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AN OPTIONAL SERVICE MARKOVIAN QUEUE WITH WORKING

DISASTERS AND CUSTOMER’S IMPATIENCE

P. V. LAXMI1∗, E. G. BHAVANI1, §

Abstract. In this paper, we develop a new class of Markov model with working disas-
ters, second optional service, and reneging of customers. The disasters can occur during
regular busy period. Whenever a disaster occurs, server continues to serve the customers
with a lower service rate instead of completely stopping the service and after the com-
pletion of disaster recovery it switches to the regular busy period. Steady-state solution
of the model is obtained by using probability generating function technique and stability
condition is derived. Further, some important performance measures are presented. A
cost model is developed in order to obtain the optimal service rates during first essen-
tial service, second optional service and during disaster period using quadratic fit search
method. At the end, we provide some numerical examples to visualize the applicability
of the model in practical situations.

Keywords: Queue, first essential service, second optional service, working disasters,
reneging.
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1. Introduction

Queueing systems with removals of customers before being served are often encountered
in many practical situations. One type of such situation occurs in queueing models with
reneging and another type appears in systems that are subject to disasters. The crucial
difference between the above two situations is that the customers decide to abandon the
system according to their own desire in the case of reneging, while they are forced to leave
the system in the case of disasters. A disaster is also called as a catastrophe, mass exodus,
or queue flushing [4].

There has been a great deal of interest in the development and analysis of queueing
models with system disasters. Many authors treated the queueing models with catastro-
phes under various assumptions. A catastrophe may arise either from outside the system
or from another service station. Such cases can be seen in inventory systems, computer
network applications, telecommunications, etc. Kumar et al. [6] analyzed an M/M/1
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queueing system with catastrophes, server failures and non-zero repair time. Using gen-
erating function technique, transient and steady state analysis of an M/M/1 queue with
balking, catastrophes, server failures and repairs has been carried out by Tarabia [15]. A
dynamically changing road traffic model which occasionally suffers a disaster resulting in
loss of all the vehicles (diverted to other routes) has been examined by Vinodhini and
Vidhya [16]. Some more articles on queueing networks with catastrophes can be found
in Kim and Lee [5], Bura [3], Ammar [1], Wang et al. [17]. Recently, an M/M/1 retrial
queueing system with constant retrial rate and Poisson generated catastrophes has been
investigated by Li and Wang [7].

Queues with customer impatience have drawn significant attention in recent years.
When considering the customer impatience, the reneging plays an important role. Sud-
hesh [14] focused on transient solution of single server queue with system disasters and
impatient customers. Yechiali [18] investigated a queueing model with system disasters
and customer’s impatience when system is down and he derived various quality of service
measures using generating functions. A single server queue with reneging, catastrophes,
server failures and repairs has been discussed by Sampath and Liu [11]. Most recent work
on disaster queues with customer’s impatience can be seen in Zhang and Gao [19].

Queueing systems with second optional service (SOS) is another extensively researched
area in the literature. Queueing situations are commonly encountered in everyday life,
wherein the server performs first essential service (FES) to all arriving customers and after
completing the FES, SOS will be provided to those customers who demand it. Madan
[8] introduced the concept of SOS and illustrated a number of practical applications for
this type of two-phase service queue. Recently, Balasubramanian et al. [2] were able to
approximate the effects of catastrophe on a retrial queueing system with two kinds of
services, multiple vacation policy and customer’s impatience.

However, in all the models considered so far in the existing queueing literature with
disasters, the underlying assumption was that the disasters are related to the server and
causes the instantaneous departure of customers from the system including the one in
service. In practice, there are enormous situations where the disasters are biological in
nature and may not stop the service of a customer completely. Biological disasters have
devastating effects caused by an enormous spread of a certain kind of living organism that
may spread a disease, viruses on an epidemic or pandemic level. For example, the corona
virus COVID-19 pandemic which has severe health crisis that leads to an unprecedented
socio-economic impact. This has great impact on industries, IT sectors, etc. Companies
are faced with balancing the health and safety of their employees with the need to keep
the lights on. In order to reduce the production loss, instead of completely stopping the
process, they are allowing their employees to do work from home or to operate with 50
percent employees. Inspired by this, we have therefore, considered a new class of queueing
model with working disasters. The term “working disaster” is different from working
vacation, first formulated by Servi and Finn [13]. Working vacations are taken only after
completion of service of all the customers present in the system. In our paper, working
disaster is taken as “a disaster may occur at any time during busy period and when a
disaster occurs instead of completely stopping the service, server continues to provide the
service with lower service rate irrespective of the number of customers in the system”. The
inclusion of SOS makes the model more versatile and closer to many practical scenarios.

Therefore, in this investigation, we analyze an infinite capacity queueing system with
SOS, working disasters and customer’s impatience. Our model has applications in manu-
facturing industries, IT sectors, hospitals, etc. The primary objectives of this paper are:
(i) To derive the stability condition and steady-state solutions for the proposed queueing
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model. (ii) To develop a cost model that gives the optimum values of service rates in FES
(µ1), SOS (µ2), and disaster period (η). (iii) To investigate the effect of various parameters
on the performance characteristics of the system and the optimal values of µ1, µ2, and η.

The rest of this paper is organized as follows. Section 2 gives a description of the
queueing model. In section 3, we derive the stability condition using matrix geometric
method and steady state solution using generating functions. Some performance measures
and special cases of the model are discussed in Section 4. Section 5 and Section 6 present
the cost model and sensitivity analysis, respectively followed by conclusions in Section 8.

2. Model Description

We consider an M/M/1 queueing model with SOS, working disasters and customer’s
reneging. Customers arrive at the system according to a Poisson process with parameters
λb and λd, where λb and λd correspond to the arrivals during busy and disaster peri-
ods, respectively and we assume that λd < λb. The server provides FES to all arriving
customers and only some of them demand the SOS with probability r (0 ≤ r ≤ 1) af-
ter the completion of FES. Further, we assume that FES and SOS are provided by the
same server, and the server can serve only one customer at a time. It is assumed that
the service times during FES and SOS are exponentially distributed with rates µ1 and
µ2, respectively. During normal busy period, disasters occur randomly with a Poisson
arrival rate ξ. The occurrence of disaster resulting in the reduction of service rate. During
disaster period, the server serves the customers at an exponential rate η, where η < µ1,
and η < µ2. Customers who arrive during this time are only provided with FES. If a
disaster occurs during SOS of regular busy period, only that customer continues to get
SOS in the disaster period. Recovery time of the disaster is also exponentially distributed
with parameter φ. After the completion of disaster recovery, server switches its service
rate from η to µ1. The customers in this system are assumed to be impatient only during
disaster period. The reneging times are exponentially distributed with parameter α.

Practical justification of the model. Our model has real time applications in manufac-
turing industries. The make-to-order (MTO) strategy in manufacturing industry allows
customers to order products built to their specifications which includes computer and
computer products, automobiles, etc. Once the equipment is operational, the manufac-
turing production technician continues to monitor the equipment and materials produced
to ensure that the machinery is working correctly. If there are problems with equipment,
they repair or recalibrate it. After this process, goods are directed for delivery to those
consumers who have chosen for transportation facility. At present, manufacturing indus-
try has been hit in many ways due to COVID-19 pandemic. There has been a reduction
in the scale of operations, with consequent effect on quality, cost and production volumes.
As a result, size of the orders are also reduced, retailers are canceling orders, forced stores
closure, etc. In this scenario, ordering products, production of materials and transporta-
tion, COVID-19, reduction of order size, canceling of orders correspond to arrivals during
busy period, FES and SOS, disaster, arrivals during disaster, reneging, respectively, in
queueing terminology.

3. Mathematical Formulation of the Model

At time t, let L(t) be the number of customers in the system, and J(t) be the state of
the server, which is defined as
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J(t)=

 0, server is on disaster period,
1, server is in FES,
2, server is in SOS.

The process {(L(t), J(t)), t ≥ 0} defines a continuous-time Markov process with state
space χ ={(n, j) : n ≥ 0, j = 0, 1, 2}.
For mathematical formulation purpose, we define the following steady-state probabilities:
Pn,0=Probability that there are n number of customers in the system and server is on
disaster period, where n ≥ 0; Pn,1=Probability that there are n number of customers in
the system and server is rendering FES, where n ≥ 0; Pn,2=Probability that there are n
number of customers in the system and server is rendering SOS, where n ≥ 1.

3.1. Steady-state equations. Using Markov theory, the steady state equations for the
model are written as

(λd + φ)P0,0 = (η + α)P1,0 + ξP0,1, (1)

(λd + φ+ η + α)Pn,0 = λdPn−1,0 + ηPn+1,0 + αPn+1,0 + ξ(Pn,1 + Pn,2),

n ≥ 1, (2)

(λb + ξ)P0,1 = φP0,0 + (1− r)µ1P1,1 + µ2P1,2, (3)

(λb + µ1 + ξ)Pn,1 = λbPn−1,1 + (1− r)µ1Pn+1,1 + µ2Pn+1,2

+φPn,0, n ≥ 1, (4)

(λb + µ2 + ξ)P1,2 = rµ1P1,1, (5)

(λb + µ2 + ξ)Pn,2 = rµ1Pn,1 + λbPn−1,2, n ≥ 2. (6)

3.2. Stability condition. For deriving the stability condition, let us define the infinites-
imal generator Q of the process, which is given as

Q =


Â0 Ĉ0

B̂0 Â1 Ĉ1

B̂1 Â1 Ĉ1

B̂1 Â1 Ĉ1
...

...
...


where, Â0 =

(
−(λd + φ) φ

ξ −(λb + ξ)

)
, Ĉ0 =

(
λd 0 0
0 λb 0

)
, Ĉ1 =

 λd 0 0
0 λb 0
0 0 λb

,

B̂0 =

 η + α 0
0 (1− r)µ1
0 µ2

, B̂1 =

 η + α 0 0
0 (1− r)µ1 0
0 µ2 0

,

Â1 =

 −(λd + φ+ η + α) φ 0
ξ −(λb + µ1 + ξ) rµ1
ξ 0 −(λb + µ2 + ξ)

.

Let us define the matrix Ψ = B̂1 + Â1 + Ĉ1, given by

Ψ =

 −φ φ 0
ξ −rµ1 − ξ rµ1
ξ µ2 −µ2 − ξ

.

There exists a stationary probability vector Π = (π0, π1, π2) of Ψ such that

ΠΨ = 0, Πe = 1, (7)
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where e = [1, 1, 1]T . Using Theorem 3.1.1 in [9], the necessary and sufficient condition for
the system to be stable is as follows:

ΠB̂1e > ΠĈ1e. (8)

Solving Equations (7) and (8), the stability condition of our model is given by

ρ =
λb(φ+ ξ)(rµ1 + µ2 + ξ)

ξ(η + α+ λb − λd)(rµ1 + µ2 + ξ) + φ(µ2 + ξ)(1− r)µ1 + rφµ1µ2
< 1. (9)

Remark 3.1. Suppose that α = 0, η = 0, λb = λd = λ, ξ = 0, our model can be reduced
to the M/M/1 queue with SOS, then equation (9) becomes

λ

µ1
+
rλ

µ2
< 1,

which is in agreement with the stability condition obtained by Sekar et al. [12] (Section-5,
pp. 176).

3.3. Probability generating functions. Now, we derive the steady-state solution of
the model using probability generating function technique.
We define the probability generating functions (PGFs) for 0 < z < 1 as

G0(z) =

∞∑
n=0

Pn,0z
n, G1(z) =

∞∑
n=0

Pn,1z
n, G2(z) =

∞∑
n=1

Pn,2z
n,

with G0(1) +G1(1) +G2(1) = 1.

Theorem 3.1. For ρ < 1, η < µ1 and η < µ2 the PGFs can be expressed in terms of P0,0

as

G0(z) =

ξz

[
C2
A2

+

(
A2−B2
A2

)(
C1A2−C2A1
A2B1−A1B2

)]
− (η + α)(1− z)P0,0

λdz(1− z) + φz − (η + α)(1− z)−
(
ξzD1(A2−B2)
A2B1−A1B2

) ,

G2(z) =

[
C1A2 − C2A1

A2B1 −A1B2

]
+

[
D1A2G0(z)

A2B1 −A1B2

]
,

G1(z) =
C2

A2
− B2

A2
G2(z),

where

A1 = λbz(1− z) + ξz + µ1z − (1− r)µ1, B1 = −µ2, C1 = (µ1z − (1− r)µ1)P0,1,

D1 = φz,A2 = rµ1, B2 = −(−λb(1− z) + µ2 + ξ), C2 = rµ1P0,1, P0,1 =
φ

λb + ξ
P0,0.

Proof. Multiplying equations (1) and (2) with zn and summing over n gives

(λdz(1− z) + φz − (η + α)(1− z))G0(z) = ξz(G1(z) +G2(z))− (η + α)(1− z)P0,0. (10)

Similarly, multiplying equations (3), (4) and (5), (6) with zn and summing over n gives,
respectively

(λbz(1− z) + ξz + µ1z − (1− r)µ1)G1(z)− µ2G2(z) = (µ1z − (1− r)µ1)P0,1

+φzG0(z), (11)

rµ1G1(z)− (λb(1− z) + µ2 + ξ)G2(z) = rµ1P0,1. (12)
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Solving equations (11) and (12), we get

G2(z) =

[
C1A2 − C2A1

A2B1 −A1B2

]
+

[
D1A2G0(z)

A2B1 −A1B2

]
, (13)

G1(z) =
C2

A2
− B2

A2
G2(z). (14)

Now, substituting equations (13) and (14) in (10), we have

G0(z) =

ξz

[
C2
A2

+

(
A2−B2
A2

)(
C1A2−C2A1
A2B1−A1B2

)]
− (η + α)(1− z)P0,0

λdz(1− z) + φz − (η + α)(1− z)−
(
ξzD1(A2−B2)
A2B1−A1B2

) . (15)

where

A1 = λbz(1− z) + ξz + µ1z − (1− r)µ1, B1 = −µ2, C1 = (µ1z − (1− r)µ1)P0,1,

D1 = φz, A2 = rµ1, B2 = −(−λb(1− z) + µ2 + ξ), C2 = rµ1P0,1.

Also, from equation (13), we have

G′2(z) =
(C1A2 − C2A1)

′ +D′1A2G0(z) +D1A2G
′
0(z)− (A2B1 −A1B2)

′G2(z)

(A2B1 −A1B2)
.

(16)

By taking z = 0 in the above equation, we get

P0,1 =

(
φ

λb + ξ

)
P0,0. (17)

Therefore, we have seen that all the stationary probabilities can be derived in terms of
P0,0, which can be found from the result below. �

Theorem 3.2. For ρ < 1, 0 < η < µ1 and 0 < η < µ2, the probability P0,0 is given by

P0,0 =

[(
K1a0 + a1

K2

)
+

[(
−rµ1

rµ1 + µ2 + ξ

)
a0 +

(
φrµ1

ξ(rµ1 + µ2 + ξ)

)(
K1a0 + a1

K2

)]
(

1 +
µ2 + ξ

rµ1

)
+ a0

]−1
,

where

a0 =
φ

λb + ξ
, a1 = η + α, K1 =

µ1µ2 + (1− r)µ1ξ
rµ1 + µ2 + ξ

,

K2 =
[ξ(η + α− λd)− φλb](rµ1 + µ2 + ξ) + φµ1(µ2 + ξ(1− r))

ξ(rµ1 + µ2 + ξ).

Proof. Applying L-Hospital’s rule in (15), we have

lim
z→1

G0(z) = lim
z→1

ξz

[
C2
A2

+

(
A2−B2
A2

)(
C1A2−C2A1
A2B1−A1B2

)]
− (η + α)(1− z)P0,0

λdz(1− z) + φz − (η + α)(1− z)−
(
ξzD1(A2−B2)
A2B1−A1B2

) . (18)

which gives

G0(1) =

[
µ1µ2+(1−r)µ1ξ
rµ1+µ2+ξ

](
φ

λb+ξ

)
P0,0 + (η + α)P0,0

ζ
, (19)
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where

ζ =
ξ(η + α− λd)− φλb)(rµ1 + µ2 + ξ) + φµ1(µ2 + ξ(1− r))

ξ(rµ1 + µ2 + ξ)
.

By taking z = 1 in (13) and (14), this simplifies to

G2(1) =
−rµ1

µ2 + ξ + rµ1

(
φ

λb + ξ

)
P0,0 +

φrµ1
ξ(µ2 + ξ + rµ1)

G0(1), (20)

G1(1) =

(
φ

λb + ξ

)
P0,0 +

µ2 + ξ

rµ1
G2(1). (21)

Substituting equations (19), (20), and (21) in normalization condition G0(1) + G1(1) +
G2(1) = 1, we get

P0,0 =

[(
K1a0 + a1

ζ

)
+

[(
−rµ1

rµ1 + µ2 + ξ

)
a0 +

(
φrµ1

ξ(rµ1 + µ2 + ξ)

)(
K1a0 + a1

ζ

)]
(

1 +
µ2 + ξ

rµ1

)
+ a0

]−1
,

where

a0 =
φ

λb + ξ
, a1 = η + α, K1 =

µ1µ2 + (1− r)µ1ξ
rµ1 + µ2 + ξ

.

�

4. Performance Measures and Busy Period Analysis

In this section, we present a number of important measures of system performance for
an M/M/1 queueing model with SOS, working disasters and reneging.

4.1. Performance measures.

• Expected number of customers in the system when the server is on disaster period
is

E[L0] = G′0(1) =
(H1 −H2)− (H3 −H4)G0(1)

2(N1 −N2)
,

where

H1 = ξ(rµ1P0,1X1 + Z1Y2 + Z2Y1) + ξ(2Z2Y2 + rµ1P0,1X3 + Z1Y3),

H2 = (η + α)(−2rµ1X2)P0,0,

H3 = −2λdrµ1ξ(µ2 + rµ1 + ξ) + 2(−λd + φ+ η + α)rµ1X2 + φrµ1X3,

X1 = ξ(rµ1 + µ2 + ξ),

X2 = (−λbµ2 − 2λdξ + ξµ2 + ξ2 + µ1µ2 + µ1 + ξ − rµ1λb),
X3 = −2λbµ2 − 4λbξ + 2λ2b − 2λbµ1, Y1 = −rµ1P0,1ξ,

Y2 = rµ1P0,1(λb − ξ), Y3 = 2rµ1λbP0,1, Z1 = rµ1 + µ2 + ξ, Z2 = −λb.
• Expected number of customers in the system when the server is rendering FES

and SOS, respectively, are given as

E[L1] = G′1(1) =
µ2 + ξ

rµ1
G′2(1)− (µ2 + ξ − λb)

rµ1
G2(1),

and

E[L2] = G′2(1) =
Y2 + φrµ1G0(1) + φrµ1G

′
0(1)−X2G2(1)

X1
.
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• Expected number of customers in the system is given by

E[L] = E[L0] + E[L1] + E[L2].

• Expected reneging rate of the customer is

E[RC] = α(G0(1)− P0,0).

• Probability that the server is on disaster state is

Pd = G0(1).

• Probability that the server is busy with FES and SOS, respectively, are given as

P1 = G1(1); P2 = G2(1).

• Probability that the server is idle is

P0 = P0,0 + P0,1.

• Throughput is given as

Tp = ηG0(1) + µ1G1(1) + µ2G2(1).

• The expected delay time is given by

E[D] =
E[L]

Tp
.

4.2. Busy period analysis. Let the expected length of the idle period, the disaster
period, the busy period of the server during FES, SOS, and the busy cycle be denoted
by E[I], E[D], E[Bf ], E[Bs], and E[BC], respectively. We relate the long run fraction of
time in various states to the probabilities of the server in various states to obtain E[I],
E[Bf ], E[Bs], and E[BC]. The expected length of the disaster is given by E[D] = 1

φ .

On the other hand, the long run fraction of the time server is busy during disaster is
E[D]
E[BC] = Pd. Therefore, we get

E[BC] =
1

φ

([(µ1µ2+(1−r)µ1ξ
rµ1+µ2+ξ

)(
φ

λb+ξ

)
P0,0 + (η + α)P0,0

]
ξ(rµ1 + µ2 + ξ)

ξ(η + α− λd)− φλb)(rµ1 + µ2 + ξ) + φµ1(µ2 + ξ(1− r))

)−1
.

The long run fraction of the time server is rendering FES, SOS and the server is idle,
respectively are given by

E[Bf ]

E[BC]
= P1;

E[Bs]

E[BC]
= P2;

E[I]

E[BC]
= P0.

which leads to

E[Bf ] = E[BC]

[(
φ

λb+ξ

)
P0,0 + µ2+ξ

rµ1
G2(1)

]
,

E[Bs] = E[BC]

[
−rµ1

µ2+ξ+rµ1

(
φ

λb+ξ

)
P0,0 + φrµ1

ξ(µ2+ξ+rµ1)
G0(1)

]
, E[I] = P0E[BC].
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4.3. Special cases.

(1) M/M/1 queueing system with working disasters and reneging.
Setting r = 0, µ2 = 0, our study provides the results for M/M/1 queueing

system with working disasters and reneging.
(2) M/M/1 queueing system with SOS and working disasters.

By taking α = 0, our results can be used for M/M/1 queueing system with SOS
and working disasters.

(3) M/M/1 queueing system with SOS.
Setting λb = λd = λ, α = 0, ξ = 0, φ → ∞, η = 0, our model yields M/M/1

queueing system with SOS.

5. Cost Model

This section develops a cost model in order to carry out an economic analysis of the
queueing system under consideration. We develop the total expected cost function per
unit time, in which three decision variables (µ1, µ2, η) are considered. Our objective is
to determine the optimum values of (µ1, µ2, η), say (µ∗1, µ

∗
2, η
∗), so that the expected cost

function is minimized.
Now, we define the following cost elements:

cf ≡ busy cost per unit time when the server is rendering FES, cs ≡ cost per unit time
when the server is rendering SOS, cd ≡ per unit time cost of the server when the server is
on disaster period, cr ≡ cost per customer lost per unit time, cµ1 ≡ fixed cost of providing a
service rate µ1 for customers, cµ2 ≡ fixed cost of providing a service rate µ2 for customers,
cη ≡ fixed cost of providing a service rate η for customers.

Based on the definitions of each cost element listed above and its corresponding system
characteristics, the total expected cost function per unit time is given by

F [µ1, µ2, η] = cfE[L1] + csE[L2] + cdE[L0] + crE[RC] + cµ1µ1 + cµ2µ2 + cηη.

The cost minimization problem can be illustrated mathematically as We solve the above
stated optimization problem using quadratic fit search method (QFSM).

QFSM is an optimization technique which can be used when the objective function is
highly complex and obtaining its derivative is a difficult task. Given a 3-point pattern,
one can fit a quadratic function through corresponding functional values that has a unique
minimum, (xq, yq, zq), for the given objective function F [x, y, z]. Quadratic fit uses this
approximation to improve the current 3-point pattern by replacing one of its points with
approximate optimum (xq, yq, zq). The unique optimum (xq, yq, zq) of the quadratic func-
tion agreeing with F [x, y, z] at 3-point pattern occurs at
Xq ∼=

1

2

[
F [xl, yl, zl](sm − sh) + F [xm, ym, zm](sh − sl) + F [xh, yh, zh](sl − sm)

F [xl, yl, zl](Xm −Xh) + F [xm, ym, zm](Xh −X l) + F [xh, yh, zh](X l −Xm)

]
,

where X l = (xl, yl, zl)T , Xm = (xm, ym, zm)T , Xh = (xh, yh, zh)T , Xq = (xq, yq, zq)T ,
sl = (X l)2, sm = (Xm)2 and sh = (Xh)2. For the detailed algorithm of QFSM, one may
refer [10].

6. Sensitivity Analysis

In order to examine the sensitivity of different parameters on the performance mea-
sures, we perform some numerical experiments. The model parameters have been chosen
arbitrarily yet they bear some close incidence with the practical situations. An example
(such as the manufacturing industry mentioned in the practical justification in Section-2)
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is provided to illustrate the numerical results and cost model.

• The orders for goods (customers) during regular busy period and disaster period
(COVID-19) follows a Poisson process with rates λb = 0.8 and λd = 0.5, respec-
tively.
• The service rates of production of goods (FES) and transportation only to those

who have chosen it (SOS) during busy period are µ1 = 2.5 and µ2 = 2.0, respec-
tively.
• The service rate of production during disaster period is η = 1.5.
• After the completion of production of the goods, they may go for transportation

facility with probability r = 0.6 (SOS probability).
• Rate of canceling of orders (reneging) during disaster is α = 0.5.
• Disaster occurrence rate is ξ = 0.7 and disaster recovery rate is φ = 1.0.

For the cost model,

• Production cost per cycle cf = 20 units.
• Transportation cost per day cs = 15 units.
• Cost per cycle during disaster cd = 13 units.
• Cost of canceling order cr = 12 units per order.
• The fixed costs of production and transportation during busy period are cµ1 = 10

units per service and cµ2 = 8 units per service, respectively.
• Fixed cost during disaster period is cη = 6 units per service.

In Figure 1(A), we analyzed the queueing model with disasters by considering all possi-
ble arrival rates, viz., λb <=> λd. Also, in Table 2, for cost analysis, we have considered
the case λb = λd along with λb > λd. Here, equal arrival rates during busy and disaster
period are referred to as homogeneous arrivals; otherwise, non-homogeneous.

(a) (b)

Figure 1. Effect of λb and ξ on E[L].

Figure 1(A) exhibits the effect of arrival rate during busy period λb on system length
E[L] with and without disaster. It is clear from the figure that E[L] increases for the
increasing values of arrival rates, which is logical. We assumed the values of λd as 0.8 and
0.0 for the system with and without disaster, respectively.

• For the case “system with disaster”, when λb > λd, we observed that system
length is smaller when compared to the system length of “without disaster” case.
This is reasonable because of the higher service rate during busy period. On the
other hand, opposite trend is observed with λb < λd. Moreover, E[L] coincides for
λb = λd.
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The impact of disaster occurrence rate ξ on E[L] for various disaster recovery rates φ,
arrival rates during disaster λd, service rates during disaster η and SOS probabilities r is
shown in Figures 1(B), 2(A) and 2(B), respectively. We observe that

• As disaster occurrence rate increases, the number of customers in the system de-
creases, as expected.
• From Figure 1(B), for a fixed λd, an increment in disaster recovery rate φ leads to

an increases of E[L]. This is apparently because as φ is increasing, the customers
move out of the disaster period and join the regular busy stream wherein the
arrival rates are larger and for the fixed service rate, the queue length is increasing.
Further with the increase of λd, E[L] again increases, as it should be.
• From Figures 2(A) and 2(B), E[L] decreases with increase of service rate during

disaster and increases with increase of SOS probability, which is intuitively true.

(a) (b)

Figure 2. Effect of ξ on E[L].

(a) (b)

Figure 3. Effect of λd and λb on P0.

Figure 3(A) depicts the effect of arrival rate during disaster λd on idle server probability
P0. It may be noted that, as the value of λd grows, P0 decreases. Meanwhile, for a fixed
λd, server idleness probability increases in the presence of reneging, which is intuitively
true.
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Table 1. Effect of r and α on optimum cost.

µ∗1 µ∗2 η∗ F [µ∗1, µ
∗
2, η
∗]

α = 0.3
r = 0.4 1.7634 1.5283 1.2931 58.6823
r = 0.6 1.8946 1.6468 1.3989 62.1194
r = 0.8 2.0191 1.7592 1.4993 65.4660

α = 0.5
r = 0.4 1.6775 1.4506 1.2238 57.9645
r = 0.6 1.8009 1.5622 1.3234 61.3416
r = 0.8 1.9198 1.6645 1.4192 64.6394

The variation of λb on idle server probability P0 with and without SOS is described in
Figure 3(B). We observe that P0 decreases with the increase of λb because higher the num-
ber of customers, lesser the chances of idle server. Also, from the figure, it demonstrates
that P0 is smaller when there is SOS as it should be.

(a) (b)

Figure 4. (A) Effect of r on E[D] and P0. (B) Effect of ξ on Tp.

Figure 4(A) illustrates the impact of SOS probability r on expected delay E[D] and
idle server probability P0 for various values of service rate in SOS µ2. For a fixed µ2,
E[D] and P0 increases and decreases respectively with the increase of r. The point of r
at which E[D] and P0 is maximum and minimum respectively is given by the point of
intersection of two curves. Furthermore, for a fixed r, as µ2 increases, opposite trend is
observed. This is due to the fact that as service rate increases, the number of customers
leaving the system increases which leads to decrease in E[D] and increase of P0.

Figures 4(B) plot the effect of disaster occurrence rate ξ on throughput Tp for different
values of η. It is clear that an increase in ξ causes the frequent service interruption which
results in decrease of Tp.

Table 1 shows the optimal service rates (µ∗1, µ
∗
2, η
∗) and optimum cost F [µ∗1, µ

∗
2, η
∗] for

different values of r and α. Table 1 reveals that the optimal service rates and minimum
cost increases as r increases. This is reasonable because the cost of maintaining the system
increases as the number of customers opting for SOS increases. Furthermore, the reverse
trend is seen with the increase of reneging rate α as we expect.

The effect of disaster occurrence rate ξ on (µ∗1, µ
∗
2, η
∗) and F [µ∗1, µ

∗
2, η
∗] for homogeneous

and non-homogeneous traffic (λb > λd) is explored in Table 2. It is obvious from the table
that an increase of ξ results in decrease of optimal service rates and optimum cost. Also, it
is noticeable that the optimum cost is greater in the case of homogeneous arrivals. Since,
the system length will be larger with homogeneous arrival rates than non-homogeneous
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Table 2. Optimum cost for homogeneous and non-homogeneous arrival
rates w.r.t ξ

for homogeneous arrival rates
ξ µ∗1 µ∗2 η∗ F [µ∗1, µ

∗
2, η
∗]

0.4 2.2193 1.8843 1.6110 68.7179
0.6 2.0598 1.7959 1.5321 67.7725
0.8 1.9826 1.7262 1.4698 66.6602

for non-homogeneous arrival rates
ξ µ∗1 µ∗2 η∗ F [µ∗1, µ

∗
2, η
∗]

0.4 2.0131 1.7537 1.4944 64.5869
0.6 1.8636 1.6187 1.3739 62.4466
0.8 1.7448 1.5115 1.2781 60.2743

Table 3. Effect of λb and ξ on optimum cost for various values of cost
parameters.

(λb, ξ) (0.9, 0.6) (0.9, 0.8) (1.1, 0.8)

Case 1
(µ∗1, µ

∗
2, η
∗) (2.009,1.749,1.491) (1.873,1.627,1.381) (2.128,1.858,1.587)

F [µ∗1, µ
∗
2, η
∗] 66.6175 64.0714 71.5287

Case 2
(µ∗1, µ

∗
2, η
∗) (2.041,1.779,1.517) (1.902,1.653,1.404) (2.159,1.806,1.613)

F [µ∗1, µ
∗
2, η
∗] 67.9394 65.3539 72.9055

Case 3
(µ∗1, µ

∗
2, η
∗) (2.024,1.764,1.503) (1.885,1.638,1.391) (2.142,1.870,1.598)

F [µ∗1, µ
∗
2, η
∗] 67.1112 64.5138 72.0397

Case 4
(µ∗1, µ

∗
2, η
∗) (2.027,1.766,1.505) (1.896,1.648,1.399) (2.153,1.880,1.607)

F [µ∗1, µ
∗
2, η
∗] 67.2528 64.8347 72.3453

Case 5
(µ∗1, µ

∗
2, η
∗) (2.008,1.749,1.491) (1.872,1.627,1.381) (2.128,1.857,1.587)

F [µ∗1, µ
∗
2, η
∗] 67.1800 64.5159 71.9732

case. Now, we discuss the effect of (λb, ξ) on (µ∗1, µ
∗
2, η
∗) and F [µ∗1, µ

∗
2, η
∗] based on changes

in specific values of the cost parameters in Table 3. The following cost elements are used.
Case 1: cf = 20, cs = 15, cd = 13, cr = 12, cµ1 = 10, cµ2 = 8, cη = 6.
Case 2: cf = 22, cs = 15, cd = 13, cr = 12, cµ1 = 10, cµ2 = 8, cη = 6.
Case 3: cf = 20, cs = 17, cd = 13, cr = 12, cµ1 = 10, cµ2 = 8, cη = 6.
Case 4: cf = 20, cs = 15, cd = 15, cr = 12, cµ1 = 10, cµ2 = 8, cη = 6.
Case 5: cf = 20, cs = 15, cd = 13, cr = 14, cµ1 = 10, cµ2 = 8, cη = 6.
From Table 3, as would be expected, (i) (µ∗1, µ

∗
2, η
∗) and F [µ∗1, µ

∗
2, η
∗] decreases (increases)

with ξ (λb) for any case; (ii) (µ∗1, µ
∗
2, η
∗) are almost same for Case 1 and Case 5. Intuitively,

cr rarely affects the optimal values of (µ1, µ2, η); and (iii) (µ∗1, µ
∗
2, η
∗) and F [µ∗1, µ

∗
2, η
∗]

increases as cf , cs, and cd increases, it means that these values affects the optimal values
of (µ1, µ2, η) significantly.

7. Conclusion

In this paper, we investigated an M/M/1 queueing model with SOS, working disas-
ters and reneging. The innovative feature of our study is that after the occurrence of a
disaster, server continues to stay in service with lower service rate without completely
stopping the service of a customer. For this model, we derived the stability condition
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using matrix geometric method and steady-state solution of the system using probabil-
ity generating function method. Various system characteristics such as expected system
length, expected length of the idle period, etc. are performed along with the cost analysis.
The effects of various parameters on the system performance measures were explored by
numerical experiments. This study shows that (i) Choosing λd < λb helps to improve the
performance of the system when there is a disaster. (ii) An increase of disaster occurrence
rate decreases throughput of the system. (iii)The optimum service rates and minimum
cost decreases with the increase of disaster occurrence rate and increase with the increase
of SOS probability. The sensitivity analysis and cost function will helpful to decision
makers and system designers to make appropriate decisions. This investigation further
extended by incorporating bulk arrivals, server breakdowns, etc.
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