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Abstract
We investigate whether conditional generative adversarial networks (C-GANs) are suitable for point cloud rendering. For 
this purpose, we created a dataset containing approximately 150,000 renderings of point cloud–image pairs. The dataset was 
recorded using our mobile mapping system, with capture dates that spread across 1 year. Our model learns how to predict 
realistically looking images from just point cloud data. We show that we can use this approach to colourize point clouds 
without the usage of any camera images. Additionally, we show that by parameterizing the recording date, we are even able 
to predict realistically looking views for different seasons, from identical input point clouds.

Keywords Deep learning · GAN · Point cloud

Zusammenfassung
Nutzung von Conditional Generative Adversarial Networks für das multimodale photorealistische Rendering von Punkt-
wolken. Wir untersuchen, ob Conditional Generative Adversarial Networks (C-GANs) für das Rendering von Punktwolken 
geeignet sind. Zu diesem Zweck haben wir einen Datensatz erstellt, der etwa 150.000 Bildpaare enthält, jedes bestehend 
aus einem Rendering einer Punktwolke und dem dazugehörigen Kamerabild. Der Datensatz wurde mit unserem Mobile 
Mapping System aufgezeichnet, wobei die Messkampagnen über ein Jahr verteilt durchgeführt wurden. Unser Modell 
lernt, ausschließlich auf Basis von Punktwolkendaten realistisch aussehende Bilder vorherzusagen. Wir zeigen, dass wir 
mit diesem Ansatz Punktwolken ohne die Verwendung von Kamerabildern kolorieren können. Darüber hinaus zeigen wir, 
dass wir durch die Parametrierung des Aufnahmedatums in der Lage sind, aus identischen Eingabepunktwolken realistisch 
aussehende Ansichten für verschiedene Jahreszeiten vorherzusagen.

1 Introduction

Laser scanned (LiDAR) point clouds are difficult to han-
dle when it comes to photo-realistic rendering. Firstly, if 
images have been recorded together with the LiDAR points, 
a camera calibration is needed to colourize each scanned 
point. However, this does not guarantee that each 3D point 
is captured by a camera viewpoint. Secondly, since point 
clouds are sparse, it is difficult both to fill empty areas and 

to exclude occluded points, e.g. behind walls and buildings. 
To create the impression of a continuous surface, splats can 
be rendered instead of points. A splat is defined as an ellipti-
cal surface with a size determined by the local point density. 
Lastly, the colourized point cloud does not contain any infor-
mation about the sky.

Our approach tries to circumvent the whole process of 
model-based point cloud rendering, by learning, in an end-
to-end fashion, how a possible representation of the point 
cloud could look like in reality. Our key contributions in 
this work are:

• Creating a large dataset of point cloud–image pairs.
• Predicting photo-realistic views from point clouds which 

contain only (LiDAR) reflectance and distance informa-
tion.

• Colourizing point clouds without the usage of cameras.
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• Extending a C-GAN to parameterize different points in 
time, e.g. seasons and months, to predict multimodal 
images.

• Showing that the input is easily editable by a human to 
change the appearance of objects in the predicted images.

The paper is organized as follows: after a review of the state 
of the art of C-GANs in computer vision, the method devel-
oped in this paper is presented, as well as the datasets used 
and the preprocessing of the data, involving a paralleliza-
tion framework. The results are evaluated both qualitatively 
and quantitatively using different metrics and approaches. A 
summary and outlook conclude the paper.

2  Related Work

Generative Adversarial Networks (GANs) were invented 
by Goodfellow et al. (2014). In their original form, they 
are deep generative models which are based on a game 
theoretic scenario. They consist of a generator and a dis-
criminator network. The generator g directly produces 
samples g(z) = x . The discriminator tries to distinguish 
between samples drawn from the dataset and samples that 
are drawn from g. Instead of judging the generators per-
formance by using a pixelwise metric, as it has been done, 
e.g. in variational autoencoders (Kingma and Welling 
2013), the GAN loss provides a more sophisticated fea-
ture-based loss function. The generator loss is expressed 
by the probability of the discriminator network d(x) if a 
sample is genuine or generated by g. Therefore, d(x) is the 
probability that x is drawn from the training dataset. Both 
networks are trained jointly: the discriminator is trained 
by maximizing the probability of assigning the correct 
label to the training example and the example drawn from 
g, while the generator is trained by minimizing 1 − d(g(z)).

Conditional GANs attracted a lot of attention in recent years. 
Most notable are the pix2pix network by Isola et al. (2017) 
and the improved version pix2pixhd (Wang et al. 2017), 
which is able to predict high-resolution image-to-image 
mappings. Like traditional GANs, these networks are using 
an adversarial loss which is learned by a discriminator net-
work. In contrast to L1-loss, the adversarial loss leads to 
less blurry images by learning to distinguish between real 
and generated images (Isola et al. 2017; Wang et al. 2017). 
In addition to image-to-image translation, there exist a 
wide range of conditional GANs, such as unpaired image-
to-image translation (Zhu et al. 2017a) and text-to-image 
conversion (Dash et al. 2017; Zhang et al. 2017; Reed et al. 
2016a, b).

Multimodal image-to-image translation defines the process 
of mapping one-to-many images, by modeling distributions 
of possible outcomes with an additional latent space vector 
or matrix, e.g. as used by BicycleGAN (Zhu et al. 2017b). 
Instead of mapping a whole image to many outcomes, Wang 
et al. (2017) mapped object classes in images to many differ-
ent versions of the same class. This could be for example dif-
ferent road surfaces like stone or asphalt, or car types. They 
did this by encoding instance classes with a feature encoder 
network similar to an autoencoder. These feature maps were 
additionally fed into the input of the generator and trained 
end to end. By changing the feature vector in the input, they 
were able to manipulate specific objects in one image. How-
ever, this implies that they need instance labels in addition to 
image pairs to train the network. Other notable contributions 
for multimodal image-to-image translations like PixelNN 
(Bansal et al. 2017) or MAD-GAN (Ghosh et al. 2018) try 
to predict a discrete set of different outcomes. By enforcing 
them to be different, they try to create one-to-many map-
pings. This can be used, e.g. for image manipulations as 
shown by Park et al. (2019). Finally, there are approaches 
like MUNIT (Huang et al. 2018) which is able to solve this 
problem in an unsupervised manner.

Depending on the application, point clouds can be incor-
porated into deep neural networks in different ways. They 
can be represented as unordered 3D point sets (Qi et al. 
2017a, b), voxelized (Wu et al. 2016; Maturana and Scherer 
2015), or projected into images to use traditional 2D-con-
volutional networks (Boulch et al. 2017). When rendering 
point clouds, different problems arise. Firstly, point clouds 
do not contain any colour, sky or light source information. 
Secondly, they are sparse, and occlusions are common. 
Many approaches for handling occlusions have been pro-
posed, for example by using surfels (surface elements), by 
Pfister et al. (2000), and surface splatting, by Zwicker et al. 
(2001). They try to deal with the fact that 3D points are not 
connected and thus do not have any surface information. 
Furthermore, illumination in computer graphics can be tack-
led by following the light rays from a virtual source by using 
ray tracing, path tracing or scanline rendering (Whitted 
1979; Kajiya 1986; Bouknight 1970). All these approaches 
are applicable to point clouds, but they are hard to realize 
due to the sparsity of non-meshed 3D points. Additionally, 
those approaches introduce high computational complexity. 
By learning to directly map from 3D points to images, we try 
to circumvent the whole process of model-based rendering.

Similar GAN-based approaches have been proposed by 
Atienza (2019) and Milz et al. (2019). The first work uses 
a combination of point cloud data and a background image 
patch to render a 2D scene. They condition the general look 
of the scene by the background patch and the content of the 
scene with a point cloud of a 3D object. The second model is 
trained on synthetic objects. They infer the raw point cloud 
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of a single object and target viewing angles and generate a 
rendered image which is compared to a target mesh render-
ing. In both cases, the object classes are known and the point 
clouds are annotated.

However, our work differs from these works because we 
do not need object classes or annotations, since we exploit 
the geometric correspondence between camera images and 
3D LiDAR point cloud. Additionally, we condition the gen-
eral appearance of the scene by parameterizing the image 
date to encode seasonal information.

3  Data Acquisition and Pre‑processing

3.1  Mobile Mapping Dataset

The datasets used were produced with the mobile mapping 
system Riegl VMX-250. This system captures a maximum of 
600,000 3D points per second and has four cameras, which 
were set to take images at a rate of 1 Hz each. The points 
are acquired with a LiDAR accuracy of 1 cm, with absolute 
accuracies being typically in the range of 10–20 cm.

To prepare a training dataset, we used mobile mapping 
data which we captured during 14 measurement campaigns, 
over the duration of 1 year, in Hannover, Germany. For an 
independent test dataset, we used another point cloud which 
we recorded during a campaign in the city of Karlsruhe, 
about 500  km away from Hannover, during winter (in 
February).

To illustrate the extent of the required processing, the 
subset of the data from Hannover we were using in this work 
contains 15 billion (15,017,586,980) 3D points and 123,047 
images. Each image capture is given in terms of position (in 
UTM coordinates) and orientation (roll, pitch, yaw angles). 

Additionally, the intrinsic parameters of each camera are 
known due to a pre-calibration.

3.2  Preparing the Dataset Using MapReduce

Our C-GAN is based on pix2pixhd which means that it needs 
to be trained in a supervised manner. The C-GAN needs the 
data in terms of pairs of projected point cloud image and 
corresponding (real) image. The projected point cloud image 
contains two channels. The first channel stores the distance 
between 3D point and camera centre and the second channel 
the reflectance of the laser ray. The task is therefore to pro-
ject each of the 15 billion 3D points to 2D pixels in 123,047 
images and store the distance and reflection values in the 
corresponding pixels. To solve this task, we created a mas-
sively parallel point cloud renderer, using the MapReduce 
framework on an Apache Hadoop cluster (Fig. 1).

To apply MapReduce, each mapper has a list of all image 
orientations. According to the MapReduce principle, it 
receives a subset (split) of 3D point coordinates and their 
reflectance values (reflectance is an entity derived from the 
LiDAR amplitude measurement). To reduce the amount of 
points emitted by the mapper, we exclude points that are 
behind the camera or are further away than 300 m. The map-
per possibly emits multiple key–value pairs per incoming 3D 
point, depending on the number of images the point appears 
in. The key is defined by the image name, identifying a sin-
gle image take, whereas the value contains the distance, 
reflectance and the image coordinates of the projected point. 
Each reducer receives all necessary information, grouped 
by image (key), and computes two 16-bit grey-value images 
per key, one containing the distance and the other one con-
taining the reflectance values per point. If more than one 
point falls into the same 2D pixel, we keep the one with the 
smallest distance to the camera centre. Depending on the 

Fig. 1  Our MapReduce approach for rendering large point clouds
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scanning situation, the points appear more or less sparse in 
the image plane. Additionally, because of the small differ-
ence in capture time between camera sensor and LiDAR, 
moving objects might appear in the camera image but not in 
the point cloud or vice versa.

4  Learning Using a C‑GAN

Our approach is inspired by the pix2pixhd network by Wang 
et al. (2017). The pix2pixhd network incorporates instance 
segmentation information and label maps to enable object 
manipulation. By encoding the features of one instance, it is 
able to generate diverse images from the same input.

We modified the generator network as follows. We 
removed the instance- and label-maps from the network 
architecture because we do not have any information about 
the class or instance of each point. The original generator is 
split into at least two subnetworks, e.g. a global and a local 
part (Wang et al. 2017). The global section shown in Fig. 2 is 
based on the architecture of Johnson et al. (2016). Instead of 
an architecture similar to a U-net with skip connections, this 
network is based on residual connections that allows each 
layer to easily learn an identity mapping, which according 
to Johnson et al. should help to preserve the original image 
structure. We believe that this architecture is better suited 
than U-Net for the seasonal encoding, since skip connections 
could potentially skip the concatenated seasonal informa-
tion in the bottleneck. The global network forms the core 
network, which in our case produces an image resolution 
of 512 × 512 . In pix2pixhd, the local enhancer networks are 

wrapped around the global network and output an image the 
size of 2× of each image dimension. Due to hardware limita-
tions, we did not use the local enhancer network and reduced 
the number of multi-scale discriminators to two {D1,D2} . 
Each discriminator operates on a different image scale, D1 at 
the original scale 512 × 512 , and D2 at 256 × 256 . However, 
the discriminator networks have exactly the same architec-
ture as defined by Wang et al. (2017). We adopted the LGAN 
part of the loss function as follows:

The training dataset is given as a set of tuples of correspond-
ing images and dates {(xi, si, yi)} , where xi is the input/reflec-
tance image, yi is the real image, taken by a camera of our 
mapping van, and si is the date the image was taken.

To create diverse outputs and explicitly control the sea-
son of our prediction, we tried to feed the date by concat-
enating a one-hot vector to the input image, which, how-
ever, did not lead to the intended effect, as it was ignored. 
Similar to the findings of Isola et  al. (2017), we also 
observed that noise fed additionally and directly into the 
generator was completely ignored by the network and did 
not create any diverse results at all. Therefore, as shown in 
Fig. 2, the fully connected layer was instead concatenated 
to the bottleneck after convolving the input which resulted 
in the desired effect. Since we have conducted 14 mapping 

(1)

min
G

max
D1,D2

∑

k=1,2

LGAN(G,Dk)

=
∑

k=1,2

E(x,y)[logDk(x, y)]

+ E[log(1 − Dk(x,G(x, s)))].

Resnet-block

+

Reflectance

Distance

Conv2d + BN + Relu

Fully-connected + Relu

Resnet-block

ConvTranspose + BN + Relu

512x512x2

512x512x64

256x256x128

128x128x256

64x64x512

one-hot encoded season

32x32x1024

each
32x32x1024

64x64x512

128x128x256

256x256x128

512x512x64

512x512x3

Fig. 2  Our adapted generator network. Note how the capture date is injected by concatenating a fully connected layer (red)
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campaigns throughout the year, the fully connected layer 
encodes the campaign respectively date with an one-hot 
encoded input vector of 14 and an output of 1024. We 
reshape the output to a size of 32 × 32 × 1 and concatenate 
it along the last axis to the image feature maps as shown 
in Fig. 2.

The following layers of the generator network are iden-
tical to the pix2pixhd network. The one-hot encoding for 
each capture date, si , is defined as follows:

We additionally tried to smooth the one-hot vector by add-
ing N(�, �2) to f (si) in order to get a continuous transition 
between each season. However, this resulted only in slight 
changes between each prediction and the parameterized sea-
sons stayed discrete.

(2)f (si) =

{
1, if si = date

0, otherwise.

5  Experiments and Results

We trained the networks for 20 epochs with a batch size 
of one. After 20 epochs, we observed that the generator 
starts ignoring the season information and overfits to the 
actual image.

Figure 3 shows an example of a predicted image from 
the train set. Remember that this is computed using only 
the reflectance and distance information from the point 
cloud. Note that the predicted building is coloured in a 
typical colour (white walls and red roof), while in reality 
the building has quite different colours (red walls and dark 
roof). We therefore believe that the colour information is 
mostly derived from the spatial information and not from 
the (LiDAR) reflectance of the points themselves.

Fig. 3  Input image (reflectance, left), synthesized image (middle) and real image (right)

Fig. 4  Summer (middle) and winter (right) representation of the same input point cloud (left)
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Figure 4 shows that by shifting the value in the one-hot 
encoded season vector, we are able to predict different 
seasons for the same LiDAR input. In this case, we used 
a point cloud from the train set that was recorded in Han-
nover, Germany, in March and predicted an image for June 
and December. It can be observed that the predicted scene 
is greener in summer, and also the colours are brighter, 
whereas the colours in winter are paler. Also, the light 
goes through the tree crown because it has no leaves in 
winter. In addition, light snow covers the streets, with less 
snow in the road centres, where the cars have blown it to 
the sides. Also typical traces of tyres are captured in the 
winter scene.

However, we think that some features will stay encoded 
in the point cloud itself. For example, the amount of leaves 
which are captured by the LiDAR could be the reason for 
a relatively sparse tree crown in the summer image. It is 
also worth mentioning that there are a large number of 
occluded points in the left pane of Fig. 4. From the middle 
and right pane of Fig. 4, it can be seen that the generator 
has learnt to hide occluded points.

We also created a video1 which shows the differences 
between summer and winter.

5.1  Evaluation

Since GANs are not trained on the basis of a traditional 
loss function, the evaluation of the results is extremely dif-
ficult. The overview made by Borji shows that there is cur-
rently no consensus on how to evaluate a GAN (Borji 2019). 
Like Wang et al. and Isola et al., we decided to evaluate 
the C-GAN based on the interpretability of a pre-trained 
network (Wang et al. 2017; Isola et al. 2017). The idea is 
that a network trained on real data can interpret the gener-
ated samples well if they have a high degree of realism. 
For this purpose, we used Deeplabv3+, a state of the art 
network created by Chen et al., which is used for semantic 
segmentation in images (Chen et al. 2018). Depending on 
the situation, we pre-trained Deeplabv3+ on Cityscapes or 
PASCAL VOC 2012 (Cordts et al. 2016; Everingham et al. 
2010). Both datasets contain similar street scenes as the 
dataset we created. In Cityscapes, different object classes 
are evaluated that would be encountered by a typical road 
user, for example, cars, streets, buildings, pedestrians, trees 
or street signs. The PASCAL VOC 2012 data on the other 
hand separates between the class background and foreground 
objects like cars.

Fig. 5  Karlsruhe in winter (left) and the corresponding synthesized 
summer images (right)

Fig. 6  Examples for summer (middle) and winter (right) representa-
tion of the same input point cloud coloured by reflectance (left) in 
Hannover (row 1 and 2) and Karlsruhe (row 3 and 4)

1 Video url: youtu.be/33fBXfaYA7E.
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5.1.1  Qualitative Evaluation

We investigated whether our approach generalizes well by 
testing the C-GAN on a different city. The point cloud cap-
tured in the city Karlsruhe was projected to 2D images as 
described before. Because the data were recorded in winter, 
we decided to map the point cloud to summer to show the 
capability of synthesizing a different season. In Fig. 5, we 
show pairs of images taken in Karlsruhe and the correspond-
ing synthesized images from the point cloud. We would like 
to point out that these images and 3D points were never part 
of the training dataset. Also here, the general impression of 
a summer scene is given: it mainly relates to the green scen-
ery and the warmer colours used. In Fig. 6, we additionally 
show pairs of synthetic images for the seasons winter and 
summer, taken in Hannover and Karlsruhe. The example 
should show that the performance of the generator is similar 
for both seasons in the training and test set.

In the next step, we did a qualitative evaluation of how 
good dynamic objects (cars) are recognized by a pretrained 
neural network. We would like to note that we cannot calcu-
late any metric for dynamic objects in synthesized images 
because they do not intersect with the corresponding real 
images. We show a few examples where DeepLabv3+ 
was able to successfully predict cars in the generated fake 
images. We have chosen a network that was trained on 
the PASCAL VOC 2012 dataset which separates between 
background class and object classes (e.g. car). We had the 
impression that this network achieved better results for cars 
than the ones trained on Cityscapes. We used the images in 

Fig. 7, which include many cars at different positions. To 
visualize the results, we merged the images by laying the 
prediction over the corresponding fake image (Fig. 8). 

In Fig. 8, the bright regions are the predicted cars and 
the dark colour shows the class background. The semantic 
maps were not altered, which means that the network only 
predicted cars and background classes in these scenes. As 
can be seen, the results are looking convincing, which means 
that it could be possible to correctly label cars in the gener-
ated fake images.

5.1.2  Input Manipulation

In contrast to pix2pix which uses RGB, our input data con-
tain distance and reflectance values. We observed that these 
are distinct features which can be manipulated to change the 
output of the C-GAN in a meaningful way. In the following 
section, we altered the normalized reflectance channel xref 
by using a threshold:

As seen in Fig.  9, the objects in the predicted images 
remain intact and only differ in the textures. It appears that 
the reflectance encodes properties such as lane markings, 
objects colours, road sign and seasonal information. For 
example, the C-GAN predicted no road markings in the 
altered images. Additionally, the trees looked fuller and 
greener, and the colour of the buildings did change. In the 

(3)xref =

{
0.5, if xref > 0

0, otherwise.

Fig. 7  Synthesized images with cars Fig. 8  Cars from Fig. 7 successfully classified in fake images (bright 
grey)
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next step, we show in Fig. 10 that changing the reflectance 
manually (using a painting program) results in different 
outcomes related to its spatial context. We painted some 
bright lines on the road and on the tree crowns, the rest of 
the image was given a reflectance of 0.5. Firstly, a higher 
reflectance on the road is translated to lane markings by 
the C-GAN. Secondly, the same reflectance value on trees 
results in more and darker leafs (upper right corner). This 
makes sense, because the laser ray uses near infrared, which 
is reflected better by leaves with high amounts of chloro-
phyll. The same applies to lane markings which are made 
using retro-reflective paint, to be visible for traffic partici-
pants. We think that the context awareness of the C-GAN 

makes it easier for humans to manipulate the input. Finally, 
we can imagine that the manipulation could be combined 
with point class labels to selectively change the appearance 
of specific objects by changing their reflectance.

5.1.3  Quantitative Evaluation

For a quantitative evaluation of our approach, we created 
pairs of semantic segmented images from a real and a cor-
responding fake image. For the semantic segmentation, we 
used DeepLabv3+ which was trained on the Cityscapes 
dataset. The degree of correspondence between the two rep-
resentations is evaluated by comparing the resulting clas-
sifications. The performance of the model was calculated 
by measuring the intersection over union (IoU). The IoU 
has a range between 0 (worst) and 1 (best). It is calculated 
as follows:

(4)IoU =
TP

TP + FP + FN
,

Fig. 9  Images with orignal (left) and thresholded reflectance (right)

Fig. 10  Left to right: reflectance altered manually, original output and altered output

Table 1  IoU between real and 
synthesized image

Classes IoU

Road 0.845
Sidewalk 0.289
Building 0.561
Wall 0.186
Fence 0.218
Pole 0.177
Traffic light 0.013
Traffic sign 0.150
Vegetation 0.806
Terrain 0.330
Sky 0.813
Average IoU 0.399
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where TP, FP, and FN are the true positive, false positive, 
and false negative pixel counts. However, due to the time 
difference between capturing the point cloud and the camera 
image, dynamic objects may appear at different positions. 
Therefore, we think it makes only sense to measure the IoU 
for classes of objects which are non-moving. As can be seen 
in Table 1, classes have a large IoU if the corresponding 
objects have large extents, such as road, building, vegetation 
and sky. The mean IoU is small for classes corresponding 
to small objects, such as traffic sign and traffic light, pole, 
fence and wall.

We think that one reason for the relatively low IoU comes 
from the fact that we have only limited hardware capacity 
and cannot train the full pix2pixhd model. Our model was 
trained on a Nvidia Titan X which has 12 GB of memory. As 

stated by Wang et al. (2017), they needed 24 GB of memory 
to train their model, which achieved a mean IoU of 0.6389.

We also calculated the Fréchet Inception Distance 
(FID) and the multi-scale structural similarity (MS-SSIM) 
between the synthesized and target images. The basic idea 
of FID is that the distributions of the extracted features 
by a pre-trained network between the generated and real 
images should be similar if the generator performs well. 
This method was introduced by Heusel et al. to measure 
the performance of GANs in images (Heusel et al. 2017). 
In practice, these features are extracted by the penultimate 
layer of Inception-v3. The synthesized Xg = N(�g,�g) and 
target image Xt = N(�t,�t) distributions are modeled as 
multi-dimensional Gaussians parameterized by their mean 

Table 2  FID and SSIM scores computed for every campaign. The closer FID is to zero and SSIM to one, the better it is

Campaign 0 1 2 3 4 5 6

FID ↓ 13.1 15.5 12.9 12.4 11.9 14.3 14.8
MS-SSIM ↑ 0.54 0.47 0.54 0.59 0.56 0.5 0.55

Campaign 7 8 9 10 11 12 13

FID ↓ 15.4 13.3 12.7 12.7 14.0 31.0 34.2
MS-SSIM ↑ 0.51 0.55 0.54 0.54 0.49 0.43 0.43

Campaign All

FID ↓ 9.6
MS-SSIM ↑ 0.51

Fig. 11  Randomly sampled pairs of predictions (left) and ground truth images (right) for every campaign. The pairs are sorted by campaign 
number (campaign 0 is top left and 13 bottom right)
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� and covariance � . The FID distance can be calculated 
by the following equation:

MS-SSIM introduced by Wang et al. (2003, 2004), on the 
other hand, measures the distance by comparing the lumi-
nance, contrast, and structure of the images at different 
scales. The score is then calculated by the weighted product 
of all three terms.

We calculated firstly the total distances on the entire 
dataset and secondly the distance per measurement cam-
paign to see if the generator would capture the seasonal 
characteristics. The images are generated according to 
the date they are captured. As a rough guide, Atienza 
gives an FID value of 31.5 and an SSID value of 0.64 at 
best (Atienza 2019). However, it should be noted that the 

(5)
FID =||�t − �g||2

+ Tr(�t + �g − 2(�t�g)
1∕2).

scores are difficult to compare, as both procedures were 
trained on different datasets.

Table 2 shows that the results of FID and MS-SSIM are 
similar for all campaigns except 12 and 13. It shows that 
the generator has problems capturing their characteristics, 
resulting in lower scores. One reason for this could be that 
these campaigns were started in daylight and ended at night. 
As a result, many bright but also dark images have been 
captured which also contain image noise.

To visualize the results in the Table 2, we show a pair of 
predicted and real images for each campaign in Fig. 11. To 
create these images, we used the correct date for the predic-
tions. In addition, in Fig. 12 we show a different representa-
tion for the same input point cloud for every other campaign. 
Both figures are intended to show that the generator is gener-
ally able to capture the specific characteristics of a season or 
mapping campaign, including campaigns 12 and 13. 

Fig. 12  Different representations for the same input point clouds. Each row shows an example from one measurement campaign (MC). The col-
umns show the input (left), the different predicted seasons (1–13) and the corresponding real image (right)
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5.2  Colourizing Point Clouds

To colourize point clouds, the conventional approach is to 
map 3D points into the camera coordinate system, using 
exterior and interior orientation. As described above, this 
process has to tackle several difficulties. We therefore want 
to show that we are able to circumvent this process by 
removing the camera and using our synthesized images for 
point cloud colouration. The general idea is that the colours 
of the synthesized images can be easily projected back into 
the point cloud. The colourization is assumed to be good if 
the colours match the form and structure of the 3D objects. 
Figure 13 shows the result of mapping the generated images 
back to the point cloud. It can be seen that the buildings and 
cars show convincing textures. This is especially true for the 
red lights of the cars, and also for the homogeneous darker 
colour of the first floor of the buildings on the left side of 
the road. These images demonstrate that the generated RGB 
information generally fits the structure of the point cloud.

6  Conclusion and Outlook

In this work, we have shown that it is possible to predict 
realistically looking images, using only point cloud data, 
once they are trained with pairs of point clouds and cor-
responding images. By parameterizing the different capture 
dates of the images and point clouds, we were able to map 
the same point cloud to different seasons. We have shown 
that the C-GAN was able to encode seasonal information, 
like snow in winter or green trees in summer. Furthermore, 
the generator was able to hide occluded points and also fill 
gaps in the point cloud appropriately. Furthermore, we have 
shown that the generated images fit nicely to the 3D points 
by mapping the generated RGB pixel back to the 3D points. 
A quantitative evaluation showed the similarity between the 
original and the synthesized images.

Additionally, we were able to show that our network 
generalizes well by testing it on a different city. We are 
convinced that this process gives us the ability of mapping 
a specific city style in a specific season to a completely 
different city, only by providing point clouds.

Lastly, we were able to show that the input can be edited 
by a human to change the appearance of objects in the pre-
dicted images. We did this by altering the reflectance with 
a painting program. The C-GAN translated the reflectance 
values according to the objects and context and changed 
their appearance appropriately. We think that this is a 
property that makes it easier for humans to manipulate 
the output.

Provided that our point cloud is labelled, it is imagi-
nable that this framework allows us to project high preci-
sion labels to the generated images to create or enrich 
datasets for semantic segmentation. Since our approach 
allows to define arbitrary view positions and angles, this 
would enable us to generate an arbitrary amount of train-
ing examples.

To improve the seasonal conditioning in the future, we 
want to implement an ACGAN-like structure which has 
been introduced by Odena et al. (2017). By forcing the dis-
criminator to classify the season, the generator should be 
less likely to overfit to the capture date of the input point 
cloud and could better generalize to different seasons. This 
should also allow a U-Net-like architecture which could 
further improve the quality of the predictions.
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