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Abstract

With the increasing volume of data on the Web and the proliferation of published
knowledge graphs, there is a growing need for improved data management and in-
formation extraction. However, heterogeneity issues across the data sources, i.e.,
various formats and systems, negatively impact efficient access, manage, reuse, and
analyze the data. A data integration system (DIS) provides uniform access to het-
erogeneous data sources and their relationships; it offers a unified and comprehensive
view of the data. DISs resort to mapping rules, expressed in declarative languages
like RML, to align data from various sources to classes and properties defined in an
ontology. This work defines a knowledge graph where data integration systems are
represented as factual statements. The aim of this work is to provide the basis for
integrated analysis of data collected from heterogeneous data silos. The proposed
knowledge graph is also specified as a data integration system, that integrates all
data integration systems. The proposed solution includes a unified schema, which
defines and explains the relationships between all elements in the data integration
system DIS=⟨G,S,M, F ⟩. The results suggest that factual statements from the pro-
posed knowledge graph, improve the understanding of the features that characterize
knowledge graphs declaratively defined like data integration systems.

Keywords: Data integration system, Knowledge Graph, Mapping rules, Ontology,
Data source
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Chapter 1

Introduction

With the increasing amount of data available, effective data integration systems and
knowledge graphs have become paramount.
Knowledge graphs are graph-based models that consist of entities and relationships
connected using semantic metadata. They provide a framework for extracting knowl-
edge from raw data, enabling subsequent data integration, sharing, and analysis in
a way that is understandable for both humans and machines [4].
Data integration systems combine data from different sources to provide a unified
view of the data [11, 26]. The design of such systems is crucial in real-world appli-
cations and presents interesting theoretical challenges. This thesis focuses on some
of these challenges, particularly concerning the architecture of data integration sys-
tems. The systems we are concerned with in this work are characterized by a global
schema-based architecture and data sources. This architecture ensures that data
from various sources is integrated, transformed into a consistent format, and stored
in a centralized repository [20]. Key topics in this area include data sources, the uni-
fied schema (ontology), and the mapping rules that establish correspondence between
them. Data integration system addresses major challenges in data management such
as accessibility, interoperability, data findability, and reuse [7]. Integrating data
sources, mappings, and ontologies can significantly improve data management. This
work aims to define connections between different elements using RDF rules within a
data integration system. This results in a new unified schema that includes all these
elements, thus optimizing the mapping and unified schema creation and usage.
Table 1.1 provides the following research questions to assess the unified global schema
of data integration systems.

1



Chapter 1. Introduction

Research Questions

RQ1 What are the main features that characterize a knowl-
edge graph defined as a data integration system?

RQ2 What are the main challenges and limitations in docu-
menting data integration systems?

RQ3 What are the main data integration approaches?
RQ4 How do data integration system impact tasks of data

management and knowledge graph creation?
RQ5 What is the relevant metadata that characterize a data

integration system?
RQ6 Which type of concepts should be defined in a data inte-

gration system? How are they connected to each other?
RQ7 What is the role of declarative mapping languages in the

documentation of data integration systems?

Table 1.1: Research Questions

1.1 Motivating Example

To motivate the work of this thesis, we consider in the current world web the abun-
dance of data sets, multiple ontologies that describe the data sets, and numerous
triples maps that connect the data set to the corresponding ontologies. These data
sets, ontologies, and mappings come from various sources and concepts. In this
thesis, we use two different scenarios as motivating examples.

1.1.1 Scenario 1

The first motivating example is about receiving a new data set, and you need to
integrate it into your existing knowledge graph. Consider your work for a research
team that creates specific medical treatments for patients. Your team has recently
received a new data set from a recent clinic containing information on patients,
their diseases, and related information such as names, disease names, disease stages,
drugs, and family history. However, this data format differs from what your team
typically uses. You need to find a corresponding ontology and map the new data to
integrate it into your existing system. By doing this, you can categorize the diseases
automatically, analyze the information, and generate tailored medical treatments
for each patient based on their specific situations. This will improve the accuracy
and efficiency of your services, making it easier for specialists to compare cases and

2



1.1. Motivating Example

make treatment decisions. In short, mapping the new data set to a corresponding
ontology will help your research team provide better results by enabling improved
data analysis and medical treatment recommendations.

Figure 1.1: Motivating Example. Scenario 1: Receiving new data set and updating the
current knowledge graph.

Incorporating a new data source into a data integration system requires identify-
ing a corresponding existing ontology and mapping it to the latest data source. This
metadata provides context for the new data and ensures it can be appropriately ana-
lyzed and utilized. With a matching ontology and mapping, multiple ontologies and
mappings for the same data could accumulate, leading to clarity and inefficiencies.
Identifying a matching ontology and mapping is essential to avoid this problem and
maintain a clear relationship between the data sources, ontologies, and mappings.

1.1.2 Scenario 2

For the second motivating example in this work, consider the several data integration
shown in Figure 1.2. Each data integration consists of ontologies and a set of data
sources, with many mapping rules defined to correspond these data sources to the
ontology.

Suppose you have a date as a start date for treatment, but it needs to be clarified
to which treatment it belongs. Finding a repetitive variable, such as the date, requires
checking many triples maps and mapping assertions among all the data sources and
mapping rules. The demand for increased accessibility and findability of specific data
is crucial in data management, mainly when dealing with massive data sources and
many mapping rules with complex relationships. An upper-layer data integration

3



Chapter 1. Introduction

Figure 1.2: Motivating Example. Scenario 2: There are many data integration systems
to work on them.

system (as shown in Figure 1.3) can be created to address this issue. This system
can help locate a specific piece of data, for example, by finding the triples map that
has defined the properties of a patient. This ability makes it easier to understand
the relationships and explanations of the data.

Figure 1.3: Motivating Example. Scenario 2: Creating knowledge graph based on new
data integration system, which helps to track data and reuse resources.

4



1.1. Motivating Example

To reach our goal, we use a unified schema that defines the relationships of entities
based on the data sources and mapping rules, such as the relationship between a
patient and his/her name, treatment, and birth date. We make a set of data sources
for the data integration system from ontologies, all data sources, and all mapping
rules. The mapping rules of the data integration system correspond to the data
sources to the unified schema.
The SDM-RDFizer 1, a mapping rule interpreter for RML, is utilized to create N-
triple and semantify data based on the mapping rules (Figure1.4).
With the created knowledge graph, we can easily find specific data, such as the
particular triples map that defines the treatment start date for a patient, with just
one query on the knowledge graph.

Figure 1.4: Motivating Example. Scenario 2: The knowledge graph of the data integration
system is created by using a unified schema and mapping rules to correspond data from
different sources to the schema. This is achieved through the use of N-triples generated by
SDM-RDFizer, and allows for SPARQL queries to be answered over the resulting knowledge
graph.

1https://github.com/SDM-TIB/SDM-RDFizer

5
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Chapter 1. Introduction

1.2 Contributions

The main contribution of this work is developing a theoretical framework for creating
a data integration system using semantic web technologies. This framework is based
on the global as view (GAV) approach. It utilizes semantic data modeling to provide
three types of designs: 1) Conceptual design, which involves creating an abstract
and high-level representation of the data structure and organization. 2) Logical de-
sign is a data modeling stage that follows the conceptual design and involves refining
the conceptual data model for a specific database management system. 3)Physical
design is the final stage in data modeling and consists in translating the logical data
model into a design optimized for a specific technology. Additionally, the work in-
cludes an 4) Empirical evaluation of the performance of a knowledge graph based
on network analysis using Cytoscape. This evaluation provides valuable insights into
the effectiveness of the proposed framework in real-world scenarios.

1.3 Overview of the Document

The thesis is structured into seven chapters. Chapter 1 is the introduction and
provides two motivating examples and the problem being addressed in the work.
Chapter 2 presents the mathematical notations, symbols, and essential concepts nec-
essary for understanding the subsequent chapters. After understanding the required
background, Chapter 3 highlights relevant topics related to this work while referring
to relevant papers. The approach, including the formal problem definition and the
proposed solution, is discussed in Chapter 4. Chapter 5 offers the reader an imple-
mentation of the approach. The implementation’s performance is evaluated using
benchmarks in Chapter 6. The thesis concludes in Chapter 7.

1.4 Summary of the Chapter

To summarize, this chapter concludes the scope of the thesis. The overall approach
is introduced through the use of motivating examples. The challenge of managing
data due to its heterogeneity and large volume is discussed, highlighting the need for
a solution.

6



Chapter 2

Background

The data creation and storage rate, regardless of its heterogeneity or homogeneity
and format, is rapidly increasing. To make informed decisions, extracting valuable
insights from this raw data is crucial. These can include extract and transform
processes, which involve removing data from different sources, converting it into a
standard format, and loading it into a central repository. Once the data is inte-
grated, it can be cleansed, transformed, and analyzed in a unified way, providing a
more accurate and comprehensive view of the data. This highlights the importance
of data integration system and making a knowledge graph in the semantic web.
A knowledge graph can be created using a data integration system comprising various
data sources, a unified schema, and mapping rules connecting these sources to ontolo-
gies. This allows for the retrieval and tracking of resources by defining relationships
and vocabularies between concepts. Data integration systems also play a crucial role
in solving the FAIR data 2 challenge in data management by making data Findable,
Accessible, Interoperable, and Reusable. In this section, we will discuss fundamen-
tal concepts such as data integration systems, Data Catalog Vocabulary (DCAT),
mapping rules, and related semantic web technologies like the Resource Description
Framework (RDF), RDF Schema (RDFS), the Web Ontology Language (OWL), and
the Shapes Constraint Language (SHACL).

2.1 Semantic Web Technologies

By defining an Open Web Platform for application development, the W3C standards
offer developers an exceptional opportunity to create rich, interactive experiences

2https://www.go-fair.org/fair-principles
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Chapter 2. Background

using vast data stores, which can be accessed from any device. This platform’s full
potential relies on various technologies being developed by the W3C and its partners,
such as CSS, SVG, WOFF, various APIs, XML, and the Semantic Web stack 3. Here
there is a brief explanation of the Semantic Web.
Semantic web is promoted and developed by the World Wide Web Consortium
(W3C), an international standardization body for the web. The semantic web is
a network of data that shows us how the data is stored in databases4. According
to the inventor of the World Wide Web, Tim Berners-Lee, “The Semantic Web is
an extension of the current web in which information is given well-defined mean-
ing, better-enabling computers and people to work in cooperation.” you can see the
hierarchy of semantic web stack in Figure 2.1.

Figure 2.1: The Semantic Web ”layer cake” as presented by Tim Berners-Lee. Figure is
taken from [10].

The Semantic Web aims to enable machines and humans to use data and knowl-
edge more effectively. Semantic web technologies provide the framework for humans
to store data on the Web and create vocabularies, define metadata, relationships,
and rules for managing data, and connect it to other data on the World of Web5.
W3C (World Wide Web Consortium) has defined some standard technologies such
as RDF, OWL, and SPARQL to create a web of linked data that is easily discov-
erable and machine-readable. We can define the vocabularies, metadata, and rules
based on them.

3https://www.w3.org/standards/
4https://www.w3.org/standards/semanticweb/data
5https://www.w3.org/standards/semanticweb/
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2.1.1 FAIR Principles

The FAIR principles - Findable, Accessible, Interoperable, and Reusable - have be-
come a cornerstone of data management and data sharing in the semantic web. The
primary goal of these principles is to enhance the value and usefulness of data for
researchers, scientists, and the general public by improving its findability, accessibil-
ity, interoperability, and reusability [31]. Findability) Metadata and data should
be easily discoverable by both humans and computers. Accessibility) Once data
has been located, users should have clear instructions on how to access it, includ-
ing the necessary authentication and authorization procedures. Interoperability)
Data often needs to be integrated with other data and be able to interoperate with
applications for storage, processing, and analysis. Reusability) Metadata and data
should be easily replicated or combined in various contexts [29]. In the context of the
semantic web, the FAIR principles are particularly important for data integration,
as they enable different sources of data to be linked and combined in a meaningful
way. This is achieved through the use of common vocabularies, ontologies, and data
formats, which help to ensure that data is consistent and standardized across differ-
ent sources.
To achieve the FAIR principles in the context of the semantic web, there are several
best practices that can be followed. First, data should be published in a machine-
readable format using open standards, such as RDF (Resource Description Frame-
work) and OWL (Web Ontology Language). This makes it easier for machines to
understand and process the data, and enables it to be linked and integrated with
other datasets [31, 16].
Second, data should be annotated with metadata that describes the content, struc-
ture, and provenance of the data. This metadata should be standardized and inter-
operable, so that it can be easily shared and reused by others [31, 16].
Third, data should be published with persistent identifiers (PIDs), such as DOIs or
URIs, that enable the data to be easily located and cited. This helps to ensure that
data is findable and accessible to others, and enables researchers to give credit to the
data creators [31, 16].
Finally, data should be published with clear terms of use and licensing information
that allows others to reuse the data in a responsible and legal way. By adopting
these best practices, data managers and publishers can help to make data FAIR and
contribute to the development of the semantic web and the broader scientific com-
munity [31, 16].
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2.1.2 Resource Description Framework: RDF

RDF stands for Resource Description Framework. It is a W3C recommendation
and an infrastructure for representing the information on the Web and expressing
semantics. This framework reuses the structured metadata[22].

Figure 2.2: An Example of a RDF triples

Figure 2.3: An Example of a RDF graph

RDF provides a way to describe resources on the web, such as web pages, books,
or people, in a way that can be easily understood and processed by humans and
also machines. It uses a simple, graph-based data model that consists of subject-
predicate-object statements, or triples (s, p, o), similar to simple sentences. Each
triple consists of a subject (the resource being described), a predicate (the property
or characteristic being described), and an object (the value of the property) [22].
You can see a sample of RDF triple in Figure 2.2.
Graphs are a useful way to represent the structure of a network, and in the RDF
framework, graphs are made up of sets of RDF triples. These triples consist of three
types of elements: URIs, literals, and blank nodes [21].
The sample RDF graph in Figure 2.3 depicts rectangular nodes as attributes and
literals, oval nodes as resources, and arcs as properties representing the relationships
between resources and attributes.

10



2.2. Description Logics: DL

2.2 Description Logics: DL

Description Logics (DLs) are a family of formal knowledge representation languages
used to represent and reason about the concepts and relationships within a domain
of interest. DLs are typically used in the field of artificial intelligence, particularly
in areas such as knowledge-based systems, semantic web technologies, and ontology
engineering. In DLs, the domain of interest is represented as a set of concepts and
relationships between these concepts. Language provides a set of constructors to
build complex ideas and relationships from simple ones. These constructors include
intersection (AND), union (OR), negation (NOT), role restrictions, and cardinal-
ity restrictions. DLs provide a rigorous framework for reasoning about knowledge
bases’ consistency, satisfiability, and entailment. DL reasoning is usually performed
using automated inference procedures that can derive new knowledge from exist-
ing knowledge bases. Description Logics usually divide domain knowledge into two
parts, namely the TBox and the ABox. The TBox component represents the ter-
minology or the structure of the domain, analogous to a database schema. On the
other hand, the ABox represents knowledge about a specific situation or instance
of the domain, similar to a database instance. The combination of the TBox and
ABox creates a knowledge base (KB) [3]. In a hospital domain, TBox statements
could capture knowledge about the structure of the domain, such as the hierarchy
of the concepts within the domain. For instance, a TBox statement could specify
that an ”LCPatient” is a subclass of a ”Patient” who has ”Lung Cancer”. On the
other hand, ABox statements from the same hospital domain may include specific
instances such as ”Alex is a patient”, ”Lung Cancer is a disease”, and ”Alex has Lung
Cancer”. It is important to note that DLs provide formal and logic-based semantics
for such statements, a crucial feature of these knowledge representation languages [3].
DLs are widely used in applications such as ontology engineering, natural language
processing, and intelligent systems.

2.3 RDFS and OWL: Ontology

Ontologies or vocabularies in the domain of the Semantic Web define concepts and
relationships that describe and represent a specific area of concern. Their main role
is to facilitate data organization and integration, which results in the creation of
integrated data or Linked Data that can be used for reasoning or querying. On-
tologies are crucial in enabling automatic knowledge processing, sharing, and reuse
among applications. They typically contain a hierarchy of concepts or classes and
their properties that relate to a specific area of interest. There are two different
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types of properties that are used to represent relationships between classes and their
instances, object property and data type property. An object property represents a
relationship between two or more instances of classes. A data type property, on the
other hand, is used to represent a relationship between an instance of a class and a
literal value of a particular data type. The examples are shown in Figure 2.4.
By utilizing ontologies, computers can comprehend the meaning of data and draw
inferences based on that understanding, even if the data is presented in various for-
mats or languages[25].
RDF and OWL are the two languages used to create ontologies. RDF vocabular-
ies provide terms that describe resources, while the W3C Web Ontology Language
(OWL) is a Semantic Web language designed to represent complex knowledge. OWL
comprises RDFS, RDF vocabularies and new terms that describe resources in greater
detail. RDF and OWL are the backbone of semantics and OWL makes data smart.
In the Table 2.1 you see some examples of RDFS, OWL and DL.

DL Operator RDFS OWL

C1 ⊆ C2 C1 rdfs:subClassOf C2
P1 ⊆ P2 P1 rdfs:subPropertyOf P2
∃ R ⊆ A P rdfs:domain A
∃ R¯⊆ B P rdfs:range B
A ≡ B A owl:equivalentClass B

A ∩ B ⊆ ⊥ A owl:disjointWith B
A(x) x rdf:type A
R(x,y) x R y
x ≡ y x owl:sameAs y

P1 ≡ P2 P1 owl:equivalentProperty P2

Table 2.1: Some examples of DL, RDFS and OWL. The table is taken from [30]

The Figure 2.5 displays a visualization of a sample ontology.

2.3.1 Axioms

RDFS and OWL provide a set of constructs to define classes, properties, and their
relationships. Axioms state the semantics of these constructs from RDFS and OWL;
they infer implicit facts in knowledge graphs. For example, in RDFS, axioms establish
the meaning of the subclass relationship between classes, specify the domain and
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Figure 2.4: A sample of classes, object properties and data type properties in clarify ontol-
ogy https://github.com/SDM-TIB/CLARIFYUnifiedSchema/blob/master/clarify_v8.

ttl

Figure 2.5: The visualization of clarify ontology https://github.com/SDM-TIB/

CLARIFYUnifiedSchema/blob/master/clarify_v8.ttl
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range of properties, and define the cardinality constraints on the properties of classes.
Using axioms in the Semantic Web is essential for enabling automated reasoning and
inference over knowledge bases. By formally defining the meaning of concepts and
relationships, machines can process and integrate information from different sources
consistently and accurately [9, 2]. The following sections describe these axioms.

Subclass

This section describes the axioms that define subclasses; the variable e is used to
represent either URIs or blank nodes. C, C1, C2, and C3 are variables used to
represent RDFS classes [30].

• Reflexivity: IF (C, rdf:type, rdfs:Class) THEN (C, rdfs:subClassOf, C)

• Transitivity:

IF (C1,rdfs:subClassOf, C2) AND (C2, rdfs:subClassOf, C3) THEN

(C1, rdfs:subClassOf, C3)

• IF (C1, rdfs:subClassOf, C2) AND (e, rdf:type, C1) THEN (e, rdf:type,
C2)

Properties

This section describes the axioms that define subproperties; the variable a is used to
represent either URIs or blank nodes, while b is used to represent URIs, blank nodes,
or literals. P , P1 and P2 are used to represent an RDFS property, which can be
either an object property or a datatype property. C1 and C2 are used to represent
RDFS classes. Finally, u and v are instances of the classes. [30].

• IF (a, P, b) THEN (P , rdf:type, rdfs:Property)

• IF (a, P, b) AND (a, rdf:type, C1) THEN (P , rdfs:domain, C1)

• IF (a, P, b) AND (a, rdf:type, C2) THEN (P , rdfs:range, C2)

• Inverse Property: IF (P1, owl:inverseOf, P2) AND (u, P1, y) THEN
(y, P2, u)

• Inverse Property: IF (P1, owl:inverseOf, P2) AND (u, P2, y) THEN
(y, P1, u)
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Cardinalities

Axiom about cardinalities enable to state the different sizes of sets that can be
constructed using axioms, and they are represented by cardinal numbers.

• Max Cardinality Zero:

IF (C1, owl:maxCardinality, “0”̂xsd:nonNegativeInteger)AND (C1, owl:onProperty,
P) AND (u, rdf:type, C1) AND (u, P, y)

THEN False

• Max Cardinality One:

IF (C1, owl:maxCardinality, “1”̂xsd:nonNegativeInteger)AND (C1, owl:onProperty,
P) AND (u, rdf:type, C1) AND (u, P, y1) AND (u, P, y2)

THEN (y1, owl:sameAs, y2)

2.3.2 Complex Classes

In ontologies, complex classes are defined as other classes or constructs, such as other
classes, properties, and logical expressions. These complex classes provide a more
expressive way of describing the structure and relationships between resources in a
knowledge base.
For example, in the Resource Description Framework Schema (RDFS) and the Web
Ontology Language (OWL), complex classes can be defined using constructs such as
intersection, union, and complement.
An intersection class is defined as the set of resources that are instances of all the
classes that are part of the intersection.

• ex:C0 owl:equivalentClass [owl:intersectionOf (ex:C1 ex:C2 ... ex:Cn)].

• ex:LCPatient owl:equivalentClass [owl:intersectionOf (ex:Patient ex:LungCancer)].

A union class is defined as the set of resources that are instances of at least one of
the classes that are part of the union.

• ex:C0 owl:equivalentClass [owl:unionOf (ex : C1 ex:C2 ... ex:Cn)].

• ex:Patient owl:equivalentClass [owl:unionOf (ex:LCPatient ex:BCPatient)].

The Patient class can be also represented by cardinality:
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• ex:Patient owl:equivalentClass [owl:intersectionOf (ex:Human [ owl:minCardinality
“1”ˆ̂xsd:nonNegativeInteger ; owl:onProperty ex:hasDisease]) ]

A complement class is defined as the set of resources that are not instances of the
class that is being complemented [30].

• ex:C0 owl:equivalentClass [owl:complementOf (ex : C1)].

• ex:Patient owl:equivalentClass [owl:complementOf (ex:healedPerson)].

2.4 Data Integration System: DIS

Information integration and interoperability have been significant challenges in com-
puter information processing since its early days. Initially, attention was focused on
a relatively small number of sources. However, over the past few decades, the scope
of integration and interoperability has expanded, and much effort has been devoted
to addressing these related problems [19]. A data integration system in the Semantic
Web enables data integration from multiple sources. The data may be structured or
unstructured and may come from a variety of different formats and languages. The
purpose of a data integration system is to facilitate the exchange and interoperability
of data across multiple systems and to enable reasoning and decision-making based
on integrated data. Data integration systems often use ontologies and mappings to
align and harmonize data from different sources. A data integration system typically
involves the following components: DIS= <O, S, M > where O represents a unified
schema consisting of classes, relationships, and properties, S represents a set of data
sources, M is a set of mapping rules.
Since the knowledge graph is based on an ontology, we need to define an ontology to
describe data integration system. The ontology of data integration is mainly created
by combining standard ontology vocabularies such as OWL, RDFS for representing
the unified schema, DCAT for defining a set of data sources, and RML, and R2RML
for defining mapping rules. Figure 2.6 shows that the data integration system ontol-
ogy imports other ontologies and also defines SHACL constraints [8].

2.5 Data Catalog Vocabulary: DCAT

Data sources are a critical and challenging part of a data integration system. The
term big data is defined by three main attributes, commonly referred to as the 3Vs:
volume, variety, and velocity. Volume refers to the challenge of managing massive
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Figure 2.6: Data Integration System Ontology

amounts of data. Velocity refers to the challenge of managing high-speed, continu-
ous data streams. Variety refers to managing diverse data formats and multiple data
sources. As a result, addressing the problems associated with the combination of big
data is critical for solving many real-world challenges [1].
Data sources can be of different types, formats, and structures and use different ter-
minologies. They can contain errors, duplicates, and missing values. Data sources
can change over time, making it challenging to keep the integrated data up-to-date
[24]. Linked data datasets constantly evolve, with resources being added or removed
[28]. The concept of freshness is often discussed in the context of these changes, and
it is considered a key factor in determining the quality of data [5].
For describing data sets and developing the Semantic Web by enabling data to be
linked, shared and reused, publishers can use the standard model DCAT (Data Cat-
alog Vocabulary). DCAT is a standardized vocabulary that describes datasets and
data catalogs in the Semantic Web. It is based on the RDF (Resource Descrip-
tion Framework) data model, which enables data to be linked and shared across the
web 6. You can share data services, distribution, publisher, and many more details
about the data sets through DCAT on the Web. DCAT improves Interoperability by
describing datasets and enhancing the data quality. It allows for creating rich meta-
data descriptions for datasets, including information about the publisher, license,
language, and more.
It provides aggregation of datasets from different sources and makes them available.
This increases the findability of data sources. The prefix for the DCAT namespace is
dcat. The main classes of DCAT version 3 used in this work are dcat:DatasetSeries,
dcat:Dataset and dcat:Distribution. You can see the overview of the DCAT model in

6https://www.w3.org/TR/vocab-dcat-3/
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Figure 2.7.

Figure 2.7: Overview of DCAT model,showing the classes of resources that can be
members of a Catalog, and the relationships between them. This figure is taken from
https://www.w3.org/TR/vocab-dcat-3/

2.6 R2RML and RML as Declerative Mapping Lan-

guages

A declarative mapping language is a programming language used to define mappings
between different data sources and target data structures, such as databases, XML
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documents, and objects. These languages allow developers to describe mappings
concisely and intuitively without writing low-level code, using rules and patterns that
automatically generate the required code. A mapping document is a necessary tool
for translating data, and mapping languages help establish the relationships between
heterogeneous data models in different sources and an RDF version that follows the
schema of an ontology. Mapping languages are often used in data integration systems
to define the rules for translating non-RDF data into RDF. These data sources can be
expressed in various formats, including tabular, JSON, or XML. Mapping languages
for KG construction have a common goal of establishing the relationships between
data sources and the ontology schema and share inherent characteristics that can
be modeled [15]. Figure 2.8 illustrates declarative mapping languages. This work
focuses on two specific mapping languages, R2RML 7 and RML8.

Figure 2.8: Examples of declarative mapping languages. It is taken from [30]

R2RML

R2RML stands for RDB to RDF Mapping Language, a W3C recommendation for
mapping relational databases (RDB) to RDF graphs. The idea behind R2RML is
to provide a standard way to expose relational data as linked data on the web,
which helps integrate and share data across different applications and domains 9.
R2RML works by defining a set of mapping rules (TriplesMaps) that specify how
to transform the data in a relational database into RDF triples (LogicalTable). The
mapping rules define the mapping between the database schema and the correspond-
ing RDF graph, including classes, properties, and relationships. A set of triples maps
includes a logical table, subject map, and zero or more predicate-object maps[30].

7https://www.w3.org/TR/r2rml/
8https://rml.io/specs/rml/
9https://www.w3.org/TR/r2rml/
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• SubjectMap (rr:subjectMap) identifies the subject of the RDF triples that
will be generated, and the (rr:class) predicate specifies the subject’s type.
The (rr:template) predicate defines the pattern used to create the subject’s
identifier.

• PredicateObjectMap (rr:predicateObjectMap) associates a predicate and ob-
ject with a subject described using a subject map.

– PredicateMap (rr:predicate) defines the predicate of the generated RDF
triple.

– ObjectMap (rr:objectMap) specifies the object of the triple. The (rr:template)
predicate defines the pattern for creating the identifier of the object when
the predicate corresponds to an object property. Alternatively, when the
predicate is a data type property, the (rr:column) predicate must be used,
followed by the name of the corresponding column. Object maps can also
be created using referencing object maps.
A referencing object map indicates that the subject of another triples
map corresponds to the value of the object of the defined RDF triple. To
define a referencing object map, a join between the logical tables of the
two related triple maps may be necessary. The referencing object map
includes one (rr:parentTriplesMap) property, which must be a triples map
and is referred to as the parent triple map of the referencing object map.
The referencing object map may also include one or more (rr:joinCondition)
properties. The values of these properties must be join conditions of the
form (rr:child) ”ChildAttributeName” and (rr:parent) ”ParentAttribute-
Name”. These values correspond to the name of the attribute in the triples
map that is making the reference and the name of the attribute in the
triples map that is referenced, respectively. The join condition is required
when the child and parent triples maps are defined over two different
tables or SQL queries [30]. The Figure 2.9 is a sample of R2RML.

The Figure 2.10 shows the overview of R2RML.

RML

The RDF mapping language (RML) is an extension based on R2RML. RML is a
mapping language that expresses the mapping rules from heterogeneous data struc-
tures such as CSV, TSV, XML, and JSON data sources and relational databases to
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Figure 2.9: A sample of R2RML mapping rule.

RDF data models and ontologies 10. The input of RML is any data source, and the
output is an RDF dataset. A triples map sets rules for generating zero or more RDF

Figure 2.10: An overview of R2RML. Figure taken from https://www.w3.org/TR/

r2rml/

10https://rml.io/specs/rml/
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triples with the same subject. The triples map consists of a logical source, a subject
map, and a mandatory and predicate object map, which is optional in the mapping.
The structure of RML is shown in Figure 2.11. The logical source rml:logicalSource

Figure 2.11: An overviwe of RML.

in RML is any data source that is mapped to RDF triples. RML supports any ref-
erence to any data input within its logical source. A logical source has exactly one
(rml:source) specifying where the data source is located, exactly one (rml:iterator)
defining the iteration loop over data, and null or one valid identifier to specify how
to refer to the data as (rml:referenceFormulation) used to refer to the elements of
the data source. The reference formulation is mandatory in the case of databases
and XML and JSON data sources. The reference formulations are not limited but
predefined such as ql:CSV, ql:XML, ql:JSONPath, rr:SQL2008 and ql:XPath.
The subject map (rr:subjectMap) is a term map in R2RML with URI pattern that
specifies the rule for generating the subject of the RDF triples map. It can optionally
define the type of the subject of the triple. It may consist of one or more class IRIs.

The predicate Object Map (rr:predicateObjectMap) is a term map in R2RML
that consist of predicate and object maps. It creates values and predicates. Each pred-
icate object map can have one or more predicate maps (rr:predicate) that specifies
how the triple’s predicate is generated. An Object Map (rr:objectMap) specifies how
the triple’s object are generated. In a referencing object map (rr:parentTriplesMap)
is allowed to use the subjects of another triples map as the object that is generated
by a current predicate-object map. When both triples maps are based on different
logical sources, this requires a join (rr:joinCondition) between the logical sources.
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Figure 2.12: A sample of RML mapping rule.

Each join condition has exactly one value for the parent property and exactly one
value for the child property. No join condition is required if both triples maps use
the same logical source 11. The Table2.2 shows the comparison of the R2RML and
RML.

2.7 Mapping Assertions

In the context of the Semantic Web technologies, a mapping assertion is a statement
that specifies how a set of data from a particular data source is mapped to RDF
triples. Mapping assertions or rules describe how existing data can be represented
using the RDF data model. The meaning of data is derived from its relationships
to other data [21]. The mapping assertions in mappings are executed to create the
instances of the unified schema. Mapping rules are formalized as clauses body(X)
and head(Y )[14].

body(X) : −head(Y )

body(X) predicates over data sources and head(Y ) predicates classes and properties
(datatype properties and object properties) in ontology over set of terms. The type

11https://rml.io/specs/rml/
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R2RML RML

Logical Table - only relational database
(rr:logicalTable)

Logical Source - CSV, XML, JSON,
HTML (rr:logicalSource)

Table Name (rr:tableName)
URI pointing to the
source(rml:source)

Relational Table Column (rr:column) Reference (rml:reference)

SQL query (rr:sqlQuery)
Reference Formulation
(rml:referenceFormulation)

Iteration per row in table
Definition of an iterator over JSON and
XML (rml:iterator)

Table 2.2: Comparison of R2RML and RML. The table is from [30]

of Mapping Assertion determines the type of Head, which can be a class, object prop-
erty or dataType proprty. The Body, in this case, is assumed to consist of only one
source, without losing generality [13].
There are three type of mapping assertions: Concept Mapping assertions, that predi-
cate classes, Role Mapping Assertions, that predicate object properties and Attribute
Mapping Assertions, that predicate datatype properties. In the following, we define
the different mapping assertions with the examples in Figure 2.13.

Figure 2.13: Mapping Assertions that are expressed in R2RML and RML. Figure taken
from [13]
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2.7.1 Concept Mapping Assertions

It uses predicate class C(.) to create the instance of a classes C in the ontology O.
S(X) is based on the conjunctive query over the data sources. So the form of the
concept mapping assertions is [13]:

body(X) : −C(f(y))

Si(X) : −C(f(y))

In Figure 2.13 you can see examples of concept mapping assertion in blue color
which corresponds to a rr:subjectMap. It defines classes C1, C2 and C3 ac-
cording to attributes attribute1 and attribute2 in data source S1 and attribute3 in
S3. The data sources are represented in rml:logicalSource. The function f(.)
enables string concatenation, and is represented in RDF syntax using the predicate
rr:template.

2.7.2 Role Mapping Assertions

A role mapping assertion defines an object property P in the ontology O is terms of
the conjunction of predicates presenting data sources:

S(X) : −P (f1(y1), f2(y2))

There are three types of role mapping assertions: single-role mapping assertion,
referenced-source role mapping assertion, and multi-source role mapping assertion.
The single-role mapping assertion is used to map a single role. The referenced-source
role mapping assertion is connected to another mapping assertion with the same data
source. Lastly, the multi-sources role mapping assertion connects mapping assertions
with different data sources.

Single-Role Mapping Assertions

Single-role mapping assertion uses the predicate class P (., .) over data attributes in
only one data source. The Figure 2.13 shows the example of single-source role map-
ping assertion in yellow color. The figure shows that the TriplesMap2 specifies the
ex:p5 property as a single-source role assertion. The rr:predicateObjectMap
rule sets the object value of ex:p5 using the rr:objectMap. It uses f1 and f2 as
functions, which are represented here by rr:template. Figure 2.13 shows the defi-
nition of a predicate P (., .), that is shown in R2RML terminology by rr:predicate.
This predicate is based on attribute2 from data source S1, which is the value of the
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instance of class C2 processed by function rr:template as f1, and the object value
based on attributeY in the same data source S1 processed by rr:template as f2
[13].

Si(X) : −P (f1(y1), f2(y2))

Referenced-Source Role Mapping Assertions

In referenced-source role mapping assertion, the role P (., .) is used to indicate the
object value with respect to a source Si, which, in turn, defines the subject of a
given concept mapping assertion MA. Referenced-source role mapping assertions
and single-role mapping assertions both predicate object properties in ontology. The
difference is that referenced-source role mapping assertions also predicate object over
y2 and function f2, which is used in another mapping assertion.

Si(X i,1), S
MA
i (X i,2) : −P (f1(y1), f2(y2))

MA : Si(X i,2) : −Cj(f2(y2))

You can see an example of referenced-source role mapping assertion in light green
color in figure 2.13.
According to R2RML terminology, this assertion corresponds to a rr:RefObjectMap,
and it refers to a mapping assertionMA using the predicate rr:parentTriplesMap.
Both mapping assertions are defined over the same logical source, Si. For example,
in Figure 2.13, TriplesMap1 defines ex:p3 as the subject of TriplesMap2, both of
which are defined over the same logical source, S1 [13].

Multi-Source Role Mapping Assertions

The multi-source role mapping assertion defines a property P (., .) between entities
of two classes in the ontology; it differs from the referenced-source role mapping
assertion in that it involves two different data sources. The mapping assertion is
expressed using the following rule:

Si(X i,1), S
MJ
j (X i,2), θ(X i,1, X i,2) : −P (f1(y1), f2(y2))

MJ : Sj(X i,2) : −Ck(f2(y2))

The multi-source role mapping assertion enables the definition of a role P (., .) where
the subject and object are defined over different sources, Si and Sj respectively.
Another assertion MJ utilizes source Sj to define the instances of class Ck. Since
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the sources are different, a join condition θ(X i,1, X i,2) is necessary to connect map-
pings across data sources Si and Sj based on their common data attributes. Figure
2.13 provides an example of a multi-source role mapping assertion in dark green,
where role ex : p4 predicates the instance of class C1 over attribute1 in data source
S1 and the instance of class C3 over attribute3 from data source S3. This asser-
tion in R2RML terminology, is represented by a rr:RefObjectMap that includes
a rr:joinCondition. The join condition θ connects different mappings across
data sources Si and Sj using attributes from both data sources, in this example
connects TriplesMap2 and TriplesMap3 based on attribute from data source S1 and
DrugName from data source S3 [13].

2.7.3 Attribute Mapping Assertion

An attribute mapping assertion A(., .) defines the attribute of the class in the ontol-
ogy over the value of the data attributes in the data source S(X). The data type
property A(., .) is defined using a function and a literal. This is represented by the
clause following rule:

S(X) : −A(f1(y1), y2)

It retrieves the object value of the attribute A using a variable y2 from the list
of variables X. The objectMap inside a rr:predicateObjectMap defines the object
value as either rml:reference or rr:column in R2RML terminology. In Figure 2.13,
the examples in orange show the attribute mapping assertions, where two attribute
mapping assertions specify the attributes p1 and p6 in TriplesMap1 and TriplesMap3,
respectively.

Partitioning of Mapping Assertion

A data integration system can plan the execution of their mapping assertion based on
groups of mapping assertions. There are two types of partitions: Intra-source and
Inter-source. An Intra-source partition refers to a set of mapping assertions that
exclusively utilize a single source, Sk, including concept, attribute, single-source role
and referenced-source role mapping assertions. On the other hand, Inter-source
partitions group mapping assertions that connect two sources, Si and Sj, through
multi-source role mapping assertion. For instance, in the Figures2.13,2.14 depicted,
that Partition2 is an Inter-source partition that comprises both the multi-source
mapping for p4 and the concept mapping that defines class C3 [13].
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Figure 2.14: Partition of Mapping Assertions. Figure taken from [13]

2.8 SHACL Constraints

OWL is used to build ontologies, to create the metadata and the definition of con-
cepts, and to explain how the concepts are all connected in their specific domain.
OWL technology is used to inference data. However, to reuse the data for different
requirements, some constraints need to be defined and the data should be valid for
different use cases. Constraints support the quality of data after integration and
prevent the knowledge graph from accessing bad data. SHACL (SHAPES and Con-
straints Language) is a W3C standard for defining constraints over data. SHACL
is based on RDF and is designed for validation. The core elements of SHACL are
constraints, target, shape and filter. With SHACL we have different views on the
data and actually import different shapes for reusability, the important point in data
integration. OWL restrictions are used to infer rules in the open world of the se-
mantic web, but some restrictions are necessary to explicitly indicate limitations on
classes and properties. These restrictions serve as validations, providing information
on which classes and properties are limited and why.
SHACL is that validator. SHACL (Shapes Constraint Language) is a W3C stan-
dard for validating RDF data, specifically designed to be used with linked data. It is
a language that enables users to specify constraints on RDF data, such as maximum
and minimum string lengths, allowed values, and relationships between resources.
SHACL provides a way to define the structure of RDF data, including the types of
nodes and properties, their cardinality, and their relationships with other nodes. This
helps to ensure that the data in a linked data environment is consistent, accurate,
and usable for a range of applications. SHACL can be used in conjunction with other
linked data technologies, such as RDF, SPARQL, and OWL, to support the creation
of scalable and interoperable linked data systems. The principles constructions of
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SHACL are described as follows [30]:

• Shapes: A shape is a standard way to represent integrity constraints that
define the structure of RDF data.

• Constraints: A constraint is a rule that limits the values of a node in an RDF
graph.

• Targets: A target node represent the group of RDF nodes where the con-
straints are applied.

– Classes are used to define constraints on nodes that belong to a specific
RDF class.

– Property Classes are used to define constraints on properties of a spe-
cific RDF class.

– Node Kinds define the type of node that the constraint applies to, such
as a blank node or a literal.

– Datatypes are used to specify the data type of literal nodes, such as
integers or dates.

• Filters: they reduce the scope of the constrained nodes. 12.

2.9 Knowledge Graph

Knowledge graph technology can serve as a valuable tool to facilitate the connections
between various data points. The term knowledge graph gained popularity following
Google’s 2012 announcement of its new capabilities for managing data on a global
scale. This marked a departure from Google’s earlier role as a global index of doc-
uments, as search results began to include relevant knowledge cards for almost any
concept [21]. Figure 2.15 illustrates a knowledge card for Leibniz University Hanover
(LUH).
A knowledge graph (KG) is a structured knowledge representation that captures
information about the world and the relationships between various concepts or en-
tities. Typically, it takes the form of a graph-based data model, where graphs are a
universal data representation that depicts a networked structure [21].

12Connecting Data, People, and Ideas since 2016https://connected-data.world

29

https://connected-data.world
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Figure 2.15: Example of a Google knowledge card for the leibniz university hanover LUH

A knowledge graph organizes information as a network of nodes and edges. The
nodes represent entities such as people, places, or things, while edges represent the
relationships between them. Knowledge graphs are declarative, and with a large
number of entities and their connections, they create contextual information that
can make explicit additional details and metadata [30]. Knowledge graphs can assist
computers in comprehending the meaning behind data, which can lead to more
precise and personalized results for users.
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2.10 Semantic Data Modeling

A type of data model that provides a clear and meaningful definition of the rela-
tionships among data entities and the rules for using and processing the data is
called semantic data model (SDM). It aims to make the meaning of data explicit
and machine-readable, making it easier for computers to understand and interpret
the data, and allowing for better data integration and interoperability. Semantic
data models often use formal ontologies or controlled vocabularies to represent the
data and its relationships, making it possible to perform automated reasoning and
inferencing over the data. SDM is a conceptual diagram of the data as it relates to
the real world. There are several types of semantic data models, including:

• Object-Oriented Data Model: Represents data as objects and classes, and de-
fines the relationships between them using inheritance and encapsulation.

• Entity-Relationship (ER) Model or Extended-Entity-Relationship (EER) Model:
Describes the relationships between entities and their attributes.

• RDF (Resource Description Framework) Model: A graph-based model that
represents data as triples of subject-predicate-object.

• OWL (Web Ontology Language) Model: An extension of the RDF model that
adds rich semantic constructs for expressing complex relationships and con-
straints between data entities.

• Knowledge graph: A graph model for organizing information about topics and
their relationships.
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Figure 2.16: Semantic data model. Figure taken from [30].

2.11 Summary of the Chapter

This chapter introduced all the concepts required to understand the problem that is
explained in this thesis, as well as the proposed solution and the empirical evaluation
of the proposed approach.
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Related Work

Data integration has been a highly researched topic in the fields of computer science
and information technology; various approaches have been proposed over the years.
This chapter presents a brief overview of related work in data integration systems.

3.1 Changes within Data Sources

With the increase of data on the web and the popularity of using knowledge graphs in
various fields such as business, politics, and medicine, the dimension of data quality
is mainly mentioned in the context of the content of dataset dynamics [6]. Data
publishers try to improve the quality of data by continuously updating datasets [27].
With the increasing use of Linked Data, issues like data freshness and tracking to
improve data quality are receiving more attention than before. Some efforts have
already been made to meet these requirements. These datasets are converted into
linked data format using mapping, so the changes in the datasets have an impressive
impact on the mapping definition while ensuring the data quality [24].
The approach focuses on capturing information related to changes in the source data
used to generate Linked Data datasets, which can result in more up to date and high
quality Linked Data, but it doesn’t show the effection of changes in whole system
or knowledge graph. A knowledge graph for the entire system can be beneficial in
extracting and analyzing data, as well as understanding the interrelationships and
effects of data and their changes on each other.
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3.2 Manage a Storage Repository

The data management dimension that emphasizes FAIR data and facilitates data
storage and retrieval plays a crucial role. Enterprises can store and retrieve massive
amounts of data with using data lake architectures. While centralizing and storing
data in a data lake is beneficial, it does not automatically solve critical data manage-
ment challenges. Thus, semantic technologies can be utilized. Specifically, ontologies
and knowledge graphs can provide essential data lake functions, including cataloging
data, tracking provenance, access control, and semantic search [7].
The Layer architecture can be complex to implement and may not be necessary
for small data ecosystems, while also depending heavily on the accuracy and com-
pleteness of metadata. Introducing new data sources or layers can disrupt existing
workflows. An alternative approach could be to create a knowledge graph based
on a data integration system that offers less complexity and more flexibility, which
could be useful for both large and small data ecosystems and help to improve data
management.

3.3 Ontological Approach for Mapping Languages

Knowledge Graphs are created using various techniques and tools, including map-
ping languages. Due to the wide variety of use cases, data peculiarities, and potential
uses, there are numerous declarative mapping languages and associated tools avail-
able. Therefore, focusing on an ontological approach for representing the declarative
mapping language that does not limit reproducibility and reusability has significant
implications for how the mapping created can be extended. The development of an
ontology that integrates insights from expert knowledge and a comprehensive com-
parative analysis of existing mapping languages could prove beneficial [15].
As a result, the need for a model that integrates all related and meaningful data from
different parts of a system and has linked data to capture knowledge from them is
growing rapidly. The work on the conceptual ontology used to represent the features
and connections of the existing declarative mapping language has implications for
the creation of the knowledge graph for data integration systems. In this work, we
focus on creating an ontology that is used in mappings to build the knowledge graph.
We create linked data from the components of the data integration system.
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3.4 Summary of the Chapter

This chapter reviews previous research related to the thesis topic and compares it
to the current project’s work. Specifically, the challenges related to data sources,
data integration through creating a data lake and ontological approach for mapping
languages are discussed.
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Approach

This thesis tackles the problem of making a data integration system FAIR. Lack of
documentation makes understanding the main characteristics of the existing declara-
tive definition of knowledge graphs challenging. Accordingly, in this current section,
we formalize the problem and show how integrating data integration systems us-
ing ontologies respects the FAIR principles 13. Then, a solution to create the data
integration system is proposed; it includes all the relevant issues which should be
documented in data integration systems [20]. Our proposed solution resorts to on-
tologies. Thus, we present an abstract data integration modeling and design an
ontology.

4.1 Problem Statement

The data integration problem is to combine data from different sources into a single
one and create a unified view. The challenge in creating a data integration system
is to make the repository for the data integration system or, in other words, the
knowledge graph of the data integration system. Data sources can represent the same
concepts differently, so we need an understanding of the data sources.
Providing a shared experience and unifying view of the data leads to the definition
of a knowledge graph as an assessment of a data integration system. The knowledge
graph is based on ontology, so we must define an ontology to describe the data
integration system. Then we can have a more comprehensive understanding of data
and improve data quality.

13https://www.go-fair.org/fair-principles
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Challenges of Data Integration

There are various challenges in data integration systems such as cost, duplicates, data
security, maintaining data lineage, and more. Some of the essential issues are defined
below[30].

• Query processing queries across different data sources and provides a single
view.

• Number of sources handling many data sources and providing data integra-
tion requirements.

• Heterogeneity data are from different sources with different formats and ter-
minologies.

• Autonomy tracking the sources and evolution of the data, as the data and its
features, such as format, may change.

4.2 Unified Schema for Data Integration System

We add a new semantic layer to a Data Integration System, as observed in Figure
2.6. The architecture of data integration system is based on a unified schema and
set of sources, where two approaches for data integration can be followed. The
first one is global-as-view, and the second approach is called local-as-view [20]. The
both approaches provide unified view and more complete understanding of data
and improve data quality, reduce data duplication and leading to increase efficiency.
We model the first approach, global-as-view (GAV). To achieve our goal to offer
uniform access of data from set of autonomous and heterogeneous multiple sources, in
global-as-view approach we define single and unified schema that describes the data
structure and how data should be organized and related to each other. With local-
as-view (LAV), we provide centralized view from multiple sources, while maintaining
the unique qualities of each individual source.

Type of Data Integration System

In this work, we consider the centralized and homogeneous data integration sys-
tem, which it means all represented data sources using the same data model. This
is in contrast to the distributed-heterogeneous data integration system, which rep-
resents data sources with heterogeneity conflicts and is distributed in different loca-
tions[30]. Figure 4.1 illustrates the different types of data integration systems. A
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Figure 4.1: Types of data integration system. Figure taken from [30].

data integration system is defined in terms of quadruple DIS=⟨G,S,M, F ⟩ [17, 20,
18], where concepts in G are represented following the global-as-view approach GAV :

• G is a global schema, which is data structure or model, i.e., ontology in triple
form of U=⟨C,P,A⟩. They are referring to vocabulary of ontology, C as classes,
P as properties and A is a set of axioms for interpreting the content of vocab-
ulary.

• S is a source schema, which is set of data sources and that is used by mapping
rules.

• M is a set of mapping rules between the G (global schema) and the S (source
schema); it is formed by set of assertions of the form:

qS → qG

qG → qS

where qS and qG are two queries over the source schema and global schema[20].

• F is a set of functional symbols that represent user-defined and built-in func-
tions. The f as a Function (F ) can be a simple function or composite one.
f(x1, ...xn) as a simple function is a term, which (x1, ..., xn) are variables or
constants. f(x1, ...xn) as composite function can receive a function in any of
the arguments, xi [17].

Global as view

In the global-as-view approach for each GAV mapping rules, there is a set of asser-
tions that relate to each element g in G as global schema that should be formed in
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terms of a view qS over S as source schema. The mapping shows how the data to
evaluate the unified schema can be retrieved[20].

g → qS

Knowledge Graphs

A knowledge graph is a directed graphical model that provides a unified view from
various data sources. In this thesis, knowledge graphs are defined as KG=(O, V,E);
they are generated from the evaluation of a data integration system DIS [17]. In the
knowledge graph, O represents the ontology that consists of classes and properties; V
corresponds to the nodes of the classes or instances of classes in ontology; and E are
properties in ontology defined as directed labeled edges in the knowledge graph, that
are related to nodes in V. Knowledge graphs are valuable for analysis and reporting
as they represent knowledge as factual statements; state-of-the-art data management
techniques enable querying and reasoning efficiently.

4.3 Conceptual of Design

Conceptual design in semantic data modeling refers to the process of defining the
overall structure and organization of the data in a high-level, abstract manner. It
involves identifying the key concepts or entities in the domain being modeled, and
defining the relationships between them. The result of the conceptual design is a
conceptual data model, which represents the data in a way that is independent of
any particular implementation or technology. It also provides a basis for later stages
of data modeling, such as logical design and physical design, where the data model
is refined and optimized for a particular use case or technology. In this work, the
enhanced entity-relationship (EER) model is used for conceptual design.

4.3.1 Data Integration System Model

In EER model, the class of data integration system is composed of a source schema,
set of mappings, unified schema and Integrity Constraints. Figure 4.2 shows the
DataIntegration System, UnifiedSchema, SourcesSchema, SetOf Mappings and Schema ICs
are represented as classes in modeling. The relationships between these classes are
defined with composed of relationships, which are object properties. The id and
name as data type properties or attributes are assigned to the classes. Each part
of the data integration system is further explained in detail in the following sections.
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Figure 4.2: Main components of data integration system

Sources Schema

A source schema, which is set of data sources is represented with a class that en-
compasses all the data sources in the data integration system. Each data source is
represented as an instance of this class, and has three attributes: description, id and
data source’s name. Additionally, each data source is required to have exactly one
format and at least one data field with its corresponding data type defined using the
rdfs:dataType class. As you see in the Figure 4.3 the data field is defined as a weak
entity, because it depends on the existence of a data source entity. The classes and
relationships described here are depicted in the Figure 4.3 provided.

Figure 4.3: Data Sources Components
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Unified Schema

A unified schema in a data integration system consists of various ontologies, including
OWL, RDF, and RDFS. Each ontology has a namespace, which is a composite
attribute. The ontology itself is composed of a set of classes, a set of properties,
and a set of axioms. These classes represent entities within the integrated system
and may include descriptions to aid in understanding their contents. The set of
properties can include either data type properties, which link a class to a data field,
or object properties, which connect two classes. As shown in Figure 4.4, the range
and domain of every object property are classes. The set of axioms defines logical
rules that enable the definition and reasoning of the meaning of terms and concepts
within an ontology, as outlined in the background chapter 2.3.1.

Figure 4.4: Unified Schema Components

Set of Mappings

A set of mappings includes several triple mappings. Each triple mapping comprises
from one or more mapping assertions, so mapping assertion is defined as a weak
entity in model 4.5. It must have exactly one concept mapping assertion and may
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have zero to several attribute mapping assertions and role mapping assertions. As
depicted in Figure 4.5, each mapping assertion is composed of a head and a body.
The mapping assertions [23] are formalized as such:

body(X) : −head(Y )

Figure 4.5: Set of Mappings Components

The predicate conjunction body(X) is defined over a set of terms, while the pred-
icate head(Y ) is defined over a separate set of terms. In order to define terms within
this framework, we utilize an inductive approach consisting of two cases. In the
base case, we define terms in two ways: i) a constant c is considered a term, and
ii) a variable X can be defined as a term. In the inductive case, we introduce a
functional symbol h of arity n, and let t1, ..., tn be terms. We can then define the
expression h(t1, ..., tn) as a term [17]. You can find in the Figure 4.6 the different
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term types of an argument as function, variable and constant.

Figure 4.6: Mapping Assertion and Function Components

As mapping assertions are explained in background chapter 2.7, here are their
definition based on the represented model.

− Concept Mapping Assertion: To define instances of classes C in an ontol-
ogy, the class predicate C(.) is used over the results of the f(.) function, which
receives a term t as input arguments. The input arguments can be a vari-
able, constant, or function, as illustrated in Figure 4.6. The predicate S(X)
represents the conjunction of source signatures S1(X1), ..., Sk(Xk), where X
corresponds to the set of all the variables in the mapping assertion, which is
the union of X1, ..., Xk. The predicate S(X) is defined as follows:

Si(X) : −C(f(t))

In Figure 4.7, two examples of concept mapping assertions are highlighted in
yellow, which define the instances of the classes C1, C2, and C3 based on the
data field values in the data sources S1 and S2. The data fields Att1 and Att3 in
S1, as well as data field Att6 in S2, are used to define these instances. In Figure
4.7, f(.) corresponds to either a built-in function represented by rr:template
(which enables the concatenation of strings) or user-defined functions defined
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Figure 4.7: Mapping Assertions Definition. Figure taken from [17]

by fnml:FunctionTermMap. In Figure 4.7, fnml:FunctionTermMap
expresses the definition of data operation functions (function1) over Att6 [17].

− Role Mapping Assertions: The role mapping assertion specifies how prop-
erties in ontology are instantiated between instances of two classes in ontology,
using a role predicate P (.) over the attributes of data sources. Single-role map-
ping assertion, referenced-source role mapping assertion and multi-sources role
mapping assertion are defined as subclasses of a role mapping assertion. These
three mapping assertions are role mapping assertion predicate Object Property.
The single-role mapping assertion is a simple one just connected to the body.
Referenced-source role mapping assertion that binds two different mapping as-
sertion with the same data source, connects to concept mapping assertion and
body. Multi-sources role mapping assertion binds two different mapping asser-
tion with different data sources; it also relates the body and concept mapping
assertion. Moreover, a multi-sources role mapping assertion is connected also
to Join that expresses the data fields in parent mapping assertion and child
mapping assertion .

− Single-role mapping assertion: is used to define P (., .) for data fields of
a just one data source, using the functions f1(t1) and f2(t2), where f1 and f2
are part of Function, and t1 and t2 are their input arguments. For example, in
Figure 4.7, a single role mapping assertion in purple is shown, that defines the
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role predicate P1(., .) for instances of the class C1, using Att1 in the S1 data
source, processed by the built-in function f1, and object is based on Att2 in
the same data source, processed by the function f2.

Si(X) : −P (f1(t1), f2(t2))

− Referenced-source role mapping assertion: is similar to the previous
assertion, however, in this assertion, an object can be defined using a term t2
as an input argument for function f2(.), which are used in another mapping
assertion to specify the class instance in the ontology.

Si(X i,1), S
MR
i (X i,2) : −P (f1(t1), f2(t2))

MR : Si(X i,2) : −Cj(f2(t2))

The example of this mapping assertion in Figure 4.7 is shown in violet. The
predicate P2 in this example returns the instance of class C1 based on Att1
in S1 that is processed by function f1, and the instance of class C2 based on
Att3 in S1 which is used as another concept mapping assertion [17].

− Multi-sources role mapping assertion: In contrast to the previous state-
ment, a multi-source role mapping assertion enables the expression of property
instances in an ontology between instances of two classes with values over two
distinct sources. As the sources Si and Sj differ, a join condition is necessary.

Si(X i,1), S
MJ
j (X i,2), θ(X i,1, X i,2) : −P (f1(t1), f2(t2))

MJ : Sj(X i,2) : −Cz(f2(t2))

Figure 4.7 shows an example of a multi-sources role mapping assertion in dark
green. Role P3 predicates the instance of class C1 over Att3 in data source
S1 and the instance of class C3 over Att6 from data source S2. The θ, which
is a join between common data fields in both data sources, uses Att4 from
data source S1 and Att5 from data source S2 to bind the mapping assertions
together [17].

− Attribute Mapping Assertions: defines the properties of a class in ontology
by using a predicate A(.) over the values of data fields. These values are
expressed in terms of the conjunction of source signatures in S(X).

Si(X) : −A(f(t1), t2)

In Figure 4.7 an example of attribute mapping assertion is shown in light green.
The predicate A1 defines over the instances of the class C3 using data field Att6
from S1 and Att8 as the literal data values in the same data source [17].
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Integrity Constraints

Integrity constraints refer to a set of rules or conditions that ensure the accuracy and
consistency of data within the system. These constraints are used to validate the data
as it is being entered into the system and to prevent it from being entered in a way
that would compromise the integrity of the system. These constraints are important
for ensuring that the data in the semantic web is reliable and can be used to make
informed decisions. As previously discussed 2.8, the validation is based on SHACL
(Shapes Constraint Language). SHACL is a language for validating RDF graphs
against a set of conditions expressed in RDF graphs. These ”shapes” conditions are
stored in a ”shapes graph.” The RDF graphs being validated are known as ”data
graphs.” In this sense, SHACL shape graphs can be seen as a description of valid data
graphs, as they enforce constraints on the data graphs to ensure they meet specific
conditions 14. The conceptual design stage of the SHACL for data integration system
is shown in Figure 4.8.

Figure 4.8: Integrity Constraints - SHACL

14https://www.w3.org/TR/shacl/
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4.4 Ontology Requirements and Competency Ques-

tions

We conducted the following steps to identify the requirements of our ontology:

• Review on data management and state-of-the-art approaches for data integra-
tion systems;

• Analyze relevant existing ontologies and data models to document the charac-
teristics of datasets

Based on this analysis, we elucidated functional and non-functional requirements,
which are reported in Table 4.1 and the competency questions, which are presented
in Table 4.2.

Functional Requirements

Requirements Description
Structure of a data integration system Modeling must represent the structural ele-

ments of data integration.
Connection among structural elements Modeling must show the connection among

ontology, data source and mapping.
Extensibility Ontology should be extensible basen on new

requirements.
None-Functional Requirements

Requirements Description
Findability Find and track the data sources, mapping

rules and defined classes and properties.
Accessibility Data should be accessible including authen-

tication and authorisation.
Interoperability To perform analysis, storage, and process-

ing, the data should be integrated with other
datasets and made interoperable with appli-
cations 15.

Re-useability Well-describing of data, so the reusability of
ontologies, data sources and mappings rules
can be possible.

Table 4.1: Ontology requirements
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Competency Questions

Q1 What is the number of data sources available, and how
can they be counted?

Q2 What information or data fields does each data source
contain?

Q3 What are the data types for the fields in each data
source?

Q4 Which mappings have been used for a specific class or
property?

Q5 Which properties are defined in ontologies?
Q6 Which classes are defined in ontology?
Q7 Is there specific binding established between two specific

classes?
Q8 Is it possible to find specific class among several data

integration systems?

Table 4.2: Competency Questions

4.5 Summary of the Chapter

This chapter describe the challenges of documenting Data Integration System. There-
fore, a semantic data model was proposed, which can integrate ontologies, data
sources and mappings to create the Data Integration System. The aim of this chap-
ter was referring to the lack of data integration system as a problem and explain how
can we achieve to a single and more comprehensive view of data.
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Figure 4.9: Data Integration System
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Implementation

This chapter describes the main aspects of the implementation of our proposed ap-
proach. We follow a strategy of semantic data integration, and a pipeline for knowl-
edge graph creation for its implementation. The mapping language RML16 is utilized
to declaratively define knowledge graphs. The pipeline for creating Knowledge graph
is divided to three Phases: Conceptual design, and logical design and physical design.
Conceptual design is discussed already in The chapter approach 4.3. On the other
hand, the Logical design and Physical design are defined in this Chapter.

5.1 Logical of Design

Logical modeling in semantic modeling refers to creating a formal representation
of knowledge, concepts, or relationships in the domain under consideration, using
symbols, logic, and language 17. The goal of logical modeling is to create a model
that accurately represents the system or process being modeled and can be used
to analyze, simulate, or design the system. In logical modeling, the emphasis is on
defining the entities, attributes, and relationships between them. The entities are
the objects or concepts being modeled, and the attributes are the characteristics or
properties of those entities. Relationships describe how the entities are connected or
related to each other. Logical models can be represented using formal notations, such
as entity-relationship diagrams, UML diagrams, or RDF graphs. These notations
provide a standardized way of describing the entities, attributes, and relationships,
which makes the model easier to understand and communicate. Logical modeling
is essential in the semantic modeling process because it provides a foundation for

16https://rml.io/
17https://www.ibm.com/topics/data-modeling

50

https://rml.io/
https://www.ibm.com/topics/data-modeling


5.1. Logical of Design

further analysis and design. Logical models can be used to identify inconsistencies,
redundancies, or other issues in the system being modeled, which can help improve
the accuracy and effectiveness of the model.

5.1.1 WebProtégé

WebProtégé is an open-source, web-based, ontology editor and knowledge manage-
ment system used to develop and maintain knowledge models, including ontologies,
taxonomies, and vocabularies. It is a tool designed for collaborative ontology de-
velopment and provides a user-friendly interface for creating and editing knowledge
models. WebProtégé supports various ontology languages, including OWL, RDF(S),
and SKOS 18. WebProtégé is built on top of the Protégé platform, which is a pop-
ular desktop ontology editor. WebProtégé extends the functionality of Protégé by
providing a web-based interface that can be accessed from anywhere, without the
need for local installation or configuration 19. To develop a data integration system,
it is essential to understand the relationships and specific terminologies involved.
As a result, we have created new vocabularies and RDF rules for the ontology of
the data integration system based on the represented model in the approach chap-
ter. This thesis defines the concepts using the prefix dis: for the DIS namespace.
The data modeling is followed by defining classes, object properties, and data type
properties in WebProtégé and creating the Ontology in OWL. Figure 5.1 shows a
sample of created ontology. The repository of the ontology is in GitHub 20. Visu-
alizing ontologies can make them more accessible, understandable, and usable for
various applications. It can also aid in detecting gaps and redundancies within the
ontology. Consequently, there are various web applications available for interactive
ontology visualization, such as RDF Playground 21 that you can see in Figure 5.2 and
WebVOWL 22, which we utilized to visualize our data integration system ontology.
Figure 5.3 depicts the data integration system ontology in WebVOWL.

Some classes, which are defined in this work, can be defined as equivalent class
(owl:equivalentClass) to other ontologies in semantic web. For example the entity
dis:Parent is equivalent to class parent in R2RML (rr:parent). You can find all equiv-
alent classes to this work in table 5.1.
For all defined classes in ontology based on their specific properties, we have defined

18https://protegewiki.stanford.edu/wiki/WebProtege
19https://protege.stanford.edu/products.php
20https://github.com/tibonto/DIS.git
21http://rdfplayground.dcc.uchile.cl/
22http://ontology.tib.eu/DIS/visualization
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Chapter 5. Implementation

DIS Name External resource IRI

SourceSchema dcat:DatasetSeries https://www.w3.org/ns/dcat#

DatasetSeries

DataSource dcat:dataset https://www.w3.org/ns/dcat#

dataset

Function fnml:functionMap http://semweb.mmlab.be/ns/fnml/

fnml.html#functionMap

TripleMapping rr:TriplesMap https://www.w3.org/ns/r2rml#

TriplesMap

Join rr:joinCondition https://www.w3.org/ns/r2rml#

joinCondition

Parent rr:parent https://www.w3.org/ns/r2rml#

parent

Child rr:child https://www.w3.org/ns/r2rml#

child

SHACL Shape sh:Shape https://www.w3.org/ns/shacl#

shape

Constraints sh:ConstraintComponent https://www.w3.org/ns/shacl#

ConstraintComponent

Property Shape sh:PropertyShape https://www.w3.org/ns/shacl#

PropertyShape

Node Shape sh:NodeShape https://www.w3.org/ns/shacl#

NodeShape

Ontology owl:Ontology https://www.w3.org/2002/07/owl#

Ontology

Object Property owl:ObjectProperty https://www.w3.org/2002/07/owl#

ObjectProperty

DataType Property owl:DatatypeProperty https://www.w3.org/2002/07/owl#

DatatypeProperty

Class owl:class https://www.w3.org/2002/07/owl#

Class

Axioms owl:Axiom https://www.w3.org/2002/07/owl#

Axiom

Table 5.1: Classes shown in Figure 4.9 and their corresponding external resources and
IRIs details
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Figure 5.1: Created Ontology of data integration system with WebProtégé https://

github.com/tibonto/DIS.git

the cardinalities. Therefore, the classes are defined as complex classes with regarding
to cardinalities. Here are some examples in Figure 5.4 and you can find the whole
complex classes in ontology in GitHub23.

5.2 Physical of Design

In semantic modeling, the physical design is a phase where the logical data models
are transformed into physical data models. Physical modeling involves designing and
implementing the database structure, including tables, columns, keys, relationships,
and constraints. During physical modeling, the focus shifts from defining the enti-
ties, attributes, and relationships to creating a physical representation of the data

23https://github.com/tibonto/DIS
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Chapter 5. Implementation

Figure 5.2: Visualization of data integration system ontology with RDFplayGround

model. This includes defining data types, constraints, and other physical aspects of
the database. Physical modeling is an essential step in semantic modeling because it
transforms the conceptual model into a physical implementation that can be used to
store and manage data. It also helps to ensure that the database is efficient, scalable,
and optimized for performance.
We use SDM-RDFizer as the RML Engine that creates the RDF knowledge graph.
SDM-RDFizer is an interpreter of the RDF Mapping Language (RML) that trans-
forms raw data in various formats into an RDF knowledge graph. It employs ad-
vanced algorithms to execute logical operators between RML mappings, enabling it
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Figure 5.3: Visualization of data integration system ontology with WebVOWL http:

//ontology.tib.eu/DIS/visualization

Figure 5.4: Definition of complex classes in ontology of data integration system
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Chapter 5. Implementation

to handle complex scenarios with broad and highly-duplicated data [12].

5.2.1 GraphDB

GraphDB is a database management system designed specifically for storing and
managing graph data. It is a type of RDF database that represents data as nodes
and edges, which are connected to form a graph. Graph databases are particularly
useful for managing complex, interconnected data, such as knowledge graphs.
GraphDB supports the Resource Description Framework (RDF) data model and is
compatible with the SPARQL query language. It is designed to provide efficient
graph processing capabilities, with features such as indexing, querying, and reason-
ing, that enable fast and scalable processing of graph data 24.

SDM-RDFizer creates an RDF knowledge graph that is then imported into GraphDB
to enable query processing by using SPARQL queries. Thus, it is possible to retrieve
information on the number of data sources, their data fields, the connections be-
tween different classes and many other things. Figure 5.5 illustrates a portion of the
knowledge graph for data integration system; it provides an overview of the system’s
model and their relationships.

24https://www.ontotext.com/products/graphdb/
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Figure 5.5: Knowledge graph in GraphDB - It shows the location of DS001, all data
fields of DS001 and all mapping assertions, which have used DS001 in their bodies as data
source.

5.3 Summary of the Chapter

In this chapter, we present the implementation of a data integration system consisting
of two key phases: logical design and physical design. The logical design involves
creating the ontology in RDF and OWL. In contrast, the physical design builds on
the logical design by defining the mapping rules that link the ontology to the data
sources and generate the knowledge graph.
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Chapter 6

Experimental Evaluation

In this section, the presented approach is evaluated with a combination of proposed
modeling with using the knowledge graph concerning the competency questions ex-
pressed in Chapter 4 (4.2).
As a proof of concept and to evaluate the effectiveness of our data integration sys-
tem, we have created a knowledge graph by integrating the data integration system
that defines the process of knowledge graph creation in the H2020 funded project 25.
We have represented the CLARIFY data integration system in terms of an ontology,
RML mapping rules, and data sources, as shown in Figure 6.1.

6.1 Benchmarks

The knowledge graph that includes data integration system and is created through
6.524 seconds with SDM-RDFizer includes 54 classes, 71 relationships, and 30 at-
tributes, comprising about 5079 RFD triples and a total of 1264 entities. Figure 6.2
provides a visualization of the classes based on the number of instances (entities)
for each class, with dis:Class having the most instances in the current version of the
KG. Figure 6.3 highlights the top 10 classes and relationships linked to each other
and the other classes.

On top of the created KG, we have conducted and evaluation with the aim of
assessing the expressiveness of the proposed ontology and method of KG creation.
For data integration system performance evaluation, we measured the time it took
for the system to analyze the data using ontology. Figure 6.1 reports the results of
network analysis, while Table 6.1 shows the specification of the represented ontology

25https://www.clarify2020.eu/
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Figure 6.1: Knowledge graph in Cytoscape - It shows the network analysis, such as the
number of nodes and edges, network diameter and density, the neighborhood of each node,
and many more features.
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Figure 6.2: Visualization of the classes based on the number of instances (entities) for
each class in KG

Figure 6.3: Top 10 classes of KG and their relationships linked with each other and other
classes
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for the data integration system.

Benchmarks

Number of nodes 1395
Number of edges 3757
Network diameter 7
Network radius 1
Network density 0.002

Analysis time (sec) 11.919

Table 6.1: Benchmarks of data integration system

6.2 SPARQL Queries to Explore RML Mappings

of Data Integration System

These SPARQL queries are based on an ontology and RML mapping rules of a data
integration system that explain: i) the classes defined within the ontology of the data
integration system and the data sources, which are used in mapping rules (Figure
6.4, 6.5), ii) the number of mapping rules that define each class (Figure 6.6, 6.7),
and iii) defined datatype properties and object properties within the ontology of the
data integration system per class and their object values (Figure 6.8, 6.9).

Figure 6.4: SPARQL query for classes’ definition in terms of mapping assertions
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Figure 6.5: This plot shows the number of classes that have used .CSV resourses as
rml:source.

Figure 6.6: SPARQL query to define number of mapping assertions per class
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Figure 6.7: This plot shows the number of classes that are used in mapping rules.

Figure 6.8: SPARQL query to define properties per class
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Figure 6.9: This plot shows the number of properties that are defined for each class.

6.3 Satisfaction of Competency Questions

The CLARIFY data integration system comprises 16 different data sources in CSV
format, that consist of 33 data sources, 192 classes and 88 Triple maps from CLAR-
IFY. The all details of 9 Triple maps such as mapping assertions and functions are
extracted and defined in data integration system’s data sources. Based on the cre-
ated KG, we answer the competency questions; they are specified using SPARQL
queries and evaluated on top of the KG.

Q1) What is the number of data sources available, and how can they be counted?

Figure 6.10: SPARQL query to define the number of data sources
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Q2) What information or data fields do each data source comprise?

Figure 6.11: SPARQL query to define the description of data source and its data fields

Q3) What are the data types for the fields in each data source?

Figure 6.12: SPARQL query to find the type of the data fields for each data source
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Q4) Which mappings have been used for a specific class or property?

Figure 6.13: SPARQL query to find the triple mapping and mapping assertion for a
LCPatient class

Q5) Which properties are defined in the data integration system ontologies?

Figure 6.14: SPARQL query to show all defined properties in clarify
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Q6) Is there specific binding established between two specific classes?

Figure 6.15: SPARQL query to find the existence of a object property between the classes
Cpatient and Biomarker.

6.4 Summary of the Chapter

This chapter aims to provide insights into testbeds based on benchmarks. Addition-
ally, we present the outcomes of applying our approach to different cases, supported
by empirical evidence in the form of graphs and tables. We have processed a part of
the clarify data 26 considering the SHACL constraints. Ultimately, we aim to address
the competency questions we introduced in the Approach Chapter. Our evaluation
results suggest that our data integration system with represented ontology for data
integration system with a global view is a promising approach for integrating het-
erogeneous data from various sources efficiently and accurately. Using ontology for
data integration systems can effectively address semantic heterogeneity and improve
the integrated data, demonstrating the value of our approach for data integration in
various domains.

26https://github.com/SDM-TIB/CLARIFY_KG
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Chapter 7

Conclusions and Future Work

This thesis addresses the problem of modeling data integration systems using on-
tologies. Accordingly, an EER-Model is presented to show the entities and their
relationships with their cardinalities. Based on the model created, the data integra-
tion system ontology, as shown in the Figure 4.9 has complex classes and properties.
In this work, we have used the data from clarify version-8 ontology27 and the clarify
mapping rules28 to create the data sets for the data integration system. The RML
mapping language defines mapping rules to establish correspondence between the
data sets and the ontology. Based on them, the KG is created and presented for-
mat n-triples, which are imported into GraphDB to run the SPARQL queries. The
SDM-RDFizer engine 29 was utilized for KG creation.

7.1 Discussions

The evaluation outcomes put into perspective the relevant role of making the defini-
tion of data integration respecting the FAIR data principles, i.e., findability, access-
ability, interoperability, and reuseability. Different queries are performed to show the
expressiveness of the ontology that models data integration systems. The results are
shown in chapter 6.3; the evaluation was guided by the following research questions,
presented in chapter 1.1:

RQ1: What are the main features that characterize a knowledge graph defined
as a data integration system? A knowledge graph is characterized by several key

27https://github.com/SDM-TIB/CLARIFYUnifiedSchema
28https://github.com/SDM-TIB/CLARIFY_KG/tree/master/settings/mapping
29https://github.com/SDM-TIB/SDM-RDFizer
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7.2. Limitations

features, including its representation as a set of nodes and edges and the ontology
that define types of entities and relationships that can be represented in a KG.

RQ2: What are the main challenges and limitations in documenting data inte-
gration systems? We have identified that large and heterogeneous data sources,
security, quality of data, processing query, autonomy.

RQ3: What are the main data integration approaches? Although there are two
approaches for defining a data integration system (i.e., Local as view (LAV) and
global as view (GAV)), the existing approaches for mapping assertion definition
follow the GAV approach.

RQ4: How does the specification of data integration systems impact tasks of data
management and knowledge graph creation? The specification of the ontology im-
proves the data Fair(findability, accessibility, interpretability and re-useability)

RQ5: What is the relevant metadata that characterize a data integration system?
Data sources, unified schema, mapping rules and, functions. DIS=⟨G,S,M, F ⟩

RQ6: Which type of concepts should be defined in a data integration system? How
are they connected to each other? For each concept, there are several classes. For
example, for data source concept: sources schema, data source, format and data
field. The whole relationship is shown in Figure 4.9

RQ7: What is the role of declarative mapping languages in the documentation of
data integration systems? Languages for declaratively defining mapping assertions
(e.g., RML) enable to state the main correspondences among concepts in unified
ontologies and attributes from heterogeneous data sources.

7.2 Limitations

Semantic web-based data integration systems has emerged as promising alternative
to specify data integration system. Still, the specification of the main components
of a data integration system require a high expertise and large amounts of training
data, respectively.
Ontology modeling is a complex process that demands expertise in domain knowl-
edge and ontology languages. Modeling an ontology for a data integration system
involves identifying the relationships between different data sources and creating
a unified schema that can accommodate all the data. This process can be time-
consuming and may require a significant effort to ensure the ontology is accurate
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and comprehensive.
Ontology modeling can limit the modeling of evolving data integration systems.
Maintaining and updating an ontology for a data integration system can be chal-
lenging. As new data sources become available or existing sources change, the ontol-
ogy must be updated to accommodate these changes. This process requires ongoing
effort and resources, which are only sometimes available. Additionally, changes to
the ontology may impact the performance of the data integration system, requiring
additional testing and optimization.

7.3 Future Work

We suggest researching the following topics to overcome the limitations previously
outlined.

• Linking the Data Integration System (DIS) to Change Detection Ontology
(CDO)[24] can lead to better results in data management and data qual-
ity. Thus, changes can be detected based on the Change Detection Ontology
(CDO). Then, we can track and find valuable data sources close to our new
data and update the current data sources instead of creating new ones. This
approach improves re-useability, which is one of our objectives.

• Currently, data sources are specified in CSV format and have been created man-
ually; however, this process could be more efficient. Web scraping could be ap-
plied for reading and extracting the needed data from all mappings and ontolo-
gies in the web-based. Searches could be guided by keywords such as owl:Class,
owl:DataTypeProperty, owl:ObjectProperty in ontologies and rml:logicalSource,
rr:predicateObjectMap and rr:objectMap in RML mappings and other keys,
would be much more efficient and practical to create valuable data sources for
a data integration system.

7.4 Summary of the Chapter

This chapter discussed the experimental results and conclusions reached during the
execution of this thesis- Furthermore, future works are outlined; they can meaning-
fully improve the outcomes and usage of this project.
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