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Abstract
The virtual element method (VEM) for dynamic analyses of nonlinear elasto-plastic problems undergoing large deforma-
tions is outlined within this work. VEM has been applied to various problems in engineering, considering elasto-plasticity,
multiphysics, damage, elastodynamics, contact- and fracture mechanics. This work focuses on the extension of VEM for-
mulations towards dynamic elasto-plastic applications. Hereby low-order ansatz functions are employed in three dimensions
with elements having arbitrary convex or concave polygonal shapes. The formulations presented in this study are based on
minimization of potential function for both the static as well as the dynamic behavior. Additionally, to overcome the volumet-
ric locking phenomena due to elastic and plastic incompressibility conditions, a mixed formulation based on a Hu-Washizu
functional is adopted. For the implicit time integration scheme, Newmark method is used. To show the model performance,
various numerical examples in 3D are presented.

Keywords Virtual element method (VEM) · Three-dimensional · Dynamics · Finite strains · Plasticity, Mixed formulations

1 Introduction

Numerical methods for solving differential equations have
already been extensively investigated in recent years. The
further development of these methods represents an impor-
tant point to increase their efficiency. Several method can
be used for the spatial discretization of the domain. Among
them, thefinite elementmethod (FEM) is oneof themost used
one. While FEM is restricted to the usage of regular shaped
elements, the recently developed virtual element method
(VEM) represents one further step towards a generalization
of the finite element method, see [1,2]. The virtual ele-
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ment method (VEM) allows the usage of meshes with highly
irregular shaped elements, including non-convex shapes, as
outlined in [2]. The large number of positive properties of
VEM increases the variety of possible applications in engi-
neering and science. Recent works on virtual elements have
been employed to linear elastic deformations in [2,3], con-
tact problems in [4,5], elasto-plastic deformations in [6–8],
anisotropic materials in [9–11], curvilinear virtual elements
for 2D solid mechanics applications in [12], hyperelastic
materials at finite deformations in [13,14], crack-propagation
for 2D elastic solids at small strains in [15], phase-field mod-
eling of brittle and ductile fracture in [16,17].
Dynamic behavior has a strong influence on the mechanical
behaviour of solids, failure of components and the predic-
tion of their real response. Thus a large amount of work has
been devoted to these class of problems, as well from the
theoretical side as from the numerical point of view, see e.g.
[18–23] and [24]. In the range of virtual element methods
most of the investigations are related to static problems so
far. First investigations in dynamics can be found in [25] who
proposed a virtual element method for linear elastodynamics
problems. However their formulations are restricted to small
strain settings. This has motivated the authors into enlarge
the application of VEM from the static to the dynamic case
for finite deformations, see [26]. The presented contribution
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extends now the application of the virtual element method
to 3D finite strain dynamic elasto-plastic problems, using a
mixed formulation to correctly account for the case of plastic
incompressibility.
Typically the construction of a virtual element is divided
into a projection step and a stabilization step. Within the
projection step, a quantity ϕh is replaced by its projection
ϕ� onto a polynomial space. Using this projected quantity
in the weak formulation or energy functional yields a rank-
deficient structure which needs to be stabilized. In the second
step, the stabilization term, which is a function of the differ-
ence ϕh −ϕ� between the original variable and the projected
quantity needs to be evaluated. Various possibilities exist to
evaluate this stabilization term. To this end, Da Veiga et al.
[27] proposed a stabilization term, where integrations take
place at the element boundaries. Wriggers et al. presented in
[14] a novel stabilization technique, based on a triangulated
sub-mesh, which uses the same nodes as the original mesh.
This formulation however needed an integration within the
volume of the virtual element. The stabilization parameters
for the latter stabilization were based on an approach first
described for finite elements in Nadler and Rubin [28], gen-
eralized in Boerner et al. [29] and simplified in Krysl [30]
for the stabilization of a reduced order mean-strain hexahe-
dron. The stabilzation method described in [14] is used in
this paper as well.
The elasto-plastic dynamic behavior of the solid is modelled
on the basis of a numerical integration scheme. Here we uti-
lize the implicit Newmark method as documented in [31,32].
It has the advantage that mass and tangent stiffness matrix
of the virtual element are combined for the solution. Thus
a rank deficient mass matrix does not provide any problem
once the tangent stiffness matrix is stabilized as described
above. Based on this observation it is sufficient to com-
pute the mass matrix only for the consistency part, using
the projection ϕ̈�, see [1] and [26]. This approach provides
some advantage in comparison with [25] who need stabiliza-
tion of the mass matrix within an explicit time integration
scheme.
The structure of the presented work is as follows. In
Sect. 2.1 the governing equations for nonlinear dynamic
elasto-plasticity are outlined. In addition to the pure dis-
placement formulation, a mixed formulation based on Hu-
Washizu functional is introduced. Section 3 summarizes
the virtual element method. It includes details on the com-
putation of the element mass-matrix and the algorithmic
treatment of finite strain plasticity. To verify the proposed
virtual element formulations, a various number of exam-
ples are demonstrated and discussed in Sect. 4. Section 5
briefly summarizes the work and gives some concluding
remarks.

Fig. 1 Solid with boundary conditions

2 Governing equations for finite strain
elasto-plasticity

In this section the kinematical relations and balance laws are
described together with the boundary and initial conditions
for three-dimensionale solids. Variational forms are provided
for the pure displacement and mixed forms as well as con-
stitutive equations for finite plasticity.

2.1 Pure displacement formulation

In this section we summarize the finite strain elasto-plastic
formulation (see e.g. [6,7]) and supplement it by the dynamic
behavior. For that we first consider an elastic Body � ⊂ R

3

with boundary �. This boundary is decomposed into a non-
overlapping Dirichlet �D and Neumann �N boundary, such
that �D ∪ �N = �, see Fig. 1.

The position x of a material point in the current configu-
ration is given by the deformation map

x = ϕ(X, t) = X + u(X, t) , (1)

where X is the position of a material point in the initial con-
figuration and u(X, t) is the displacement and t the time.
In the further course of this work we will skip the explicit
specification of the dependence of variables on the initial
configuration and time thus we will write: u = u(X, t). A
key quantity for the description of finite deformations is the
deformation gradient F, defined by the Fréchet derivative as

F = Gradϕ = ∇X ϕ , (2)
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where the gradient is evaluated with respect to the initial
configuration X. For elasto-plastic material behavior, the
deformation gradient is decomposed into an elastic Fe and a
plastic part Fp as

F = FeFp , (3)

which is also knownas themultiplicative split of the deforma-
tion gradient for finite strain plasticity. We further consider
the isochoric J2-plasticity theory which leads to the fact that
the volume change due to plasticity can be neglected

Jp = detFp = 1 yields J = Je Jp = Je = detFe , (4)

where Je and Jp are the elastic and plastic part of the Jacobian
J . Next, the elastic part of the left Cauchy-Green tensor be
is defined as

be = Je
2/3b̄e = FeFe

T = FC p
−1FT with

C p = Fp
TFp and detbe = Je

2 , (5)

where b̄e is the deviatoric part of the elastic left Cauchy-
Green tensor, with detb̄e = 1 and C p is the plastic part of the
right Cauchy-Green tensor.

The solid� has to satisfy the balance of linearmomentum,
with the body forces f ,

DivP + f = ρü with P = FS , (6)

where P, S are the 1st and 2nd Piola-Kirchhoff stresses,
respectively. The right side of the equation (6)1 is taking
the dynamic effects ρü into consideration. The Dirichlet and
Neumann boundary conditions are defined by

u(X, t) = ū(X, t) on �D , (7)

P(X, t)N = t̄(X, t) on �N , (8)

hereN is the outward unit normal vector related to the initial
configuration, ū represents the prescribed displacement on
the Dirichlet boundary �D , and t̄ depicts the surface trac-
tion at the Neumann boundary �N , as illustrated in Fig. 1.
Furthermore we have the initial conditions at time t = 0

u(X, 0) = u0(X) in � (9)

u̇(X, 0) = u̇0(X) in � . (10)

With the introduction of a strain energy function �e for
the elastic part of the deformation, the quantities such as the
1st Piola-Kirchhoff stress P and 2nd Piola-Kirchhoff stress
S can be derived as follows:

S = 2
∂�e

∂Ce
and P = FS (11)

The push forward of the 2nd Piola-Kirchhoff stress to the cur-
rent configuration yields the Cauchy σ and Kirchhoff stress
τ :

σ = 2

Je
Fe

∂�e

∂Ce
FT
e and τ = Jeσ (12)

A homogeneous compressible isotropic elastic material is
considered, herewe use theNeo-Hookean strain energy func-
tion

�e = κ

4
(J 2e − 1 − 2 ln Je) + μ

2
(tr b̄e − 3) , (13)

in terms of the bulk κ and shear μ modulus. The elastic part
of the Jacobian Je is computed as

Je = √
det be (14)

Next, we use the potential energy function as a starting point
for the development of a discretization method for the elas-
todynamics problem in (6). The static part of the potential is
defined for elastic materials as

Ustat (u) =
∫

�

[
�e(u) − f · u

]
d� −

∫

�N

t̄ · u d� , (15)

whereas the dynamic part of the potential is the kinetic energy
that describes inertial effects takes the form

K(u) = 1

2

∫

�

ρu̇2 d�, (16)

where ρ is the density of the solid.
With the above set of equations, the finite strain elasto-
dynamic problem is well formulated. Next the model for
an elasto-plastic material behavior requires additionally the
formulation of a yield function, a hardening law and an evolu-
tion equation for the plastic variables.We adopt the following
yield function, which follows from the assumption of J2-
plasticity with nonlinear isotropic hardening,


 = σvM − [
Y0 + (Y∞ − Y0)

(
1 − e−δα

) + Hα
]

, (17)

with

σvM =
√
3

2
||s|| and s = τ − 1

3
tr τ 1 . (18)

Here, σvM is the von Mises stress, Y0 the initial yield
limit, Y∞ the infinite yield stress, δ the saturation param-
eter, H the hardening modulus and α the hardening variable.
The stress s represents the deviatoric part of the Kichhoff
stress. To account for phenomenological hardening/softening
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response, the equivalent plastic strain α is defined as a local
internal variable. For the formulation of an elasto-plastic
problem an equation for the evolution of the plastic variable
is needed, which can be written as, see e.g. [33],

Lvbe = −2γ̇nbe with n = ∂


∂s
and

α̇ = γ̇ with α̇ ≥ 0 . (19)

where Lvbe denotes the Lie derivative in time of the left
Cauchy-Green Tensor, γ̇ ≥ 0 is the plastic Lagrange multi-
plier, andn is theflowdirection. For the algorithmic treatment
of plasticity, we adopt the Kuhn-Tucker conditions for our
model:


 ≤ 0 , γ̇ ≥ 0 and 
γ̇ = 0 . (20)

Equation (19) can be written in an equivalent form as, see
[33]:

Ċ
−1
p = −2γ̇F−1nFC−1

p . (21)

The evolution equation (21) will be used for the algorithmic
treatment of plasticity within the numerical solution algo-
rithm.

2.2 Mixed Hu-Washizu formulation

To obtain a locking free behavior in the framework of J2-
plasticity, we adopt the Hu-Washizu functional, see [34], for
the virtual element formulation. Several mixed formulations
were already discussed in the framework of virtual elements
in [14] applied to finite strain hyperelastic solids. Here, based
on the classical formulations in the context of finite element
methods for finite strain plasticity, see [35], the following
Hu-Washizu functional will be employed

Ustat,HW (u,�, p) =
∫

�

[
� iso(u) + � p�(u,�, p)

+�vol(�) − f · u
]
d�

−
∫

�N

t̄ · u d� , (22)

with

� iso(u) = μ

2
(J

− 2
3

e tr be − 3) , (23)

� p�(u,�, p) = p (Je − �) , (24)

�vol(�) = κ

4
(�2 − 1 − 2 ln�) . (25)

In this formulation, the energy is split into an isochoric and
volumetric part. In addition to that, a constraint associated
with the volumetric deformation is added to the potential.
Within this framework, the pressure p and the volume dilata-
tion � occur as additional independent variables.

3 Formulation of the virtual element method

The virtual element method is using a Galerkin projection,
which maps the primary variables to a specific polynomial
ansatz space. Unlike the finite element method, the isopara-
metric mapping for VEM is not simply obtainable. Thus
simple polynomial ansatz functions can be given in terms
of the coordinates X in the initial configuration. Since this
contributions deals with low order VEM, the virtual element
is based on linear functions and therefore contains nodes,
which are placed at the element vertices.

3.1 VEM ansatz

In general, for finite strains the deformation map ϕ = X + u
has to be discretized (1). But since the coordinates X in the
initial configuration are exactly known, the discretization of
the displacement field u = ui Ei is sufficient. Here, Ei are
the basis vectors with respect to the initial configuration in
the three-dimensional space i ∈ {1, 2, 3}.

The main concept of the virtual element method is the
split of the ansatz space uh into a projected part u� and a
remainder uh − u� as

uh = u� + (uh − u�) (26)

For a linear ansatz, the projection u� at element level takes
for three-dimensional elements the form

u� = Ha with H = [
1 X1 Y1 Z1

]
, where 1 =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ ,

(27)

where a represents the twelve unknown virtual parameter
a = ⋃

ai j which have to be determined. The goal is to
express the projection u� within a virtual element �v in
terms of the element degrees of freedom uv:

u� = H(X)a = H(X) �̃
∇
uv (28)

where �̃
∇
is a projection operator thatwill be computed next.

While the VEM ansatz for the displacements is linear, the
pressure p and the dilatation� are considered to be constant
over the entire element, see Fig. 2. To determine the virtual
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Fig. 2 VEM shape functions for
displacements, pressure and
dilatation

parameters, u� has to fulfil the orthogonality condition (29),
see [1]. Thus ∇u� is computed through the Galerkin projec-
tion as

∫

�v

∇p · (∇u� − ∇uh) d� = 0 , (29)

where p is a polynomial function which has been chosen
similarly to the projection u�, see (27). Since linear ansatz
functions are used,∇p and∇u� are constant at element level
and can be shifted out of the integral as

∇u� = 1

�v

∫

�v

∇uh d� . (30)

Applying integration by parts to (30), integral over the ele-
ment volume can be transformed to an equivalent integral
over its boundary, obtaining

∇u�
!= 1

�v

∫

�v

uh ⊗ N d� , (31)

HereN denotes the normal vector on the reference boundary
�e of the domain �e, which belongs to a virtual element e.
By employing a low order ansatz, the ansatz space is linear
and thus the left hand side of (31) takes the simple form

∇u� =
⎡

⎣
a1 2 a1 3 a1 4
a2 2 a2 3 a2 4
a3 2 a3 3 a3 4

⎤

⎦ . (32)

To be able to determine the virtual parameters, (31) needs to
be computed on the element boundary. For the 2D case, the
right hand side of (31) is evaluated along the straight edges.
As the displacements are known at the boundary, which are
straight line segments, a linear ansatz for the displacements is
used, see [14].However, in the 3Dcase, the element boundary
consists of polygonal faces. Therefore the evaluation of the
integral in (31) is not straight forward, unless an appropriate
ansatz is found. For the evaluation, there are many different
methods available [3]. One option is to subdivide the element
faces into 3 noded triangles, see Fig. 3. The integration is then
carried out over the triangles of the polygonal faces by using
the standard ansatz function for a linear triangle and Gauss
integration, as outlined in [6].:

NT = (ξ, η, 1 − ξ − η) (33)

uTh = NT uT , uT = (uI )∀I∈T . (34)

Here uTh denotes the linear ansatz for the displacements
at each triangle of the polygonal faces. uT is a list which
contains the three nodal displacement vectors of the triangle
T . ξ and η are the local reference ξ, η ∈ [0, 1] coordinates
at the triangle level. The local nodes of T and the outward
normal vector Ni are visualized in Fig. 4.

The right hand side of (31) can now be computed. Using
(34), the integral in (31) takes the form:

1

�v

∫

�v

uh ⊗ N d� = 1

�v

n f∑

k=1

∫

�k

uTh ⊗ Nk d�

= 1

�v

n f∑

k=1

ng∑

g=1

wgNζuTh g ⊗ Ng (35)

Here n f is the number of element faces. For an integra-
tion over triangles with linear shape functions (33) one point
quadrature with ng = 1 Gauss point and wg = 1/2 Gauss
weight is sufficient. Nζ is the Jacobian of the transformation
from the reference to the initial configuration. �g denotes
quantities which are evaluated at the Gauss point with the
local coordinates ξ = 1/3 and η = 1/3. The normal vec-
tor N and the Jacobian of the isoparametric mapping Nζ are
evaluated as follows:

XT = NT XT XT = (X I )∀I∈T , (36)

gξ = ∂XT

∂ξ
, gη = ∂XT

∂η
, gζ = gξ × gη , (37)

Nζ = |gζ |, N = gζ

Nζ

. (38)

All quantities are related to the initial configuration.
Comparing (32) and (35) the unknown virtual parame-

ters a = ai j
∣∣
i∈(1,...,3)∧ j∈(2,...,4) can be linked to the nodal

displacements

uv = (uI )∀I∈{1,...,nV } = {u1,u2, . . . ,unV } , (39)
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Fig. 3 Virtual element faces
split into multiple triangles

since with (34) the nodal degrees of freedom, associated with
one surfaceuT = (uI )∀I∈T , are related to the nodal displace-
ments: uT ∈ uv .

Since only the gradient of the projection ∇u� is needed
to define the strain energy function of the static part, the
virtual parameters which are related to the constant parts
due not have to be computed in general. However, for the
construction of the mass-matrix, the complete ansatz for the
projected displacements u� is necessary which includes the
virtual parameters that are related to the constant parts. Thus
our formulation has to be supplementedby a further condition
to obtain the constants a = ai j

∣∣
i∈(1,...,3)∧ j=1. This condition

(see for example [2]) relates the sum of the nodal values of
uh to the values of the projection u�. This leads for each
virtual element �e to the following condition

nV∑

I=1

u�(X I ) =
nV∑

I=1

uh(X I ) , (40)

where nV is the number of boundary nodes and X I are the
initial coordinates of the nodal point I . The sum includes all
boundary nodes nV . By substituting (27) in (40) the miss-
ing three parameters can expressed in terms of the nodal
displacements and the already known virtual parameters
a = ai j

∣∣
i∈(1,...,3)∧ j∈(2,...,4) as:

(a1 1, a2 1, a3 1) = 1

nV

nV∑

I=1

(uI − ∇u� X I ) . (41)

Finally with equation (35) and (41) the ansatz function u�

of the virtual element is completely defined in terms of the
element nodal displacements ue which can be written with
the projector introduced in (28) as

u� = H(X) �̃
∇
uv . (42)

We note that a matrix formulation of the projector �̃
∇
can

be derived, but it is not necessary since we use the symbolic
tool AceGen which does this automatically.

3.2 Construction of the element mass-matrix for
VEM

The inertia term in the balance equation (6) leads in a weak
sense for a virtual element �v to

∫

�v

ρü · δu d� (43)

where δu is the test function.Discretization of this termyields
a mass-matrix which has to be constructed for the virtual
element method. Our starting point is the same split for the
accelerations üh as we already used for the displacement in
(26):

üh = ü� + (üh − ü�) . (44)

For a linear ansatz, the projected accelerations ü� at element
level take for three-dimensional elements by using (42) the
form:

ü� = H(X) �̃
∇
üv (45)

whereH is the same ansatz as for the displacements (27) and
üe are the accelerations of the nodal degrees of freedom.

For the construction of the elastodynamic virtual element,
we employ the software tool AceGen, see [36]. It generates
code automatically and provides the most efficient element
routines when a potential formulation is used. Thus the part
of the weak form related to the mass matrix (43) will be
expressed by the specific pseudo-potential

Udyn(ü ,u) =
∫

�

ρü · u d�, (46)

where ü needs to be hold constant during the first variation
to obtain exactly (43).

Inserting both equations (26) and (44) for the displace-
ments and the accelerations in (46) yields for the virtual
element �v

Udyn
v (ü ,u) =

∫

�v

ρü� ·u� d�+
∫

�v

ρ(üh−ü�)·(uh−u�) d� . (47)
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Fig. 4 Virtual element faces
split into multiple tetrahedron

The coupled terms are zero due to the orthogonality con-
dition, see e.g. [1]. The first term in (47) is the consistency
part, whereas the second term is the stabilization part. For the
construction of themass-matrix, it is sufficient to use the con-
sistency term without any stabilization. This is valid, when
the problem is not reaction dominated, as stated in [1,37] and
shown in [26].

Using the relationship between the projected values and
the unknown values for the displacement (42) and the accel-
erations (45), the following expression for the consistency
part of the pseudo dynamic potential results for one element
e

Udyn
v (ü� , u�) =

∫

�v

ρ ü� · u� d�

= uTv
(
�̃

∇)T

⎡

⎢
⎣

∫

�v

ρ [H(X)]T H(X) d�

⎤

⎥
⎦ �̃

∇
üv .

(48)

Note, that the projector �̃
∇

is constant over the element.
Therefore they can be shifted out of the integral. The argu-
ment of the integral is a polynomial function up to second
order for constant density

[H(X)]T H(X) =

⎡

⎢⎢
⎣

1 1X 1Y 1Z
1X 1X2 1XY 1X Z
1Y 1XY 1Y 2 1Y Z
1Z 1X Z 1Y Z 1Z2

⎤

⎥⎥
⎦ ,

where 1 is the Identity 1 =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ (49)

For the evaluation of the integral in (48), several ways can
be utilized, see [26]. As in finite element procedures, the
mass-matrix for a virtual element �e can now be defined

Mv =
(
�̃

∇)T

⎡

⎢
⎣

∫

�v

ρ [H(X)]T H(X) d�

⎤

⎥
⎦ �̃

∇
. (50)

3.3 Construction of the virtual element

As already introduced in Sect. 3.1, the formulation of a vir-
tual element undergoing large deformations is based on a
split of the energy into a constant part and an associated sta-
bilization term. Since the nodal degrees of freedom are in
each element approximated with one interpolation function
per coordinate direction, the consistency part does not lead to
a stable formulation. Thus an appropriate stabilization term
is required. The idea of stabilizing the formulation is analo-
gous to the stabilization of the classical finite elements with
reduced integration, developed by [30]. The starting point for
the construction of the virtual elementmethod is the potential
function

U = Ustat +Udyn . (51)

The variation of (51) yields exactly the weak form of (6)
when considering the nonlinear dependency of the 2nd Piola-
Kirchhoff stress S on the displacement u.

Assembling of all element contributions for the nv virtual
elements yields the following expression:

U (u,h) =
nv

A
v=1

[Uc(u�,hv) +Ustab(uh − u�,hv) ] (52)

where hv denote the plastic history variables at element level.

3.3.1 Consistency part

For the consistencypart the projectionu�, introduced inSect.
3.1, is used and therefore the first part of equation (52) for
each element is given by

Uc (u�,hv) =
∫

�v

[
�(u�,hv) − f · u�

]
d�

−
∫

�N
v

t̄ · u� d� +
∫

�v

ρü� · u� d� (53)

The gradient of the projection ∇u� is constant on the entire
domain �e. Therefore, all kinematic quantities, that steam
from ∇u�, such as F, be and C−1

p are constant as well:
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F = 1 + ∇u� be = FC−1
p FT (54)

Thus the integration of the strain energy function can be sim-
plified as:

∫

�v

�(be,hv) d� = �(be,hv)�v , (55)

which is still nonlinear with respect to the unknown nodal
degrees of freedom and plastic history variables.
As already mentioned in Sect. 3.2, the third integral in (53)
related to the dynamicpart canbe computed in differentways.
In [26] it has been shown, that the evaluation of the third
integral in (53) at the centroidXc of the virtual element yields
sufficient results and needs less computational effort when
compared to the other evaluation schemes. Thus the mass-
matrix (50) takes the form

Mv = ρ
(
�̃

∇)T
[H(Xc)]

T H(Xc) �̃
∇
�v . (56)

The element residual related to the inertia term is obtained
by the first derivative of the dynamic potential Udyn =
uTv Mv üv , see (48) and (50), holding the acceleration üv con-
stant

Rdyn
v = ∂Udyn(uv)

∂uv

∣∣∣∣
üv=const .

= Mv üv (57)

Before computing the second derivative, the Newmark
method, see e.g. [31], is used for the implicit time integration
which leads to a approximation of the acceleration üe in time
within a time increment �t = tn+1 − tn

üv = 1

ζ�t2
(
uv,n+1 − uv,n

) − 1

ζ�t
u̇v,n −

(
1

2ζ
− 1

)
üv,n

(58)

where the Newmark parameters are chosen as ζ = 1/4 and
γ = 1/2.

Thus, the residual for the dynamic part follows as

Rdyn
v = Mv

[
1

ζ�t2
(
uv,n+1 − uv,n

)

− 1

ζ�t
u̇v,n −

(
1

2ζ
− 1

)
üv,n

]
(59)

The derivative of Rdyn
v with respect to the current displace-

ment uv,n+1 leads then to the dynamic part of the tangent for
an element �e

∂Rdyn
v (uv)

∂uv

= 1

ζ�t2
Mv . (60)

3.3.2 Algorithmic treatment of finite strain plasticity

The discretized form of (61) follows from [33,38] and yields
together with (20) the local residual:

Qe = FC−1
p − exp[−2(α − αn)n]FC−1

p,n = 0 and 
 = 0 .

(61)

Here, C−1
p and αn are the converged history variables from

the previous step and therefore given. Equation (61) contains
one equation for each of the six unique components of C−1

p,n
and one additional equation for the hardening variable α. For

 < 0, a pure elastic step follows and therefore the history
variables, he, will remain the same as from the previous time
step, i.e. C−1

p = C−1
p,n and α = αn . If 
 > 0, the set of

equations (61) needs to be solved locally at the centroid of
the element�v which yields to an updated history field array
hv = {C p−1 , α }.

Given: F, C−1
p n, αn Find: C−1

p , α

be = FC−1
p n F

T

Je = √
det be

�e = κ
4 (J 2e − 1 − 2 ln Je) + μ

2 (J
− 2

3
e trbe − 3)

τ e = 2 be
∂�e

∂be

se = τ e − 1

3
tr τ e1


 =
√

3
2 ‖se‖ − [ Y0 + (Y∞ − Y0)(1 − e−δ α) + H α ]

ne = ∂


∂se
Qe = FC−1

p − exp[−2(α − αn) n]FC−1
p n

Qv = {
Qe ,


} = {Q11, Q22, Q33, Q12, Q13, Q23, 
}T
hv = {C p−1 , α } =
{C p−1

11 − 1, C p−1
22 − 1, C p−1

33 − 1, C p−1
12 , C p−1

13 , C p−1
23 , α }T

Box 1 Summary of the finite strain elasto-plastic material model

The resulting equations, which need to be solved at the
centroid of each virtual element �v , are the residual Qv in
(61) which stem from the plastic routine and the residual R
resulting from the first variation of the pseudo-potential (52):

nv∑

v=1

Qv(F,hv,hvn) = 0 (62)

nv

A
v=1

Rv(uv,hv,hvn) = 0 −→ R(u,h,hn) = 0 (63)

The above equations are solved in a nested algorithm,
where first (62) needs to be solved locally at the element level
in a inner Newton-Raphson loop for a fixed uv to update the
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Fig. 5 Stabilization parameterβ as a function of the plastic deformation
α

plastic history variables hv for the current time step t = tn+1.
The summary of the finite strain plasticity model, that leads
toQv is given in Box 1. Thus the local tangent matrix for the
inner loop yields:

Av = ∂Qv(F,hv,hvn)

∂hv

(64)

Next, the outer Newton-Raphson loop is solved globally
by using standard Newton-Rhaphson iteration procedure:
K�u = R. The residual Rc

v and tangent matrix Kv at each
virtual element �v (63) are obtained by utilizing AceFEMs
automatic differentiation techniques, which will yield to the
residual and tangent of the virtual element:

Rc
v = ∂Uc(u�,hv)

∂uv

∣∣∣∣ Dhv
DF =0; üv=const .

Kc
v = ∂Rc

v(uv,hv,hvn)

∂uv

∣∣∣∣ Dhv
DF =−A−1

v
∂Qv
∂F

(65)

Note that residualRc
v is obtained by holding history variables

hv constant during differentiation procedure. Additionally,
when deriving the tangent Kc

e with respect to the primary
variables ue, providing the dependency Dhv

DF is necessary to
ensure a consistent linearization. For further details see [33].

3.3.3 Stabilization part

Using only the consistency term yields a rank deficient stiff-
ness matrix and thus needs to be stabilized. In [14] Wriggers
et al. a new positive definite energy Û was introduced, with
the help of which the stabilization term is redefined as:

Ustab(uh − u�,hv) = Û (uh,hv) − Û (u�,hv) (66)

Furthermore, the positive definite energy Û can be defined
in terms of a stabilization parameter β ∈ [0, 1] and the Uc:

Û = β Uc (67)

Thus the stabilization term takes the form:

Ustab(uh − u�,hv) = βUc(uh,hv) − βUc(u�,hv) (68)

Fig. 6 Necking problem

Table 1 Material parameters
used for the numerical examples

No. Parameter Label Value Unit

1 Elastic modulus E 210 kN/mm2

2 Poisson ratio ν {0.3, 0.499999} –

3 Density ρ 0.0027 g/mm3

4 Yield stress Y0 0.45 kN/mm2

5 Infinite yield stress Y∞ 1.165 kN/mm2

6 Hardening coefficient H 0.13 kN/mm2

7 Saturation exponent δ 16.93 −
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(a) (b)

Fig. 7 Necking problem—force-displacement response for two different meshes

Fig. 8 3D beam—geometry and boundary conditions

Applying equation (68) in equation (52), the final form of
the total potential energy function takes the form:

U (uh,hv) =
nv

A
v=1

[(1 − β)Uc(u�,hv) + βUc(uh,hv)] (69)

The computation of the first term of equation (69) can be
done as explained in Sect. 3.3.1. The second termUc(uh,hv)

needs an approximation. An approach how to compute this
part is introduced in [14]. An additional internal Mesh of
triangles in 2D and tetrahedrons in 3D is introduced. The
approximation of the displacement field is done by standard
linear finite element ansatz functions. The nodes of the gener-
ated submesh belong to the set of nodes in the virtual element,
such that no additional nodes are introduced. The poten-
tial Uc(uh,hv) can then be calculated on internal/embedded
tetrahedron mesh:

Uc(uh,hv) =
nT∑

T

�T
v �stat

c (uTh (Xc|T ),hv) (70)

Based on the triangulated submesh, the displacement gradi-

ent is computed as∇uh = DuTh
DXT by employing standard FEM

shape functions NT (analogous to (34) and (36)) for linear
tetrahedron. The stabilization termUc(uh,hv) contains both
the static Ustat

c (uh,hv) and dynamic part Udyn
c (uh). As the

ansatz is linear, the gradient is constant and thus the integral
for the static part can be simply evaluated at the centroid
Xc|T of each tetrahedron nT , as sketched in Fig. 4. The plas-
tic history variables need to be computed once he and than
be used in both parts of the strain energies in (69) and (72).
Therefore, the computation of the left Cauchy Green tensor
is performed in a approximative way by using the contact
plastic strains C−1

p (he) from the consistency part. By doing
so, this approximation yields in a non-symmetric tangent.

Since β ∈ [0, 1], it can be seen as a ratio parameter. The
stabilization parameter β can be chosen freely. For β = 1
the total energy is computed using only the stabilization part.
Thus the tangent results from the internal FEM-submeshwith
three noded triangles in 2D or four noded tetrahedron in 3D.
Using β = 0 yields in a tangent, which is solely calculated
from the projection part. Thus for β = 0 the computation
results in a rank deficient tangent. The choice for the stabi-
lization parameter β for hyperelasticity was analyzed in [6,7]
and it has been shown that the optimal value is in the range
β ∈ [0.2, 0.6]. In [6,7] the stabilization parameter β was
chosen as a function of the accumulated plastic strains. Thus,
with increasing amount of plastic deformation, the stabiliza-
tion parameter decreases. For our investigations, we choose
the approach from [6,7].

In both, the pure displacement as well as the Hu-Washizu
based element framework, the following equation for β is
used.

β = min
[
0.4,max

[σV M

Eα
, η

]]
(71)
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(a) (b) (c)

(d) (e) (f)

Fig. 9 3D beam—displacement over time response for different element types and mesh discretization in a–c with ν=0.3 and d–f with ν=0.499999

(a) (b) (c)

Fig. 10 3D beam—error of the maximum displacement over time for different element types and various Poisson’s ratio in (a) to (c)

Here η = 10−3 denotes theminimum amount of stabiliza-
tion, see Fig. 5. Without η, the stabilization parameter would
decrease during the simulation and tend to be zero, which
would result in a rank deficient tangent.

Due to the combination of both VEM and FEM, the
outlined stabilization procedure is called mixed VEM-FEM-
Stabilization. The total element residual vector Re and
tangent matrixKe are obtained as the first and second deriva-
tive of the element total energy U (uh,h) with respect to the
global unknowns ue, analogous to (65), keeping the same
internal variables and its dependencies as for projected part.

3.3.4 Hu-Washizu VEM

For the Hu-Washizu formulation, the same potential as in
(69) is used as well, But it is only necessary to use the
mixed formulation only for the consistency part of the vir-
tual element. Thus for the consistency part is exchanged by
the Hu-Washizu potential (22). By inserting the projected
quantities in to the consistency part, the total energy yields:

UHW (uh,hv, p�,��) =
nv

A
v=1

[
(1 − β)Ustat,HW

c (u�,��, p�,hv)

+ βUstat
c (uh,hv) +Udyn(u�)

]
(72)
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Fig. 11 Taylor Anvil test—a geometry and boundary value problem, b
deformed state (schematic illustration)

Table 2 Material parameters used for the Taylor Anvil test

No. Parameter Label Value Unit

1 Elastic modulus E 117 kN/mm2

2 Poisson ratio ν 0.35 –

3 Density ρ 8930 g/mm3

4 Yield stress Y0 0.400 kN/mm2

6 Hardening coefficient H 0.100 kN/mm2

7 Saturation exponent δ 0 –

Note that the derivative of (72) needs to be taken with respect
to all variables. Looking at (72), it is clear that the Hu-
Washizu virtual element is based only on the projection part
of themixed terms. The stabilization is constructed purely on
the displacement potential. Test computations have demon-
strated that a stabilization of the mixed part is not necessary
and additionally such a reduced formulation leads to a more
efficient element since the mixed variables need not to be
treated within the internal triangular mesh. This leads to an
element tangent Kv with the structure

Kv =
⎡

⎣
Kuu 0 Kup

0 K�� K�p

KT
up KT

�p 0

⎤

⎦ . (73)

Since p� and�� are constant over the entire virtual element,
static condensation can be applied to eliminate these constant
variables at element level.

4 Numerical examples

In this section the performance of the proposed mixed virtual
element formulation will be investigated. For comparison

purposes results of the standard finite elementmethod (FEM)
are also included. The material parameters used in this work
are the same for all examples and are provided in Table 1,
unless it is otherwise specified.

In this contribution, the following mesh types for first
order virtual element discretizations are introduced:

• VEM H1: A regular shaped 3D virtual element with 8
nodes and linear ansatz. Pure displacement formulation,
based on (69).

• VEM H1JP: A regular shaped 3D virtual element with 8
nodes. This element is using a Hu-Washizu formulation
with a linear ansatz for the displacement, constant pres-
sure p and constant dilatation θ as additional degrees of
freedom, see (72).

• VEM VO: A 3D voronoi shaped virtual element with
arbitrary number of nodes and linear ansatz. Pure dis-
placement formulation, based on (69).

• VEM VOJP: A 3D voronoi shaped virtual element with
arbitrary number of nodes. This element is using a
Hu-Washizu formulation with a linear ansatz for the dis-
placement, constant pressure p and constant dilatation θ

as additional degrees of freedom (72).

For a representative comparison, the following finite element
formulations are selected:

• FEMH1:A regular shaped3Dfinite elementwith 8 nodes
and linear ansatz. Pure displacement formulation.

• FEM H1JP: A regular shaped 3D finite element with 8
nodes. This element is using a Hu-Washizu formulation
with a linear ansatz for the displacement, constant pres-
sure p and constant dilatation θ as additional degrees of
freedom.

• FEM H2: A regular shaped 3D finite element with 27
nodes and quadratic ansatz. Pure displacement formula-
tion.

The stabilization parameter of the static part βstat is cho-
sen in all the simulations using (71), unless it is otherwise
specified. For the dynamic part the mass-matrix is computed
according to (56) without any stabilization.

4.1 Necking problem

In the first numerical example the proposed element formu-
lations will be tested and compared for the quasi static case.
Necking of cylindrical bar due to prescribed displacements
along axial direction is considered, see [6]. This example
serves to illustrate the robustness of the mixed virtual ele-
ment method for localization of plastic strains in the necking
area.
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Fig. 12 Taylor Anvil test—deformation state for different elements, showing the accumulated plastic strain

(a) (b)

Fig. 13 Taylor Anvil test—length change over time for different element numbers and formulations
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(a) (b)

Fig. 14 Taylor Anvil test—evolution of the mushroom radius rm for different element numbers and formulations

Table 3 Taylor Anvil test—comparison of different results obtained in the literature

Source Method Max. acc. plastic strain Final height (mm) Final mushroom radius (mm)

Kamoulakos [40] FEM 2.47–3.24 21.47–21.66 7.02–7.12

Zhu and Cescotto [41] FEM 2.75–3.03 21.26–21.49 6.89–7.18

Camacho and Ortiz [42] FEM 2.97–3.25 21.42–21.44 7.21–7.24

Li et al. [43] OTM 3.0 21.43 6.8

Kumar et al. [44] OTM 2.69 21.45 6.84

Table 4 Taylor Anvil
test—comparison of results for
different element types

Element Max. acc. plastic strain Final height (mm) Final mushroom radius (mm)

FEM H1 1.803 21.09–21.17 6.34–6.35

VEM H1 2.887 21.32–21.36 6.81–6.83

VEM VO 2.704 21.51–21.59 6.89–6.91

FEM H1JP 3.04 21.41–21.5 7.04–7.05

VEM H1JP 3.15 21.36–21.45 6.99–7.01

VEM VOJP 4.063 21.56–21.65 7.17—7.18

The geometrical setup and the boundary conditions of the
cylindrical bar with diameter d = 1 mm and length L = 10
mm is depicted in Fig. 6. The material parameters can be
taken from Table 1.

Figure 7 depicts the load-displacement curves for two dif-
ferent mesh discretization. The prescribed displacement is
applied at the center of the cross section. It can be observed
that all elements give nearly the same force response until the
necking appears. Thereafter at about ū = 0.7 mm, the FEM
H1 element demonstrates stiffer results compared to all other
elements due to an expected locking behaviour. However, the
similar, displacement based virtual elements (i.e. VEM H1
and VEMVO) perform way better but still not as good as the
reference FEM H2 element with a quadratic ansatz. In this
regard, the newly developed mixed VEM formulation pro-
duces very good results that compare with the higher order
FEM H2 element. The results are even better than the ones

using the mixed FEM H1JP element as shown in Fig. 7 for
both, coarser and finer meshes.

4.2 3D beam

In the second example a three-dimensional beam is dynam-
ically loaded by a surface load p(t) at the end of the beam,
as illustrated in Fig. 8. The load is applied as a half sine
function with the time period T0 = 0.0008 and an ampli-
tude of 45 N/mm2. Thereafter, the force is released and the
beam is oscillating around its new position of rest. The time
increment is set to �t = 1μs.

The key goal of this test is to demonstrate the performance
of the Hu-Washizu formulation for compressible and nearly
incompressible material behavior. Different Poisson’s ratios
are chosen: ν = {0.3, 0.45, 0.49, 0.499, 0.4999, 0.49999,
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0.499999}. The material parameters used in the simulations
are listed in Table 1.

Figure 9 shows the time history of the displacement at the
tip of the beam. For a compressible material (i.e. ν = 0.3
outlined in Fig. 9a–c), the bending of the beam converges
with increasing nodes number to nearly u = 70 mm, see Fig.
9c).

Nevertheless, the finite and virtual elements, which are
based on a pure displacement formulation H1/VO, tend to
provide stiffer responses after getting into the plastic regime.
Such an observation is in line with the artificial stiffening
due to volumetric locking. Since this example is bending
dominated bending locking can also appear. By increasing
the Poisson’s ratio up to a nearly incompressible material
(i.e. ν = 0.499999 outlined in Fig. 9d–f), a strongly stiffer
response is observed for the pure displacement elements in
comparisonwith the stable and robustmixedfinite and virtual
element formulations. Thus the Hu-Washizu based finite and
virtual elements produce a much softer response and hence
can handle incompressible material behaviour well.

For a representative comparison between all elements, the
relative error of themaximumdisplacement (related to Fig. 9)
is plotted in Fig.10 for different elements and Poisson ratios.
Hereby, the error is computed with respect to an overkill
solution, that is obtained from the mixed finite element FEM
H1JP using 100000 elements. In Fig. 10 a (for ν = 0.3),
the error is remarkably reduced by increasing the number of
element for all types. In this regard, the pure displacement
elementsH1/VOdemonstrate a high error in comparisonwith
mixed FEM and VEM formulations in the case of coarse
meshes. When increasing the Poisson’s ratio, the error of the
pure displacement elements is further increased, reaching its
maximum for ν = 0.499999. The mixed finite and virtual
elements stay nearly constant and are not effected by any
kind of locking phenomena. This illustrates the importance
of using a mixed formulation for virtual element, when it
comes to elastic and plastic incompressibility.

4.3 Taylor anvil test

The next example presents the Taylor-Anvil problem, which
is widely used to test the dynamical behaviour of metals
but it is also a validation test for discretization schemes that
simulate finite strains elasto-plasticity undergoing dynamic
loadings, see [20,39]. Within this framework, a rod impacts
at high velocity a rigid plate. This is modelled by fixing in
longitudinal direction one side of the rod and by prescribing
an initial velocity to all other parts of the body, as depicted
in Fig. 11a.

The material parameters for the simulations are taken
from the literature, see [40–44], and summarized in Table
2. Hereby, the saturation parameter is set to zero (δ = 0),
hence the exponential term in (17) disappears and the model

Fig. 15 Punch problem—boundary value problem

is reduced to linear hardening. The initial velocity is set to
v0 = 227 m/s. The time increment for the dynamic sim-
ulation is �t = 0.01μs. During the impact a plastic front
develops and moves upwards leading to a deformed state as
shown in Fig. 11 b).

The equivalent plastic strain at the final deformation state
for all element formulations is depicted in Fig. 12 and is
obtained with 10000 elements. As expected large plastic
deformations are observed at the end of the rod, as well
documented in the literature [39,44,45]. This is due to the
influence of the kinetic energy resulting in high stresses at
the front of the rod where the essential boundary condition is
applied. When a certain energy is dissipated, the stresses are
not reaching the yield stress anymore. Therefore some elastic
energy is still stored in the upper part of the rod as shown
in Fig. 12. From the contour plots, all element yield similar
results except the stiffer FEMH1. Figure 13 demonstrates the
length change over time for different element formulations
and two mesh discretization. All element types show nearly
the same displacement curves over time. Locking effects for
this impact test occur only for the FEM H1 discretization.
For all formulations a small oscillation with low frequency
can be observed which is due to the elastic response at the
upper part of the rod.

Figure 14 depicts the development of themushroom radius
at the lower part (z = 0). Good agreement between all ele-
ment formulations – besides the FEM H1 – is also observed.
Again the mixed formulation converges for finite and virtual
elements (FEM/VEM H1JP) the best fast and results in the
best coarse mesh accuracy, see Fig. 14a.
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Fig. 16 Punch problem—deformation state for different elements, showing the accumulated plastic strain

(a) (b) (c)

Fig. 17 Punch problem. a Time history of maximum displacement at the tip. b Error of the maximum displacement over number of elements. c
Maximum displacement over number of elements

Next, we illustrate in Table 3 the results obtained by dif-
ferent authors with different methods and compare themwith
the values from the current work depicted in Table 4. Good

agreement is achieved for the proposedmixed virtual element
formulation.
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4.4 Punch problem

The last test example is concerned with the capability of
the proposed mixed VEM formulations to solve dynamic
elastic-plastic problems. For this purpose, a punch problem
is selected which is subjected to high compression load-
ing. A surface load is applied on one quarter of the block
with the geometrical properties H = B = L = 50 mm.
The boundary and loading conditions can be taken from
Fig. 15. For a comprehensive comparison, a convergence
study is performed where the number of elements is set
to N = {64, 512, 1728, 4096, 10648, 21952, 39304}. The
load is applied in time as a half-sine function with a time
period of T0 = 0.4 ms and an amplitude of 2.5 kN/mm2.
Similar to the previous examples, the force is released after
a half sine. The material parameters used for the numerical
simulations are same as in the previous examples, see Table
1. The time increment used in this example is �t = 1μs.
Figure 16 illustrates the accumulated plastic strain α at the
end of the simulation. As expected the pure displacement
formulations H1 of FEM and VEM underestimate the large
deformation behavior due to locking phenomena, resulting
to small maximum values of α, see Fig. 16a, b. For VEM
VO with voronoi cells, the locking phenomena is even more
significant as depicted in Fig. 16c. This nonphysical behavior
is overcome for both, FEM and VEM elements, by the mixed
form based on the Hu-Washizu formulation as shown in Fig.
16d–f.

Figure 17a depicts the time history of the displacement at
the corner of the block, where the maximum displacement
appears. The presented curves are obtained with 40000 ele-
ments. It can be seen, that themixedfinite element FEMH1JP
leads to the largest deformation followed by themixed virtual
element VEM H1JP. Those elements illustrate a much softer
response compared with the pure displacement finite and vir-
tual elements which is related to their locking free behaviour.
The same can be seen in Fig. 17b, c, which is showing the
maximum displacement at the corner and its relative error
for different numbers of elements. The reference solution for
the error analyses is computed with the mixed finite element
FEM H1JP, using around 100000 elements.
A closer look reveals, that the mixed finite and virtual ele-
ments are providing a much softer response, compared to the
pure displacement elements. Especially for course mesh, the
mixed elements behave softer and thus are not affected by
volumetric locking phenomena.

5 Summary and conclusions

A mixed low order virtual element formulation for three-
dimensional dynamic elasto-plasticity was developed in this
work. The mixed approach is based on a three field Hu-

Washizu potential function, which leads to a softer response
of the body undergoing large deformations. This yields also
for virtual elements a superior caorse grid accuracy in com-
parision with pure displacement elements. The presented
formulation is based on a minimization of a specific pseudo-
potential, considering the dynamic behavior of the solid. The
treatment of VEM for elasto-plasticity in this contribution is
in line with the authors previous works, see [6,7]. The exten-
sion towards dynamic problems was performed using a fast
and simple computation of the mass-matrix, see [26].
It has been shown that the mixed formulation for virtual
elements, can prevent volumetric locking under elastic and
plastic incompressibility conditions, especially for Voronoi
shaped virtual elements.
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