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A RESTRICTED L(2, 1)-LABELLING PROBLEM ON INTERVAL

GRAPHS

N. PATRA1, SK AMANATHULLA2, M. PAL3∗, S. MONDAL1, §

Abstract. In a graph G = (V,E), L(2, 1)-labelling is considered by a function ` whose
domain is V and codomain is set of non-negative integers with a condition that the
vertices which are adjacent assign labels whose difference is at least two and the ver-
tices whose distance is two, assign distinct labels. The difference between maximum and
minimum labels among all possible labels is denoted by λ2,1(G). This paper contains
a variant of L(2, 1)-labelling problem. In L(2, 1)-labelling problem, all the vertices are
L(2, 1)-labeled by least number of labels. In this paper, maximum allowable label K is
given. The problem is: L(2, 1)-label the vertices of G by using the labels {0, 1, 2, . . . ,K}
such that maximum number of vertices get label. If K labels are adequate for labelling
all the vertices of the graph then all vertices get label, otherwise some vertices remains
unlabeled. An algorithm is designed to solve this problem. The algorithm is also illus-
trated by examples. Also, an algorithm is designed to test whether an interval graph is
no hole label or not for the purpose of L(2, 1)-labelling.

Keyword: Interval graph, graph labelling, L(2, 1)-labelling, holes in label.
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1. Introduction

In the mathematical graph theory, graph labeling is one of the most important problems
and it has many applications to solve varieties of real life problems. The graph labelling
is an allocation of labels, generally these are integers, to vertices and/or edges of a graph.
On the other way, a labelling of a graph G = (V,E) is a mapping ` from the set U into
the set of non-negative integers under certain condition(s). The set U may be the set of
edges or set of vertices or both. Graph labelling is one of the fascinating areas of graph
theory which has a wide ranging applications. Different types of graph LPs such as simple
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Abbreviation Description
InvG Interval graph
2SS 2-stable set
2SSS 2-stable subset
M2SS maximal 2-stable set
M2SSS maximal 2-stable subset
LP labelling problem

Table 1. A list of abbreviation

vertex labelling, edge labeling, L(h, k)-labeling, harmonic labeling, graceful labeling, magic
labeling, anti-magic labeling, etc. are studied by many researchers. The graph LP has been
applied to solve many real life problems such as scheduling, traffic planing, job assignment,
etc. Particularly, labelling of interval graph (InvG) has many applications and one of them
is discussed thoroughly in [33, 44]. Apart from this application, InvG is applied to solve
other several problems [31, 32, 33, 34, 35, 36, 37].

There are various types of applications L(h, k)-labelling and so many conditions are
studying in their LP. The L(h, k)-labelling is now studied by a huge number of researchers
due to its large applications. The L(h, k)-LP is originated from the frequency allocation
problem. Various types of frequency assignment problem was introduced by Roberts
[41]. The ‘very closed’ transmitter has taken a frequency at least two apart and ‘closed’
transmitter has taken different frequency. The ‘closed’, ‘very closed’, etc. are linguistic
terms and have different meaning for different persons. The assignment of frequency to a
given group of televisions or radio transmitters maintaining the above conditions is called
frequency assignment problem. In [26], Hael modelled this problem as vertex coloring
problem.

Representing the graph of their problem, vertices of the graph are chareterised by the
transmitters. Any two vertices y and z in a graph is called to be ’very close’ if d(y, z) = 1
and ’close’ if d(y, z) = 2, where d(y, z) represents the distance between the vertices y
and z, which is the the minimum number of edges on the path connecting y and z. In
L(h, k)-labeling, it is generally assumed that two vertices are closed if their distance is 2
units and very closed if the distance is 1 unit. In 1992, Griggs and Yeh [25] formulated
the L(h, k)-LP, stated below.

The L(2, 1)-labelling of a graph G = (V,E) is a function ` from V to the set of non-
negative integers, i.e. {0, 1, 2, . . .}, such that

|`(y)− `(z)| ≥ 2, if the distance between y and z is 1 in G, and
|`(y)− `(z)| ≥ 1, if the distance between y and z is 2 in G.

The general L(h, k)-LP is defined as:

|`(y)− `(z)| ≥ h, if y and z are adjacent in G and
|`(y)− `(z)| ≥ k, if y and z are at distance two in G.

For a given graph many different labelling functions may occur. It is obvious that the
domains of these functions are same which is V , but the co-domain may be different, even
their cardinality may different. The set of such labelling functions is denoted by F. The
function with least co-domain (least cardinality) is useful for labelling. The difference
between minimum and maximum labels used to label the graph is called span.

The minimum span over all possible labelling functions ` ∈ F is denoted by λh,k(G) and
it is known as λh,k-number of G. The main objective of the problem L(h, k)-labelling is
to minimize the span.
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It can be verified that for any subgraph H of a graph G, λh,k(H) ≤ λh,k(G) for h ≥ k.
The result need not be true for h < k. For example, let G = Kn+1 and H = K1,n. In
this case, λ0,1(H) = n + 1 and λ0,1(G) = 0. However, the result is true, if H is induced
subgraph for every h, k.

Lot of variations of L(h, k)-LPs are present in literature [2, 3, 4, 5, 6, 14, 38, 39, 40, 45,
46]. One of them is K-L(h, k)-LP stated below:

Let K be a given positive integer. Then K-L(h, k)-labelling of a graph G is a function
` : V → {0, 1, 2, ...,K} such that
|`(y)− `(z)| ≥ h if d(y, z) = 1,
|`(y)− `(z)| ≥ k if d(y, z) = 2 and
|V ′| is maximum, where V ′ is the set of labeled vertices under the labelling function `.

That is in K-L(h, k)-LP a pre-specified number K is given. The problem is to label the
graph using L(h, k)-labelling approach so that the maximum label used is K. If the label
K is sufficient to label the graph using L-(h, k)-labeling, then K-L(h, k)-labeling problem
is same as usual L(h, k)-labeling. If K labels are not enough to label all the vertices of
the graph then a new algorithm is required. As per our knowledge, no such algorithm is
available for K-L(h, k)-labeling problem for InvG even for given h and k.

Different bounds for λ2,1(G) are available for some special type of graphs. Let ∆(G) be
the maximum among the degrees of the vertices of the graph G. This ∆(G) sometimes
known as degree of the graph and simply denoted by ∆. The size of the maximum clique
is denoted by ω(G) and the chromatic number of G is denoted by χ(G).

The parameters ∆, ω(G) and χ(G) are used to represents the lower and upper bounds of
λ2,1(G). It can easily be proved that the trivial lower bounds for λ2,1(G) are 2(ω− 1) and
∆ + 1. In [25], Griggs and Yeh first provided the upper bound of λ2,1(G) and they shown
that λ2,1(G) ≤ ∆2+2∆ for every graph G. This bound was improved to λ2,1(G) ≤ ∆2+∆

[20]. Král’ and S̆krekovski [27] proved that λ2,1(G) ≤ ∆2 + ∆− 1. This bound is further
improved to λ2,1(G) ≤ ∆2 + ∆ − 2 by Goncalvas [24]. Grigges and Yeh [25] stated the
following conjecture.

Conjecture. For any graph G, λ2,1(G) ≤ ∆2.

This remain an open problem. But, it is true for some specific graphs. For example,
the conjecture is true for chordal graph [43] and also for InvG as it is a subclass of chordal
graph.

Yeh [48] has presented following two interesting results:
(a) For any graph G and the positive integer q, λqh,qk = qλh,k ;
(b) For any graph G having at least one edge,

lim
h→∞

λh+1,1(G)

λh,1(G)
= 1.

Recently, Amanathulla et al. have studied lot of results regarding labeling of various types
graphs [7, 8, 9, 10, 11, 12, 13, 15]. An advanced label research on graph theory is going
on by Muhiuddin et al. [29, 30].
Motivation: Actually, L(h, k)-labelling labels all the vertices of the graph using minimum
number of vertices. There is no limit about the upper bound of the label. But, the general
concept is that the number of labels must be minimum. What happens if the number of
available labels is less than the actual labels? In this case, some vertices must be unlabeled.
But, it is not a good process to keep some vertices unlabeled. So, objective of the problem
is to label the maximum number of vertices of the graph using the given labels such that
L(h, k)-labelling condition must be satisfied.
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At first Chang and Kuo [20] shown that λ2,1 labelling of strongly chordal graph is at
most 2∆. Basically, InvG and unit InvG are nothing but a kind of strongly chordal graph.
For unit InvG G, Sakai proved that 2χ − 2 ≤ λ2,1(G) ≤ 2χ [43], where χ represents the
chromatic number. Calamoneri et al. [18] proved that for an InvG the upper bound for
λh,k is max(h, 2k)∆. When k = 1, h = 2, this result is coincide with the result of Chang
and Kuo. Calamoneri et al. [18] also proved that λh,k(G) ≤ max(h, 2k)∆+hω for circular
arc graph. For planar graph, the decision version of L(0, 1)-LP is NP-complete [20].

An exhaustive survey on L(h, k)-LP is available in [19]. The n-dimensional hypercube

Qn which is an n-regular graph having 2n vertices. Then λ0,1(Qn) ≤ 2[logn] [50]. A
labelling scheme is also presented for such a number of labels. When n is of the form 2t

for some integer t, the this labelling is optimal and otherwise it is a 2-approximation [50].

A different approach is used in [22]. Here, an algorithm is presented that uses 2[logn]+1

labels and the time and space complexities are O(n). This improves the previous result.
In both papers, the upper bound on λ1,1 for (Qn) is a 2-approximation. For a bipartite
graph, λ0,1(G) ≥ ∆2/4 in [17]. In [1], this lower bound is improved by a constant factor
of 1/4 . The L(d, 1)-labelling of Cartesian product of cycles and path is investigated by
Chiang and Yan [21]. This problem was proposed by Griggs and Yeh [25, 49] in connection
with the problem of assigning frequency in a multiple radio network.

Rest of this paper is arranged as follows. Few important properties of InvGs are pre-
sented in Section 2. A polynomial time algorithm for K-L(2, 1)-labelling of InvG is de-
signed in Section 3. Also, some results which are required to prove the correctness of
the algorithm are presented in this section. The time complexity and correctness of the
algorithm are also discussed here. In Section 4, a new upper bound of L(2, 1)-labelling
of InvG is presented. The algorithm is illustrated in this section. In Section 5, another
algorithm is designed for an InvG to test whether a hole is presented in the labelling or
not. Lastly, a conclusion is drawn for the proposed work.

2. InvG and its properties

One of the important graphs with huge applications is InvG. A subclass of intersection
graph of family of set of intervals on real line.

Let I = {I1, I2, . . . , In} be a set of n distinct closed intervals on a real line R. A graph
(undirected) G = (V,E) is said to be an InvG if there is a bijection from V to I. From
this set of intervals I one can construct a graph as follows:
For each intervals Ij we consider a vertex zj . And two vertices zi and zj are adjacent if
and only if Ii ∩ Ij 6= ∅. The graph G = (V,E) constructed by this way is named as InvG
and I is called intersection model. It is observed that an interval and a vertex are one and
same think. Note that an InvG having n vertices can be stored into computer by a set
of n intervals. Again, one can store a set of n intervals by 2n endpoints, i.e. using O(n)
space.

The set of intervals can be ordered according to the right endpoints or left endpoints,
by preserving the structure of the InvG. In this paper, we assumed that the intervals are
ordered according to their right endpoints.

The InvG satisfied a very nice property stated below:

Property 1. [23] For an InvG G = (V,E), let zi, zj , zk be three arbitrary vertices. If
zi < zj < zk and (zi, zk) ∈ E, then (zj , zk) ∈ E.

From this property, one can say that the vertices of an InvG can be ordered. A set of
vertices C is called a clique if all vertices of C are pairwise adjacent. A clique C is called
maximal if C ∪ {zi} is not a clique for any vertex zi ∈ V .
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Figure 1. (a) An InvG; (b) Its interval representation

The following property on maximal clique is very useful to investigate the InvG.

Property 2. [23] The maximal cliques of an InvG G can be arranged such that for every
vertex z ∈ G, the maximal cliques containing z occurs consecutively.

If the maximal cliques C1, C2, . . . , Ck of the InvG G and y ∈ Ci and Cj , i < j, then
y ∈ Cp for all p, where i < p < j. Again, if y 6∈ Cj+1, then y 6∈ Cp, for any p > j.

To illustrate our problem, we take into account the InvG of Figure 1.

3. An algorithm

A subset S of the vertex set V (G) is said to be a r-independent set or r-stable set,
where r is an integer, if d(y, z) > r for any two vertices y, z of S.

A maximal r-stable set S of the set F ⊆ V is called s-stable subset of F if S is not a
proper subset of any other s-stable subset of G contained in F .

Some algorithms are available to find independent set and r-independent set for InvGs
[47]. The time complexity for finding maximal r-independent set of an InvG having n
vertices is O(nr). For r = 2, the time complexity becomes O(n2).

The basic idea of proposed algorithm is given below:
The algorithm is repeated for K times. A maximal 2-stable set (M2SS) is computed in
each step among the unlabeled vertices if the distance is at least two which are labeled in
the previous step. Then label all the vertices in the 2SS with the integer r, the index of
the present step. The initial value of r is 0 and r is increased by 1 in every step. The final
value of r gives the maximum label which is needed to label all the vertices. Now, if R
labels be required to label a graph by L(2, 1)-labelling and if K be the allowable highest
label, where K < R, then some vertices remains unlabeled. Let Vu and Vl be the sets of
unlabeled and labeled vertices respectively, then Vl = V − Vu.

The following algorithm is designed to label all the vertices of an InvG using K labels.

Algorithm KL21
Input: An InvG G, a non-negative integer.
Output: Set of labeled vertices, Vl.
Initially, Vu = V , set of unlabeled vertices. S−1 = ∅, r is taken as 0.
Step 1: If Sr−1 = ∅ then

Fr = Vu
else
Fr = {y ∈ Vu : d(y, z) ≥ 2 and y is unlabeled for all z ∈ Sr−1}
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If Fr 6= ∅ then
find Sr, which is the M2SSS of Fr

else
set Sr = ∅.

Step 2: Assign r as label to all vertices of Sr, i.e. `(y) = r, for all y ∈ Sr
Step 3: Vu = Vu − Sr, as all the vertices of Sr are labeled.
Step 4: If Vu 6= ∅ and r < K then set r = r + 1 and go to Step 1.
Step 5: Repeat the above steps until r = K or Vu 6= ∅.
Step 6: Vl = V − Vu, the set of labeled vertices.
end KL21

Note that all Sr, r = 1, 2, ... are mutually disjoint and all Sr constitute the vertex set
V , i.e. Sr ∩ Sj = ∅ and ∪

r
Sr = V .

3.0.1. An illustration. Let us consider the InvG of Figure 1 to demonstration the algorithm
KL21.

In this graph, the vertices are V = {v1, v2, ..., v10}. Let `(vj) be the label assigned to
the vertex vj ∈ V for j = 1, 2, ..., 10. Here, we assume that K = 4, the maximum allowable
label. Initially, S−1 = ∅, r = 0.
Iteration 1: S−1 = ∅. So, F0 = Vu = V = {v1, v2, ..., v10}.
Since F0 6= ∅, so S0 = {v1, v6, v10}.
So, `(1) = 0, `(6) = 0, `(6) = 0.
Vu = Vu − S0 = {v2, v3, v4, v5, v7, v8, v9}.
Since Vu 6= ∅ and r = 0 < 4, so r = r + 1 = 1.
Iteration 2: S0 6= ∅, so F1 = {v4}.
Since F1 6= ∅, so S1 = {v4}.
∴ `(4) = 1
Vu = Vu − S1 = {v2, v3, v5, v7, v8, v9}.
Since Vu 6= ∅ and r = 1 < 4, so r = r + 1 = 2.
Iteration 3: S1 = {v4} 6= ∅, so F2 = {v7, v8, v9}.
Since, F2 6= ∅ therefore S2 = {v7}.
∴ `(7) = 2.
Vu = Vu − S2 = {v2, v3, v5, v8, v9}.
Iteration 4: S2 6= ∅, so F3 = {v2, v3, v9}
Since F3 6= ∅, so S3 = {v2, v9}.
∴ `(2) = 3, `(9) = 3.
∴ Vu = Vu − S3 = {v3, v5, v8}.
Iteration 5: S3 6= ∅, so F4 = {v5}.
Since F4 6= ∅, so S4 = {v5}.
∴ `(5) = 4.
∴ Vu = Vu − S4 = {v3, v8}.
Here, r = 4 = K, so the process is terminated.

In this example, we assumed that K = 4 and four consecutive labels are used. The
set of labeled vertices is Vl = {v1, v2, v4, v5, v6, v7, v9, v10} and that of unlabeled vertices is
{v3, v8}. The set of labels used is {0, 1, 2, 3, 4}. It can be proved that |Vl| is maximum for
K = 4.

Some useful results which required to prove the correctness and the complexity of the
algorithm are discussed below.

Lemma 1. Let y and z be any two vertices of the M2SS Sr for some r, then d(y, z) ≥ 3.
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Proof. From the definition of maximal r-stable set, we know that the distance between
any two vertices of the set is strictly greater than r. Here the set Sr is a M2SS. So, the
distance between any two vertices of the set Sr is strictly greater than 2. Here y and z are
any two vertices of the set Sr. Then, from the definition, we get d(y, z), i.e. the distance
between the vertices y and z is strictly greater than 2. Therefore, d(y, z) ≥ 3. Hence the
result. �

Since the distance between any two vertices of Sr is 3 or more, so the labels of the
vertices of Sr may be same which is done in the algorithm.

Lemma 2. Suppose y, z be any two vertices of the M2SSs Sr and Sr+1 respectively, then
d(y, z) ≥ 2.

Proof. Here, z be a vertex of Sr+1. But, from the definition of Fr+1, it is also a vertex
of Fr+1. If we take the vertex y from Sr then d(y, z) ≥ 2 (by the definition of Fr+1).

So, if we take one vertex from the set Sr and another from Sr+1, then always we get,
that the distance between any two vertices one from Sr and another from Sr+1 is greater
than or equal to 2, i.e. d(y, z) ≥ 2. �

In this case, it is observed that if y ∈ Sr and z ∈ Sr+1, then their distance is two or
more. So, the label difference between y and z must be at least one. In algorithm KL21,
we assign r to all vertices of Sr and r + 1 to all vertices of Sr+1.

Lemma 3. Let y ∈ Sr and z ∈ Sr+2. Then there may be an edge between the vertices y
and z, i.e. d(y, z) ≥ 1.

Proof. The distance between any two vertices of Sr and Sr+2 is one or more.
Let y ∈ Sr, z ∈ Sr+1 and w ∈ Sr+2. From Lemma 2, d(y, z) ≥ 2 and d(z, w) ≥ 2.

So, it is obvious that d(y, z) > 1. But, we have to prove that there may be an edge
between y and w. This can easily be proved by considering the graph of Figure 1. In this
example, S0 = {v1, v6, v10} and S2 = {v7}. From the graph it is seen that d(v6, v7) = 1
and d(v1, v7) = 3 > 1. Hence, in general, d(v6, v7) ≥ 1. �

Theorem 1. Algorithm L21 labels all the vertices of the InvG correctly.

Proof. According to our algorithm, initially all vertices are taken as unlabeled.
Also, it is assumed that S−1 = ∅.

When Sr−1 is computed and all vertices of G are not labeled, then we determine
the set Fr = {y ∈ V : y is not labeled and d(y, z) ≥ 2 for all z ∈ Sr−1}.

Next, we find a M2SSS Sr of Fr, i.e. Sr is a 2SSS of Fr, but Sr is not a proper subset
of any 2SSS of Fr.

It is noted that, when Fr = ∅, i.e. for any unlabeled vertex y there exists a vertex
b ∈ Sr−1 such that d(y, z) < 2, Sr = ∅. The distance among the vertices in Sr is greater
than 2 (Lemma 1). So, we can assign same label r to all the vertices of Sr. Again, if y ∈ Sr
and z ∈ Sr+1, then d(y, z) ≥ 2 (Lemma 2). In this case, one can assign label r to y and
(r + 1) to z as their label difference is at least one. Recall that Sr’s are all distinct. So,
in any case, labels of the vertices in Sr by the label r, obviously satisfy L(2, 1)-labelling
condition. �

Theorem 2. The running time of Algorithm KL21 is O(Kn2), where n represents the
number of vertices of the graph and K is an integer, the maximal allowable label.

Proof. In Step 1, M2SSS of an InvG is computed and it takes O(n2) time [47]. All other
assignments of this step takes time not more than O(n). Since |Sr| ≤ n for all r and
∪Sr = V , so to compute all Sr (r = 1, 2, . . .), O(n) time is required, i.e. Step 2 takes O(n)
time. It is obvious that Step 3 can be computed in O(n) time.
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Thus, the time taken by the steps 1 to 4 for a fixed r is O(n2). These steps are repeated
for K times. Hence, the overall running time of Algorithm KL21 is KO(n2), i.e. O(Kn2),
where K is a given integer, the maximum allowable label. �

4. Bound of L(2, 1)-labelling of InvG

For some particular type of graphs such as paths, cycle, etc. the exact value of λ2,1(G)
is known. But, for InvG G it is very tough to find out the exact value of λ2,1(G). Now, we
present an algorithm from which an upper bound of λ2,1(G) for an InvG can be determined.

The following algorithm helps us to find the upper bound of λ2,1(G) of InvG G.

Algorithm L21
Input: An InvG G = (V,E).
Output: L(2,1)-label of each vertex of G.
Initialization: S−1 = ∅, H = ∅, r = 0.
Step 1: If S−1 = ∅ then Fr = V

else Fr = {y ∈ V : d(y, z) ≥ 2 and y is unlabeled for all z ∈ Sr−1}.
If Fr 6= ∅ then compute Sr (M2SSS of Fr)
else set Sr = ∅.

Step 2: Assign r as the label to all vertices of Sr, i.e. `(z) = r, for all z ∈ Sr.
Step 3: V = V − Sr.
Step 4: If V is non-empty then set r = r + 1 and then go to Step 1.
Step 5: Repeat above steps until V = ∅.

Set K = r (last label used)
Stop
End.

Let z be a vertex whose label is K, i.e. `(z) = K. Now, we define three sets of vertices
below.

Let
J1(x) = {z : d(x, y) = 1 and 0 ≤ z ≤ (K − 1) for some y ∈ Sz}.
J2(x) = {z : d(x, y) ≤ 2 and 0 ≤ z ≤ (K − 1) for some y ∈ Sz}.
J3(x) = {z : d(x, y) ≥ 3 and 0 ≤ z ≤ (K − 1) for all y ∈ Sz}.
That is, J1(y) is the set of labels of the neighborhood of y.
J2(y) is the set of labels of the vertices whose distance from y is at most two.
J3(y) is the set of labels which are not used by any vertex whose distance from y is at
most three.

Thus, the sum of the cardinalities of J2(z) and J3(z) is K.
That is, |J2(z)|+ |J3(z)| = K.
For any r ∈ J3(z), z 6∈ Fr; otherwise Sr ∪ {z} is a 2SSS of Fr, which
contradicts the selection of Sr.

Thus, d(y, z) = 1 for some vertex z ∈ Sr−1.
Therefore, r − 1 ∈ J1(z) so that |J3(z)| ≤ |J1(z)|.
Then λ2,1(G) ≤ k = |J2(z)|+ |J3(z)| ≤ |J2(z)|+ |J1(z)|.

Hence, λ2,1(G) ≤ |J2(z)|+ |J1(z)| (1)

Lemma 4. For any InvG G, |N2(z)| ≤ 2∆ where N2(z) is the set of vertices with distance
two apart from z.

Proof. The maximum number of vertices adjacent to the vertex z is ∆. Let |N2(z)| = s.
This implies that there are s distinct vertices which are at a distance two from the vertex
z.
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Since G is an InvG, so there exists two vertices which are adjacent to at most ∆ vertices
of G. Therefore, s ≤ 2∆, i.e. |N2(z)| ≤ 2∆. �

Note that Algorithm L21 can label an InvG G by maintaining the condition of L(2,1)-
labelling. So, this algorithm may be used to L(2,1)-label an InvG G. For this usefulness,
one can determine the time complexity of this algorithm.

Note that Algorithms KL21 and L21 both are same, only their termination conditions
are different. Algorithm KL21 repeats for K time whereas Algorithm L21 terminates
when all the vertices become labeled. Thus by replacing K = 4∆, in Theorem 2 we get
the following results.

Theorem 3. The algorithm L21 labels all the vertices of an InvG G having n vertices
using O(∆n2) time.

This situation does not always happen. Some labels can not be used due to the structure
of the graph. These unused labels are called hole. This case is discussed in next section.

5. Holes in L(2, 1)-labelling of InvG

In this section, we discuss about holes in L(2, 1)-labelling for InvGs and obtained a
good result. The definition of hole is discussed.

Definition 1. Let l be an L(2, 1)-labelling of a graph G that uses labels from 0 to λ.
Then an integer p is called a hole, if p ∈ (0, λ) and there exists no vertex z ∈ V such
that `(z) = p. The maximum number of holes in a span L(2,1)-labelling of a graph G is
denoted by Hλ(G).

The holes can be identified by L(2,1)-labelling of InvG using Algorithm L21. Suppose
L = {0, . . . , λ} be the set of labels used to L(2, 1)-label. The labels 0 and λ are used
surely. If an r, 0 < r < λ does not belong to L then this r is a hole. So, by checking this
condition for r = 1, 2, . . . , λ− 1 one can determine the set of holes Hλ(G) for a graph G.

Following, we designed an independent algorithm which will determine the set of holes
and also test whether a given InvG is ‘no hole L(2, 1)-label’.

Algorithm HL21
Input: An InvG G = (V,E).
Output: Holes H in L(2,1)-labelling.
Initialization: S−1 = ∅, r = 0, H = ∅.
Step 1: If S−1 = ∅ then Fr = V

else Fr = {z ∈ V (G) : z is not labeled and d(z, y) ≥ 2 for all y ∈ Sr}.
If Fr 6= ∅ then compute Sr (M2SSS of Fr)

else set Sr = ∅.
Step 2: If Sr = ∅ then H = H ∪ {r}

else V = V − Sr.
Step 3: If V 6= ∅, then set r = r + 1 and go to step 1.
Step 4: Repeat the above steps until V = ∅.
Step 5: If H = ∅ then G is ‘no hole L(2,1)-labeled’

otherwise G has hole.
End.

Let us take the InvG for Figure 2 in which some labels are not used, i.e. there is hole.
In this graph V = {v1, v2, ..., v8}.

Thus, S−1 = ∅, r = 0.
Iteration 1: S−1 = ∅, so F0 = Vu = V = {v1, v2, ..., v8}.
Since F0 6= ∅, so S0 = {v1, v4, v6}.
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Figure 2. Illustration of hole of L(2, 1)-labelling for InvG

So, `(1) = 0, `(4) = 0, `(6) = 0.
Vu = Vu − S0 = {v2, v3, v5, v7, v8}.
Since Vu 6= ∅ so r = r + 1 = 1.
Iteration 2: S0 6= ∅, so F1 = ∅ and hence S1 = ∅.
Since S1 is empty so label 1 can not be used to label any vertex.
Vu = Vu − S1 = {v2, v3, v5, v7, v8}.
Since Vu 6= ∅ so r = r + 1 = 2.
Iteration 3: S1 = ∅, so F2 = {v2, v3, v5, v7, v8}.
Since F2 6= ∅, so S2 = {v2, v5}.
Therefore, `(2) = 2, `(5) = 2.
Vu = Vu − S2 = {v3, v7, v8} and r = 3.
Iteration 4: S2 6= ∅, so F3 = {v7}.
Since F3 6= ∅, so S3 = {v7}.
∴ `(7) = 3.
Vu = Vu − S3 = {v3, v8}.
Since Vu 6= ∅ so r = r + 1 = 4.
Iteration 5: S3 6= ∅, so F4 = {v3}.
F4 6= ∅, so S4 = {v3}.
∴ `(3) = 4.
Vu = Vu − S4 = {v8}.
Iteration 6: In this stage, there is only one vertex is left to label and it is 8. It can be
verified that label 5 can be used to label the vertex 8.

The labels and the set of vertices are shown in Table 2. For labelling the graph we used
the labels {0, 2, 3, 4, 5} of Figure 2.

This example shows that the labels used to L(2,1)-label the graph are not consecutive
integers. Here one label remains unused. So, the set of holes for this graph is {1}.

The time complexity to find holes of an InvG in case of L(2, 1)-labelling is stated below:
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Label Set of vertices
0 {1, 4, 6}
2 {2, 5}
3 {7}
4 {3}
5 {8}

Table 2. Labels and corresponding set of vertices

Theorem 4. The running time to find the set of holes Hλ(G) for an InvG G in case of
L(2, 1)-labelling is O(∆n2), where n and ∆ represent the number of vertices and degree of
the graph respectively.

6. Concluding remarks

In this paper, K-L(2, 1)-LP has been considered. A polynomial time algorithm is de-
signed to solve this problem on InvGs. Also, it is shown that the upper bound to L(2, 1)-
label an InvG is 4∆ which is much better that the conjuncture for L(2, 1)-LP. Again, no
hole problem is discussed and presented an algorithm to test whether an InvG has no hole
or not in case of L(2, 1)-labelling. The no hole problem for L(2, 1)-labelling is studied for
few classes of graph specially intersection graphs. So, our algorithm can be extended for
other subclass of intersection graph particularly for circular-arc graph.
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