABLE 11. Number of 3 × 3 filters extracted in each layer and
classification accuracy of CNN models on the Fashion-MNIST dataset for
different similarity thresholds.

TABLE 12. Confusion matrix of Model B for Fashion-MNIST dataset. The
classes are numbered from 0 to 9. The class labels in order are Tshirt/top,
Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot.

The lowest performance is obtained on the Fashion-MNIST
dataset with the Shirt class as shown in Table 12. We observe
that articles of clothing that belong to the Shirt class are
often confused with the T-shirt/Top, Coat, Pullover, and
Dress classes because of interclass similarity in the dataset
samples. The best predicted class is Bag, with a 98.2% correct
prediction rate, as shown in Table 13.

E. DISCOVERED FILTERS
1) MNIST
The filters extracted from theMNIST dataset in the first layer
ofModel B are shown in Fig. 2. Directed edges and curves can
be observed in the extracted filters. The filters obtained using
our algorithm are meaningful representations of the visual
cues in the dataset. An interesting observation is that some
of our features converged to Gabor-like filters, which have
been frequently used in the literature.

2) EMNIST-DIGITS
The EMNIST dataset is an extended version of the MNIST
dataset. This is why some of the filters extracted from the
EMNIST-Digits training set (see Fig. 3) are the same or very
similar to those shown in Fig. 2.

3) KUZUSHIJI-MNIST
In the Kuzushiji-MNIST experiments, we observe higher
classification accuracy by extracting 3×3 filters compared to
extracting 5×5 filters. The filters extracted from the training
set for the first convolutional layer are illustrated in Fig. 4.
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TABLE 13. Performance metrics of Model type B for Fashion-MNIST
dataset.

FIGURE 2. The filters discovered from the MNIST training images using
our unsupervised algorithm. All filters are 5 × 5 and the similarity
threshold is 0.6 for the first convolutional layer as shown in Table 2.

FIGURE 3. The filters discovered from the EMNIST-Digits training images
using our unsupervised algorithm. All filters are 5 × 5 and the similarity
threshold is 0.6 for the first convolutional layer as shown in Table 4.

Directed edges and parts of curved strokes can be observed
from the extracted filters.

4) FASHION-MNIST
The filters extracted from the Fashion-MNIST dataset con-
tains features such as directed edges and corners. We have
more filters that capture smooth curves in the MNIST and
EMNIST-Digits datasets because many digits have more
curve like features compared to articles of clothing in the
Fashion-MNIST dataset. The extracted filters are shown in
Fig. 5.

FIGURE 4. The filters discovered from the Kuzushiji-MNIST training
images using our unsupervised algorithm. All filters are 3 × 3 and the
similarity threshold is 0.6 for the first convolutional layer as shown in
Table 6.

FIGURE 5. The filters discovered from the Fashion-MNIST training images
using our unsupervised algorithm. All filters are 3 × 3 and the similarity
threshold is 0.7 for the first convolutional layer as shown in Table 8.

FIGURE 6. Visualization of the 54 features extracted in the second layer
from the MNIST training images using Model A.

5) FILTERS IN DEEPER LAYERS
The first convolutional layer filters are easy to plot,
as their input weights represent specific features and
can be simply reshaped to reconstruct images. How-
ever, beyond the first layer, the weights are not directly
mapped to the input pixels. Thus, a method is imple-
mented to visualize the features in deep layers to obtain
a better understanding of the features extracted by our
algorithm.

After the training is complete, we feed the training set to
the trained model again to obtain the feature maps for each
image at the specified layer. The pixel with the highest value
among all the feature maps is marked for each training image.
The coordinates of this pixel are traced back to the original
training image. The region is marked in the original image
contained the feature that stimulates this specific filter the
most. This is depicted in Fig. 6 using the MNIST dataset.
Fig. 6 suggests that the filters are specialized to seek features
that gradually evolve to represent more complex features.
These complex features represent parts of the digits such
as closed loops and curves that are present in digits such
as 9 or 4.
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FIGURE 7. Test images from MNIST dataset’s digit class 1 that are
incorrectly labeled by Model A. The second, fourth, and fifth images are
classified as 6 due to the artifacts and the curves present in the images.

FIGURE 8. Test images from MNIST dataset’s digit class 9 that are
incorrectly labeled by Model A.

F. MISCLASSIFIED SAMPLES
1) MNIST
For the MNIST dataset, our model performs nearly perfectly
in labeling digit 1 samples in the test set by making only
5 incorrect predictions out of 1135 digit 1 samples.

The mispredicted digit 1 samples can be seen in Fig. 7.
The second, fourth, and fifth images are classified as digit
6. We observe that the slight angle and curve in the digit
strokes and the artifacts in the samples can be the reasons
that mislead the prediction. The first and third misclassified
images are easy to label for human observer, whereas the
trained model predicts them as digits 2 and 3, respectively.
We observe some base features that are also present in the
other digit 2 samples in these two test samples, which can
easily sway the decision towards an incorrect classification.
When the top-2 predictions for each of these test samples are
checked, we observe that the second most likely prediction
is digit 1 with a very close confidence level to the top-1
prediction.

Our model’s lowest prediction score belongs to digit 9 for
the MNIST test set. Our model mislabels 12 digit 9 images
(see Fig. 8). Our model tends to vote for different digits
based on different styles. When the loop diameter is small,
the image is either labeled as digit 1 or 7 based on the length
of the loop because the loop feature becomes indiscernible
or completely lost during the convolution and pooling opera-
tions. The first image in the second row shows an interesting

FIGURE 9. Test images from EMNIST-Digits dataset’s digit class 6 that are
incorrectly labeled by Model A.

case. The bottom half of the digit is cropped, rendering the
image unrecognizable. All digit 4 predictions are made for
unusual digit 9 samples. Only one of them is recognized as
digit 9 by a human observer. Even though our model’s top-1
prediction for these samples are incorrect, the nextmost likely
prediction for 8 of these samples are digit 9.

2) EMNIST-DIGITS
The best prediction accuracy is obtained from digit 6 samples
of the EMNIST-Digits test set. The erroneously predicted
samples are shown in Fig. 9. Among the 4000 digits 6 test
samples, 15 incorrect predictions are made by our model.
We observe that some of the mispredicted samples do not
resemble digit 6 at all. One of the samples actually has a
two-digit number 66 instead of digit 6 in it. We observe
that rotation and missing parts due to cropping influence our
model to favor digit 4 during prediction. Aside from digit 4,
digit 0 is a common misprediction. When top-2 predictions
are observed, digit 6 is the next prediction in 12 of 15 cases.

The worst prediction performance is observed for the digit
8 class. Our model mislabels 40 of the 4000 digit 8 images
from the EMNIST-Digits test set. Some of the mispredicted
images in Fig. 10 are missing digit parts that would help cor-
rect the prediction. We observe that digit 8 is more frequently
predicted as digit 9. When inspected, it can be seen that 4 of
those images do not have a loop in the lower half of digit 8.
The common feature in the wrong predictions is the lack of
proper curves that the model is expecting for a digit 8 sample
to have. Some of the samples do not even resemble digit 8.
The second best prediction for 22 of the incorrectly predicted
images are digit 8.

3) KUZUSHIJI-MNIST
In the Kuzushiji-MNIST experiments, our best model
achieves the best classification performance on class 3 with
21 errors in prediction. We observe that class 3 samples
are often confused with class 2 samples and are labeled as
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FIGURE 10. Test images from EMNIST-Digits dataset’s digit class 8 that
are incorrectly labeled by Model A.

FIGURE 11. Test images from Kuzushiji-MNIST dataset’s class 3 that are
incorrectly labeled by Model B.

FIGURE 12. Test images from Kuzushiji-MNIST dataset’s class 2 that are
incorrectly labeled by Model B.

such at the test time. Some of the images in Fig. 11 have
features similar to those of the other classes, which make the
prediction more difficult. The second best prediction for the
13 of the incorrectly predicted images are class 3.

Themost confusing class is 2 for ourmodel. Class 2 images
are often labeled as class 3 by our model. When we examine
the test images that are mislabeled as class 3, we observe that

FIGURE 13. Test images that belonged to Bag class but incorrectly labeled
as different classes by our trained model B.

FIGURE 14. Test images that belonged to Shirt class but incorrectly
labeled with similar classes by model B.

most of them contain features similar to those of the class
2 samples (Fig. 12). The second best prediction for 55 of these
samples is correct.

4) FASHION-MNIST
Ourmodel performs best whenBag class samples are encoun-
tered. 18 out of 1000 bag test images are incorrectly pre-
dicted. In Fig. 13, incorrectly labeled test samples belonging
to Bag class can be observed. For example, the second image
in the first row is predicted as a Pullover sample. The two long
sleeve-like parts of the bag image could be the misleading
features in the prediction in this example. Bag class images
are most commonly confused with the Dress class images
in our model. When the second-top predictions are checked
for these images, only 2 are correctly predicted. Because
the Fashion-MNIST images are created by down sampling
colored fashion article images into the MNIST format, most
of the details/features of objects are lost. We think that some
of the errors in the test set can be avoided if the images are at
a higher resolution.

The Shirt class is the most confusing class for our model
with 265 misclassified test samples. Some of the incorrectly
predicted Shirt images from the test class are shown in
Fig. 14. The Shirt samples in the test set are commonly mis-
taken for T-shirt/Top class samples. When closely inspected,
it can be observed that our model learned to recognize the
fashion article in the image as T-shirt/Top when short or no
sleeves are present. When the top-2 predictions are inspected,
196 of the 265 are correctly predicted as Shirt.

V. DISCUSSION
Our method trains the convolutional layers in an unsuper-
vised scheme without using backpropagation, while train-
ing the fully connected layers in a supervised manner. Pre-
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TABLE 14. Comparison of the number of epochs of training needed for
convolutional filters, whether data augmentation and ensemble of
networks are used. The legend to read the table: ✓: applied, ×: not
applied, NA: no information available.

vious studies either trained the network end-to-end in a
supervised manner, unsupervised manner with pseudo-label
backpropagation, or a mix of unsupervised feature learning
for initialization using supervised backpropagation. Com-
pared with supervised methods, we do not need any labels
to train the convolutional layers because no backpropaga-
tion is used in the training. In addition, our method can
extract filters without prior domain knowledge, in contrast
to self-supervised learning methods, where handcrafting of
pretext tasks requires domain knowledge to perform well.
Our method may appear similar to unsupervised pre-training,
which is used only to initialize the networkweights. However,
we do not use extracted filters for initialization, because we
avoid supervised training in the convolutional layers.

A. COMPARISON TO OTHER WORKS
We compare the performance of the unsupervised (Table 15),
mixed (Table 16), and supervised (Table 17) methods with
those of our proposed method. Other methods employ data
augmentation, ensembles, and a large number of training
epochs along with backpropagation training to achieve better
results, as summarized in Table 14.

1) COMPARISON TO UNSUPERVISED WORKS
The state-of-the-art classification accuracy of unsupervised
methods for the MNIST dataset is 99.21% [29], as shown
in Table 15. This accuracy is obtained from a clustering
setting that utilizes an ensemble of 15 AEs to form clusters.
These clusters are related to k-sets of pseudo-labels. A con-
sensus function selects only the points that receive the same
pseudo-label in all k-sets for the pseudo-label training of an
MLP. The strength of this method comes from the ensemble
of AEs. When only a single AE is used instead of an ensem-
ble, the accuracy decreases to 98.02%, which is worse than
that of our proposed method. For a fair comparison, we build
an ensemble that includes top-3 performing Model type A
networks that we obtain from running the proposed method.
This ensemble performs better than [29], with 99.28% accu-
racy on the test set. The k-sparse AE [37] discusses an
unsupervised training scheme in which the extracted features
are fixed, and a logistic regression classifier is trained using

TABLE 15. Comparison of the proposed model with other unsupervised
methods in the literature.

TABLE 16. Comparison of the proposed model with other mixed methods
in the literature.

these features. However, this unsupervised method achieves
an accuracy score of only 98.65% on the MNIST dataset.

The best unsupervised classification accuracy on the
Fashion-MNIST dataset belongs to SPC-best with 67.94%
accuracy. Other unsupervised methods are not shown in
Table 15 because the rest of the literature attains lower
accuracy.

To our knowledge, no unsupervised study has been con-
ducted with either EMNIST-Digits or Kuzushiji-MNIST
datasets in the literature.

2) COMPARISON TO MIXED METHODS
Masci et al. [34] train a CAE for unsupervised feature extrac-
tion, and those features are used to initialize a CNN. This
CNN is subsequently trained end-to-end in a supervised man-
ner. The classification accuracy of this method is 99.29%.
This method may resemble our proposed method; however,
after extracting features in an unsupervised manner, we nei-
ther use the features for initialization nor train them further.
A similar method [37] achieves an accuracy of 99.03%. The
features are extracted using a sparsity constraint on the AE
and fine-tuned in a supervised manner. For a fair comparison
between our proposed method and mixed methods [34], [37],
we use the output of our algorithm for convolutional filter ini-
tialization and fine-tuned the CNNmodel typeA (see Table 1)
with backpropagation.We report this model’s performance as
‘‘Ours init.+ train’’ in Table 16. We surpass the performance
of the mixed methods with 99.43% accuracy on the MNIST
test set.

The best mixed-method performance for Fashion-MNIST
is reported in [61]. They achieve 85.60% accuracy by training
AE and applying k-means clustering based on soft nearest
neighbor loss, which requires data labels. The performance of
‘‘Ours init. + train’’ for the Fashion-MNIST dataset exceeds
the performance of [61] by 6.33%without data augmentation.

49404 VOLUME 11, 2023



T. Erkoç, M. T. Eskil: Novel Similarity Based Unsupervised Technique for Training Convolutional Filters

TABLE 17. Comparison of the proposed model with other supervised
methods in the literature.

3) COMPARISON TO SUPERVISED WORKS
The state-of-the-art for MNIST is 99.83%, which is obtained
by training a capsule networks in a supervised manner [55].
We share this result only to demonstrate the best classification
accuracy achieved for MNIST among all the methods. Our
architecture does not involve capsules and is not similar
to [55] to compare. Architecturally similar methods Drop-
Connect [56] and MCDNN [57], both report results obtained
from an ensemble of networks with the help of data augmen-
tation. When no data augmentation is applied, the accuracy
of DropConnect’s [56] 5-network ensemble drops to 99.43%
with 1000 epochs of training. As opposed to this result, our
model offers a good alternative with a simple architecture (i.e.
no ensemble) which is much faster to train (only a single
epoch to train convolutional layers) and achieves 99.19%
accuracy. When we apply our method to the MNIST dataset
and use the extracted filter weights to initialize a singleModel
Type A network, we observe that our network performs the
same compared to the 5-network ensemble of DropConnect
without using data augmentation on the MNIST dataset with
only 50 epochs of training.

The state-of-the-art performance on the EMNIST-Digits
dataset is 99.43% with the supervised
OptConv+Log+Perc [58] method, in which a large optical
convolution with logarithmic activation is applied before
perceptron training on the images. The experiment in [58]
requires a special camera setup to offer the best result,
whereas we work on raw dataset images. In contrast to our
study, [58] applies data augmentation to the training images.
Our best-performing model achieves 99.39% accuracy on the
EMNIST-Digits test set, as listed in Table 5. This perfor-
mance score is close to the current best performance result.
For a fair comparison, when we further train the extracted
filters, we observe that the accuracy of ourmodel outperforms
that of [58] with 99.63% accuracy.

The best performance on the Kuzushiji-MNIST dataset
is observed on model B, with an accuracy of 95.03% (see
Table 8), which is close to the simple CNN performance
of 95.12% in the original Kuzushiji-MNIST paper [51].
Compared to the MNIST dataset, there are significant intr-
aclass variations in Kuzushiji-MNIST. Most of the samples

belonging to the same class do not resemble each other. This
renders the classification of this dataset a difficult task with-
out data augmentation. The state-of-the-art accuracy for this
dataset is 99.05% using CAMNet3 [59]. This architecture is
quite different from our architecture. CAMNet3 is amultipath
CNN architecture in which data flow is routed to one of
the parallel networks based on the content of the images.
Data flow routing between the parallel networks in CAMNet3
allows the intraclass variation in Kuzushiji-MNIST to be
learned better than the classic CNN architecture used in our
experiments. When we use the extracted filters for initializa-
tion of the convolutional layers and apply backpropagation,
the performance of the model increases to 96.48% without
data augmentation.

Compared to MNIST, Fashion-MNIST has more complex
features, more intraclass variations, and interclass similari-
ties. Thus, we expect a decrease in the classification per-
formance compared to that of MNIST. The state-of-the-art
accuracy for the Fashion-MNIST dataset is obtained from
a supervised network, with an accuracy of 96.41% [60].
Wide-Res-Net-28-10 [62] and Shake-Shake [63] regulariza-
tion along with data augmentation methods are used in [60].

VI. CONCLUSION
We propose an unsupervised and backpropagationless train-
ing algorithm for training the convolutional layers of CNNs.
Our algorithm performs training by extracting new features
from a training set without using label information. The entire
filter extraction process is unsupervised. Conventionally, the
correct number of filters for the convolutional layer must be
determined using hyperparameter optimization techniques.
However, the hyperparameter that defines the number of
neurons is no longer needed to be determined by applying
hyperparameter optimization tecniques because it is auto-
matically determined by our algorithm at the end of the
filter extraction process. The self-discovery of filters does
not require a weight initialization mechanism. Thus, we can
skip the selection of a suitable initialization algorithm for
the convolutional layer weights based on the given dataset,
model, or activation function.

We obtain promising results on different datasets without
the aid of data preprocessing, augmentation, or carefully
constructed complex architectures. We demonstrate that it is
possible to train convolutional layers through a single pass on
training set images using an unsupervised backpropagation-
less approach, as opposed to thousands of iterations required
in other studies in the literature. Although our performance on
different data sets appears to be lower than that of supervised
methods, the results we obtain results that are comparable
to the state-of-the-art using a much simpler and easily train-
able model. When our model is adjusted to compete more
fairly with supervised studies, we even see it performs on
par or better compared to some supervised works using the
MNIST or EMNIST-Digits datasets.When compared to other
unsupervised or mixed works on even ground, our method
performs with higher accuracy.
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TABLE 18. Architectural details of CNN Model type A built for MNIST
dataset.

TABLE 19. Architectural details of CNN Model type A built for
EMNIST-Digits dataset.

Possible future directions for this work include improving
the classification performance when there are too many vari-
ations within the same class, and extending this work to color
images.

APPENDIX A
ARCHITECTURAL DETAILS OF THE MODELS
The number of filters and the weights of the filters obtained
as the output of the proposed algorithm are used in the convo-
lutional layers in all of the models used in our experiments.
In all models, the convolutional layers are set as untrainable
so that backpropagation training is not applied to them. The
convolution operation is applied with a stride of 1 in each
convolutional layer. The padding is set to be the same in the
convolutional layers such that the output has the same size
as the input for these layers. We set the use_bias parameter
to false in the convolutional layers. Max pooling is applied to
2×2windowswith strides of 2.We useReLU as the activation
function in all convolutional and dense(fully connected) lay-
ers, except the last dense layer, where we use softmax. In all
models, we have only one dropout layer that is configured to
drop 50% (rate= 0.5) of the incoming connections randomly
during the training of the dense layers. Only the dense layers
are trained for 50 epochs with the Adadelta optimizer config-
ured with default values (lr=1.0, rho=0.95, epsilon=None,
decay=0) and the loss function categorical cross entropy.

In Tables 18-21, the convolutional layer receptive field size
and the number of filters are shown as conv_[receptive field
size, number of filters]. Dropout rate is shown as a percentage
in square brackets. Input and output shapes are shown in
channels-first fashion (batch_size, channels, rows, columns)
for the convolutional and max pooling layers because we use
Theano as the backend.

TABLE 20. Architectural details of CNN Model type B built for
Kuzushiji-MNIST dataset.

TABLE 21. Architectural details of CNN Model type B built for
Fashion-MNIST dataset.

The ensembles that we use for comparisons are built using
the top three best-performing models obtained by applying
the proposed algorithm to the specified datasets. We compute
the average of the outputs of the three networks to report the
accuracy of the ensemble.

A. MNIST MODEL
See Table 18.

B. EMNIST-DIGITS MODEL
See Table 19.

C. KUZUSHIJI-MNIST MODEL
See Table 20.

D. FASHION-MNIST MODEL
See Table 21.
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