
Vol.:(0123456789)1 3

PFG (2020) 88:257–269
https://doi.org/10.1007/s41064-020-00114-z

ORIGINAL ARTICLE

Conditional Adversarial Networks for Multimodal Photo‑Realistic Point
Cloud Rendering

Torben Peters1 · Claus Brenner1

Received: 4 September 2019 / Accepted: 17 April 2020 / Published online: 7 July 2020
© The Author(s) 2020

Abstract
We investigate whether conditional generative adversarial networks (C-GANs) are suitable for point cloud rendering. For
this purpose, we created a dataset containing approximately 150,000 renderings of point cloud–image pairs. The dataset was
recorded using our mobile mapping system, with capture dates that spread across 1 year. Our model learns how to predict
realistically looking images from just point cloud data. We show that we can use this approach to colourize point clouds
without the usage of any camera images. Additionally, we show that by parameterizing the recording date, we are even able
to predict realistically looking views for different seasons, from identical input point clouds.

Keywords Deep learning · GAN · Point cloud

Zusammenfassung
Nutzung von Conditional Generative Adversarial Networks für das multimodale photorealistische Rendering von Punkt-
wolken. Wir untersuchen, ob Conditional Generative Adversarial Networks (C-GANs) für das Rendering von Punktwolken
geeignet sind. Zu diesem Zweck haben wir einen Datensatz erstellt, der etwa 150.000 Bildpaare enthält, jedes bestehend
aus einem Rendering einer Punktwolke und dem dazugehörigen Kamerabild. Der Datensatz wurde mit unserem Mobile
Mapping System aufgezeichnet, wobei die Messkampagnen über ein Jahr verteilt durchgeführt wurden. Unser Modell
lernt, ausschließlich auf Basis von Punktwolkendaten realistisch aussehende Bilder vorherzusagen. Wir zeigen, dass wir
mit diesem Ansatz Punktwolken ohne die Verwendung von Kamerabildern kolorieren können. Darüber hinaus zeigen wir,
dass wir durch die Parametrierung des Aufnahmedatums in der Lage sind, aus identischen Eingabepunktwolken realistisch
aussehende Ansichten für verschiedene Jahreszeiten vorherzusagen.

1 Introduction

Laser scanned (LiDAR) point clouds are difficult to han-
dle when it comes to photo-realistic rendering. Firstly, if
images have been recorded together with the LiDAR points,
a camera calibration is needed to colourize each scanned
point. However, this does not guarantee that each 3D point
is captured by a camera viewpoint. Secondly, since point
clouds are sparse, it is difficult both to fill empty areas and

to exclude occluded points, e.g. behind walls and buildings.
To create the impression of a continuous surface, splats can
be rendered instead of points. A splat is defined as an ellipti-
cal surface with a size determined by the local point density.
Lastly, the colourized point cloud does not contain any infor-
mation about the sky.

Our approach tries to circumvent the whole process of
model-based point cloud rendering, by learning, in an end-
to-end fashion, how a possible representation of the point
cloud could look like in reality. Our key contributions in
this work are:

• Creating a large dataset of point cloud–image pairs.
• Predicting photo-realistic views from point clouds which

contain only (LiDAR) reflectance and distance informa-
tion.

• Colourizing point clouds without the usage of cameras.

DGPF

 * Torben Peters
 peters@ikg.uni-hannover.de

 Claus Brenner
 brenner@ikg.uni-hannover.de

1 Institut für Kartographie und Geoinformatik, Leibniz
Universität Hannover, Appelstraße 9a, 30167 Hannover,
Germany

http://orcid.org/0000-0002-4962-0361
http://crossmark.crossref.org/dialog/?doi=10.1007/s41064-020-00114-z&domain=pdf

258 PFG (2020) 88:257–269

1 3

• Extending a C-GAN to parameterize different points in
time, e.g. seasons and months, to predict multimodal
images.

• Showing that the input is easily editable by a human to
change the appearance of objects in the predicted images.

The paper is organized as follows: after a review of the state
of the art of C-GANs in computer vision, the method devel-
oped in this paper is presented, as well as the datasets used
and the preprocessing of the data, involving a paralleliza-
tion framework. The results are evaluated both qualitatively
and quantitatively using different metrics and approaches. A
summary and outlook conclude the paper.

2 Related Work

Generative Adversarial Networks (GANs) were invented
by Goodfellow et al. (2014). In their original form, they
are deep generative models which are based on a game
theoretic scenario. They consist of a generator and a dis-
criminator network. The generator g directly produces
samples g(z) = x . The discriminator tries to distinguish
between samples drawn from the dataset and samples that
are drawn from g. Instead of judging the generators per-
formance by using a pixelwise metric, as it has been done,
e.g. in variational autoencoders (Kingma and Welling
2013), the GAN loss provides a more sophisticated fea-
ture-based loss function. The generator loss is expressed
by the probability of the discriminator network d(x) if a
sample is genuine or generated by g. Therefore, d(x) is the
probability that x is drawn from the training dataset. Both
networks are trained jointly: the discriminator is trained
by maximizing the probability of assigning the correct
label to the training example and the example drawn from
g, while the generator is trained by minimizing 1 − d(g(z)).

Conditional GANs attracted a lot of attention in recent years.
Most notable are the pix2pix network by Isola et al. (2017)
and the improved version pix2pixhd (Wang et al. 2017),
which is able to predict high-resolution image-to-image
mappings. Like traditional GANs, these networks are using
an adversarial loss which is learned by a discriminator net-
work. In contrast to L1-loss, the adversarial loss leads to
less blurry images by learning to distinguish between real
and generated images (Isola et al. 2017; Wang et al. 2017).
In addition to image-to-image translation, there exist a
wide range of conditional GANs, such as unpaired image-
to-image translation (Zhu et al. 2017a) and text-to-image
conversion (Dash et al. 2017; Zhang et al. 2017; Reed et al.
2016a, b).

Multimodal image-to-image translation defines the process
of mapping one-to-many images, by modeling distributions
of possible outcomes with an additional latent space vector
or matrix, e.g. as used by BicycleGAN (Zhu et al. 2017b).
Instead of mapping a whole image to many outcomes, Wang
et al. (2017) mapped object classes in images to many differ-
ent versions of the same class. This could be for example dif-
ferent road surfaces like stone or asphalt, or car types. They
did this by encoding instance classes with a feature encoder
network similar to an autoencoder. These feature maps were
additionally fed into the input of the generator and trained
end to end. By changing the feature vector in the input, they
were able to manipulate specific objects in one image. How-
ever, this implies that they need instance labels in addition to
image pairs to train the network. Other notable contributions
for multimodal image-to-image translations like PixelNN
(Bansal et al. 2017) or MAD-GAN (Ghosh et al. 2018) try
to predict a discrete set of different outcomes. By enforcing
them to be different, they try to create one-to-many map-
pings. This can be used, e.g. for image manipulations as
shown by Park et al. (2019). Finally, there are approaches
like MUNIT (Huang et al. 2018) which is able to solve this
problem in an unsupervised manner.

Depending on the application, point clouds can be incor-
porated into deep neural networks in different ways. They
can be represented as unordered 3D point sets (Qi et al.
2017a, b), voxelized (Wu et al. 2016; Maturana and Scherer
2015), or projected into images to use traditional 2D-con-
volutional networks (Boulch et al. 2017). When rendering
point clouds, different problems arise. Firstly, point clouds
do not contain any colour, sky or light source information.
Secondly, they are sparse, and occlusions are common.
Many approaches for handling occlusions have been pro-
posed, for example by using surfels (surface elements), by
Pfister et al. (2000), and surface splatting, by Zwicker et al.
(2001). They try to deal with the fact that 3D points are not
connected and thus do not have any surface information.
Furthermore, illumination in computer graphics can be tack-
led by following the light rays from a virtual source by using
ray tracing, path tracing or scanline rendering (Whitted
1979; Kajiya 1986; Bouknight 1970). All these approaches
are applicable to point clouds, but they are hard to realize
due to the sparsity of non-meshed 3D points. Additionally,
those approaches introduce high computational complexity.
By learning to directly map from 3D points to images, we try
to circumvent the whole process of model-based rendering.

Similar GAN-based approaches have been proposed by
Atienza (2019) and Milz et al. (2019). The first work uses
a combination of point cloud data and a background image
patch to render a 2D scene. They condition the general look
of the scene by the background patch and the content of the
scene with a point cloud of a 3D object. The second model is
trained on synthetic objects. They infer the raw point cloud

259PFG (2020) 88:257–269

1 3

of a single object and target viewing angles and generate a
rendered image which is compared to a target mesh render-
ing. In both cases, the object classes are known and the point
clouds are annotated.

However, our work differs from these works because we
do not need object classes or annotations, since we exploit
the geometric correspondence between camera images and
3D LiDAR point cloud. Additionally, we condition the gen-
eral appearance of the scene by parameterizing the image
date to encode seasonal information.

3 Data Acquisition and Pre‑processing

3.1 Mobile Mapping Dataset

The datasets used were produced with the mobile mapping
system Riegl VMX-250. This system captures a maximum of
600,000 3D points per second and has four cameras, which
were set to take images at a rate of 1 Hz each. The points
are acquired with a LiDAR accuracy of 1 cm, with absolute
accuracies being typically in the range of 10–20 cm.

To prepare a training dataset, we used mobile mapping
data which we captured during 14 measurement campaigns,
over the duration of 1 year, in Hannover, Germany. For an
independent test dataset, we used another point cloud which
we recorded during a campaign in the city of Karlsruhe,
about 500 km away from Hannover, during winter (in
February).

To illustrate the extent of the required processing, the
subset of the data from Hannover we were using in this work
contains 15 billion (15,017,586,980) 3D points and 123,047
images. Each image capture is given in terms of position (in
UTM coordinates) and orientation (roll, pitch, yaw angles).

Additionally, the intrinsic parameters of each camera are
known due to a pre-calibration.

3.2 Preparing the Dataset Using MapReduce

Our C-GAN is based on pix2pixhd which means that it needs
to be trained in a supervised manner. The C-GAN needs the
data in terms of pairs of projected point cloud image and
corresponding (real) image. The projected point cloud image
contains two channels. The first channel stores the distance
between 3D point and camera centre and the second channel
the reflectance of the laser ray. The task is therefore to pro-
ject each of the 15 billion 3D points to 2D pixels in 123,047
images and store the distance and reflection values in the
corresponding pixels. To solve this task, we created a mas-
sively parallel point cloud renderer, using the MapReduce
framework on an Apache Hadoop cluster (Fig. 1).

To apply MapReduce, each mapper has a list of all image
orientations. According to the MapReduce principle, it
receives a subset (split) of 3D point coordinates and their
reflectance values (reflectance is an entity derived from the
LiDAR amplitude measurement). To reduce the amount of
points emitted by the mapper, we exclude points that are
behind the camera or are further away than 300 m. The map-
per possibly emits multiple key–value pairs per incoming 3D
point, depending on the number of images the point appears
in. The key is defined by the image name, identifying a sin-
gle image take, whereas the value contains the distance,
reflectance and the image coordinates of the projected point.
Each reducer receives all necessary information, grouped
by image (key), and computes two 16-bit grey-value images
per key, one containing the distance and the other one con-
taining the reflectance values per point. If more than one
point falls into the same 2D pixel, we keep the one with the
smallest distance to the camera centre. Depending on the

Fig. 1 Our MapReduce approach for rendering large point clouds

260 PFG (2020) 88:257–269

1 3

scanning situation, the points appear more or less sparse in
the image plane. Additionally, because of the small differ-
ence in capture time between camera sensor and LiDAR,
moving objects might appear in the camera image but not in
the point cloud or vice versa.

4 Learning Using a C‑GAN

Our approach is inspired by the pix2pixhd network by Wang
et al. (2017). The pix2pixhd network incorporates instance
segmentation information and label maps to enable object
manipulation. By encoding the features of one instance, it is
able to generate diverse images from the same input.

We modified the generator network as follows. We
removed the instance- and label-maps from the network
architecture because we do not have any information about
the class or instance of each point. The original generator is
split into at least two subnetworks, e.g. a global and a local
part (Wang et al. 2017). The global section shown in Fig. 2 is
based on the architecture of Johnson et al. (2016). Instead of
an architecture similar to a U-net with skip connections, this
network is based on residual connections that allows each
layer to easily learn an identity mapping, which according
to Johnson et al. should help to preserve the original image
structure. We believe that this architecture is better suited
than U-Net for the seasonal encoding, since skip connections
could potentially skip the concatenated seasonal informa-
tion in the bottleneck. The global network forms the core
network, which in our case produces an image resolution
of 512 × 512 . In pix2pixhd, the local enhancer networks are

wrapped around the global network and output an image the
size of 2× of each image dimension. Due to hardware limita-
tions, we did not use the local enhancer network and reduced
the number of multi-scale discriminators to two {D1,D2} .
Each discriminator operates on a different image scale, D1 at
the original scale 512 × 512 , and D2 at 256 × 256 . However,
the discriminator networks have exactly the same architec-
ture as defined by Wang et al. (2017). We adopted the LGAN
part of the loss function as follows:

The training dataset is given as a set of tuples of correspond-
ing images and dates {(xi, si, yi)} , where xi is the input/reflec-
tance image, yi is the real image, taken by a camera of our
mapping van, and si is the date the image was taken.

To create diverse outputs and explicitly control the sea-
son of our prediction, we tried to feed the date by concat-
enating a one-hot vector to the input image, which, how-
ever, did not lead to the intended effect, as it was ignored.
Similar to the findings of Isola et al. (2017), we also
observed that noise fed additionally and directly into the
generator was completely ignored by the network and did
not create any diverse results at all. Therefore, as shown in
Fig. 2, the fully connected layer was instead concatenated
to the bottleneck after convolving the input which resulted
in the desired effect. Since we have conducted 14 mapping

(1)

min
G

max
D1,D2

∑

k=1,2

LGAN(G,Dk)

=
∑

k=1,2

E(x,y)[logDk(x, y)]

+ E[log(1 − Dk(x,G(x, s)))].

Resnet-block

+

Reflectance

Distance

Conv2d + BN + Relu

Fully-connected + Relu

Resnet-block

ConvTranspose + BN + Relu

512x512x2

512x512x64

256x256x128

128x128x256

64x64x512

one-hot encoded season

32x32x1024

each
32x32x1024

64x64x512

128x128x256

256x256x128

512x512x64

512x512x3

Fig. 2 Our adapted generator network. Note how the capture date is injected by concatenating a fully connected layer (red)

261PFG (2020) 88:257–269

1 3

campaigns throughout the year, the fully connected layer
encodes the campaign respectively date with an one-hot
encoded input vector of 14 and an output of 1024. We
reshape the output to a size of 32 × 32 × 1 and concatenate
it along the last axis to the image feature maps as shown
in Fig. 2.

The following layers of the generator network are iden-
tical to the pix2pixhd network. The one-hot encoding for
each capture date, si , is defined as follows:

We additionally tried to smooth the one-hot vector by add-
ing N(�, �2) to f (si) in order to get a continuous transition
between each season. However, this resulted only in slight
changes between each prediction and the parameterized sea-
sons stayed discrete.

(2)f (si) =

{
1, if si = date

0, otherwise.

5 Experiments and Results

We trained the networks for 20 epochs with a batch size
of one. After 20 epochs, we observed that the generator
starts ignoring the season information and overfits to the
actual image.

Figure 3 shows an example of a predicted image from
the train set. Remember that this is computed using only
the reflectance and distance information from the point
cloud. Note that the predicted building is coloured in a
typical colour (white walls and red roof), while in reality
the building has quite different colours (red walls and dark
roof). We therefore believe that the colour information is
mostly derived from the spatial information and not from
the (LiDAR) reflectance of the points themselves.

Fig. 3 Input image (reflectance, left), synthesized image (middle) and real image (right)

Fig. 4 Summer (middle) and winter (right) representation of the same input point cloud (left)

262 PFG (2020) 88:257–269

1 3

Figure 4 shows that by shifting the value in the one-hot
encoded season vector, we are able to predict different
seasons for the same LiDAR input. In this case, we used
a point cloud from the train set that was recorded in Han-
nover, Germany, in March and predicted an image for June
and December. It can be observed that the predicted scene
is greener in summer, and also the colours are brighter,
whereas the colours in winter are paler. Also, the light
goes through the tree crown because it has no leaves in
winter. In addition, light snow covers the streets, with less
snow in the road centres, where the cars have blown it to
the sides. Also typical traces of tyres are captured in the
winter scene.

However, we think that some features will stay encoded
in the point cloud itself. For example, the amount of leaves
which are captured by the LiDAR could be the reason for
a relatively sparse tree crown in the summer image. It is
also worth mentioning that there are a large number of
occluded points in the left pane of Fig. 4. From the middle
and right pane of Fig. 4, it can be seen that the generator
has learnt to hide occluded points.

We also created a video1 which shows the differences
between summer and winter.

5.1 Evaluation

Since GANs are not trained on the basis of a traditional
loss function, the evaluation of the results is extremely dif-
ficult. The overview made by Borji shows that there is cur-
rently no consensus on how to evaluate a GAN (Borji 2019).
Like Wang et al. and Isola et al., we decided to evaluate
the C-GAN based on the interpretability of a pre-trained
network (Wang et al. 2017; Isola et al. 2017). The idea is
that a network trained on real data can interpret the gener-
ated samples well if they have a high degree of realism.
For this purpose, we used Deeplabv3+, a state of the art
network created by Chen et al., which is used for semantic
segmentation in images (Chen et al. 2018). Depending on
the situation, we pre-trained Deeplabv3+ on Cityscapes or
PASCAL VOC 2012 (Cordts et al. 2016; Everingham et al.
2010). Both datasets contain similar street scenes as the
dataset we created. In Cityscapes, different object classes
are evaluated that would be encountered by a typical road
user, for example, cars, streets, buildings, pedestrians, trees
or street signs. The PASCAL VOC 2012 data on the other
hand separates between the class background and foreground
objects like cars.

Fig. 5 Karlsruhe in winter (left) and the corresponding synthesized
summer images (right)

Fig. 6 Examples for summer (middle) and winter (right) representa-
tion of the same input point cloud coloured by reflectance (left) in
Hannover (row 1 and 2) and Karlsruhe (row 3 and 4)

1 Video url: youtu.be/33fBXfaYA7E.

263PFG (2020) 88:257–269

1 3

5.1.1 Qualitative Evaluation

We investigated whether our approach generalizes well by
testing the C-GAN on a different city. The point cloud cap-
tured in the city Karlsruhe was projected to 2D images as
described before. Because the data were recorded in winter,
we decided to map the point cloud to summer to show the
capability of synthesizing a different season. In Fig. 5, we
show pairs of images taken in Karlsruhe and the correspond-
ing synthesized images from the point cloud. We would like
to point out that these images and 3D points were never part
of the training dataset. Also here, the general impression of
a summer scene is given: it mainly relates to the green scen-
ery and the warmer colours used. In Fig. 6, we additionally
show pairs of synthetic images for the seasons winter and
summer, taken in Hannover and Karlsruhe. The example
should show that the performance of the generator is similar
for both seasons in the training and test set.

In the next step, we did a qualitative evaluation of how
good dynamic objects (cars) are recognized by a pretrained
neural network. We would like to note that we cannot calcu-
late any metric for dynamic objects in synthesized images
because they do not intersect with the corresponding real
images. We show a few examples where DeepLabv3+
was able to successfully predict cars in the generated fake
images. We have chosen a network that was trained on
the PASCAL VOC 2012 dataset which separates between
background class and object classes (e.g. car). We had the
impression that this network achieved better results for cars
than the ones trained on Cityscapes. We used the images in

Fig. 7, which include many cars at different positions. To
visualize the results, we merged the images by laying the
prediction over the corresponding fake image (Fig. 8).

In Fig. 8, the bright regions are the predicted cars and
the dark colour shows the class background. The semantic
maps were not altered, which means that the network only
predicted cars and background classes in these scenes. As
can be seen, the results are looking convincing, which means
that it could be possible to correctly label cars in the gener-
ated fake images.

5.1.2 Input Manipulation

In contrast to pix2pix which uses RGB, our input data con-
tain distance and reflectance values. We observed that these
are distinct features which can be manipulated to change the
output of the C-GAN in a meaningful way. In the following
section, we altered the normalized reflectance channel xref
by using a threshold:

As seen in Fig. 9, the objects in the predicted images
remain intact and only differ in the textures. It appears that
the reflectance encodes properties such as lane markings,
objects colours, road sign and seasonal information. For
example, the C-GAN predicted no road markings in the
altered images. Additionally, the trees looked fuller and
greener, and the colour of the buildings did change. In the

(3)xref =

{
0.5, if xref > 0

0, otherwise.

Fig. 7 Synthesized images with cars Fig. 8 Cars from Fig. 7 successfully classified in fake images (bright
grey)

264 PFG (2020) 88:257–269

1 3

next step, we show in Fig. 10 that changing the reflectance
manually (using a painting program) results in different
outcomes related to its spatial context. We painted some
bright lines on the road and on the tree crowns, the rest of
the image was given a reflectance of 0.5. Firstly, a higher
reflectance on the road is translated to lane markings by
the C-GAN. Secondly, the same reflectance value on trees
results in more and darker leafs (upper right corner). This
makes sense, because the laser ray uses near infrared, which
is reflected better by leaves with high amounts of chloro-
phyll. The same applies to lane markings which are made
using retro-reflective paint, to be visible for traffic partici-
pants. We think that the context awareness of the C-GAN

makes it easier for humans to manipulate the input. Finally,
we can imagine that the manipulation could be combined
with point class labels to selectively change the appearance
of specific objects by changing their reflectance.

5.1.3 Quantitative Evaluation

For a quantitative evaluation of our approach, we created
pairs of semantic segmented images from a real and a cor-
responding fake image. For the semantic segmentation, we
used DeepLabv3+ which was trained on the Cityscapes
dataset. The degree of correspondence between the two rep-
resentations is evaluated by comparing the resulting clas-
sifications. The performance of the model was calculated
by measuring the intersection over union (IoU). The IoU
has a range between 0 (worst) and 1 (best). It is calculated
as follows:

(4)IoU =
TP

TP + FP + FN
,

Fig. 9 Images with orignal (left) and thresholded reflectance (right)

Fig. 10 Left to right: reflectance altered manually, original output and altered output

Table 1 IoU between real and
synthesized image

Classes IoU

Road 0.845
Sidewalk 0.289
Building 0.561
Wall 0.186
Fence 0.218
Pole 0.177
Traffic light 0.013
Traffic sign 0.150
Vegetation 0.806
Terrain 0.330
Sky 0.813
Average IoU 0.399

265PFG (2020) 88:257–269

1 3

where TP, FP, and FN are the true positive, false positive,
and false negative pixel counts. However, due to the time
difference between capturing the point cloud and the camera
image, dynamic objects may appear at different positions.
Therefore, we think it makes only sense to measure the IoU
for classes of objects which are non-moving. As can be seen
in Table 1, classes have a large IoU if the corresponding
objects have large extents, such as road, building, vegetation
and sky. The mean IoU is small for classes corresponding
to small objects, such as traffic sign and traffic light, pole,
fence and wall.

We think that one reason for the relatively low IoU comes
from the fact that we have only limited hardware capacity
and cannot train the full pix2pixhd model. Our model was
trained on a Nvidia Titan X which has 12 GB of memory. As

stated by Wang et al. (2017), they needed 24 GB of memory
to train their model, which achieved a mean IoU of 0.6389.

We also calculated the Fréchet Inception Distance
(FID) and the multi-scale structural similarity (MS-SSIM)
between the synthesized and target images. The basic idea
of FID is that the distributions of the extracted features
by a pre-trained network between the generated and real
images should be similar if the generator performs well.
This method was introduced by Heusel et al. to measure
the performance of GANs in images (Heusel et al. 2017).
In practice, these features are extracted by the penultimate
layer of Inception-v3. The synthesized Xg = N(�g,�g) and
target image Xt = N(�t,�t) distributions are modeled as
multi-dimensional Gaussians parameterized by their mean

Table 2 FID and SSIM scores computed for every campaign. The closer FID is to zero and SSIM to one, the better it is

Campaign 0 1 2 3 4 5 6

FID ↓ 13.1 15.5 12.9 12.4 11.9 14.3 14.8
MS-SSIM ↑ 0.54 0.47 0.54 0.59 0.56 0.5 0.55

Campaign 7 8 9 10 11 12 13

FID ↓ 15.4 13.3 12.7 12.7 14.0 31.0 34.2
MS-SSIM ↑ 0.51 0.55 0.54 0.54 0.49 0.43 0.43

Campaign All

FID ↓ 9.6
MS-SSIM ↑ 0.51

Fig. 11 Randomly sampled pairs of predictions (left) and ground truth images (right) for every campaign. The pairs are sorted by campaign
number (campaign 0 is top left and 13 bottom right)

266 PFG (2020) 88:257–269

1 3

� and covariance � . The FID distance can be calculated
by the following equation:

MS-SSIM introduced by Wang et al. (2003, 2004), on the
other hand, measures the distance by comparing the lumi-
nance, contrast, and structure of the images at different
scales. The score is then calculated by the weighted product
of all three terms.

We calculated firstly the total distances on the entire
dataset and secondly the distance per measurement cam-
paign to see if the generator would capture the seasonal
characteristics. The images are generated according to
the date they are captured. As a rough guide, Atienza
gives an FID value of 31.5 and an SSID value of 0.64 at
best (Atienza 2019). However, it should be noted that the

(5)
FID =||�t − �g||2

+ Tr(�t + �g − 2(�t�g)
1∕2).

scores are difficult to compare, as both procedures were
trained on different datasets.

Table 2 shows that the results of FID and MS-SSIM are
similar for all campaigns except 12 and 13. It shows that
the generator has problems capturing their characteristics,
resulting in lower scores. One reason for this could be that
these campaigns were started in daylight and ended at night.
As a result, many bright but also dark images have been
captured which also contain image noise.

To visualize the results in the Table 2, we show a pair of
predicted and real images for each campaign in Fig. 11. To
create these images, we used the correct date for the predic-
tions. In addition, in Fig. 12 we show a different representa-
tion for the same input point cloud for every other campaign.
Both figures are intended to show that the generator is gener-
ally able to capture the specific characteristics of a season or
mapping campaign, including campaigns 12 and 13.

Fig. 12 Different representations for the same input point clouds. Each row shows an example from one measurement campaign (MC). The col-
umns show the input (left), the different predicted seasons (1–13) and the corresponding real image (right)

267PFG (2020) 88:257–269

1 3

5.2 Colourizing Point Clouds

To colourize point clouds, the conventional approach is to
map 3D points into the camera coordinate system, using
exterior and interior orientation. As described above, this
process has to tackle several difficulties. We therefore want
to show that we are able to circumvent this process by
removing the camera and using our synthesized images for
point cloud colouration. The general idea is that the colours
of the synthesized images can be easily projected back into
the point cloud. The colourization is assumed to be good if
the colours match the form and structure of the 3D objects.
Figure 13 shows the result of mapping the generated images
back to the point cloud. It can be seen that the buildings and
cars show convincing textures. This is especially true for the
red lights of the cars, and also for the homogeneous darker
colour of the first floor of the buildings on the left side of
the road. These images demonstrate that the generated RGB
information generally fits the structure of the point cloud.

6 Conclusion and Outlook

In this work, we have shown that it is possible to predict
realistically looking images, using only point cloud data,
once they are trained with pairs of point clouds and cor-
responding images. By parameterizing the different capture
dates of the images and point clouds, we were able to map
the same point cloud to different seasons. We have shown
that the C-GAN was able to encode seasonal information,
like snow in winter or green trees in summer. Furthermore,
the generator was able to hide occluded points and also fill
gaps in the point cloud appropriately. Furthermore, we have
shown that the generated images fit nicely to the 3D points
by mapping the generated RGB pixel back to the 3D points.
A quantitative evaluation showed the similarity between the
original and the synthesized images.

Additionally, we were able to show that our network
generalizes well by testing it on a different city. We are
convinced that this process gives us the ability of mapping
a specific city style in a specific season to a completely
different city, only by providing point clouds.

Lastly, we were able to show that the input can be edited
by a human to change the appearance of objects in the pre-
dicted images. We did this by altering the reflectance with
a painting program. The C-GAN translated the reflectance
values according to the objects and context and changed
their appearance appropriately. We think that this is a
property that makes it easier for humans to manipulate
the output.

Provided that our point cloud is labelled, it is imagi-
nable that this framework allows us to project high preci-
sion labels to the generated images to create or enrich
datasets for semantic segmentation. Since our approach
allows to define arbitrary view positions and angles, this
would enable us to generate an arbitrary amount of train-
ing examples.

To improve the seasonal conditioning in the future, we
want to implement an ACGAN-like structure which has
been introduced by Odena et al. (2017). By forcing the dis-
criminator to classify the season, the generator should be
less likely to overfit to the capture date of the input point
cloud and could better generalize to different seasons. This
should also allow a U-Net-like architecture which could
further improve the quality of the predictions.

Acknowledgements Open Access funding provided by Projekt DEAL.
This work was funded by the German Research Foundation (DFG) as
a part of the Research Training Group GRK2159, ‘Integrity and col-
laboration in dynamic sensor networks’ (i.c.sens).

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,

Fig. 13 Point clouds colourized by using our C-GAN

268 PFG (2020) 88:257–269

1 3

provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

Atienza R (2019) A conditional generative adversarial network
for rendering point clouds. In: IEEE conference on computer
vision and pattern recognition workshops, CVPR workshops
2019, Long Beach, CA, USA. Computer Vision Foundation/
IEEE, pp 10–17

Bansal A, Sheikh Y, Ramanan D (2017) Pixelnn: example-based
image synthesis. arXiv preprint arXiv :1708.05349

Borji A (2019) Pros and cons of gan evaluation measures. Comput
Vis Image Underst 179:41–65

Bouknight WJ (1970) A procedure for generation of three-dimen-
sional half-toned computer graphics presentations. Commun
ACM 13(9):527–536

Boulch A, Guerry J, Le Saux B, Audebert N (2018) SnapNet: 3D
point cloud semantic labeling with 2D deep segmentation net-
works. Comput Graph 71:189–198. https://doi.org/10.1016/j.cag.
2017.11.010

Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H (2018)
Encoder-decoder with atrous separable convolution for semantic
image segmentation. In: Ferrari V, Hebert M, Sminchisescu C,
Weiss Y (eds) Computer vision – ECCV 2018. Springer Inter-
national Publishing, Cham, pp 833–851

Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson
R, Franke U, Roth S, Schiele B (2016) The cityscapes dataset
for semantic urban scene understanding. In: 2016 IEEE con-
ference on computer vision and pattern recognition (CVPR).
Presented at the 2016 IEEE conference on computer vision
and pattern recognition (CVPR), pp 3213–3223. https ://doi.
org/10.1109/CVPR.2016.350

Dash A, Gamboa JCB, Ahmed S, Liwicki M, Afzal MZ (2017) Tac-
gan-text conditioned auxiliary classifier generative adversarial
network. arXiv preprint arXiv :1703.06412

Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A
(2010) The pascal visual object classes (voc) challenge. Int J
Comput Vis 88(2):303–338

Ghosh A, Kulharia V, Namboodiri VP, Torr PH, Dokania PK (2018)
Multi-agent diverse generative adversarial networks. In: 2018
IEEE/CVF conference on computer vision and pattern recog-
nition. Presented at the 2018 IEEE/CVF conference on com-
puter vision and pattern recognition, pp 8513–8521. https ://doi.
org/10.1109/CVPR.2018.00888

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D,
Ozair S, Courville A, Bengio Y (2014) Generative adversarial
nets. In: Proceedings of the 27th international conference on
neural information processing systems, vol 2, NIPS’14. MIT
Press, Cambridge, MA, USA, pp 2672–2680

Milz S, Simon M, Fischer K, Pöpperl M, Gross H-M (2019) Point-
s2Pix: 3D point-cloud to image translation using conditional
GANs. In: Fink GA, Frintrop S, Jiang X (eds) Pattern recog-
nition. Springer International Publishing, Cham, pp 387–400

Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S
(2017) GANs trained by a two time-scale update rule converge

to a local nash equilibrium. In: Proceedings of the 31st inter-
national conference on neural information processing systems,
NIPS’17. Curran Associates Inc., Red Hook, NY, USA, pp
6629–6640

Huang X, Liu MY, Belongie S, Kautz J (2018) Multimodal unsu-
pervised image-to-image translation. In: Ferrari V, Hebert M,
Sminchisescu C, Weiss Y (eds) Computer vision – ECCV 2018.
Springer International Publishing, Cham, pp 179–196

Isola P, Zhu JY, Zhou T, Efros AA (2017) Image-to-Image transla-
tion with conditional adversarial networks. In: 2017 IEEE con-
ference on computer vision and pattern recognition (CVPR), pp
5967–5976

Johnson J, Alahi A, Fei-Fei L (2016) Perceptual losses for real-time
style transfer and super-resolution. In: Leibe B, Matas J, Sebe N,
Welling M (eds) Computer vision – ECCV 2016. Springer Inter-
national Publishing, Cham, pp 694–711

Kajiya JT (1986) The rendering equation. In: Proceedings of the 13th
annual conference on computer graphics and interactive tech-
niques, SIGGRAPH ’86. Association for Computing Machinery,
New York, NY, USA, pp 143–150. https ://doi.org/10.1145/15922
.15902

Kingma DP, Welling M (2013) Auto-encoding variational bayes. arXiv
preprint arXiv :1312.6114

Maturana D, Scherer S (2015) A 3D convolutional neural network for
real-time object recognition. In: 2015 IEEE/RSJ international
conference on intelligent robots and systems (IROS). Presented
at the 2015 IEEE/RSJ international conference on intelligent
robots and systems (IROS), pp 922–928. https ://doi.org/10.1109/
IROS.2015.73534 81

Odena A, Olah C, Shlens J (2017) Conditional image synthesis with
auxiliary classifier GANs. In: Precup D, Teh YW (eds) Proceed-
ings of the 34th international conference on machine learning, vol
70, ICML’17. JMLR.org, pp 2642–2651

Park T, Liu MY, Wang TC, Zhu JY (2019) Semantic image synthe-
sis with spatially-adaptive normalization. In: 2019 IEEE/CVF
conference on computer vision and pattern recognition (CVPR).
Presented at the 2019 IEEE/CVF conference on computer vision
and pattern recognition (CVPR), pp 2332–2341. https ://doi.
org/10.1109/CVPR.2019.00244

Pfister H, Zwicker M, Van Baar J, Gross M (2000) Surfels: surface ele-
ments as rendering primitives. In: Proceedings of the 27th annual
conference on computer graphics and interactive techniques, SIG-
GRAPH ’00. ACM Press/Addison-Wesley Publishing Co., USA,
pp 335–342. https ://doi.org/10.1145/34477 9.34493 6

Qi CR, Yi L, Su H, Guibas LJ (2017) PointNet++: deep hierarchical
feature learning on point sets in a metric space. In: Proceedings of
the 31st international conference on neural information processing
systems, NIPS’17. Curran Associates Inc., Red Hook, NY, USA,
pp 5105–5114

Qi CR, Su H, Mo K, Guibas LJ (2017) PointNet: Deep learning on
point sets for 3D classification and segmentation. In: 2017 IEEE
conference on computer vision and pattern recognition (CVPR).
Presented at the 2017 IEEE conference on computer vision and
pattern recognition (CVPR), pp 77–85. https ://doi.org/10.1109/
CVPR.2017.16

Reed SE, Akata Z, Mohan S, Tenka S, Schiele B, Lee H (2016)
Learning what and where to draw. In: Proceedings of the 30th
international conference on neural information processing sys-
tems, NIPS’16. Curran Associates Inc., Red Hook, NY, USA,
pp 217–225

Reed S, Akata Z, Yan X, Logeswaran L, Schiele B, Lee H (2016)
Generative adversarial text to image synthesis. In: Proceedings

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1708.05349
https://doi.org/10.1016/j.cag.2017.11.010
https://doi.org/10.1016/j.cag.2017.11.010
https://doi.org/10.1109/CVPR.2016.350
https://doi.org/10.1109/CVPR.2016.350
http://arxiv.org/abs/1703.06412
https://doi.org/10.1109/CVPR.2018.00888
https://doi.org/10.1109/CVPR.2018.00888
https://doi.org/10.1145/15922.15902
https://doi.org/10.1145/15922.15902
http://arxiv.org/abs/1312.6114
https://doi.org/10.1109/IROS.2015.7353481
https://doi.org/10.1109/IROS.2015.7353481
https://doi.org/10.1109/CVPR.2019.00244
https://doi.org/10.1109/CVPR.2019.00244
https://doi.org/10.1145/344779.344936
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.1109/CVPR.2017.16

269PFG (2020) 88:257–269

1 3

of the 33rd international conference on international conference
on machine learning, vol 48, ICML’16. JMLR.org, pp 1060–1069

Wang TC, Liu MY, Zhu JY, Tao A, Kautz J, Catanzaro B (2018) High-
resolution image synthesis and semantic manipulation with condi-
tional GANs. In: 2018 IEEE/CVF conference on computer vision
and pattern recognition. Presented at the 2018 IEEE/CVF confer-
ence on computer vision and pattern recognition, pp 8798–8807.
https ://doi.org/10.1109/CVPR.2018.00917

Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image qual-
ity assessment: from error visibility to structural similarity.
IEEE Trans Image Process 13:600–612. https ://doi.org/10.1109/
TIP.2003.81986 1

Wang Z, Simoncelli EP, Bovik AC (2003) Multiscale structural similar-
ity for image quality assessment. In: The thirty-seventh asilomar
conference on signals, systems & computers, 2003. Presented
at the thirty-seventh asilomar conference on signals, systems &
computers, vol 2. pp 1398–1402. https ://doi.org/10.1109/ACSSC
.2003.12922 16

Whitted T (1979) An improved illumination model for shaded display.
In: Proceedings of the 6th annual conference on computer graph-
ics and interactive techniques, SIGGRAPH ’79. Association for
Computing Machinery, New York, NY, USA, p 14. https ://doi.
org/10.1145/80024 9.80741 9

Wu J, Zhang C, Xue T, Freeman B, Tenenbaum J (2016) Learn-
ing a probabilistic latent space of object shapes via 3D

generative-adversarial modeling. In: Proceedings of the 30th inter-
national conference on neural information processing systems,
NIPS’16. Curran Associates Inc., Red Hook, NY, USA, pp 82–90

Zhang H, Xu T, Li H, Zhang S, Huang X, Wang X, Metaxas D (2017)
StackGAN: text to photo-realistic image synthesis with stacked
generative adversarial networks. In: 2017 IEEE international
conference on computer vision (ICCV). Presented at the 2017
IEEE international conference on computer vision (ICCV), pp
5908–5916. https ://doi.org/10.1109/ICCV.2017.629

Zhu JY, Park T, Isola P, Efros AA (2017) Unpaired image-to-image
translation using cycle-consistent adversarial networks. In: 2017
IEEE international conference on computer vision (ICCV).
Presented at the 2017 IEEE international conference on com-
puter vision (ICCV), pp 2242–2251. https ://doi.org/10.1109/
ICCV.2017.244

Zhu JY, Zhang R, Pathak D, Darrell T, Efros AA, Wang O, Shecht-
man E (2017) Toward multimodal image-to-image translation.
In: Proceedings of the 31st international conference on neural
information processing systems, NIPS’17. Curran Associates Inc.,
Red Hook, NY, USA, pp 465–476

Zwicker M, Pfister H, Van Baar J, Gross M (2001) Surface splatting.
In: Proceedings of the 28th annual conference on computer graph-
ics and interactive techniques, SIGGRAPH ’01. Association for
Computing Machinery, New York, NY, USA, pp 371–378. https
://doi.org/10.1145/38325 9.38330 0

https://doi.org/10.1109/CVPR.2018.00917
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/ACSSC.2003.1292216
https://doi.org/10.1109/ACSSC.2003.1292216
https://doi.org/10.1145/800249.807419
https://doi.org/10.1145/800249.807419
https://doi.org/10.1109/ICCV.2017.629
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1145/383259.383300
https://doi.org/10.1145/383259.383300

	Conditional Adversarial Networks for Multimodal Photo-Realistic Point Cloud Rendering
	Abstract
	Zusammenfassung
	1 Introduction
	2 Related Work
	3 Data Acquisition and Pre-processing
	3.1 Mobile Mapping Dataset
	3.2 Preparing the Dataset Using MapReduce

	4 Learning Using a C-GAN
	5 Experiments and Results
	5.1 Evaluation
	5.1.1 Qualitative Evaluation
	5.1.2 Input Manipulation
	5.1.3 Quantitative Evaluation

	5.2 Colourizing Point Clouds

	6 Conclusion and Outlook
	Acknowledgements
	References

