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ABSTRACT

In this work we study vertical graph surfaces invariant by parabolic screw motions with pitch
¢ > 0 and constant Gaussian curvature or constant extrinsic curvature in the product space H? x R.
In particular, we determine flat and extrinsically flat graph surfaces in H? x R. We also obtain
complete and non-complete vertical graph surfaces in H? x R with negative constant Gaussian
curvature and zero extrinsic curvature.
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1. Introduction

In [12,17], H. Rosenberg and W. Meeks studied minimal surfaces in M? x R, where M? is a rounded sphere, a
complete Riemannian surface with a metric of non-negative curvature, or M? = H?, the hyperbolic plane. Since
then, there has been a rapid growing interest in minimal surfaces and surfaces with constant mean curvature
in H2 x R and S? x R, see for instance [4, 5, 9, 13, 14, 15, 18, 19, 20]. Also, surfaces in H? x R and S? x R with
constant Gaussian curvature or constant extrinsic curvature have attracted many attention in the recent years,
[1,2,3,6,7, 16].

In [1],]. A. Aldeo and et al. proved that there exists a unique complete surface of positive constant Gaussian
curvature in H? x R and a unique complete surface of positive constant curvature greater than 1in S? x R, up
to isometries of the ambient space. These complete surfaces are precisely the revolution surfaces. Also, they
proved that there is no complete immersion of constant Gaussian curvature K < —1 into H?> x R and S? x R.
In [2] J. A. Aldeo and et al. obtained some free boundary results for compact surfaces of positive constant
Gaussian curvature in H? x R and positive constant Gaussian curvature greater than 1in S* x R.

In [7], J. M. Espinar and et al. studied complete surfaces with positive extrinsic curvature in H? x R and
S? x R, and they proved that every complete connected immersed surface with positive extrinsic curvature
in H? x R must be properly embedded, homeomorphic to a sphere or a plane. They also showed that only
complete surfaces with constant extrinsic curvature in H?> x R and S? x R are rotational sphere.

L. Belarbi [3] studied translation surfaces with constant extrinsic Gaussian curvature in the 3-dimensional
Heisenberg group which are invariant under the 1-parameter groups of isometries.

In [16] R. Novais and P. D. Santos studied geometric characterizations of conformally flat and radially flat
hypersurfaces in S” x R and H" x R are given by means of their extrinsic geometry, and in [6] Dillan and et al.
classified minimal rotation hypersurfaces and flat rotation hypersurfaces in S? x R and H? x R.

Screw motion surfaces with constant mean curvature in H? x R and S? x R were studied in [18, 19]. R.
Sa Earp and E. Toubiana [19] obtained an explicit two parameter family of complete, embedded, simply
connected, minimal screw motion surfaces in H? x R with pitch ¢, and for ¢ = 1 each such surface has Gaussian
curvature K = —1. In [18] R. Sa Earp studied complete minimal and surfaces with constant mean curvature
invariant either by parabolic or by hyperbolic screw motions in H? x R. Later, Q. Cui and et al. [4] studied the

geometric behaviors of hyperbolic and parabolic screw motions surfaces immersed in 1;_§_L/2(R, 7) with having
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constant mean curvature, where PSLy(RR, 7) is a homogeneous simply connected 3-manifold having isometry
group of dimension 4.

The isometries of H? generate isometries in H? x R. In particular, a parabolic translation in H? generates an
isometry in H? x R that is called a parabolic isometry. In this work we only consider the parabolic isometries,
and the compositions of such isometries with vertical translations which are called parabolic helicoidal-type
isometries. The surfaces invariant by this kind of helicoidal isometries is called the parabolic screw motion
surfaces.

Motivated by the work [18] on the parabolic screw motion surfaces with constant mean curvature in
H? x R, we study vertical graph surfaces invariant by the parabolic screw motions in H? x R with constant
Gaussian curvature or constant extrinsic curvature. We obtain the ordinary differential equations for the
Gaussian curvature and extrinsic curvature of a graph surface M(f) (invariant by the parabolic screw motion)
in H? x R for the function of the form f(z,y) = v(y) + ¢z, where v(y) is a C? function. We prove that if a
vertical graph surface M (f) in H? x R for a function of the form f(z,y) = u(z) + v(y) is extrinsically flat, then
u(z) = lx + ¢, that is, M (f) is a parabolic screw motion surface in H? x R, (see Sec. 3). Graph surfaces of the
form f(z,y) = u(z) + v(y) are also known as the translation surfaces in the literature. We determine graph
surfaces M(f) invariant by the parabolic screw motion (and also by parabolic translation) in H? x R with
constant Gaussian curvature K and constant extrinsic curvature K,.,;. We also obtain complete graph surfaces
in H? x R with negative constant Gaussian curvature and zero extrinsic curvature.

2. Preliminaries

Let H? be the upper half-plane model H? = {(z,y) € R?|y > 0} of the hyperbolic plane equipped with the
dz? + dy?

hyperbolic metric g = 5 of constant curvature —1. We consider the product space M? = H2 x R with
Y

coordinates (z, v, t) and the metric §j = g + dt>.
Let V denote the Riemannian connection of M?. The Riemannian curvature tensor R of M? is given by

E()(7 Y)Z = ﬁxﬁyZ - ﬁyﬁxz - 6[X,Y}Zv

where X, Y, and Z are tangent vector fields on M3 IEX Y e TPM 3atapointp € M 3, then the sectional curvature
of M? for the plane spanned by X and Y in T),M? is

_ - J(R(X,Y)XY)
ROOY) = =X X507, ¥) — g Vg (X, ¥

Let M be a regular surface in M?3. Then, the Gauss equation of M in M3 is given by

JR(X,Y)Z,W) = g(R(X,Y)Z,W) + g(h(X, Z), h(Y,W)) = g(h(Y, Z), h(X, W)), (2.1)
where X,Y, Z, W € TM, h is the second fundamental form, and R is the Riemannian curvature tensor of M.

Letd, = a%’ Oy = a%’ 0y = % denote coordinate vector fields on M3. The vectors F; = YOy, B2 = y0y, E3 = 0,

form an orthonormal frame on M3, and in this frame, non-zero covariant derivatives of M? are

Ve, By = By, Vg, By = —Ej. (2.2)

2.1. Graph surfaces

Let Q be an open connected region in the hyperbolic plane H?, and let f: Q2 — R be a C? function on 2. A
vertical graph surface in H? x R is a set

M(f) = {(z,y, f(z,y) € H* x R | (z,y) € Q},

and it is called entire if Q = H?.
Considering the natural parameterization ¢(z,y) = (2,y, f(z,y)) of M(f) in H* x R, the coordinate vector
tields of the graph surface M(f) are

1 1
Yu(,y) = ZEl + foE3 and g, (z,y) = QEQ + fy s, (2.3)

dergipark.org.tr/en/pub/iejg 216


https://dergipark.org.tr/en/pub/iejg

U. Dursun

and the coefficients of the first fundamental form induced by ¢ are

~ 1 . . 1
E = §(¢x; ) = ?Jrfﬁ, F=3(pa,py) = fofy, G =3lpy ) = y7+f§~ (2.4)
Then, the determinant of the induced metric on M(f) by ¢ is obtained as

L+ (f2 + 1))

EG—F? = ;
y

2.5)

and the graph surface M (f) is regular, or ¢ is an immersion if EG — F? > 0.
We put W = /1 +y%(f2 + f2). Then, the normal vector to M(f) in M? is written as

1

n= W(_ywal - ynyQ + E3)'

When we evaluate the covariant derivatives of the tangent vector fields of ¢ we get

1 1 1
vtpx(pm = ?E2 + fxa:E?n thw(py = _EEl + fzyE37 vgoy@y = _EEZ + fny37

and hence, we obtain the coefficients of the second fundamental form in the local coordinates as follows:

~ yf:rx_f ~ 1 yf:z: +fx ~ I yf+f
L= g(V%cpx,n) = yTy, M = g(V%goy,n) = :jT, N = g(V%goy,n) = % (26)

It is known that for surfaces in R3, the Gaussian (intrinsic) curvature K and extrinsic curvature K,,; are
equal. In the following we see that the intrinsic and extrinsic curvatures differ by the sectional curvature in
H? x R.

Let M(f) be a vertical graph surface in H? x R defined by a C? function f on an open connected region
Q C H?. By using (2.3), we obtain that R(p., ¢y)¢s = y—lgEg. Then, the sectional curvature of H? x R for the
section determined by the vectors ¢, and ¢, is

7 g(é(%ca%ﬁy)@m‘ﬁy) 1 1
K T = — = = — = —
(o 00) EG - F? VI(EG—F2) 112+ f2)

which is bounded i.e. =1 < K < 0, and the equality case holds if and only if f(z,y) = ¢, where c is a constant.
Using (2.2) and (2.3), from the Gauss equation (2.1) we have the Gaussian curvature K of M (f) as

I(R(@zs 0y)Pay Py)
EG — F2

where K., is the extrinsic curvature of M(f), and it is defined by K.,; = (LN — M?)/(EG — F?). Thus, the
Gaussian curvature K is given by

K:K(wiva):_ :I?""Kemta

_ 1 1 2
K= m(—EHLJ\uM )).
A vertical graph surface M(f) in H? x R is called intrinsically flat (vesp., extrinsically flat ) if K =0 (resp.,
Kept = 0) on M(f).
Using (2.6), the Gaussian curvature and extrinsic curvature of M (f) are obtained, respectively, as

o Ve = £) W+ £y) = fey + %) = P24 1) -1 2.7)

[+ y2(f2 + FDI?

and
P WS — F) Wy + fy) = Whay + f2)?]
Hee = 1+ AGE+ P ' 9
Also, since
A< K=K —Keps = ! <0, (2.9)

1 2(f2+ f2)
we have that
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1) if M (f) has constant extrinsic curvature K., then the Gaussian curvature K is bounded, i.e., K¢, — 1 <
K < Kezt;

2) if M(f) has constant Gaussian curvature K, then the extrinsic curvature K., is bounded, i.e., K < K.,; <
K+1.

By using (2.7) and (2.8), we have the followings:

Proposition 2.1. Let M (f) be a vertical graph surface in H? x R for a C? function f : Q C H? — R defined on an open
connected region Q). Then, M (f) is an intrinsically flat surface in H? x R if and only if f(z,vy) satisfies

yg[(yfmc = f)Whyy + fy) — Wy + fx)z} - yQ(fm2 + fy2) -1=0. (2.10)

Proposition 2.2. Let M (f) be a vertical graph surface in H? x R for a C? function f : Q C H? — R defined on an open
connected region ). Then, M (f) is an extrinsically flat surface in H? x R if and only if f(x,y) satisfies

Yoo = fo) @ fyy + fy) = Wfay + f2)? = 0. (2.11)

Proposition 2.3. Let v € C? be defined on an open interval of R. Let M (f) be a vertical graph surface in H? x R for a
function of the form f(x,y) = v(y) + Lx, that is, M (f) is invariant by the parabolic screw motion with pitch £ > 0. Then,
the Gaussian curvature K and the extrinsic curvature K., are given, respectively, by

y d 1 1
K==— — 2.12
2dy(1+y2(v’2+€2)> L+ y2(v? + 2) 212
and
y d 1
gt = 20— ———————— . 2.13
t 2dy(1+y2(1]/2+€2)> ( )

Now, by using (2.9) we prove the following theorem.

Theorem 2.1. Let M (f) be a vertical graph surface in H? x R for a C? function f(x,y) defined on some open connected
region 2 C H2. Then, the difference between the extrinsic curvature K., and the Gaussian curvature K is a constant if
and only if the function f is given by

fla,y) = bz F (me(ﬁ)) np (2.14)

defined on the region Q = {(z,y) € H?| 0 <y < %}, where £,b,c € R with £,b > 0. Moreover, M (f) has both K., and
K constant, that is, Keyr = 0 and K = —1/(1 + b?), and it is invariant by the parabolic screw motion with pitch (.

Proof. Let M(f) be a vertical graph surface in H? x R for a C? function f(z,y) defined on some open connected
region 2 C H?. From (2.9), we have 0 < K.,; — K < 1,and K.,: — K is a constant if and only if f(z,y) satisfies

2

b

where b =/ Kmi— 7 — 1. The complete solution of this partial differential equation is of the form

f(z,y) *El’:F/ dy+c

for 0 < y < b/¢, where ¢ and c are integration constants with ¢ > 0. By integration we obtain (2.14).
Let b be a positive constant. The function f(z,y) given by (2.14) is of the form f(x,y) = ¢x F v(y) with
V' (y) = 7”’2;42‘1’2 It can be seen easily that 1+ y2(v'> 4 £2) is a constant. Thus, from (2.12) and (2.13) we have

K =—1/(1+b?) and K.+ = 0, respectively. Also, for £ > 0 the form of f means that M(f) is a parabolic screw
motion surface in H? x R with pitch 4. O
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2.2. Parabolic screw motion surfaces

Parabolic and hyperbolic screw motion surfaces in H? x R were studied in [4, 18]. For the definition of
parabolic screw motion surfaces we follow [4]. We will use helicoidal-type isometries in H?> x R which are the
composition of isometries of H? together with vertical translation in a proportional way. Let § be the group of
parabolic isometries in the half-plane H?, that is, the parabolic translations given by T'(z,y) = (z + ¢,y), ¢ € R.
This group generates helicoidal-type isometries in H? x R, that is, the helicoidal isometries Ty of pitch ¢ > 0,
generated in H? x R are given by Fv(x, y,t) = (T'(z,y),t + £c). More precisely, for a fixed point (zo, yo, to), it is
given by

Fg(.f(:(),yo,to) = {(l‘o + ¢, yo, %0 + C€)|C € R} c H? x R.

The surfaces invariant by this helicoidal isometry will be called the parabolic screw motion surfaces. If £ = 0, we
have surfaces invariant by parabolic translations.

In order to obtain a surface invariant by the parabolic screw motion, we consider a curve v = (0, y, v(y)) in the
yt-plane which is locally the graph of a function v € C? defined an open interval of R. The surface I';() which
is invariant by this one-parameter group of helicoidal-type isometries generated by the curve v can therefore
be parameterized by

p(a,y) = (2,9,v(y) + lz)
which is a vertical graph surface M (f) defined by a function of the form f(z,y) = v(y) + ¢z. In the literature, a
surface defined by ¢(z,y) = (z,y, u(z) + v(y)) is also known as a translation surface, for instance, see [8, 11, 10]
and references therein.

3. Flat and Extrinsically Flat Surfaces in H? x R

In this section we obtain intrinsically flat and extrinsically flat vertical graph surfaces invariant by the
parabolic screw motions in H? x R.
Considering (2.7), (2.8), and L, M, N in (2.6), for planes immersed in H? x R we have

Proposition 3.1. Let f(x,y) = ax + by + ¢, where a,b,c € R. Then, the vertical graph surface M(f) in H? x R is
extrinsically flat if and only if f(x,y) = c. The graph surface M(f) for f(x,y) = c is an entire, complete, and totally
geodesic surface invariant by the parabolic screw motions in H? x R with the intrinsic Gaussian curvature K = —1.

For the vertical graph surfaces in H? x R for the function of the form f(z,y) = u(z) + v(y) we have

Theorem 3.1. Let M (f) be a vertical graph surface in H? x R for a C? function of the form f(z,y) = u(z) + v(y) defined
on some open connected region Q C H2.Then, M (f) is extrinsically flat if and only if

Y
u(@) = totc and o(y) = B -y + bl (—— L) 31)
b + b2 _ €2y2

on the region Q = {(z,y) € H*| 0 <y < b}, where ¢,b,c € R with £,b> 0. This surface M(f) is invariant by the
parabolic screw motion with pitch ¢ and constant Gaussian curvature K = —1/(1 + b?).

Proof. Let M(f) be a vertical graph surface in H? x R for a C? function of the form f(z,y) = u(z) + v(y).
Then, the graph surface M(f) is extrinsically flat if and only if the function f holds (2.11). That is, for
f(z,y) = u(z) + v(y), equation (2.11) becomes

1
y(v' +yv”)

u () — u(x) — Z = 0. (3.2)

This is a differential equation of the form u” () + 11 (y)u'* (z) + 12 (y) = 0. Since 1, and ¢, are functions of y, if

u”’(z) # 0, then the solution of (3.2) does not define u as a function of z, and hence there is no solution of (3.2)
unless u”(z) = 0. So, we have v”(z) = 0 which implies that u(z) = ¢z + ¢, £ # 0, ¢ € R. Note that this result can
also be followed by taking the derivative of (3.2) with respect to y. For u(x) = ¢z + ¢, we have from (3.2) that

12 2
14 . - . . .
v'v"” + — + — = 0. The solution of this differential equation gives
) Y

v(y) —JF/”bZ;ng2

dy + ¢,
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where b > 0 and ¢ are integration constants, and 0 < y < b/{. By integrating the last integral and using a
vertical translation and symmetry about the zy-plane we have (3.1). Also, from (2.12) we obtain that the Gauss
curvature K = —1/(1 + b?). For the obtained functions u(z) and v(y), M(f) is a parabolic screw motion surface
in H? x R with pitch ¢ > 0. O

Remark 3.1. Up to a vertical translation, the vertical graph surfaces M (f) in H? x R for f(z,y) = v(y) + ¢z with
v(y) defined by the second function in (3.1) are the only surfaces invariant by the parabolic screw motion in
H? x R with constant Gaussian curvature K and constant extrinsic curvature K.,;.

Now, by taking ¢ = 0 in (3.1), the vertical graph surface M (f) for f(z,y) = v(y) is a cylinder parallel to the
z-axis immersed in H? x R. Such a surface is invariant by the parabolic translation. Thus, we have

Corollary 3.1. Let v € C? be defined an open interval of R. Up to a vertical translation and symmetry about the xy-
plane, a vertical graph surface M (f) in H? x R for a function of the form f(z,y) = v(y) is extrinsically flat if and only if
f(z,y) =blny, b € Ry. Also, M(f) is an entire surface invariant by the parabolic translation in H? x R with constant
Gaussian curvature K = —1/(b* + 1).

Theorem 3.2. Let M(f) be a vertical graph surface in H? x R for a C? function of the form f(z,y) = v(y) + x on some
open connected region Q C H?, where ¢ is a positive constant, that is, M (f) is a parabolic screw motion surface in H? x R
with pitch €. Then, M (f) is intrinsically flat if and only if

/b — 42 — 294
flz,y) :&v:t/%dy (3.3)

on the region Q = {(x,y) € H?| 0 < y < \/—1+ V402 + 1//2¢}, where b > 0 is an integration constant. Also, the

extrinsic curvature K, is given by Kepe = y*/b.

Proof. Let f(z,y) =v(y) + ¢z. Then, from (2.12) a vertical graph surface M(f) has zero Gaussian curvature,
K =0, if and only if the function v(y) satisfies the equation

gi( 1 ) _ 1
2dv N1+ y2 (0 + 2)) 14 g2 (0 4 2)

=0. (3.4)

Now we put ¢(y) = 1/(1 + y2(v'* + £2)). Then, we have y¢'(y) — 2¢(y) = 0, and its solution yields q¢(y) = 42/,
where b is a non-zero integration constant. Therefore, for this ¢(y), solving ¢(y) = 1/(1 + y(v/ 4 02)) for v(y),
and using a vertical translation, we obtain (3.3) for b > 0, and from (3.3) we have the region (2 in the theorem.

Now, from (2.13) and (3.4) we get K., = m =q(y) = % O

By taking ¢ = 0, integrating (3.3) and also considering a vertical translation and symmetry about the zy-plane,
we have

Corollary 3.2. Let M(f) be a vertical graph surface (an immersed cylinder) in H? x R for a C* function of the form
f(z,y) = v(y) on some open connected region Q C H?, that is, M(f) is invariant by the parabolic translation. Then,
M (f) is intrinsically flat if and only if

f(z,y) = arcsin <y> + (3.5)
on the region Q = {(x,y) € H?| 0 < y < v/b}, where b is a positive constant.

4. Surfaces with non-zero constant curvature

In this section we study vertical graph surfaces invariant by parabolic screw motions in H? x R with non-zero
constant Gaussian curvature, and with non-zero constant extrinsic curvature.
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4.1. Surfaces with non-zero constant extrinsic curvature

Theorem 4.1. Let M (f) be a vertical graph surface in H? x R for a C? function of the form f(z,y) = v(y) + £z on some
open connected region Q C H?, where ( is a positive constant, that is, M (f) is a parabolic screw motion surface with pitch
L. Then, M (f) has non-zero constant extrinsic curvature K., if and only if

1-— 1 2 2K ot 1
xy—éxi/\/ + P+ 2w ny) 4.1)

b+ 2K Iny

on the open connected region Q = {(x,y) € H?*| 0 < b+ 2K e Iny < Land (1 + 02y?)(b+ 2Ky Iny) < 1}.

Proof. Let M(f) be a vertical graph surface in H? x R for f(z,y) = v(y) + ¢z. Then, M (f) has non-zero constant
extrinsic curvature K., if and only if

d 1

7( _ 2Kea:t
dv A1 +y2(v

/2+42)) oy

because of (2.13), which can be written as 1/(1+ y2(v'* + £2)) = b+ 2K.p; Iny, where b€ R and 0 < b+
2Kz Iny < 1. When we solve this equation for v(y) and using a vertical translation, we obtain (4.1). O

By taking ¢ = 0 and integrating (4.1) we have

Corollary 4.1. Let M(f) be a vertical graph surface, (an immersed cylinder) in H> x R for a C* function of the
form f(z,y) = v(y) on some open connected region Q C H2. Then, the graph surface M(f) invariant by the parabolic
translation has non-zero constant extrinsic curvature K., if and only if

f(z,y) = (4.2)

1-0—2Kc¢lny )

1—0—-—2K.:1 2K 41 —
(\/( b ext MY)(b+ 2Ky Iny) arctan\/ b 2Ky

2Kert

on the open connected region Q = {(z,y) € H2| e=/2Keat < y < (1=0)/2Keat} for K, .y >0, and Q= {(z,y) €
H2| e(1=0)/2Kewr < 4y < =0/2Keat} for K,y < 0, where b is a constant.

4.2. Surfaces with non-zero Constant Gaussian Curvature

Let f(z,y) = ax + by + ¢, where a,b,c € R. Then, from (2.7) the Gaussian curvature of the vertical graph
surface M (f) is obtained as
=1 —2y%(a® +b?)
C [ y?(a? +02)P?

from which we can state

Proposition 4.1. Let f(x,y) = ax + by + ¢, where a,b,c € R. Then, the vertical graph surface M(f) in H? x R has
constant negative Gaussian curvature K = —1 if and only if f(x,y) = c¢. The graph surface M(f) invariant by the
parabolic screw motions is an entire, totally geodesic and complete surface in H? x R with K = —1.

Theorem 4.2. Let M(f) be a vertical graph surface in H? x R for a C? function of the form f(z,y) = v(y) + £z on some
open connected region 2 C H?, where { is a positive constant, that is, M () is a parabolic screw motion surface with pitch
L. Then, M(f) has non-zero constant Gaussian curvature K if and only if the function v(y) is given by

flzy) =tz £ / \/1_£2by_(by _K)dy, (4.3)

where b and K are non-zero constants; and the region Q is given as follows:

1) fO?‘K >0,0= {(m,y) c H2| /% <y< \/7(b7€2K)+\/(b2*bl;2K)2+4E2b(1+K)} lfb > 0;

2) for -1 < K <0,Q = {(%y) cH2[0<y< \/7(b7£2K)+\/(b2fbl;K)2+4£2b(1+K)} ifb >0, 0r

0= {(z,y) c H?| \/b‘”KW“’Z,‘(‘fgjj*“2‘"1““ <y< ./%} if 2OVE+1—K—2)<b<0;
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3)forK:—1,Q:{(x7y)eH2\ B <cy< }1f —02<b<0,or
Q= {(wy)€H2|0<y< }1fb< e

4) for K < —1,Q =4 (z,y) € H?| \/ maliaviOn pf)oé)g TALLATK) <y< 1/%} ifb<O0.

Proof. Let f(z,y) =z + v(y). A vertical graph surface M(f) has non-zero constant Gaussian curvature K if
and only if the function v(y) is a solution of (2.12).

Now, if we put ¢(y) = 1/(1+y2(v'* + ¢?)), then the equation (2.12) turns to ¢'(y) — %q(y) = %, and

its solution yields ¢(y) = by?> — K, where b is an integration constant. Therefore, for this ¢(y) solving
q(y) = 1/(1 + y2(v"* + £2)) for v(y) and considering a vertical translation, we obtain (4.3). Also, from (2.5) we

obtain EG — F? = m that implies by? — K > 0 as M (f) is regular. From (4.3), the function v(y) is defined

if 0 < (?y* +1)(by* — K) < 1. Analyzing these inequalities for the values of ¢, b, and K, we obtain the regions
() stated in the theorem. O

Letb = 0in (4.3). Then, from EG — F? = ; ( the surface M(f) is regular if K < 0. Also, we have K., =0
for the function v(y) given by (4.3) because of Theorem 3.1. Thus, by integrating (4.3) and using (2.9) we have

Corollary 4.2. The vertical graph surface M (f) invariant by a parabolic screw motion has negative constant Gaussian
curvature with —1 < K < 0 for the function

flx,y) =Ltz + ( A2 — 292 + Xn ( 4.4)

)
v

defined on the region Q = {(a:,y) cH?0<y< %}, where A = /1K

Now, by taking ¢ = 0 in (4.3), and considering a vertical translation and symmetry about the zy-plane, we
have

Corollary 4.3. Let M(f) be a graph surface (immersed cylinder) in H? x R for a C? function of the form f(z,y) = v(y)
on some open connected region Q2 C H?. Then, M(f) invariant by the parabolic translation has non-zero constant
Gaussian curvature K if and only if the function f is given by

1)
1+K /1+K by? — K .1 5
flzyy) = 1+bey2) —sin" yby? - K (4.5)

defined on the region Q = {(m,y) eM?| /X <y< \/%}forl(>0andb>0,or

Q:{(x7y)el[-]12|1/%<y<\/%}for1{§—landb<0;
2)
- /1 /1+K by? — K R
flz,y) = 7K by 2) + sin by? — K (4.6)

defined on the region Q = {(:z:,y) eEH}0<y< %}for ~1<K<0andb>0,or

Q:{(m,y)€H2|O<y< \/%}for—1§K<0andb<0;
3) f(z,y) = /2L Iny defined on the region Q = H? for -1 < K < 0.and b = 0.

When we evaluate the geodesics of the surface M (f) for the function f(z,y) = alny on the region Q = H? we
obtain the geodesics parametrized by arc length parameter as follows:

Y1(s) = (‘””o,yoes/v % aIn (yoes/ Haz))’ seR
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and

Nigw 5= 1o 1 s — o 1 s — Yo
9= (VL (S22 ) iy, Lech (S22 ot (Lsech (S22 ),
== (5 viza) T N e ) G e

s € R, which are complete, where ¢, 21, yo are integration constants. Therefore, the surface M(f) is complete
with constant negative Gaussian curvature K with —1 < K < 0.

By Proposition 4.1 and Corollary 4.3 it is seen that the vertical graph surfaces M(f) defined by f(z,y) =
¢ = constant and f(z,y) = alny are the only complete and entire surfaces invariant by parabolic translation
in H? x R with constant negative Gaussian curvature. For f(z,y) = ¢, M(f) has K.+ = 0 and K = —1, and for
f(z,y) =alny, M(f)has K.y = 0and K = —1/(1 + a?).
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