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Abstract
Making design decisions is characterized by a high degree of uncertainty, especially in the
early phase of the product development process, when little information is known, while
the decisions made have an impact on the entire product life cycle. Therefore, the goal of
complexity management is to reduce uncertainty in order to minimize or avoid the need
for design changes in a late phase of product development or in the use phase. With our
approach we model the uncertainties with probabilistic reasoning in a Bayesian decision
network explicitly, as the uncertainties are directly attached to parts of the design artifact′s
model. By modeling the incomplete information expressed by unobserved variables in the
Bayesian network in terms of probabilities, as well as the variation of product properties or
parameters, a conclusion about the robustness of the product can be made. The application
example of a rotary valve from engineering design shows that the decision network can
support the engineer in decision-making under uncertainty. Furthermore, a contribution to
knowledge formalization in the development project is made.

Keywords Bayesian network · Decision network · Probabilistic reasoning ·
Decision-making under uncertainty · Solution space development

1 Introduction

How can a development team design an aircraft wing, when it is not known which of five
different available engine types will be mounted below? There are different answers to this
problem that all have their pros and cons: For example, if the development team decides
to dimension the wing with respect to the heaviest and biggest engine, this will influence
properties and efficiency of the aircraft negatively when a much lighter one is installed later.
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If the development team e.g., decides instead to dimension a wing for each of the five engine
types, apparently four drafts will be discarded later, the resources that were spent to design
them are lost and the efficiency of the development team suffers.

Independently from understanding product development as problem-solving or decision-
making process, development teams need to make decisions about the design object that are
subject to uncertainty (Hazelrigg, 1998; Ullman, 2001; Vajna et al., 2014; Pahl et al., 2007).
Such uncertainties occur due to translation errors from customer requirements to functional
requirements during specification (Suh, 1990; Girod et al., 2003), generally due to vague-
ness in the early phase of development (Xu et al., 2007; Velasquez & Hester, 2013), but
also due to e.g., emergent functions and failures that go along with the integration of com-
ponents to a system (Papakonstantinou et al., 2012; Shields & Singer, 2017). Not to forget
about tolerances and deviations resulting from manufacturing (Gembarski & Lachmayer,
2018; Pérez et al., 2006; Schleich & Wartzack, 2015).

Considering these uncertainties is a major concern of complexity management (Frizelle,
1998; Suh, 2005; Gembarski & Lachmayer, 2017). Basically, two different strategies may
be observed here. The first one aims at the artefact and is to make the design itself insensitive
to uncertainties in the sense of robust design (Hazelrigg, 1998; Taguchi et al., 2000; Park
et al., 2006). The second strategy targets on the process and is to enable the development
team to quickly assess the consequences of a decision on the product as well as its life cycle
and thus efficiently respond to changes (Renzi et al., 2017; Li et al., 2018). An effortful way
to do this is establishing knowledge-based engineering and design automation systems to
rapidly compute changes and make knowledge accessible for future development projects
(Verhagen et al., 2012; Hopgood, 2012; Biedermann & Meboldt, 2020; Gembarski, 2020;
Stettinger et al., 2014). Another way, especially in the early phase of development, is to
discover dependencies between customer requirements and functional requirements, e.g.,
applying Quality Function Deployment or Axiomatic Design (Suh, 1990; Terninko, 1997;
Kulak et al., 2010).

A fundamentally different approach is to model the uncertainty as such, which is done
e.g., by fuzzy sets in the context of requirement engineering (Antonsson & Otto, 1995;
Vanegas & Labib, 2005; Liu, 2011). Here one aim is to mimic imprecise human natural-
language processing, working with ratings and including vague data in e.g., prioritizing
requirements (Lima et al., 2011; Temponi et al., 1999).

In this paper, we investigate another approach to model uncertainties explicitly which
is probabilistic reasoning in a Bayesian decision network (Nielsen & Jensen, 2009; Moul-
lec et al., 2013). The idea behind is to infer based on incomplete information which is
expressed by unobserved variables in the Bayesian network and consider this in defining
product properties and architectures.

The remainder of this article is structured as follows: in Section 2, the theoretical back-
ground regarding uncertainty in engineering design and the modeling of uncertainties with
probabilistic reasoning is presented. Afterwards, Section 3 points out related work with
respect to the application of Bayesian decision networks for design problems. Section 4
describes our approach to use such a network to decide about product properties and quan-
tify options for robust design on the example of a rotary valve. Finally, Section 5 provides
the discussion and lessons learned, while Section 6 summarizes the article and points out
further research potentials.
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2 Theoretical background

Considering uncertainty during product development is a necessary task (Wiebel et al.,
2013; Chalupnik et al., 2009). Following (Kreye et al., 2011), there are four different types
of uncertainty:

– Data uncertainty: This type contains all uncertainties due to vagueness of inputs for
models and development processes like imprecise requirements (Velasquez & Hester,
2013).

– Model uncertainty: These encompass uncertainties and imperfections with respect to
synthesis and analysis models, e.g., a model for finite element analysis has simplifica-
tions regarding boundary conditions and resolution, which result in deviations of the
mechanical properties (He et al., 2020).

– Phenomenological uncertainty: This kind describes deviations in the behavior of the
actual created design artefact in comparison to the desired behavior (Papakonstantinou
et al., 2012).

– Context uncertainty: Such uncertainties describe the influence of the environment on a
system or design artefact, e.g., a differing use scenario of the customer after deployment
(De Weck et al., 2007).

Understanding uncertainty as modeling object of a design artefact, development teams
have two fundamental options for implementation, implicit and explicit modeling. Regard-
ing the first, designers do not model uncertainty as such, but the tools of the computer
aided engineering environment integrate uncertainty considerations. Taking the example of
multi-objective optimization, the above-mentioned data and context uncertainty can easily
be implemented by automatically varying the inputs for the optimizer (He et al., 2020; Wol-
niak et al., 2020). This applies both for design variables which are varied by the optimizer
itself and design parameters that are kept constant by the optimizer (Gunawan & Azarm,
2005). Approaches like Latin Hypercube Sampling divide the design variable space accord-
ingly into equal sets in order to identify not only the pareto optimal solutions as is done by
the optimizer but also to examine the neighborhood of these points in order to get robust
designs and uncover sensitivities of design variable changes on the objective function of the
optimization (Alinejad & Botto, 2019; Venanzi & Materazzi, 2013).

Another way of implicitly considering data and context uncertainties is the creation of
design automation systems. Here, the design process of a component is completely formal-
ized and implemented into a computer aided engineering environment (Brockmöller et al.,
2020; Amadori et al., 2012; La Rocca & van Tooren, 2010). Variations of requirements can
be directly computed into product variants, allowing to analyze sensitivities of changes and
find clusters of solutions for requirement sets (Siqueira et al., 2019; Schätz et al., 2010). The
modeling is commonly based on techniques for the synthesis of expert systems (La Rocca,
2012; Plappert et al., 2020b).

In explicit modeling, uncertainties are attached directly to parts of the design artefact′s
model. One way to do this is the application of probabilities to varying design parameter
values and their occurrences (Suh, 2005; Nielsen & Jensen, 2009). Since such probabilities
usually are dependent and condition each other, approaches like Bayesian networks have
been formulated (Koski & Noble, 2011).
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In order to better understand how a Bayesian network works, the Bayesian rule (1), which
is the core of inference, is explained using a simplified application example for the dosing of
powder for the preparation of hot drinks. In the first step, the cause-effect pair of watery hot
drink as effect and the low powder dosing as cause is considered, whereby the probability
P(low |watery) (posterior probability) is searched with which the cause is actually respon-
sible for the effect, i.e., given the effect (here watery), how probable is the cause (here low).
The probability of the general occurrence of the cause of low powder dosing (prior proba-
bility) is determined using a sensor with a probability P(low) = 0.1 and based on a statistical
analysis, the watery taste occurs with a probability of P(watery) = 0.2. Due to the subjective
perception of the watery taste, the likelihood of the effect is given as P(watery | low) = 0.8.
The application of the Bayesian rule leads to a probability of P(low |watery) = 0.4, so the
low powder dosage is to 40% the reason for the watery taste of the hot drink.

P(cause | effect) = P(effect | cause)P(cause)
P(effect)

(1)

An extension of the presented example is shown in Fig. 1, where the causes blocked
powder supply and defective flow sensor are possible reasons for the watery hot drink. For
better traceability, the effects and causes can be represented as nodes with probabilities in a
directed acyclic graph (DAG), where the causal relationships between the nodes are shown
as arcs (Russel & Norvig, 2012; Zhu & Deshmukh, 2003). The parent nodes blocked pow-
der supply and defective flow sensor are not dependent on any other node, therefore they are
described by their occurrence or prior probability. In contrast, the dependence of the nodes
incorrect mixing ratio and watery hot drink on prior nodes is expressed by conditional prob-
ability tables (CPTs). As new knowledge or evidence becomes available, the conditional
probability distributions of the unobserved variables are updated, allowing the Bayesian
network to infer (Moullec et al., 2013).

As an extension to the Bayesian networks, decision networks represent the knowledge
about an uncertain problem domain as well as the available actions and the desirability of
the individual states (Zhu & Deshmukh, 2003). The structure of the decision network is

Fig. 1 Simple example for a Bayesian network for a watery hot drink
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characterized by a DAG, which is based on the chance nodes of a Bayesian network and
extended with additional node types for actions and utilities (Russel & Norvig, 2012):

– Chance Nodes: random variables where each node is attached to a conditional distribu-
tion indexed by the state of the parent node as used in a Bayesian network

– Decision Nodes: variables that represent a selection of actions or design parameters for
the engineer to make a decision

– Utility Nodes: nodes with a utility function describing the preferred results

Once the conditional probabilities of the Bayesian network are updated, the possible
actions are evaluated by setting the decision nodes and made available to the utility node
(Russel & Norvig, 2012). As a result, the action that has the most added value based on
the utility functions is proposed. By dividing the uncertainties in the Bayesian network
and the decision parameters into decision nodes, the recommendations given can be easily
understood and the decision network can be easily extended. In addition, it enables optimal
decision-making, even if only partial observations of the world are given (Murphy &Others,
2001). For an example for a decision network see Section 4.

3 Related work

In engineering design, decisions in the early phases of product development often have to
be made under high uncertainty regarding the impact on the entire product life cycle. In
the related literature, Bayesian networks are often used to model the uncertainty in order
to represent the possible solution space (Moullec et al., 2013; Shahan & Seepersad, 2009),
to reduce large data sets by integrating them into a model (Hanafy & Elmaraghy, 2011) or
generally to represent relationships between sets of variables in the form of probabilities
(Ren et al., 2009; Zhu & Deshmukh, 2003).

When modeling a Bayesian network, two sources of uncertainty are often considered.
Either the uncertainty is mapped as probability for the optimal solution when exploring the
solution space, or it is estimated based on data from the utilization phase of the product and
its impact on the entire product life cycle is determined.

Moullec et al. (2013), e.g., describe a Bayesian network, which spans a design space by
manipulating deterministic and probabilistic data in order to perform product architecture
generation and exploration. By using templates for the modeling of the chance nodes, among
other things the design variables, constraints and confidence levels are represented so that
the compatibility of components for a bicycle can be checked. Bayesian networks do not
only offer the possibility to represent the designer’s knowledge and experience (Shahan &
Seepersad, 2009), they can also be built and updated by analyzing data, so that they can be
used to predict future designs based on data about past products (Jones et al., 1993; Hanafy
& Elmaraghy, 2011).

Wang et al. (2018) also span a solution space using BN to support the engineer in the
decision-making process for Design for Additive Manufacturing (DfAM). For this purpose,
they consider parameters of the manufacturing process, in relation to the machine and the
part to be printed, as well as possible materials, based on which a statement about the
product properties can be made.

A common criticism of the Bayesian networks is the need for precise information in the
form of prior and conditional probabilities (Ren et al., 2009), which is not always avail-
able, especially for new products where no data from use is known. In these cases, expert
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knowledge is usually used, where the problem modeling and especially the uncertainty
estimation is subjective (Moullec et al., 2013).

Ren et al. (2009) take up the criticism of the need for precise probabilities for Bayesian
networks by formulating the input variables of the Bayesian network as fuzzy probabilities.
In their application of a fuzzy Bayesian network (FBN) they use risk factors to predict the
collision probability of an offshore installation during loading due to human error, already
in an early phase of product development. FBN seem to allow more flexibility and easier
interpretation through verbal expressions (Ren et al., 2009), thereby increasing the compu-
tational effort and expanding the possible solution space, similar to another layer of nodes
in the Bayesian network.

Also, Rastayesh et al. (2020) deal with the possible risks or failures of a product by using
a BN instead of risk priority numbers (RPN) to determine the most critical failure causes
from an FMEA analysis. For this purpose, they analyze the influence of factors such as high
temperature or over voltage on the probability of failure of a MOSFET for a fuel cell.

Shahan & Seepersad (2009) follow another approach by using the Bayesian network for
set-based collaborative design, where different design departments model their promising
regions in the design space for an unmanned aerial vehicle. Afterwards, these local networks
are shared and combined to find common interests, limit the design space and propose
appropriate design parameters to support decision-making.

A combination of the uncertainties in the use phase and the representation of possible
design parameters to span the solution space was not mentioned in the found literature,
although a holistic view of the uncertainties in engineering design is desirable.

4 Application of probabilistic reasoning in engineering design

Rotary valves or metering feeders are used for metering and conveying free-flowing bulk
materials. Figure 2 shows a rotary valve which portions bulk material with the rotor pockets
and transports the filling per rotation. It consists of the components housing, rotor and shaft
and is used because it is easy to handle and ensures reproducible results. Due to the volu-
metric dosing, the dimensions or design of the rotary valve have to be adapted to the used

Fig. 2 Rotary valve for the dosing of bulk food

568 Journal of Intelligent Information Systems (2021) 57:563–581



bulk material (Vetter, 2002). Furthermore, the gap between the housing and the rotary valve
has to be taken into consideration to prevent bulk material from being drawn into the valve
or the bulk material from being sheared off. Especially for discontinuous and quantitative
dosing, the size of the rotor pocket is decisive. The aim of the engineer is to find the size of
the rotor pocket that covers as many possible and probable scenarios.

4.1 Modeling of a decision network for the application example

A decision network was created to support the design engineer in the decision-making pro-
cess for the optimal rotor pocket size, which also represents the given uncertainties due
to the boundary conditions. As application scenario, the rotary valve is integrated into a
machine for the preparation of hot drinks and doses the bulk food in the required quantity
for different types of hot drinks. Furthermore, the machine is installed in different locations,
e.g., in home kitchens, offices or cafés. The modeled decision network (Fig. 3) consists of
three parts: the Bayesian part, which represents the uncertain boundary conditions, the deci-
sion part, in which possible design decisions are stored, and the utility part, which contains
the functions for the evaluation of preferred outcomes. The Bayesian part or Bayesian net-
work contains seven chance nodes. The initial nodes bulk food and place of use represent
the possible use cases in the application scenario. To be able to make a statement about the
effects of the initial nodes, further nodes are used, like the nodes shear, weight, and den-
sity, which are dependent on the selected bulk food. The node quantity of liquid required
for hot drinks varies depending on the place of use. To determine the quantity to be dosed,
the node dosing volume is used, which depends on the nodes weight, density, and quantity
of liquid. The additional node shear considers the effects of bulk food on the functionality
of the rotary valve. The decision part consists of five decision nodes, which describe pos-
sible actions or design parameters. The decision nodes rotor diameter, pocket length, and
pocket width represent the dimensions of the rotor pocket. The decision node rotor pocket
size depends on these and displays the different pocket sizes as volumes. The node pocket

Fig. 3 Decision Network for rotary pocket size
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quantity is used to model the influence of the number of pockets on dosing behavior. The
utility part evaluates the optimal rotor pocket size according to criteria such as shear utitlity,
exact dosing, fast dosing, and high variability. For this purpose, the utility function of the
utility node represents the preferred outcomes, including design conditions.

4.2 Programming of the decision network for the application example

An open source package for directed graphical models called Bayes Net Toolbox (BNT) was
used to program the decision network for the application example in Matlab. The variety
of implemented inference algorithms (Murphy & Others, 2001) allows to first model the
Bayesian network and then to search for a suitable inference strategy.

First, the programming in Matlab was started with the representation of the Bayesian
network. A part of the programmed Bayesian network is shown in Fig. 4. The occurrence
probabilities of the chance nodes bulk food and place of use are stored. Since the probabili-
ties of the chance nodes shear, weight, density, and quantity of liquid depend on the parent
nodes bulk food or place of use, they are stored in the form of conditional probability tables
(CPTs). As the CPT for the dosing volume for hot drink contains 48 rows, it is not shown
in the figure. The reason why CPTs were used is that the application example contains only
discrete variables and therefore the inference was simplified. The probability values are
from a similar project and were determined empirically.

To determine the possible rotor pocket sizes, possible design parameters were stored. For
the variation of the diameter a range from 40 to 70mmwas defined. The pocket length varies
between 15 and 30mm, and the pocket width between 10 and 30mm. These geometric
configurations or variants result, on the one hand, from the limitation of the solution space
due to the reduced installation space within the machine and, on the other hand, from the
manufacturing restrictions in the production of the pockets. The defined step size of 5mm is
intended to ensure that very similar application scenarios are mapped with one rotor design
to also reflect the robustness of the solution. By this procedure the decision network can

Fig. 4 Bayesian network for dosage in the preparation of hot drinks
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easily be extended. The number of pockets depends on the rotor pocket size. In general, a
maximum utilization of the available rotor surface is targeted.

The sum of utilities of all possible outcomes, weighted by the probability of their
occurrence (Hazelrigg, 1998), describes the general utility function. As this general util-
ity function also contains results that lead to an unsuitable design layout, the following
conditions are also represented in the utility function:

– High Variability: One rotor pocket size should be able to cover many different and
most likely dosing volumes. A filling level of the pocket size between 90 and 100% is
assumed. This criteria is considered the most important for robust design.

– Flexible Dosing: Multiple pockets on the rotor allow more precise dosing without the
loss of time due to the higher number of rotations.

– Fast Dosing: With the same variability, the rotor pocket size should be preferred, which
can dose the most likely dosing volume in fewer rotations.

– Exact Dosage: To assess the accuracy of the dosing process, the average deviation of
the dosed volume at a filling level of 95% compared to the desired dosing volume is
calculated.

– Shear Utility: The shear utility represents the functional impairment of the rotary valve
due to shearing of the bulk food. It takes into account the probable influence of the bulk
food during shearing and the shearing angle, which depends on the position and size of
the rotor pocket.

The listed conditions first restrict the solution space, since only valid solutions are con-
sidered. Then, the conflicts between the conditions must be solved by the algorithm in the
form of a prioritization. For example, an exact dosage leads to a small rotor pocket size,
whereas a fast dosage requires a large rotor pocket size.

4.3 Results of the decision network

The goal of the decision network for the application example is to assist the engineer in
selecting the optimal rotor pocket size. To do this, the solution space is continuously con-
strained to simplify the search for a robust solution. After eliminating all solutions that
are technically infeasible, such as a pocket number that would lead to geometric overlaps
on the rotor, the solution space is further constrained by the utility functions described in
Section 4.2 (Fig. 5).

To represent the solution space reduction, the trade-off between dosing as variable as
possible, through a small rotor pocket size, and dosing as quickly as possible, through a low
operating time, is used. In the first step (Fig. 5a) the shear utility is used as a selection cri-
terion, so that solutions with a shear utility factor below 70 are eliminated. With this limit,
only solutions with a low probability of wear are considered. For the restriction of fast dos-
ing in Fig. 5b, only solutions are allowed which do not exceed an operating time of 60 s.
This value was chosen so that the time span for one dispensing operation is acceptable, com-
pared to the total working time of the machine. Subsequently, variability and exact dosing
are used as selection criteria (Fig. 5c). Here, the dosed volume through the rotor with a fill-
ing level of 90 - 100% may only deviate by ±5% from the required dosing quantity. This
leads to the effect that small pocket sizes with many turns are eliminated, since the devia-
tion per turn is decisive here. Due to the search for a solution that is as robust as possible, it
should be possible to use the rotor pocket size in as many application scenarios as possible.
For this purpose, we use the utility probability with a value of at least 33.33%, so that the
selected cellular wheel pocket size can be used in one third of the probable application cases
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Fig. 5 Reduction of the Solution Space through Utility Functions

(Fig. 5d). The solution with the maximum utility probability and the shortest operating time
is selected as the optimal size.

Table 1 shows the results of the decision network in Matlab for different information
levels or usage scenarios. The second column with the name Known Information represents
the different levels of evidence or observation as input for the Bayesian part. The columns
Most Probable Dosing Volume and Probability Dosing Volume represent the chance node
dosing volume and thus the output of the Bayesian network. The next block of the table rep-
resents the decision part. Here the dimensions Rotor Diameter (RD), Pocket Length (PL),
and Pocket Width (PW) as well as the resulting 95% Rotor Pocket Filling are listed. The
Pocket Quantity is the number of pockets that most frequently fit on the area of the rotor.
The utility part contains the selection criteria for the optimal rotor pocket size and the Shear
Utility shows the expected utility for sheared bulk food. The columns Average Dosing Devi-
ation and Turns represent the dosing behavior. The Utility Probability describes the added
probabilities of the dosing volumes, which can be dosed with the rotor pocket size. Hereby
it is to be noted that a higher information level does not necessarily lead to a higher util-
ity probability, since this depends on the uncertainty or the variety of probabilities of the
chance nodes. This can also be shown by comparing the utility probabilities for no known
information with 38.81% and for bulk food 2 with 35.48%. The column rotor design refers
to the different designs of the rotor in Fig. 6 at different information levels.

Based on these results, the implications of the uncertainty on the design can be estimated
and recommendations for the designer can be derived to support him in the development of
robust products.

4.4 Knowledge discovery and design implications

The decision network is able to uncover sensitivities of design parameters on the later design
artifact and its robustness. As an example, for bulk food with a higher density, such as bulk
food 1 and 2, smaller rotor pocket sizes tend to be used, as in rotor design a), b), c) and
d). In contrast, for bulk food 3 with a lower density, rotor designs f) and g) are preferred.
In addition, the location of use has an influence, since locations with a greater demand for
liquid also require more bulk food to be dosed. This again leads to larger rotor pocket sizes.
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Fig. 6 Different Designs of the Rotary Valve Rotor

The optimal rotor design a) with no information available, can be traced back to the high
probability for bulk food 1 and place 1.

Additionally, the utility probability of the decision network allows a prediction about the
robustness of the design:

– High utility probability: For a value with a high utility probability, the assumption can
be made that this value represents a suitable solution for as many scenarios as possible
and therefore no further changes are necessary. In addition, the described uncertainty
within the decision network has little influence on the result and therefore it can be
concluded that it is a robust product.

– Low utility probability: For a low utility probability a value can only cover a part of the
possible scenarios. A high diversity within the decision network may be the result of a
higher uncertainty influence. For this reason, products have to be adaptable to different
conditions, i.e., high variability or modifiability is required.

Based on the solution space reduction and calculation of the utility probability, a selection
can be made for the rotor pocket size that is suitable for the most probable use cases. E.g., in
case no further information is available, the upper diagram of Fig. 7 shows the distribution
of utility probabilities for all possible rotor pocket sizes based on the decision nodes. It
can be seen that the rotor pocket size with a volume of 1.36ml represents the preferred
solution with a utility probability of 38.81%. In addition, the lower diagram shows that the
rotor pocket size has the highest utility probability. However, this can only be attributed to
three use cases with relatively high probabilities of occurrence. Thus, the rotor pocket size
of 1.36ml can only be used very specifically and can therefore not be defined as a robust
solution.

Decision networks are suitable for deriving and handling incomplete information because
they represent it in the form of probabilities, which restrict the solution space or consider
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it in more detail when the level of information or knowledge is higher. In the example of
the rotary valve, there is incomplete information about the specific application scenario,
e.g. which bulk food is used and at which location the machine is set up. This uncertainty
is reflected in the probabilities of occurrence, which in turn lead to a wide range of possi-
ble dosing volumes. For example, the incomplete information about the bulk food and the
location leads to a rotor pocket size of 1.36 ml, which can only cover the possible use cases
with a utility probability of 38.81%. In contrast, a restriction of the solution space for the
use of bulk food 3 and location 3 leads to a rotor pocket size of 4.86 ml and the solution
found completely represents the restricted solution space. It was shown that when incom-
plete information requires a wide range of possible solutions, the restriction of the solution
space becomes necessary by increasing the knowledge. Besides the occurrence probabilities
of the boundary conditions, the downstream nodes may also contain incomplete information
about the occurrence, the existing dependency or its weighting.

5 Discussion

As the example described above shows, the BDN supports the designer in discovering
knowledge in the form of sensitivities, since the influence of external boundary conditions
(e.g. place of installation or the usage scenarios) on the product, in particular on the design
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parameters, like geometry or materials, can be evaluated. In addition, dependencies between
requirements can be represented and structured by considering cause-effect relations. In
this way, the solution space of the design artifact can be spanned. Individual solutions
then can be tested regarding requirement fulfillment and analyzed with respect to possible
requirement corridors which is one source of robustness. In addition, robustness can be con-
sidered by using utility functions to restrict the solution space, which cover a wide range
of use cases. Thus, the relation between solution space and requirement space can be for-
malized already at an early development stage and with acceptable effort. This aspect is
valuable for decision support in the engineering process, but also for marketing and product
management, e.g., for customer segmentation.

By modeling the BDN in different parts, i.e., Bayesian, decision, and utility part, the
modeling activities can be performed in various stages in the product development pro-
cess. First, taking specification design and requirement engineering, the design team can
easily compare different scenarios of weighting requirements by adjusting the nodes of the
Bayesian part. Especially in the case of conflicting requirements this supports design teams
in defining the prioritization or conflict resolution strategy. In our example with the hot
drink brewing machine, the Bayesian network additionally supports the refinement of func-
tional requirements, i.e., the decomposition of the dosing volume according to type of bulk
food, weight, density, but also risky properties such as the shear probability leading to pos-
sible later malfunctions. This has the advantage that, e.g., the weight or density of the bulk
food is easier to relate to the dosing volume than only the information about the bulk food
used. Additionally, the approach necessitates designers to think about possible misbehavior
of the later designs on a functional level. Even if distinct probabilities or statistical data are
not available, a scenario analysis may be performed with low, medium or high likelihoods
of failure occurrences. In summary, the main task in this early phase is the structuring of the
solution space and the derivation of evaluation criteria for later concepts.

Second, the BDN can be used with a focus on conceptual design by extending the
Bayesian with decision and utility part. For this purpose, possible and relevant design
parameters on a functional level are determined and information about the sensitivity of
individual solution concepts with respect to changes in requirements is inferred by updat-
ing the BDN. In the example above, the required dosing volume per application is such a
parameter since at this time this is independent from the later solution concept. The utility
functions can then also be used to evaluate and compare possible solutions.

Third, addressing drafting and embodiment design, the relations of draft determining
parameters, and their values can be computed. Here, the robustness consideration also offers
potential in defining variants of the product and its components. In the case of our example,
this is reflected by the diameter of the rotary valve: Even if the use case of the hot drink
brewing machine is variable, a solution for updating the machine to a different use case is
exchanging the rotor with another pocket design. As a consequence, e.g., the design of the
housing should be standardized accordingly.

Referring back to the four fundamental types of uncertainty mentioned by Kreye et al.
(2011), two of them are directly addressed through BDN: First, data uncertainty is reflected
by the implemented probabilities for the occurrences of requirements and their values. Sec-
ond, context uncertainty is represented by the different use cases, disturbances and their
respective probabilities. If one now considers the other two types, phenomenological and
model uncertainty, the answer is more difficult. Regarding phenomenological uncertainty,
the BDN could indeed answer questions on that if the according effects can be coded. An
example of this is the implementation of manufacturing tolerances, wear and random system
failures, e.g., due to component reliability. Here the question is whether an implementation

576 Journal of Intelligent Information Systems (2021) 57:563–581



into the BDN or other modeling approaches, e.g., numerical multi-objective optimization,
are more efficient. Here, the level of information and the frequency of change are decisive
criteria for the selection of the modeling approach: The predominantly incomplete informa-
tion and the high uncertainty during the early development phase lead to the necessity that
the models need to be changed and adapted frequently. At this stage, a statement of sensi-
tivities such as BDN is often sufficient and the modeling and computational effort remains
manageable. As development progresses, the solution space considered becomes smaller,
so that a detailed consideration of the geometry, e.g. in the form of a CAD model, becomes
necessary and the modeling and calculation effort is reduced. In combination with a numer-
ical optimization, e.g., combined with Latin-Hypercube-Sampling, the actual usage process
can be modeled to provide a more detailed estimation of the product design and further
converge the solution space.

With respect to model uncertainty, the known criticism of the BDN approach is still valid.
Preconditions for its use are modeling experience, knowledge of the usage scenarios, and
the availability of data, which includes not only conditional probabilities but also statistical
data. Especially the availability of data is difficult for creative designs without predecessors.
In our example, the single probabilities were obtained from experts and empirical data from
prototype tests. The latter is objective but perhaps not statistically verified, while the first
is more or less subjective. In order to validate the model, a test on decision gates in former,
already completed projects, where it should come to similar conclusions as the designers,
seems at least possible.

6 Conclusion & future research

Robust products are defined as products which are insensitive to uncertainties. With our
approach, we take up this definition and can represent the uncertainty with a BDN in the
form of conditional probabilities. The product properties or possible design parameters are
stored in the decision part and a statement about the insensitivity of the products is made
via the utility functions, among others in the form of the utility probability.

As stated in the introduction, uncertainty during development often leads to reduced
efficiency, either of the product or of the development team which has to discard drafts
or perform later changes due to new knowledge or changed requirements. In context of a
generic product development process, involving specification design, conceptual design and
embodiment design, we show different application areas and guiding questions for knowl-
edge discovery. In this way, sensitivities of design parameter changes can be discovered
and the robustness of a design may be examined with respect to different usage scenarios,
supporting the decision-making process during development.

An open question is, what model resolution and following that, what modeling effort
is necessary to sufficiently perform the activities of spanning, structuring and converging
the possible solution space. Here, a comparison of different approaches, e.g., the BDN
approach and robust numerical optimization at different stages of the development process
could deliver new insights. Especially in the phase of embodiment design, when the solution
space is already broadly restricted, robustness needs to consider, e.g., geometric tolerances
due to the later manufacturing processes. In our example of the hot drink brewing machine,
the shear probability of the inbound bulk food is likely to be influenced by the achievable
tolerances. Including this into the BDN is possible, but since this design phase already oper-
ates with geometric models, design data for numerical analysis and optimization is basically
available and offers the possibility of describing the design problem on a very detailed level.
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On the other hand, the spanned solution space in specification design might be too large and
to abstract to be structured by numerical optimization, especially when the resolution about
design variables is still low and subject to a high probability of change.

To reduce the modeling effort, an algorithmization of, e.g., the variation of input
parameters of a foundational Bayesian network by evolutionary algorithms or numerical
optimization is a possible avenue to be investigated. Furthermore, to address the initially
mentioned translation errors from customer to functional requirements, the integration of
fuzzy sets as representation of requirements is likely.

Beside product development, the integration of BDN and recommender systems could
be another starting point for further research. As recommender systems guide customers
towards interesting and useful features for an individual value proposition (Plappert et al.,
2020a; Felfernig & Burke, 2008; Thakur et al., 2011), a system that can handle uncertain
input parameters, incomplete data or even imprecisely formulated requirements could be a
valuable building block for a sales support system as these also represent solution spaces.
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Amadori, K., Tarkian, M., Ölvander, J., & Krus, P. (2012). Flexible and robust CAD models for design
automation. Advanced Engineering Informatics, 26(2), 180–195. https://doi.org/10.1016/j.aei.2012.
01.004.

Antonsson, E. K., & Otto, K. N. (1995). Imprecision in Engineering Design. Journal of Mechanical Design,
117(B), 25–32. https://doi.org/10.1115/1.2836465.

Biedermann, M., & Meboldt, M. (2020). Computational design synthesis of additive manufactured multi-
flow nozzles. Additive Manufacturing, 35(April), 101231. https://doi.org/10.1016/j.addma.2020.101231.
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