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Abstract

This thesis studies the quality, that is, both the liquidity and price efficiency,

of commodity futures and options markets. Chapter 1 introduces the sub-

ject and provides an overview. Chapter 2 identifies the most suitable low-

frequency proxies for analyzing commodity market quality. We use an 11-year

sample of millisecond time-stamped order book data and examine the cor-

relation of high-frequency liquidity and price efficiency measures with their

low-frequency proxies measured with daily or 5-minute Time-and-Sales (TAS)

data. We find that for liquidity, the volatility-over-volume measures are the

best proxies for bid–ask spread and price impact. The correlation of price

efficiency measures with their daily-frequency counterparts is low. Moder-

ately correlated proxies can be achieved by using 5-minute data. Chapter

3 studies commodity futures markets quality using the previously identified

best proxies. We investigate the impact of two major changes: (1) The influx

of index investors after 2004 (financialization) and (2) the introduction of

side-by-side trading of open-outcry and electronic limit order books around

mid-2006 (electronification). Our sample consists of daily measures of liq-

uidity and intraday informational efficiency spanning the years 1996 to 2018.

We find that market quality has improved over the sample period, includ-

ing and especially during the years of financialization and electronification.

These improvements appear to be more pronounced in commodities that are

part of a major index. We further employ different data sets of aggregate

trader positions data curated by the Commodity Futures Trading Commis-

sion (CFTC) but find no evidence of a harmful effect of index trading activity

on commodity market quality. Despite a sharp increase in long open interest

of commodity index traders (CITs) in soybean meal in January 2013 when

it was added to the Bloomberg Commodity Index (BCOM), the quality of

the soybean meal futures market did not worsen. Finally, our comprehen-
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sive data set enables us to compare market quality around index roll days

across the pre- versus post-financialization regime. Consistent with our pre-

vious findings, market quality during index roll days did not worsen, but

appears to have improved slightly. Overall, the results show that commod-

ity financialization was not harmful to market quality, but rather coincided

with improvements. The switch to electronic limit order books had positive

effects. Motivated by the evidence from Chapter 2, that market efficiency is

noisy, and lacking evidence of harmful index trading using weekly aggregate

position data in Chapter 3, we combine 5-minute WTI ETF, options, and

futures data in Chapter 4 in order to be able to detect very short-lived ineffi-

ciencies in a less noisy almost model-free way. This allows us to study the role

of ETF-related trading in New York Mercantile Exchange (NYMEX) West

Texas Intermediate (WTI) crude oil futures and options markets. We detect

and model put–call–parity deviations in short-term at-the-money (ATM) and

their underlying futures at the 5-minute frequency between January 2010 and

October 2021. Then, we relate those to ETF-related futures trading. Our

findings suggest that those trades are likely informed, but are not timed to

exploit arbitrage opportunities. This implies that average financial investors

have temporary price impact but more likely due to adverse selection risk

of market makers than due to inventory risk induced by large directional

trades. Our results highlight the use of ETFs as an alternative for informed

trading even in highly liquid markets. Chapter 5 concludes and lays out open

questions and possible paths for future research.

Keywords: Commodity Markets, Market Quality, Futures, Options, Liq-

uidity, Market Efficiency
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Zusamenfassung

Diese Dissertation untersucht die Qualität, d.h. sowohl die Liquidität als

auch die Preiseffizienz, von Warentermin- und Optionsmärkten. Kapitel

1 führt in das Thema ein und gibt einen Überblick. In Kapitel 2 wer-

den die am besten geeigneten Niederfrequenz-Proxies für die Analyse der

Qualität von Rohstoffmärkten identifiziert. Wir verwenden eine 11-jährige

Stichprobe von Orderbuchdaten im Millisekundenbereich und untersuchen

die Korrelation von hochfrequenten Liquiditäts- und Preiseffizienzmaßen mit

niederfrequenten Schätzwerten, die mit täglichen oder 5-minütigen Time-and-

Sales-Daten (TAS) gemessen werden. Wir stellen fest, dass für die Liq-

uidität Volatilität-über-Volumen-Maße die besten Näherungswerte für die

Geld-Brief-Spanne und den Preiseinfluss sind. Die Korrelation der Preis-

effizienzmaße mit ihren Pendants in der Tagesfrequenz ist gering. Mäßig kor-

relierte Näherungswerte können durch die Verwendung von 5-Minuten-Daten

erreicht werden. Kapitel 3 untersucht die Qualität der Warenterminmärkte

unter Verwendung der zuvor ermittelten besten Schätzern. Wir untersuchen

die Auswirkungen von zwei wichtigen Veränderungen: (1) Der Zustrom von

Indexinvestoren nach 2004 (Finanzialisierung) und (2) die Einführung des

Parallelhandels von Parkett- und elektronischen Limit-Orderbüchern umMitte

2006 (Elektronifizierung). Unsere Stichprobe besteht aus täglichen Messun-

gen der Liquidität und der Intraday-Informationseffizienz, die die Jahre 1996

bis 2018 umfassen. Wir stellen fest, dass sich die Marktqualität im Un-

tersuchungszeitraum verbessert hat, auch und gerade in den Jahren der Fi-

nanzialisierung und Elektronifizierung. Diese Verbesserungen scheinen bei

Rohstoffen, die Teil eines großen Index sind, stärker ausgeprägt zu sein.

Darüber hinaus verwenden wir verschiedene Datensätze mit aggregierten Po-

sitionen, die von der Commodity Futures Trading Commission (CFTC) ku-

ratiert werden, finden aber keine Hinweise auf eine schädliche Auswirkung von
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Indexhandelsaktivitäten auf die Qualität der Rohstoffmärkte. Trotz eines

starken Anstiegs des offenen Interesses von Rohstoffindexhändlern (CITs)

an Sojaschrot im Januar 2013, als dieses in den Bloomberg Commodity In-

dex (BCOM) aufgenommen wurde, hat sich die Qualität des Sojaschrot-

Futures-Marktes nicht verschlechtert. Schließlich ermöglicht es uns unser

umfassender Datensatz, die Marktqualität an den Indexrolltagen vor und

nach der Finanzialisierung zu vergleichen. In Übereinstimmung mit un-

seren früheren Ergebnissen hat sich die Marktqualität an den Indexrolltagen

nicht verschlechtert, sondern leicht verbessert. Insgesamt zeigen die Ergeb-

nisse, dass die Finanzialisierung der Rohstoffmärkte der Marktqualität nicht

geschadet hat, sondern vielmehr mit Verbesserungen einherging. Die Umstel-

lung auf elektronische Limit-Orderbücher hatte positive Auswirkungen. Mo-

tiviert durch den Nachweis aus Kapitel 2, dass die Markteffizienz verrauscht

ist, und den ausbeleibender Hinweise auf schädlichen Indexhandel unter Ver-

wendung wöchentlicher aggregierter Positionsdaten in Kapitel 3, kombinieren

wir in Kapitel 4 5-Minuten-WTI-ETF-, Options- und Futures-Daten, um in

der Lage zu sein, sehr kurzlebige Ineffizienzen auf eine weniger verrauschte,

fast modellfreie Weise zu messen. Auf diese Weise können wir die Rolle des

ETF-Handels auf den Rohöl-Futures- und Optionsmärkten der New York

Mercantile Exchange (NYMEX) für West Texas Intermediate (WTI) unter-

suchen. Wir ermitteln und modellieren Put-Call-Paritätsabweichungen bei

kurzfristigen at-the-money (ATM) und ihren zugrunde liegenden Futures im

5-Minuten-Takt zwischen Januar 2010 und Oktober 2021. Anschließend set-

zen wir diese mit dem ETF- und Futures-Handel in Beziehung. Unsere Ergeb-

nisse deuten darauf hin, dass diese Trades wahrscheinlich informiert sind, aber

nicht zur Ausnutzung von Arbitragemöglichkeiten getätigt werden. Dies be-

deutet, dass durchschnittliche Finanzinvestoren einen vorübergehenden Ein-

fluss auf den Preis haben, der jedoch eher auf das Risiko der negativen

Auswahl der Market Maker zurückzuführen ist als auf das Bestandsrisiko,
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das durch große direktionale Trades entsteht. Unsere Ergebnisse unterstre-

ichen die Verwendung von ETFs als Alternative für den informierten Handel

selbst auf hochliquiden Märkten. Kapitel 5 schließt mit einem Ausblick auf

offene Fragen und mögliche Wege für zukünftige Forschung.

Schlagwörter: Rohstoffmärkte, Marktqualität, Terminmärkte, Optionen,

Liquidität, Markteffizienz
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Chapter 1

Introduction

Commodity derivatives markets are of central interest to producers, con-

sumers, and regulators. They facilitate the hedging of commodity-related

risks, while also providing a basis for business decisions (Black, 1976). As

classical consumption assets they affect the cost of living for all humans tak-

ing part in a globalized economy.1 Depending on the degree of development

of a nation, commodity-dependent costs like food, transportation, electricity

or heating can make up a substantial part of peoples’ consumption basket.

Price spikes can give rise to social unrest and disrupt societies, as it was the

case in the Arab Spring. Thus, regulators are particularly interested in the

functioning of commodity markets and in the US, for example, its market

oversight is separate from that of securities markets.

The nature as a consumption good has been questioned after commod-

ity markets underwent substantial changes. More or less freely organized

commodity spot and derivatives markets have been existing since centuries.2

Especially the latter ones were mostly populated by specialists rather than

the common consumer. This changed during the start of the 21st century

1Native tribes in the rain forests are probably the only exemptions.
2For example, the Babylonian Code Hammurabi dates back to 1750 BC and regulates

forward trading in ancient Mesopotamia.

1
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when regulations were relaxed, interest in commodity markets as a means of

diversification of investment portfolios arose and market access became easier

as commodity (index) ETFs became popular and exchanges introduced elec-

tronic limit order books. This was coined the financialization of commodity

markets (e.g., Tang and Xiong, 2012).

The role of these new financial traders–especially passive long-only com-

modity index traders (CITs)–and their influence on the quality of commodity

derivatives markets became a controversial topic in both the public media and

academic literature. They were accused of being responsible for excess volatil-

ity, increased co-movement (Tang and Xiong, 2012), and disruptions of the

price formation process leading to inefficient pricing. This thesis focuses on

the latter. CITs are commonly regarded as uninformed investors that invest

for reasons unrelated to the fundamental value of the commodities. Theo-

retical predictions of an increase of uninformed trading can be derived from

classical mictrostructure theory. In the Glosten and Milgrom (1985) model,

for example, an increase in the share of uninformed traders results in lower

bid-ask spreads set by the market maker, but the convergence of the trade

price to the fundamental value is slowed down. That means, liquidity im-

proves but prices are less efficient. If the market maker is not risk-neutral,

however, inventory effects of uninformed traders that unanimously buy or

sell could lead to a wider bid–ask spread. Goldstein and Yang (2022) develop

a model of commodity financialization that predicts positive relationship be-

tween financial trading and liquidity but a hump-shaped (inverse-U) one with

price efficiency. Opposite theoretical predictions for predictable uninformed

trading exist as well: The Sunshine-Trading Effect of Admati and Pfleiderer

(1991) suggests that credibly uninformed liquidity demand is met with addi-

tional liquidity while Brunnermeier and Pedersen (2005) point out that such

trades could be profited of in a predatory fashion. Theoretical channels of

how financial traders might impact commodity market quality therefore ex-
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ist, but their predictions are not clear-cut, which is why empirical analysis is

required and performed in the chapters of this thesis.

We use tools that have been developed in the context of microstructure

theory of (equity) markets and employ it on commodity derivatives data.

Since the number of developed measures is large, Chapter 2 serves as a pre-

study that identifies the most appropriate measures of commodity market

quality. Since bid-ask spreads and intraday volumes had not been recorded

in open-outcry trading which was the dominant market structure until about

2008, measures are required that are able to capture bid-ask spreads, price

impact, and price efficiency from trade prices alone. To do so, we conduct

a horse race of proxies with low data requirements and compare them using

correlations with measures computed from data that includes bid-ask prices

and volume. The approach follows Goyenko et al. (2009) who study liquid-

ity measurement for stock markets. Marshall et al. (2012) conduct a similar

study for commodity futures, but the majority of their sample period spans

periods when most trading was conducted in the pits. Our sample consists

of 11 years of quote and volume data and we also study price efficiency mea-

sures and include newly developed measures. One class of these more recently

derived measures, volatility-over-volume (VoV) ratios (Kyle and Obizhaeva,

2016; Fong et al., 2018), turns out to be superior to the widely-used Amihud

(2002) measure in capturing liquidity. VoV–measures exhibit the highest cor-

relations for single commodities and aggregate commodity market quality in

the time-series dimension. Mincer and Zarnowitz (1969) regressions confirm

these results but highlight the importance of computing the measures for each

commodity individually and scaling them in order to make their level inter-

pretable. Our evidence on market efficiency suggests that these measures are

noisy and that a valid measurement requires an intraday sampling frequency.

Chapter 3 builds on the previous insights and uses the best measures to

construct a panel of commodity market quality that exhibits differences in
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the degree of financialization. Our study is more comprehensive than previ-

ous evidence, because it unites the following properties: (1) In the time-series

dimension, the panel includes the time before the start of the financialization.

(2) Some market quality measures, especially the market efficiency measures,

are estimated from intraday trade data which are different from using settle-

ment prices (which are volume-weighted average prices). (3) The staggered

introduction of side-by-side electronic and pit trading allows us to measure

the impact of this change introduced by most commodity changes starting

around mid-2006. Except for Raman et al. (2020), electronification effects

have not been studies in conjunction with those of commodity financializa-

tion.

Our results hint at an improvement of commodity market quality after

2004–a common breaking point for the start of the financialization. Com-

modity market quality exhibits a significant positive shift after 2004 and

especially after traders migrated to electronic limit order markets. This shift

is more pronounced among commodities that have been part of a major broad

commodity index throughout the entire sample period. Instead of a sudden

shift in the level of commodity market quality, we also estimate a regime-

conditional linear trend model that confirms the improvement during both

the financialization and electronification period.

Predictable and unpredictable trades of CITs might have different im-

pacts on commodity market quality which is why the last part of Chapter 3

studies if they have an effect. First, we decompose weekly aggregate open

interest data using ARIMA models with seasonal components and estimate

panel regressions. We also use a predictable change to CIT activity when

soybean meal was added to a major commodity index. Finally, we study pre-

dictable roll trades and compare patterns in market quality before and after

2004. In line with the results of Bessembinder et al. (2016), we find evidence

for a Sunshine Trading Effect. All results point towards no or a slight positive
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effect of CIT trading on commodity market quality.

Previous results have shown that CITs are not harmful to commodity

market quality. In Chapter 4, we thus study the role of ETF-related trading

in West Texas Intermediate (WTI) sweet crude oil markets at the 5-minute

frequency. Eglite et al. (2023) show that ETFs are used to conceal insider

trading while Israeli et al. (2017) show that market quality of stocks declines

with increased ETF ownership. In order to measure market quality with less

noise, fewer assumptions about the data generating process, and at a higher

frequency, we rely on options data. This approach has not been used in the

literature on commodity financialization. We employ measures derived from

put–call–parity (PCP) that are almost model-free: absolute differences in

implied volatilities, the occurrence of arbitrage opportunities, and available

arbitrage profits. We use the Lee and Ready (1991) algorithm to sign every

single trade in short-term WTI futures and two related ETFs. Almost 3% in

futures trading is linearly related to ETF trading. Then, we regress differences

in implied volatility on absolute (non-) ETF-related order imbalances (OIB)

and explore why they are increased when ETF-related absolute OIB are high.

Positive subsequent returns following large absolute ETF-related OIB hint at

information-based trading while higher price impact due to larger order sizes

is unlikely. Our results highlight that (index) ETF trading cannot simply be

classified as uninformed noise. ETFs might be a trading vehicle that could

be preferred by informed traders over futures as they are more granular and

easier to handle.

Overall, the results of this thesis show that the presence of financial

traders and low barriers of entry is beneficial to the quality of commodity

markets. While some newly arrived investors surely are uninformed, they

appear to be accompanied by well-informed agents that provide liquidity and

make informed investment decisions.

This thesis proceeds as follows. Chapter 2 identifies the most appropriate
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commodity market quality measures that are then used in Chapter 3 to infer

the impact of index investors. Chapter 4 use commodity options and futures

to study the impact of ETF-related order imbalances at a high frequency.

Finally, Chapter 5 summarizes the main findings and outlines potential paths

for future research.



Chapter 2

Measuring Commodity Market

Quality*

2.1 Introduction

O’Hara and Ye (2011) define market quality as ‘a market’s ability to meet

its dual goals of liquidity and price discovery. In general, markets with lower

transaction costs are viewed as higher quality, as are markets in which prices

exhibit greater efficiency ’ (p. 463). The computation of spreads, price impact

or intraday autocorrelations requires high-frequency data that is both compu-

tationally and literally expensive. Additionally, for some markets, quote data

is simply not available. For commodity futures, quotes were not recorded in

open-outcry but only in more recent electronic limit order markets. Thus, if

one wishes to study long-term commodity market quality, one has to rely on

low-frequency proxies to measure both aspects.

In this paper, we aim to identify the best low-frequency proxies for mea-

suring market quality. This is important, because in many situations high-

quality intraday data is not available, whereas low-frequency, i.e., daily data

*This chapter is based on the article “Measuring Commodity Market Quality” authored
by Tobias Lauter and Marcel Prokopczuk, Journal of Banking & Finance 145, 2022, 106658.

7
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is. We estimate low-frequency proxies and conduct a horse-race-type study in

the style of Goyenko et al. (2009) and Fong et al. (2017) for equity markets or

Schestag et al. (2016) for bond markets. Marshall et al. (2012) conduct such

a study for commodity market liquidity that is most similar to ours. How-

ever, their sample period ranges from 1996 to August 2008 and thus covers a

period when electronic trading was mostly limited to overnight hours. Most

volume, however, was still in the pits until around 2008. Thus, quote data

was only available for overnight-trading hours. The reliability of their results

is therefore contingent on overnight liquidity in electronic limit order books

being highly correlated with the liquidity in the pits. Today, both day and

night trading is mainly conducted electronically and market makers use algo-

rithms that supply liquidity almost around the clock. After 2008, overnight

and day market quality are likely to be closely related. Before, however, it

is unlikely that market makers in the pits were the same as those submitting

orders in the electronic overnight market. Given this substantial change of

the markets’ structure, our study is thus more than a simple up-date of the

sample period. Moreover, Marshall et al. (2012) focus on liquidity only and

do not consider informational efficiency at all.

Thus, we make the following contributions to the literature: First, we

employ a sample that entails 11 years of reliable quote data generated during

the main trading hours. The length of the sample allows a valid measure-

ment of time-series variation in benchmarks and proxies as opposed to cross-

sectional variation alone. Second, when measuring liquidity, we also include

new measures of liquidity developed over recent years. Third, we do not only

focus on liquidity but also study market efficiency to provide a complete pic-

ture of market quality as defined by O’Hara and Ye (2011). Fourth, we also

provide guidance on obtaining effective spread proxies for the most traded

US-commodities to be used in analyses in which not only correlations but

also levels are relevant. Finally, we apply the same low-frequency proxies on
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5-minute Time-and-Sales (TAS) data. This sampling frequency represents

a middle ground between tick data and daily data. As it turns out, this

is necessary to reach acceptable correlations of proxies and benchmarks of

informational efficiency.

Our research aims at enabling investigations involving either or both the

liquidity and price efficiency of commodity markets. Such studies might in-

vestigate the impact of financialization (e.g., Tang and Xiong, 2012), changes

in market structure, like the switch from open-outcry to electronic limit order

books (e.g., Shah and Brorsen, 2011; Raman et al., 2020), the influence of al-

gorithmic trading on commodity market quality (Hendershott et al., 2011, for

example, study the influence of algorithmic trading on the market quality of

equity markets), or the impact of margin requirements on liquidity (Daskalaki

and Skiadopoulos, 2016). Studies of systematic price efficiency (Rösch et al.,

2017) that include or focus on commodity markets require valid proxies. In

the realm of asset pricing, the search for liquidity premia is a common ob-

jective which requires suitable liquidity proxies.1 The impact of (short-term)

mispricings on the real economy (e.g., Brogaard et al., 2019) is another in-

teresting research avenue that requires valid price efficiency measures.

In order to identify the most suitable proxies, we collect and pre-process

terabytes of high frequency tick-by-tick data of major commodity futures

markets since 2008. Then, we calculate high frequency measures of liquid-

ity and price efficiency for every trading day and every commodity in the

sample using millisecond time-stamped trade and quote data. We average

these measures in each commodity-month to obtain a panel of monthly high-

frequency measures as a benchmark. Then, we calculate monthly proxies

1For example, Szymanowska et al. (2014), Daskalaki et al. (2014), and Fernandez-
Perez et al. (2019) use the Amivest or Amihud ratio measure to perform commodity sorts
on liquidity. Liquidity estimates are also necessary to compute returns net of transaction
costs, e.g., in the context of portfolio construction (see, e.g., Daskalaki and Skiadopoulos,
2011; Daskalaki et al., 2017).
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using daily data. The most appropriate selection criterion depends on the ob-

jective at hand. For asset pricing, cross-sectional rank-correlation across low-

and high-frequency measures are most relevant. For studies of aggregate mar-

ket quality, time-series correlation of a measure averaged across commodities

is most relevant. Finally, for studies of individual commodity market quality,

individual time-series correlations are more important. Thus, we elect the

best method in each category, to accommodate the requirements of various

research designs.

Since bid–ask spread estimates are important to compute after-cost re-

turns, we asses the ability of the proxies to capture both the level and variation

in bid–ask spreads by estimating benchmark–proxy regressions in the spirit

of Mincer and Zarnowitz (1969).

Lastly, we compare the performance of several proxies calculated using

5-minute TAS data. This is sensible because of three reasons. First, some

research designs, e.g. in the context of financialization, those that include

weekly aggregate positions data curated by the Commodity Futures Trading

Commission (CFTC) or those that study index roll days, require sub-monthly

frequencies in market quality estimates while some proxies are impossible to

estimate or are too noisy to be estimated from a single data point. Second,

pricing errors might be short-lived and thus not be measurable with daily

settlement prices. Third, using prices aggregated to a 5-minute frequency

drastically reduces the computational requirements compared to tick-by-tick

data. Depending on the proxy, measures can be computed within minutes.

This approach represents a middle ground between terabytes of individual

trades, that requires days or weeks to process, and daily data, that are ana-

lyzed within seconds. Most proxy measures we employ have been developed

for an arbitrary sampling frequency so we compare an almost identical selec-

tion of measures.

Based on our results, we can give the following recommendations to
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researchers who wish to study the quality of commodity futures markets using

low-frequency data:

(1) Spreads are best captured by the VoV(Spread) measure of Kyle and

Obizhaeva (2016) and Fong et al. (2018).

(2) Price impact is best captured by VoV(λ).

(3) In contrast to the Amihud (2002) measure, daily VoV–measures are able

to capture daily variation in liquidity

(4) Our proxies for informational efficiency are not correlated to their bench-

marks. To approximate monthly price efficiency from non-overlapping

data, we recommend using 5-minute TAS data instead of daily data.

Both the variance ratio of Smith (1994) and the pricing error volatility

(MA(1)) of Hasbrouck (1993) exhibit moderate correlations with their

respective benchmark-variants (see Table 2.9). If intraday data are not

available, spread or impact proxies are valid alternatives to capture Has-

brouck’s pricing error volatility.

(5) In order to obtain unbiased effective spreads estimates, we recommend

using the VoV(Spread) measure and then mapping it to the correct level

and variance using the parameters provided in Table 2.8.

2.2 Measuring Market Quality

In this section, we provide an overview of the liquidity and efficiency measures

employed.

As high-frequency liquidity benchmarks, for spreads, we use time-weighted

relative quoted spreads (twRQS) and volume-weighted relative effective spreads

(vsRES), and for price impact, we use volume-weighed 5-minute relative price
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impact (vwRPI), as well as the slopes (λ) of 5-minute mid-quote returns re-

gressed on signed dollar–volume (Kyle, 1985) or on the signed square-root of

volume (λroot) following Hasbrouck (2009).

As low-frequency liquidity proxies, we employ the return–covariance-

based Roll (1984) measure (Roll) with its variations with absolute covari-

ances (RollAbs) as in Easley et al. (2021) and a variant that is estimated

using a Gibbs sampler (RollGibbs; Hasbrouck, 2004), the Effective Tick mea-

sure (EffTick; Holden, 2009) which relies on price clustering, the Corwin and

Schultz (2012) measure (HighLow) which requires high and low prices, the

Abdi and Ranaldo (2017) measure which extends it by incorporating closing

prices, two volatility-over-volume measures (VoV(Spread) and VoV(λ)) (Kyle

and Obizhaeva, 2016; Fong et al., 2018), the Amihud (2002) measure which is

absolute returns over dollar–volume, the slope of returns regressed on lagged

volume signed with lagged returns as in Pástor and Stambaugh (2003), several

of the aforementioned spread measures divided by volume (Goyenko et al.,

2009), and finally the inverse of volume (1oV).

As high-frequency benchmarks for price efficiency, we decompose log-

prices into a stationary and a random walk component estimated using a

vector-auto-regression (σ
V AR(5)
s ) of 1-minute returns and signed dollar–volume

with 5 lags or a moving-average process (σ
MA(1)
s ) with a single lag (Hasbrouck,

1993), the AMIM measure by Tran and Leirvik (2019), absolute deviations

from unity of 1-minute to 30-minute mid-quote return variance ratios (Lo

and MacKinlay, 1988), and absolute first-order autocorrelations of 1-minute

mid-quote returns.

As low-frequency proxies, we employ the same measures but use the

microstructure-adjusted variance ratio by (Smith, 1994) instead of simple

variance ratios.

Since a simple average has been shown to be a powerful combination

technique in the forecasting literature (Clemen, 1989), we also compute an
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average of all spread proxies (AvgSpread), price impact proxies (AvgImpact),

and of all price efficiency proxies (AvgEff). To neutralize differences in scale,

we standardize each proxy for each commodity before averaging.

Table 2.1 provides a summary of the measures with their data require-

ments. For details on their computation, see the appendix.
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Table 2.1: An Overview of Benchmark and Proxy Measures with Data Requirements

This table we provides an overview of the benchmark (left panel) and proxy (right panel) measures we employ. The codes for required data are:

S = Settlement Price, V = Volume, O = Opening Price, H = High Price, L = Low Price, B = Bid Price, A = Ask Price, T = Trade Price.

High-frequency Benchmark Measures Low-frequency Proxy Measures

Measure Paper Required Data Measure Paper Required Data

Panel A: Spread

twRQS B, A Amihud Amihud (2002) S, V
vwRES B, A, T, V VoV(Spread) Kyle and Obizhaeva (2016), H, L, V, S

Fong et al. (2018)
Roll Roll (1984) S
RollAbs Easley et al. (2021) S
RollGibbs Hasbrouck (2004) S
EffTick Holden (2009) S (, H, L, O)
HighLow Corwin and Schultz (2012) H, L
AbdiRanaldo Abdi and Ranaldo (2017) O, H, L, S

Panel B: Price Impact

vwRPI B, A, T, V Amihud Amihud (2002) S, V
λ Kyle (1985) B, A, T, V 1oV Lou and Shu (2017) V

V oV (λ) Fong et al. (2018) H, L, V, S
λroot Hasbrouck (2009) B, A, T, V RolloV Goyenko et al. (2009) S, V

RollAbsoV Goyenko et al. (2009) S, V
RollGibbsoV Goyenko et al. (2009) S, V
EffTickoV Goyenko et al. (2009) S, V (, H, L, O)
HighLowoV Goyenko et al. (2009) H, L, V
AbRaoV Goyenko et al. (2009) O, H, L, S, V
PastorStambaugh Pástor and Stambaugh (2003) S, V

Panel C: Price Efficiency

σ
V AR(5)
s Hasbrouck (1993) T, V σ

MA(1)
s Hasbrouck (1993) S

AMIM Tran and Leirvik (2019) B, A AMIM Tran and Leirvik (2019) S
V R30 Lo and MacKinlay (1988) B, A V R2 Lo and MacKinlay (1988) S
|AR1| Chordia et al. (2008) B, A V RSmith Smith (1994) T

|AR1| Chordia et al. (2008) S
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2.3 Method of Comparison

We calculate high-frequency measures for each commodity futures contract

and every day from January 2008 to December 2018. Some of the intraday

measures are calculated using every single quote or trade updates on the

tape, others rely on data that is aggregated to a 1-minute frequency. Then,

we aggregate each of the measures to a monthly frequency either by taking a

simple average or a volume-weighted average for measures whose estimates are

volume weighted, e.g., the volume-weighted relative effective spread (vwRES).

This provides us with monthly benchmarks for spreads, impact, and efficiency.

In the next step, we estimate low-frequency proxies that rely on daily

data for each commodity-month. We then compare these measures using

Pearson (Spearman) correlation coefficients of each measure–proxy pair in

the time-series (cross-section).

We use relative liquidity measures, like relative effective spreads or rel-

ative price impact instead of dollar or tick-multiple measures, because the

margin requirements are periodically adjusted by the exchanges and set pro-

portionally to the current futures price, so the cost of a collateralized futures

position is also proportional to the current price.

For many decades, commodity futures were traded face to face in open-

outcry markets – the pits – where traders would shout and use hand signals

to submit offers, bids, and market orders. Bids and offers were executable as

long as they were in the ‘mouth of the trader’ and only very few were recorded.

High-frequency recordings of pit activity were limited to time-stamped trade

prices, if the price was different from the previous one (so-called TAS data).

In 1992, the Chicago Mercantile Exchange (CME) introduced GLOBEX, an

electronic limit order trading platform which was used during off-hours, when

pits were closed.

Around mid-2006, exchanges like the New York Mercantile Exchange
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(NYMEX), the Commodity Exchange (COMEX), and the Chicago Board

of Trade (CBOT) (all three now belonging to the CME Group) introduced

side-by-side trading during pit trading hours. The Intercontinental Exchange

(ICE) followed in 2007. After this change, volume gradually shifted to elec-

tronic trading.

By 2008, a major fraction of the volume had migrated from the pits to

the electronic limit order platform. Thus, quote data for most commodity

futures start in mid-2006 and are reliable from 2008 onward.2 This is why we

choose January 2008 as the starting point of our sample.

A major concern of this study is if correlations of measures estimated us-

ing limit order book data are a valid method for choosing the best proxies in

open-outcry markets. Both market designs have in common that traders can

post bid and ask orders as well as pick them up with market orders. However,

in the pits, orders remain only valid for a short period of time – as long as

they are in the ’mouth of the trader’. This way, orders cannot walk the book.

In the pits, trading is not anonymous but traders can make a name for them-

selves and often know each other by name. Their roles and employers are also

visible to other market participants. On the Chicago Mercantile Exchange

(CME) floor for example, traders wear colored jackets and badges. The mea-

sures we compare are, however, not by design or assumption only valid in

electronic limit order markets. Both VoV(Spread) and VoV(λ) by Fong et al.

(2018), for example, are implementations of the Kyle and Obizhaeva (2016)

microstructure invariance hypothesis which is a meta-microstructure hypoth-

esis abstract from any market structure. The Roll (1984) model assumes a

constant spread with marketable orders hitting standing bids and asks – no

2https://www.cmegroup.com/education/files/globex-retrospective-2012-06-

12.pdf,
https://www.cmegroup.com/media-room/press-releases/2006/8/02/nymex_to_

offer_sidebysidetradingofphysicallydeliveredenergyfutur.html,
https://www.cmegroup.com/media-room/press-releases/2006/8/01/cbot_

launches_electronictradingofagfuturesduringdaytimehours.html.

https://www.cmegroup.com/education/files/globex-retrospective-2012-06-12.pdf
https://www.cmegroup.com/education/files/globex-retrospective-2012-06-12.pdf
https://www.cmegroup.com/media-room/press-releases/2006/8/02/nymex_to_offer_sidebysidetradingofphysicallydeliveredenergyfutur.html
https://www.cmegroup.com/media-room/press-releases/2006/8/02/nymex_to_offer_sidebysidetradingofphysicallydeliveredenergyfutur.html
https://www.cmegroup.com/media-room/press-releases/2006/8/01/cbot_launches_electronictradingofagfuturesduringdaytimehours.html
https://www.cmegroup.com/media-room/press-releases/2006/8/01/cbot_launches_electronictradingofagfuturesduringdaytimehours.html
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matter if posed orally or electronically. The same applies to the measures by

Corwin and Schultz (2012) and Abdi and Ranaldo (2017). The Effective Tick

measure similarly relies on price clustering alone without assuming a specific

market structure. The Amihud (2002) measure builds on Kyle’s lambda – a

measure of price impact. In fact, the model of Kyle (1985) does not include

a bid–ask spread but price impact can be measured irrespective of the exact

trading mechanism. Open-outcry and limit order book markets share some

important features. Both are order-driven auction markets. That means, the

interpretation of trade prices, which is the basis for the proxies we employ, is

similar. They are prices of trades executed by market orders hitting standing

bid or ask prices. The proxies we test are robust to sample splits in both the

time-series and the cross-sectional dimension (detailed results can be found

in the Appendix), i.e., they work in times of slower and more recent faster

markets and for commodities ranging from highly liquid energy to more illiq-

uid commodities like oats and rough rice. This makes us confident to believe

that the proxies are robust to market design and speed.

2.4 Data

We include the largest US-based commodity futures markets in our analysis:

From the energy sector, these are New York Mercantile Exchange (NYMEX)

WTI crude oil (CL), heating oil (HO), natural gas (NG), Intercontinental

Exchange (ICE) (EU) natural gas (NGLNM), Brent crude oil (LCO), and

gas oil (LGO). For grains, we use Chicago Board of Trade (CBOT) soybeans

(S), corn (C), wheat (W), Kansas City Board of Trade (KCBT) hard red

winter wheat (KW), CBOT soybean meal (SM), soybean oil (BO), rough rice

(RR), and oats (O). For metals, we consider Commodity Metals Exchange

(COMEX) gold (GC), silver (SI), copper (HG), NYMEX platinum (PL), and

palladium (PA). Softs are represented by ICE (US) cotton (CT), sugar No.11
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(SB), coffee (KC), cocoa (CC), Chicago Mercantile Exchange (CME) lumber

(LB), as well as ICE (US) orange juice. From the livestock sector, we use

CME live cattle (LC), lean hogs (LH), and feeder cattle (FC). Table B.1

provides an overview. For each of these commodities, we use the contract

with the highest volume, which is often the front-month contract, but can

sometimes be the 5th-nearest contract as it is the case for soybean meal or

soybean oil. To identify the most liquid contract, we use a 5-day moving

average of volume. Overnight periods are excluded from the sample due to

low volume. The high-frequency data is sourced from Refinitiv’s Datascope

Select, formerly Thomson Reuters Tick History (TRTH/SIRCA). Each trade

and quote update is labeled with a millisecond time-stamp and represents a

new row of the data, which results in billions of rows and terabytes data.

First, we pre-process the data to remove erroneous entries, like one-sided

quotes, trades without volume, or negative bid–ask spreads. Some of the

measures we employ require us to flag if a trade was initiated by a buy or sell

order. We assign trade directions using the Lee and Ready (1991) algorithm

as is standard in the literature.

We obtain daily (open-, high-, low-, and settlement-) price and volume

data from Thomson Reuters Datastream. Settlement prices are average prices

during a certain time-interval of the day. This makes the use of some measures

problematic like, e.g., variants of Roll’s measure that rely on the last price

being a trade executed at the bid or ask.

For each commodity, we treat outliers in daily high-frequency estimates

by removing those values whose log absolute distance from the centered 22-

day moving median exceeds a value of one. After calculating monthly proxies

and aggregating daily high-frequency measures to a monthly frequency, we

apply the same procedure with a 12-month moving median. Upon visual

inspection, this method appears to be able to effectively identify outliers

when the time-series exhibit considerable heteroskedasticity while retaining
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true spikes.

Descriptive Statistics Table 2.3 provides averages for all benchmark mea-

sures for each commodity in our sample. Considerable heterogeneity in mar-

ket quality across commodities is evident. For example, most energy and

precious metals exhibit low spreads and high levels of price efficiency. For

the others, the level of market quality is lower with some niche commodities

(e.g., rough rice (RR), oats (O) or lumber (LB)) exhibiting considerable lower

levels of market quality.3

3Sample averages of benchmark measures can be found in the Appendix.
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Table 2.2: Commodity Futures Considered

This table gives an overview of the commodities we consider in our analysis. NYMEX

= New York Mercantile Exchange, ICE = Intercontinental Exchange, CBOT = Chicago

Board of Trade, KCBT = Kansas City Board of Trade, COMEX = Commodity Exchange,

CME = Chicago Mercantile Exchange. CME, NYMEX, CBOT, KCBT, and COMEX

are all part of CME Group.

Sector Exchange Commodity Ticker

Energy
NYMEX WTI Crude Oil CL
NYMEX Heating Oil HO
NYMEX Natural Gas NG
ICE (EU) Natural Gas NGLNM
ICE (EU) Brent Crude Oil LCO
ICE (EU) Gas Oil LGO

Grains
CBOT Soybeans S
CBOT Corn C
CBOT Wheat W
KCBT Hard Red Winter Wheat KW
CBOT Soybean Meal SM
CBOT Soybean Oil BO
CBOT Rough Rice RR
CBOT Oats O

Metals
COMEX Gold GC
COMEX Silver SI
COMEX Copper HG
NYMEX Platinum PL
NYMEX Palladium PA

Softs
ICE (US) Cotton CT
ICE (US) Sugar 11 SB
ICE (US) Coffee KC
ICE (US) Cocoa CC
CME Lumber LB

Livestock
CME Live Cattle LC
CME Lean Hogs LH
CME Feeder Cattle FC
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Table 2.3: Average Benchmark Measures

This table provides average benchmark values of all commodities in our sample for the period 2008 to 2018. Displayed units: twRQS, vwRES,

and vwRPI in bps; λ in bps per million USD, λroot in bps per root-million USD; σ
V AR(5)
s in % p.a.. AMIM, V R30, and |AR1| are unchanged.

All measures are inverse measures of market quality, i.e., higher values indicate lower liquidity or price efficiency.

Spreads Price Impact Efficiency

Category Ticker twRQS vwRES vwRPI λ λroot σ
V AR(5)
s AMIM V R30 |AR1|

Energy CL 1.96 2.56 1.90 0.64 2.34 15.82 -0.19 0.31 0.05
HO 2.77 2.94 1.86 1.05 2.40 14.50 -0.16 0.29 0.05
NG 4.00 5.05 3.76 2.07 4.72 20.55 -0.12 0.33 0.06

NGLNM 36.45 22.42 13.74 0.98 3.55 55.18 -0.07 0.58 0.10
LCO 2.42 2.98 1.44 0.11 0.69 10.59 -0.07 0.24 0.04
LGO 4.79 4.91 2.13 0.05 0.81 11.50 -0.08 0.29 0.06

Grains S 6.82 3.14 2.70 0.69 2.23 13.73 -0.08 0.46 0.06
C 10.50 6.60 5.52 1.01 3.12 18.90 -0.06 0.48 0.08
W 12.90 5.89 5.22 2.44 5.12 22.21 -0.07 0.46 0.07

KW 23.05 6.15 5.64 6.16 7.41 21.61 -0.04 0.49 0.07
SM 12.78 4.34 3.65 2.46 4.38 17.29 -0.05 0.52 0.07
BO 10.72 3.91 3.33 1.96 3.48 14.12 -0.06 0.55 0.07
RR 56.40 20.25 16.98 3392.50 210.65 60.93 -0.11 0.64 0.09
O 71.54 28.10 23.07 120.52 43.80 77.32 -0.11 0.52 0.09

Metals GC 1.16 1.48 1.20 0.27 1.01 7.00 -0.12 0.36 0.06
SI 3.80 3.78 3.39 1.99 3.61 14.37 -0.14 0.32 0.06

HG 3.00 2.75 2.69 1.90 3.11 11.23 -0.21 0.30 0.05
PL 6.91 5.62 5.46 4.03 4.55 16.11 -0.16 0.36 0.06
PA 14.27 12.00 10.35 12.67 10.43 32.57 -0.12 0.45 0.08

Softs CT 5.21 5.32 3.58 2.63 4.70 21.22 -0.07 0.47 0.07
SB 7.01 8.36 6.07 1.79 4.30 21.87 -0.15 0.34 0.06
KC 6.30 7.01 3.45 1.53 4.72 21.21 -0.18 0.40 0.06
CC 6.87 6.85 4.44 3.12 6.00 21.70 -0.15 0.44 0.06
LB 28.91 26.94 22.58 61.87 27.95 67.24 -0.10 0.54 0.10

Livestock LC 3.68 3.60 3.56 2.10 3.38 11.79 -0.10 0.35 0.07
LH 5.98 5.81 5.44 5.68 7.08 19.13 -0.08 0.37 0.07
FC 8.42 6.85 6.76 6.22 6.19 20.78 -0.09 0.38 0.07
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Aggregate Market Quality In order to obtain an impression of time-

variation in aggregate market quality (AMQ), we compute two indices which

are depicted in Figure 2.1. The index in Panel A is the first principal com-

ponent of all standardized market quality benchmark measures and all com-

modities (except RR due to missing data). The index in Panel B is created

using repeated averaging. First, we average the standardized benchmark mea-

sures across all 28 commodities and measures for the categories liquidity and

price efficiency. Then, we take an average of the obtained liquidity and price

efficiency indices. Finally, we multiply the resulting index by −1 to obtain a

measure of AMQ.

Both indices behave very similar (correlation of 99%) and exhibit a pos-

itive trend as well as a sharp negative spike in late 2008. During this time,

commodity prices collectively spiked and subsequently declined sharply until

2009. Commodity volatility (measured using an exponentially moving aver-

age process of daily squared GSCI returns with a decay parameter of 0.94)

also spiked during this time and exhibits a correlation of around -89% with

AMQ during our sample period. In line with the findings of Rösch et al.

(2017), AMQ is also highly correlated with funding liquidity approximated

by the TED spread (correlation of around 79%) and the VIX (correlation of

85%).
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Panel B: Repeated Averaging

Figure 2.1: Aggregate Market Quality

This figure shows monthly estimates of aggregate commodity market quality. Panel A shows the first principal component of all measures and

commodities. Panel B shows an index generated using repeated averaging. For each commodity, we first scale each benchmark measure in our

sample to zero mean and unit variance. Then, for liquidity and efficiency, we average across commodities and measures. We then take the

average of the resulting liquidity and efficiency time-series. Finally, we multiply the resulting index by minus 1 to obtain aggregate market

quality (AMQ).
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2.5 Main Results

Time-Series Correlations We start by calculating the Pearson time-series

moment-correlation of each benchmark–proxy pair and for each commodity.

The results are shown in Table 2.4. We average the coefficients across com-

modities and list them in the columns AvgCor. Bold numbers indicate the

highest average correlation higher than 0.4 as well as any correlation coeffi-

cient that is not different from the highest at a 5% significance level. Fol-

lowing Goyenko et al. (2009), we use a t-test in the spirit of Fama and Mac-

Beth (1973) after transforming the correlation coefficients using the Fisher

z-transform z = ln(1+ρ)
1−ρ

, where ρ is the correlation coefficient so they follow

a normal distribution. Additionally, we select a winner among proxies for

each of the 28 commodity based on the highest correlation coefficient (that

is at least 0.4). A proxy is also considered a winner, if it is not significantly

different from the best proxy at the 5% confidence level using the test by Zou

(2007). We count the number of wins across commodities report it under

#wins.4 Since correlations of price efficiency proxies are low, we count the

number of positive and significant (5% level) coefficients under #sig.

Panel A shows the the results for spread benchmark–proxy pairs. The co-

efficients imply that VoV(Spread) and the Amihud measure exhibit the high-

est average correlation with both benchmarks, twRQS and vwRES. VoV(Spread)

is the proxy with the highest correlation for 21 and 25 out of 28 commodities.

Measures based on the Roll model perform worst. This might be due to the

fact that settlement prices are not actual last trade prices executed at the bid

or ask but weighted averages during certain time-intervals of the day.

The results for price impact are shown in Panel B. VoV(λ) performs

best. Its average correlations are the highest and its correlations are highest

4In the Appendix, we provide commodity-by-commodity time-series correlations for

vwRES, vwRPI, and σ
V AR(5)
s with their respective proxies. #wins corresponds to the

number of bold font entries by column.
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Table 2.4: Time-Series Correlations of Proxies and Benchmarks
This table shows results for the time-series correlation of market quality proxies and

benchmarks. The row indicates the proxy measure estimated each month from daily data

and the column indicates the benchmark estimated every day from intraday data and

aggregated to a monthly frequency. We calculate the correlation of a benchmark–proxy

pair for each commodity. AvgCor indicates the average correlation coefficient. Bold

numbers indicate the highest coefficient that is greater than 0.4. Those that are not

different from it at a 5% significance level are also in bold font. We use a t-test of

Fisher z-transformed coefficients in the spirit of Fama and MacBeth (1973). #wins

indicates the number of commodities for which the proxy exhibits the highest correlation

greater than 0.4 or is not significantly different from the highest one using the test by

Zou (2007) with a 5% confidence level. #sig is the number of commodities for which the

proxy’s correlation coefficient is positive and significantly different from zero at the 5%

level.

Panel A: Spread

twRQS vwRES

AvgCor #wins AvgCor #wins
Amihud 0.684 12 0.685 13
VoV(Spread) 0.731 21 0.740 25
Roll 0.301 1 0.307 1
RollAbs 0.334 0 0.349 0
RollGibbs 0.437 0 0.439 0
EffTick 0.509 7 0.519 8
HighLow 0.511 1 0.502 2
AbdiRanaldo 0.520 2 0.511 1
AvgSpread 0.663 3 0.672 7

Panel B: Price Impact

vwRPI λ λroot

AvgCor #wins AvgCor #wins AvgCor #wins
Amihud 0.608 13 0.796 13 0.800 7
1oV 0.467 3 0.638 2 0.583 0
V oV (λ) 0.650 22 0.818 21 0.864 25
RolloV 0.377 0 0.554 0 0.562 2
RollAbsoV 0.490 2 0.650 1 0.645 0
RollGibbsoV 0.560 3 0.759 6 0.748 0
EffTickoV 0.502 6 0.667 1 0.622 0
HighLowoV 0.581 12 0.790 10 0.775 5
AbdiRanaldooV 0.555 7 0.745 7 0.740 6
PastorStambaugh −0.008 0 0.052 0 0.040 0
AvgImpact 0.617 15 0.826 22 0.814 10

Panel C: Efficiency

σ
V AR(5)
s AMIM V R30 |AR1|

AvgCor #sig AvgCor #sig AvgCor #sig AvgCor #sig

σ
MA(1)
s 0.296 20 0.008 2 −0.000 4 0.027 4

AMIM 0.028 1 0.017 0 0.003 1 0.023 2
V R2 −0.019 3 0.013 0 0.031 2 0.011 0
|AR1| −0.022 1 0.011 1 −0.002 1 −0.016 1
AvgEff 0.098 9 0.019 2 0.010 1 0.013 1
AvgSpread 0.787 28 0.023 3 0.012 4 0.056 4
AvgImpact 0.717 28 0.032 3 0.062 5 0.101 5
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for most commodities. When daily high and low prices are not available, the

Amihud measure is the best choice. Combining multiple proxies by averag-

ing does not improve the correlation beyond the best single proxy for any

benchmark – neither for spread nor for impact proxies. We also compute

proxy–benchmark correlations by year (detailed results are tabulated in the

Appendix) that show that VoV–measures perform either at par are superior

to the Amihud measure in each of the years in the sample.

Panel C presents results for price efficiency measures. Of the single

measures, only the daily σ
MA(1)
s measure is able to capture some variation in

σ
V AR(5)
s . The average efficiency proxy is also virtually uncorrelated with all

the benchmarks. However, spread and impact measures are able to capture

some of the variation in σ
V AR(5)
s . This might be the case because both liquidity

and σ
V AR(5)
s are correlated with volatility. Another possible explanation is the

connection between liquidity and price efficiency through arbitrage activity

(Chordia et al., 2008). These results show that it appears to be difficult

to approximate time-series variation in commodity price efficiency at lower

frequencies with existing approaches.

Time-Series Correlation of Aggregate Benchmarks and Proxies Next,

we study the best way to approximate aggregate (systematic) market quality.

Chordia et al. (2000) find that there exists commonality in liquidity in the

equity market. Some of the asset pricing literature claims that there exists a

risk premium for the covariance of asset returns with market-wide liquidity

(Amihud, 2002; Pástor and Stambaugh, 2003; Acharya and Pedersen, 2005;

Sadka, 2006). Marshall et al. (2013) find temporal systematic liquidity in

commodities that is separate from systematic liquidity in equities. There

also appears to exist systematic price efficiency in stocks (Rösch et al., 2017).

In each of these studies, researchers face the decision of choosing the most ap-

propriate proxy for building a liquidity or efficiency factor. Thus, we provide
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some guidance on picking a proxy for commodities and compute market-wide

market quality benchmarks and proxies to compare their correlations.

First, we scale each measure for each commodity to zero mean and unit

standard deviation. Then, for each month, we compute cross-sectional aver-

ages for each measure. This way, we obtain a single time-series for every mea-

sure. Finally, we compute correlation estimates for each benchmark–proxy

pair.

We report the estimates in Table 2.5. The correlations of spread measures

in Panel A suggest that all proxies are reliable. As for individual commodities,

VoV(Spread) is the best spread proxy. For price impact proxies in Panel B,

the results are similar. The VoV(λ) measure is the best proxy but almost all

proxies can be used to approximate aggregate price impact. The correlations

of efficiency measures in Panel C suggest that aggregate variance ratios and

the absolute autocorrelation coefficient are mildly correlated with spread and

price impact proxies and highly correlated with σ
V AR(5)
s . Among the efficiency

measures, only σ
MA(1)
s is correlated with σ

V AR(5)
s and to a low degree with

|AR1|.

Overall, the results suggest that it is easier to approximate aggregate

market quality, especially liquidity. Aggregate spread and price impact prox-

ies are almost all highly correlated with the benchmarks. Systematic vari-

ance ratios and autocorrelation measures are difficult to capture at a low

frequency. These improvements in correlation likely occur, because averaging

reduces noise in proxy estimates and benchmarks. Finally, we can see that

the winners in the aggregate are the same as for individual commodities.

Cross-Sectional Correlations In asset pricing studies, portfolio sorts are

very common and also used while searching for commodity risk factors (see,

e.g., Yang, 2013). To simplify the choice of the most appropriate market qual-

ity measures to sort commodities, we provide some guidance in this section.
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Table 2.5: Time-Series Correlations of Aggregate Proxies and Bench-
marks
This table shows the Pearson moment-correlations of proxies for aggregate market quality

with different benchmarks. The row indicates the proxy measure estimated each month

from daily data and the column indicates the benchmark estimated every day from intra-

day data and aggregated to a monthly frequency. Each month, we average measures and

proxies across commodities. Then, we calculate the correlation of each measure–proxy

pair and report them in this table. Bold numbers indicate the highest correlation coef-

ficient and all those that are not different from the highest at the significance 5% level.

We employ the test by Zou (2007) to test for differences in the correlation coefficients.

Panel A: Spread

twRQS vwRES

Amihud 0.928 0.897
VoV(Spread) 0.956 0.913
Roll 0.659 0.658
RollAbs 0.769 0.756
RollGibbs 0.830 0.792
EffTick 0.918 0.883
HighLow 0.890 0.849
AbdiRanaldo 0.908 0.855
AvgSpread 0.939 0.902

Panel B: Price Impact

vwRPI λ λroot

Amihud 0.886 0.949 0.943
1oV 0.760 0.849 0.830
V oV (λ) 0.915 0.950 0.960
RolloV 0.777 0.827 0.836
RollAbsoV 0.854 0.917 0.915
RollGibbsoV 0.858 0.932 0.924
EffTickoV 0.848 0.921 0.906
HighLowoV 0.873 0.947 0.941
AbdiRanaldooV 0.885 0.939 0.931
PastorStambaugh 0.241 0.270 0.246
AvgImpact 0.879 0.946 0.940

Panel C: Efficiency

σ
V AR(5)
s AMIM V R30 |AR1|

σ
MA(1)
s 0.693 0.130 0.109 0.332

AMIM 0.062 −0.122 −0.042 0.075
V R2 −0.136 −0.075 −0.120 −0.054
|AR1| −0.109 −0.152 −0.073 −0.070
AvgEff 0.221 −0.063 −0.065 0.092
AvgSpread 0.951 0.138 0.189 0.360
AvgImpact 0.883 0.098 0.209 0.317
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For each benchmark–proxy pair, we calculate the Spearman rank corre-

lation in a given month. We repeat this procedure every month to obtain a

time-series of monthly cross-sectional correlations. Then, we average across

months and report them under AvgCor. In every of the 132 months, we select

the winner as the proxy with the highest correlation coefficient, or the one

that is not significantly different from it at the 5% confidence level using a

Fisher z-based test described in Sheshkin (2004).

The results are shown in Table 2.6. Among the spread proxies in Panel

A, the VoV(Spread), Amihud, and EffTick measures exhibit the highest cor-

relation with the benchmark. They also emerge as the winners in most of

the 132 months. All other measures do not seem to capture cross-sectional

variation in spreads very well.

Results for price impact in Panel B show that the VoV(λ), EffTickoV,

and HighLowoV measures perform best. Except for the PastorStambaugh

measure, the correlations of all measure–proxy pairs are in a similar range.

In the cross-section, 1oV also seems to be a valid price impact proxy. So it

is likely that the similarly high correlation of all measures except the Pástor

and Stambaugh (2003) measure is driven by differences in volume. Thus,

volume appears to be a main driver for cross-sectional variation in liquidity.

Price efficiency correlations in Panel C show that liquidity proxies are

able to capture σ
V AR(5)
s reasonably well. Impact proxies also appear to be

mildly correlated with other efficiency benchmarks except for AMIM.

In order to assess how sorted portfolio returns are affected by the choice of

measure, we construct monthly rebalanced equally-weighted long-short port-

folios. For all five liquidity benchmarks and three liquidity proxies (Amihud,

VoV(Spread), VoV(λ)), we form illiquid minus liquid (IML) factors from the

top and bottom 3 commodities sorted by the respective measure. We find

that the IML-factor returns sorted by proxies are highly correlated (> 0.8)

among themselves and their correlations with benchmark-sorted factor re-
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Table 2.6: Cross-Sectional Correlations of Proxies and Benchmarks
This table shows results of cross-sectional rank correlations. The row indicates the proxy

measure estimated each month from daily data and the column indicates the benchmark

estimated every day from intraday data and aggregated to a monthly frequency. We

calculate the correlation of a benchmark–proxy pair in each month. AvgCor indicates

the average correlation coefficient. Bold numbers indicate the highest coefficient that

is greater than 0.4. Those that are not different from it at a 5% significance level are

also in bold font. We use a t-test of Fisher z-transformed coefficients in the spirit of

Fama and MacBeth (1973). #wins indicates the number of commodities for which the

proxy exhibits the highest correlation greater than 0.4 or is not significantly different

from the highest one using the Fisher z-based test described in Sheshkin (2004) with a

5% confidence level. #sig is the number of commodities for which the proxy’s correlation

coefficient is positive and significantly different from zero at the 5% level.

Panel A: Spread

twRQS vwRES

AvgCor #wins AvgCor #wins
Amihud 0.757 132 0.808 131
VoV(Spread) 0.758 132 0.825 131
Roll 0.074 14 0.159 17
RollAbs 0.104 5 0.175 7
RollGibbs 0.114 2 0.214 13
EffTick 0.700 107 0.628 81
HighLow 0.065 2 0.134 4
AbdiRanaldo 0.166 10 0.266 24
AvgSpread 0.550 79 0.638 81

Panel B: Price Impact

vwRPI λ λroot

AvgCor #wins AvgCor #wins AvgCor #wins
Amihud 0.770 132 0.836 130 0.869 127
1oV 0.744 131 0.840 130 0.829 117
V oV (λ) 0.762 132 0.835 130 0.894 131
RolloV 0.682 119 0.771 118 0.804 122
RollAbsoV 0.741 132 0.818 128 0.843 124
RollGibbsoV 0.768 132 0.841 130 0.870 128
EffTickoV 0.803 132 0.741 113 0.783 102
HighLowoV 0.751 132 0.855 128 0.877 130
AbdiRanaldooV 0.753 130 0.802 129 0.861 129
PastorStambaugh 0.023 14 0.020 12 0.021 7
AvgImpact 0.769 132 0.832 129 0.865 128

Panel C: Efficiency

σ
V AR(5)
s AMIM V R30 |AR1|

AvgCor #sig AvgCor #sig AvgCor #sig AvgCor #sig

σ
MA(1)
s 0.203 23 0.004 3 −0.019 3 −0.001 3

AMIM 0.019 9 0.045 6 0.015 4 0.024 5
V R2 0.000 5 0.012 2 0.020 4 0.003 8
|AR1| −0.028 2 0.022 2 −0.020 4 −0.017 5
AvgEff 0.068 9 0.036 2 0.003 4 0.004 4
AvgSpread 0.727 130 0.047 8 0.116 20 0.180 25
AvgImpact 0.753 132 0.088 3 0.312 51 0.423 83
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turns are very similar (in the range of 0.63 to 0.8). For cross-sectional asset

pricing studies, we would thus expect similar conclusions when commodities

are sorted by the Amihud or a VoV–measure.

We also inspect the stability of cross-sectional correlations over time.

Detailed results in the form of cross-sectional correlations over time for each

proxy can be found in the Appendix. Overall, correlations are stable over

time. Together with the temporal stability of time-series correlations (de-

tailed results are also in the Appendix), this can be interpreted as an indica-

tion that our identified best proxies are robust to changes in the composition

of market participants and market design and therefore also most suitable for

approximating liquidity pre-2008.

Summary of Main Results Overall, our results show that VoV measures

are the most reliable in capturing individual, aggregate and cross-sectional

variation in liquidity. The Amihud measure is in some way also a volatility-

over-volume measure with the absolute return in the numerator. However,

during a high-volume high-volatility day, a low absolute return can give a false

impression of low price impact. Thus, the Amihud measure is more prone to

produce extreme values that require outlier-treatment. In our sample, about

4.8% of the monthly Amihud values are identified as outliers and excluded

from the analysis – versus 0% for VoV(Spread) and 0.2% for VoV(λ). The

volatility measure by Parkinson (1980) over volume as suggested by Fong

et al. (2018) appears to capture volume-induced volatility (price impact)

better than absolute returns. The use of high and low prices enables the

measure to capture intraday volatility more reliably, which seems to give it

an edge over the Amihud measure. If high and low prices are not available,

one can estimate the volatility from end-of-day prices. We estimate daily

volatility using an exponentially moving average model with a decay of 0.94

and find that it performs at par compared to the Amihud measure but pro-
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duces fewer extreme values (VoV(Spread) with EWMA–volatility: 0.3% are

outliers, VoV(λ) with EWMA–volatility: 3.1% are outliers). Thus, we rec-

ommend using VoV measures to approximate liquidity in commodity futures,

especially when high and low prices are available.

Our results complement and extend previous horse-races of liquidity

proxies (Goyenko et al., 2009; Marshall et al., 2012). They find that the

EffTick and Amihud measure are the best liquidity proxies. Our average

time-series correlations are slightly higher compared to those in Marshall

et al. (2012). Time-series correlations of aggregate liquidity (equally weighted

portfolios) in Goyenko et al. (2009) are also around 0.9 for spreads but lower

for price impact (around 0.3 to 0.5). Average cross-sectional correlations are

also slightly lower for equities compared to commodities. We show that new

measures developed by Kyle and Obizhaeva (2016) and Fong et al. (2018)

perform better. Our sample spans a time during which financial (and com-

modity) markets underwent changes in terms of market access, speed, and

especially the rise of algorithmic trading. We show that these proxy mea-

sures, some of which were developed for slow dealer markets, remain to serve

their purpose and are still useful.

We also add to the literature by studying efficiency measures at different

frequencies. Our analysis suggests that price efficiency is notoriously hard to

capture with low-frequency data. The pricing error volatility (e.g., estimated

using a VAR(5) as in σ
V AR(5)
s ) appears to be distinct from other measures

like variance-ratios. It is correlated with volatility and liquidity measures,

which are in turn also correlated with volatility. Other efficiency benchmarks

are also correlated with liquidity proxies, but to a lesser degree. We can only

recommend using σ
MA(1)
s as a proxy when estimating systematic commodity

price efficiency. For all other research designs, a daily frequency appears to

be too low.
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2.6 Further Analysis

2.6.1 Levels of Bid–Ask Spreads

In this section, we provide results for researchers wishing to incorporate the

actual level of bid–ask spreads into their analysis. We also present estimates

in order to allow mapping spread proxies to the level of their benchmarks.

For example, a study of after-cost risk premia requires reasonable estimates

of ideally both the variation and the level of the bid–ask spread. The recom-

mendations in this section aim at enabling researchers to accurately estimate

it without having to acquire and process intraday data and facilitate level-

sensitive analyses of samples starting before 2008.

First, we provide time-series averages of inverse market quality measures

estimated from quote data for each commodity in Table 2.3. For the estima-

tion of after-cost returns, vwRES averages can be be employed as constants

for the time period (2008–2018) they are measured in.

In order to enable analyses that require both the level and variation of

the bid–ask spread, we quantify their linear relationships with our spread

proxies. We estimate a linear regression with the quote-based benchmark as

the dependent and the daily-data-based proxy as the independent variable

(including a constant) in the spirit of Mincer and Zarnowitz (1969). We

estimate this for each commodity and benchmark–proxy pair and report cross-

sectional statistics. Table 2.7 shows the average constant, its cross-sectional

standard error along a test statistic against the null that the mean is 0. It

also includes the average slope with its relative standard error5, a test statistic

against the mean being 1, and the average R2. An ideal proxy would result

in a constant of 0, a slope of 1 and a small error. Of all proxies we consider,

only the VoV–measures exhibit constants that are on average close to 0.

5We define the relative standard error as the regular standard error divided by the
mean. We use it in order to make it more easily comparable across proxies
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For quoted spreads, its average slope is also close to 1, along with that of the

Effective Tick measure. Since effective spreads are lower than quoted spreads,

the slopes are lower. Overall, the results suggest that most proxies are on

a different scale than the benchmark measures. That means, they would

require scaling to be used in an analysis involving the actual level of the bid–

ask spread. Consistent with our correlation results, VoV(Spread) exhibits the

smallest errors as indicated by the highest R2. Overall, VoV–measures appear

to be best suited for capturing both the level and the variation in bid–ask

spreads of commodity futures as its constant is close to 0, its slope is close

to 1 with smaller (relative) errors and higher R2 compared to other proxies.

However, the cross-sectional (relative) errors of the constant and slope are not

negligible. Thus, we provide estimates for the constant and slope of vwRES–

VoV(Spread) regressions by commodity in Table 2.8. In order to obtain the

most accurate effective spread proxy–estimates using daily data, we suggest

computing the VoV(Spread) measure and then scaling it for each commodity

individually by multiplying it by the slope and adding the constant in bps.
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Table 2.7: Benchmark–Proxy Regressions

This table shows the result of benchmark–proxy regressions. For each proxy–benchmark pair and commodity, we estimate OLS regressions

with the benchmark as the dependent variable. Then, we compute the cross-sectional average constant (in bps), slope and R2 across all 28

commodities. SE(Const) is the cross-sectional standard error of the average constant in bps and Rel SE(Slope) is the relative cross-sectional

standard error of the average slope which is the standard error divided by the average slope.

Benchmark Proxy Avg Const SE(Const) t(Const=0) Avg Slope Rel SE(Slope) t(Slope=1) Avg R2

(bps) (bps) (%) (%)
twRQS Amihud (×108) 9.216 2.644 3.486 0.304 17.702 -12.955 53.194

VoV(Spread) 0.251 1.946 0.129 0.961 20.891 -0.196 58.151
Roll 11.256 2.842 3.960 0.021 36.050 -129.203 12.952
RollAbs 10.272 2.731 3.761 0.027 29.739 -123.037 15.093
RollGibbs 8.087 2.322 3.483 0.098 27.502 -33.301 23.259
EffTick 8.116 2.691 3.016 1.020 19.085 0.101 30.352
HighLow 6.964 2.144 3.248 0.120 22.872 -31.940 30.048
AbdiRanaldo 9.828 2.363 4.158 3.467 24.838 2.865 30.698

vwRES Amihud (×108) 5.325 0.946 5.628 0.203 22.172 -17.753 50.776
VoV(Spread) -0.393 1.037 -0.379 0.591 17.641 -3.926 57.856
Roll 6.705 1.099 6.103 0.014 38.119 -180.912 13.121
RollAbs 6.023 1.032 5.835 0.018 28.212 -191.723 15.954
RollGibbs 4.815 0.853 5.642 0.062 25.391 -59.728 23.071
EffTick 4.655 0.898 5.186 0.713 20.374 -1.971 31.355
HighLow 4.328 0.877 4.936 0.074 23.377 -53.850 28.904
AbdiRanaldo 6.009 0.975 6.161 2.091 22.910 2.278 29.283
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Table 2.8: vwRES–VoV(Spread) Regressions by Commodity

This table shows the constant, slope and R2 of regressions in which vwRES is the depen-

dent variable and VoV(Spread) is the independent variable.

Category Ticker Const Slope R2

(bps) (%)
Energy CL 0.26 0.58 75.19

HO 0.03 0.48 64.62
NG 2.00 0.40 36.18
NGLNM -12.10 2.95 76.51
LCO 0.89 0.49 62.72
LGO 1.68 0.56 52.58

Grains S 1.60 0.34 51.66
C 4.77 0.31 11.88
W 3.08 0.32 33.17
KW 2.67 0.27 43.92
SM 1.82 0.30 57.58
BO 1.01 0.37 56.89
RR -4.47 0.17 80.48
O -1.52 0.56 62.45

Metals GC 0.22 0.47 86.76
SI 0.99 0.43 76.73
HG 0.38 0.35 90.02
PL -3.47 0.78 82.69
PA -2.59 0.73 90.57

Softs CT 0.74 0.40 67.59
SB 6.22 0.21 8.83
KC 3.39 0.34 17.92
CC 1.81 0.37 78.67
LB -18.68 1.26 38.29

Livestock LC -0.88 0.72 66.72
LH -0.17 0.55 61.84
FC -9.57 1.55 60.85

2.6.2 Time-and-Sales Data

Using daily instead of millisecond time-stamped quote data is a step that

drastically reduces computation time from weeks to minutes. However, there

is a middle ground. Intraday data for commodity futures were recorded when

the contracts were traded in the pits – Time-and-Sales (TAS) data. In this
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section, we test if it possible to capture market quality using 5-minute TAS

data with the same or similar proxy measures.

We transform our tick-by-tick intraday data that include volume and

quotes to TAS data by taking 5-minute snapshots of trade prices and count

the number of trades in each interval. Volume and and quotes are discarded.

Thus, the data are in the format as if they were recorded in the pits which

also allows to draw some conclusions about the validity of the proxies across

market designs.

With 5-minute data, computation time for most measures is still around

several minutes. Only the RollGibbs measure requires several days to esti-

mate. Besides possibly yielding more accurate estimates, this compromise

also yields daily estimates that do not suffer from extreme levels of autocor-

relation as a rolling-window approach of daily measures.

Another advantage of 5-minute data is that the end-of-period prices are

actual trade prices instead of averages like the settlement price. This might

lead to an increase in the accuracy of Roll estimators. The fact that we now

observe trade prices that hit standing bid or ask limit orders complicates mea-

surements of price efficiency. In contrast to daily settlement prices, intraday

trade prices suffer from a bid–ask bounce that induces auto-covariance into

the trade price process. The σ
MA(1)
s requires only trade prices and should

therefore be more exact compared to when estimated from daily data. How-

ever, we do not consider AMIM, V R2/10/30 or |AR1| because of the bid–ask

bounce. Instead, we resort to the adjusted variance ratio of Smith (1994).

For estimation, we treat each 5-minute interval like we treated daily data

before. We record the last price, the high, and the low price. Since TAS data

do not include recordings of volume, we use the number of trades as a proxy.

VoV measures can be computed on a daily basis, so we include two versions

each: one is computed using 5-minute data with the number of trades; the

other is computed from daily high, low, and volume data. For comparison, we
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also include estimates of the Amihud (2002) measure computed from daily

single data-points. We estimate each proxy for each commodity and each

trading day. We also compute VoV–measures that use the same information

as the Amihud (2002) measure, i.e., settlement prices and volume. We employ

an exponentially weighted moving average (EWMA) process with a decay

factor of 0.94 to obtain daily volatility estimates and compute VoV(Spread,

Daily, EWMA) as well as VoV(λ, Daily, EWMA).

As for monthly data, we compute pairwise time-series Pearson moment-

correlations and report cross-sectional averages that we test against the best

of each benchmark. Table 2.9 reports the results.

Average correlations of spread measures in Panel A show similar results

to lower frequency data. VoV(Spread) measured using daily data emerges as

being sufficient to capture daily variations in spreads. That means, instead

of using 5-minute TAS data, researchers can rely on the daily VoV(Spread)

to obtain a daily spread proxy.

Panel B shows average correlations for price impact-measure pairs. The

results suggest that the daily VoV(λ) measure is the best daily price impact

proxy. Therefore, as for spreads, we recommend researchers to approximate

price impact on a daily frequency using the daily version of VoV(λ).

Taken together, the results for spreads and price impact imply that VoV–

measures estimated from daily data are able to capture variation in liquidity

at a daily frequency significantly better than the daily Amihud (2002) mea-

sure. This is a simple result of the fact that some days might exhibit high

volatility but near-zero returns, which leads to an underestimation of liquid-

ity when a single data point is used to compute the Amihud (2002) measure.

VoV–measures, even if they are computed from daily returns and volume

alone (VoV(Daily, EWMA)), are able outperform the daily Amihud (2002)

measure in terms of correlation with the benchmarks.

Results for efficiency proxies in Panel C suggest that σ
MA(1)
s exhibits
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Table 2.9: Time-and-Sales Proxies
This table shows cross-sectional averages of time-series correlation coefficients of daily

(monthly) benchmark measures estimated from intraday data including quotes (columns)

and daily (monthly) proxies estimated from 5-minute TAS data (rows). We add versions

of some proxy measures which are calculated from daily data. Average correlations of

monthly averages are reported in the columns ’Monthly’. Bold numbers indicate the

highest coefficient that is greater than 0.4. Those that are not different from it at a

5% significance level are also in bold font. We use a t-test of Fisher z-transformed

coefficients in the spirit of Fama and MacBeth (1973).

Panel A: Spread

Daily Monthly

twRQS vwRES twRQS vwRES
Amihud 0.580 0.458 0.652 0.591
Amihud(Daily) 0.321 0.308 0.577 0.556
VoV(Spread) 0.585 0.602 0.699 0.727
VoV(Spread, Daily) 0.550 0.577 0.728 0.735
VoV(Spread, Daily, EWMA) 0.562 0.498 0.648 0.646
Roll 0.290 0.367 0.536 0.586
RollAbs 0.355 0.388 0.637 0.653
RollGibbs 0.474 0.508 0.653 0.684
EffTick 0.453 0.502 0.663 0.783
HighLow 0.312 0.412 0.482 0.543
AbdiRanaldo 0.439 0.514 0.605 0.679
AvgSpread 0.561 0.612 0.711 0.754

Panel B: Price Impact

Daily Monthly

vwRPI λ λroot vwRPI λ λroot

Amihud 0.256 0.524 0.514 0.548 0.676 0.654
Amihud(Daily) 0.229 0.335 0.370 0.535 0.685 0.690
1oV 0.089 0.275 0.217 0.310 0.417 0.359
VoV(λ) 0.345 0.641 0.723 0.660 0.771 0.819
VoV(λ, Daily) 0.404 0.620 0.708 0.650 0.844 0.882
VoV(λ, Daily, EWMA) 0.257 0.639 0.661 0.570 0.766 0.804
RolloV 0.127 0.360 0.333 0.514 0.607 0.576
RollAbsoV 0.232 0.540 0.528 0.642 0.775 0.743
RollGibbsoV 0.266 0.658 0.627 0.678 0.823 0.788
EffTickoV 0.232 0.491 0.423 0.602 0.660 0.594
HighLowoV 0.251 0.583 0.570 0.647 0.744 0.730
AbdiRanaldooV 0.313 0.644 0.666 0.674 0.803 0.806
PastorStambaugh 0.039 0.000 −0.012 0.000 −0.038 −0.047
AvgImpact 0.316 0.669 0.693 0.644 0.812 0.827

Panel C: Efficiency

Daily Monthly

σ
V AR(5)
s AMIM V R30 |AR1| σ

V AR(5)
s AMIM V R30 |AR1|

σ
MA(1)
s 0.326 0.077 0.149 0.026 0.733 0.069 0.145 0.074

V RSmith 0.021 0.053 0.219 0.017 0.145 0.115 0.286 0.110
AvgEff 0.205 0.081 0.232 0.027 0.610 0.104 0.251 0.103
AvgSpread 0.595 0.034 0.007 0.017 0.890 0.023 0.023 0.040
AvgImpact 0.508 0.027 0.029 0.047 0.827 0.050 0.044 0.095
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a medium correlation with σ
V AR(5)
s . Also, V RSmith as well as the average

efficiency proxy are able to capture V R30 to some degree.

Lastly, to enable a ‘fair’ comparison of monthly proxies estimated from

daily data with daily proxies estimated from 5-minute TAS data, we aggregate

the latter to a monthly frequency by taking simple averages. We report the

results in along the daily results in Table 2.9. The results for spreads in

Panel A suggest that all spread proxies work well but not significantly better

than VoV(Spread) estimated from daily data. The same conclusion can be

drawn from results for price impact in Panel B. Average correlations of spread

and price impact measures are similar in size compared to those in Table 2.4

estimated from daily data. High correlations of TAS-based liquidity proxies

and their benchmarks imply that the measures are expected to be valid when

estimated from data generated in the pits.

Correlations of price efficiency measures in Panel C show that it is pos-

sible to approximate price efficiency using TAS data at a medium frequency.

The average correlation of σ
MA(1)
s with σ

V AR(5)
s is high and the correlation

of V RSmith with V R30 is in a medium range. Thus, we suggest researchers

who wish to approximate commodity price efficiency to use intraday (e.g.,

5-minute) TAS data instead of daily data. Temporal aggregation can help in

reducing noise and increasing the benchmark–proxy correlation to medium

levels. We also recommend using both σ
MA(1)
s and V RSmith as proxies since

they appear to capture different aspects of the price process.

2.7 Conclusion

In this paper, we identify the best low-frequency proxies for liquidity and

informational efficiency of commodity futures markets.

In contrast to previous studies, we have 11 years of high-frequency data

available. Our sample includes periods during which algorithmic trading rose
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to become a central part of market activity. Our findings suggest that most

proxies remain valid in a modern market environment. Some of the measures

we employ have not been included in previous studies of commodity liquidity

including VoV measures which we find to be the best liquidity proxies. Instead

of solely focusing on the liquidity aspect of market quality, we also include

price efficiency into our analysis which appears to be notoriously hard to

capture using low-frequency data. We also study the usefulness of TAS-

based proxies – a data type available since 1996 in Datascope that represents

a middle ground in terms of computational cost but enables the estimation of

price efficiency proxies that exhibit a medium to high correlation with their

benchmarks.

Based on our results we recommend the following:

(1) Spreads are best captured by the VoV(Spread) measure of Kyle and

Obizhaeva (2016).

(2) Price impact is best captured by VoV(λ) of Fong et al. (2018).

(3) In contrast to the Amihud (2002) measure, VoV–measures computed from

daily data are able to capture daily variation in liquidity.

(4) To approximate price efficiency, we recommend using both the variance

ratio of Smith (1994) and the pricing error volatility (MA(1)) of Has-

brouck (1993) estimated using 5-minute TAS data. If intraday data is

not available, spread or impact proxies are valid alternatives to capture

Hasbrouck’s pricing error volatility.

(5) In order to obtain unbiased effective spreads estimates, we recommend

using the VoV(Spread) measure and then mapping it to the correct level

and variance using the parameters provided in Table 2.8.

Our findings provide guidance for researchers and policy makers who

aim to investigate commodity market quality and face the decision of picking
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an appropriate measure given their research design: individual commodities,

systematic market quality or cross-sectional sorts. Asset pricing studies often

involve sorted portfolios or aggregate measures while individual commodity

market quality is needed for investigations of changes in market structure

like the financialization of commodity markets, the emergence of electronic

trading and the subsequent rise of algorithmic trading.
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A Appendix

This appendix provides additional details on the computation of the market

quality measures we employ and the accuracy of commodity market quality

proxies. Sections A.1 and A.2 explain how we estimate liquidity and price

efficiency, respectively. Proxy averaging is explained in Section A.3. Sections

A.4 and A.5 show that VoV–measures are always at par or superior to the

Amihud measure when applying cross-sectional or time-series sample splits.

Section A.6 shows that cross-sectional correlations exhibit considerable sta-

bility over time. Section A.7 tests more advanced forecast combination tech-

niques to combine proxies none of which is superior to simple averages or the

single best proxies. Section A.8 provides insights that indicate that the low

correlations of price efficiency proxies estimated from daily data are due to

noise. We provide averages of proxy measures for our sample in Table A.1.

Finally, we show the time-series evolution and cross-sectional scale of three

selected benchmark measures (vwRES, λroot, and σ
V AR(5)
s ) in Figure A.1.
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Table A.1: Average Proxy Measures

This table shows average values of proxy measures for each commodity in the sample 2008–2018.

Ticker Amihud VoV(Spread) Roll RollAbs RollGibbs EffTick HighLow AbdiRanaldo 1oV VoV(λ) RolloV
(×108) (×106) (×103) (×108)

BO 10.13 7.94 106.46 101.30 45.48 4.23 55.16 0.87 9.36 10.36 9.63
C 4.06 5.96 131.21 115.03 56.45 8.47 59.33 1.16 3.30 6.76 4.12
CC 42.53 13.46 143.17 131.80 58.40 6.29 64.21 1.26 34.43 22.84 45.49
CL 0.95 3.94 182.62 162.87 74.59 2.27 82.33 1.89 0.61 3.77 0.85
CT 26.77 11.30 109.82 116.27 53.40 3.33 59.80 1.17 23.34 17.94 16.42
FC 38.07 10.56 65.30 69.21 31.77 2.84 33.49 0.34 55.66 15.78 20.79
GC 0.61 2.70 69.15 73.36 35.09 1.32 40.51 0.46 0.80 2.13 0.25
HG 7.03 6.86 115.60 120.25 55.23 2.44 65.54 1.04 4.57 9.09 2.50
HO 3.88 6.03 150.95 128.32 61.64 1.17 71.58 1.45 2.47 7.09 4.02
KC 17.83 10.59 151.99 140.42 69.34 5.17 71.69 1.46 13.99 15.62 19.77
KW 38.43 13.08 148.19 142.23 59.95 7.67 66.88 1.45 27.90 21.81 44.17
LB 909.57 35.69 126.21 131.64 61.25 8.67 52.88 1.56 711.30 97.88 782.99
LC 7.73 6.18 74.55 70.24 34.06 3.26 33.89 0.38 11.21 7.01 7.69
LCO 1.31 4.28 136.39 147.07 71.21 2.65 74.50 1.71 0.85 4.27 1.03
LGO 3.60 5.79 131.31 122.62 56.21 5.05 67.74 1.78 2.53 6.63 3.35
LH 27.91 10.80 141.36 117.00 64.99 4.99 49.62 1.03 23.11 16.42 30.35
NG 5.24 7.64 227.53 192.88 97.17 4.28 98.36 2.96 2.61 9.69 5.06
NGLNM 43.39 11.67 171.97 142.99 69.63 18.45 43.17 1.37 23.28 19.33 44.41
O 1998.78 53.06 134.53 130.76 60.44 17.83 76.72 1.37 1601.40 177.65 1973.89
OJ 2986.83 42.67 135.57 151.89 60.13 8.85 59.46 1.58 2274.91 139.27 755.46
PA 236.00 20.06 194.61 147.40 61.36 3.28 75.19 1.48 127.52 47.53 333.32
PL 47.43 11.60 137.74 113.51 47.18 1.91 53.31 0.84 32.41 19.45 47.01
RR 68631.58 145.72 98.87 104.36 47.45 9.78 50.79 0.81 69606.87 813.48 55844.21
S 2.02 4.61 111.01 99.44 46.96 19.18 52.13 0.75 1.92 4.51 1.99
SB 15.09 10.19 148.71 138.48 70.13 9.98 75.97 1.86 10.96 14.85 14.79
SI 4.99 6.57 145.08 139.67 64.31 3.11 72.72 1.61 3.52 8.19 2.49
SM 10.47 8.39 131.66 115.99 57.90 5.52 63.56 1.08 8.36 11.33 10.32
W 9.78 8.77 160.47 147.34 65.96 6.67 75.79 1.77 6.82 12.15 11.06

(continued)
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Table A.1: Average Proxy Measures (Continued)

Ticker RollAbsoV RollGibbsoV EffTickoV HighLowoV AbRaoV PastorStambaugh σ
MA(1)
s AMIM V R2 |AR1|

(×108) (×108) (×1010) (×108) (×1010) (×1010) (% p.a.)
BO 8.94 4.09 38.00 4.91 8.16 158.59 3.05 -0.25 0.16 0.16
C 3.53 1.76 27.57 1.85 3.65 -4.64 3.80 -0.27 0.14 0.15
CC 40.89 18.60 200.81 20.26 41.56 155.87 4.61 -0.21 0.16 0.16
CL 0.76 0.35 0.93 0.38 0.92 1.12 5.58 -0.27 0.12 0.16
CT 25.15 11.48 64.29 12.84 25.82 -207.76 4.67 -0.24 0.15 0.15
FC 30.65 14.53 172.35 16.55 16.68 -226.15 2.34 -0.28 0.15 0.15
GC 0.43 0.21 0.76 0.25 0.28 -0.66 1.92 -0.34 0.13 0.14
HG 7.29 3.29 12.05 3.82 5.60 -8.83 3.88 -0.32 0.14 0.16
HO 3.14 1.58 2.57 1.88 3.85 -11.99 4.32 -0.28 0.16 0.16
KC 17.13 8.54 67.00 8.84 19.16 85.31 4.67 -0.38 0.15 0.15
KW 38.90 15.90 213.91 18.17 39.18 65.14 4.66 -0.22 0.17 0.19
LB 747.20 349.19 5188.43 304.55 923.92 642.32 5.33 -0.28 0.14 0.17
LC 7.05 3.51 36.22 3.51 4.04 -55.63 2.38 -0.33 0.15 0.16
LCO 1.23 0.60 2.26 0.64 1.34 13.09 4.75 -0.20 0.17 0.18
LGO 2.95 1.43 12.28 1.71 4.96 22.72 4.51 -0.17 0.15 0.17
LH 24.16 13.81 111.44 10.52 21.65 117.04 4.02 -0.25 0.12 0.14
NG 4.38 2.25 9.91 2.34 7.03 -82.93 6.21 -0.20 0.14 0.16
NGLNM 33.63 15.69 563.12 9.38 33.16 140.97 6.22 -0.21 0.14 0.15
O 1566.38 730.62 22516.51 891.52 1733.25 10257.50 4.74 -0.24 0.13 0.14
OJ 882.34 339.45 4669.01 333.98 778.88 2391.00 5.93 -0.29 0.15 0.15
PA 187.96 77.23 639.36 87.17 218.83 -615.19 5.35 -0.31 0.17 0.15
PL 33.55 15.97 69.98 16.53 30.65 -313.34 4.51 -0.18 0.19 0.19
RR 46278.12 24499.31 527018.70 26283.06 39831.19 -311760.59 3.61 -0.20 0.14 0.15
S 1.78 0.86 36.62 0.97 1.46 -8.89 3.12 -0.26 0.13 0.15
SB 13.62 6.84 100.97 7.39 17.69 43.69 4.64 -0.33 0.14 0.15
SI 3.61 1.94 9.95 2.22 4.46 -23.65 5.14 -0.23 0.19 0.17
SM 9.69 4.79 44.01 5.25 9.76 39.23 3.67 -0.23 0.14 0.16
W 9.61 4.18 42.76 4.86 11.20 0.85 4.70 -0.27 0.16 0.18
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Figure A.1: vwRES, λroot, and σ
V AR(5)
s

This table shows monthly estimates of vwRES, λroot, and σ
V AR(5)
s in bps, bps per root–USD–volume, and % p.a., respectively.
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A.1 Liquidity Measures

Liquidity: High-Frequency Benchmark Measures

Time-Weighted Relative Quoted Spread (twRQS) We estimate the

relative quoted spread as

RQSk =
Ak −Bk

Mk

(A.1)

where Ak is the ask price of the kth quote, Bk is the bid price, and Mk is the

mid-quote price Mk = (Ak + Bk)/2. We calculate the quoted spread of each

quote recorded and compute a daily estimate by weighting it by the duration

it was active, but no longer than 5 minutes. This way, we obtain a daily

estimate of time-weighted relative quoted spreads (twRQS).

Quoted spreads, however, can be a misleading metric when depth is low

and orders walk the book. Moreover, issues arise when trades are concen-

trated during times when quoted spreads are low. This is why we also con-

sider the effective spread, which is closer to the true trading costs incurred

by an investor trading more than a single contract at a time.

Volume-Weighted Relative Effective Spread (vwRES) We estimate

the relative effective spread of the kth trade of a given day as

RESk = 2 Qk
Pk −Mk

Mk

(A.2)

where Qk is a binary variable that is +1 for a buyer-initiated trade and −1 for

a seller-initiated trade flagged using the Lee and Ready (1991) algorithm, Pk

is the kth trade price, and Mk is the prevailing mid-quote price. To compute

the daily average, we weight by volume to obtain a daily estimate for the

volume-weighted relative effective spread (vwRES).
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Volume-Weighted Relative Price Impact (vwRPI) Brennan and Sub-

rahmanyam (1996) argue that liquidity should rather be measured by the

price impact of order flow instead of spreads. Thus, following Goyenko et al.

(2009), we also calculate price impact as another facet of liquidity. For every

trade, we calculate the relative price impact as

RPIk = Qk
Mk+5min −Mk

Mk

, (A.3)

where Mk+5min is the mid-quote price five minutes after the kth trade. We

weight by volume when aggregating to a daily frequency. This measure is

intended to capture the permanent price impact from private information

being revealed through trading or market makers adjusting quotes to limit

inventory risk, as well as transitory effects when prevailing market depth is

low or not replenished within 5 minutes (low resiliency). For each day, we

form a volume-weighted average.

Kyle’s Lambda (λ) We also measure price impact using two parametric

approaches. The functional form of the first approach is based on the results

in Kyle (1985). We estimate a regression of the form (see, e.g., Chordia et al.,

2008)

mrt = α + λ OIBt + ϵt, (A.4)

where t denotes 1-minute intervals, mrt is the mid-quote return calculated

from the prevailing mid-quote price at the end of the 1-minute interval, and

OIBt (order imbalance) is the buy minus sell volume within the time-interval

measured in USD. Volume is the number of contracts traded times the futures

price in USD times the size of a contract. We estimate this regression for each

day in our sample to obtain a daily estimate of λ as a measure of price impact.
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Root Lambda (λroot) The theoretical results of Kyle (1985) imply a lin-

ear relationship between order imbalance and returns. In empirical studies,

however, a concave functional form with signed root-volume is also often as-

sumed (e.g., Hasbrouck, 2009; Collin-Dufresne and Fos, 2015). We estimate

this alternative lambda using a regression of the form

mrt = α + λroot sign(OIBt)
√

|OIBt|+ ϵt, (A.5)

where sign(OIBt) takes the value +1 if OIBt is positive and −1 if it is

negative.

Liquidity: Low-Frequency Proxy Measures

To approximate liquidity at daily frequencies, we use measures that differ

with respect to data requirements. We use three different versions of the Roll

(1984) model which can be estimated from trade prices alone. The Effective

Tick approach by Holden (2009) can also be estimated from daily trade prices,

but we also compute it with open, high, and low prices. The measures by

Corwin and Schultz (2012) and Abdi and Ranaldo (2017) require high and low

(and close or settlement) prices. Lastly, we estimate proxies for price impact

that require volume data. These are the volatility over volume measures

of Kyle and Obizhaeva (2016) and Fong et al. (2018), the well known ratio

of Amihud (2002), the regression-based measure of Pástor and Stambaugh

(2003), as well as spread-over-volume measures of Goyenko et al. (2009). In

the following, we provide a short description of each proxy.

Roll Measure (Roll) Roll (1984) proposes a model in which a constant

spread s arises from order processing costs alone. s can easily be estimated

from trade prices at any sampling frequency. In his model, the true or fair
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(log) price mt follows a random walk

mt = mt−1 + ut, (A.6)

where ut is a zero-mean disturbance term. Observable (log) trade prices follow

pt = mt + s Qk. (A.7)

where Qk is +1 (−1) for buyer-initiated (seller-initiated) trades. He shows

that the spread s can be estimated as

s = 2
√

−Cov[∆pt,∆pt−1], (A.8)

where ∆pt = pt − pt−1. Empirically, returns can exhibit positive autocorrela-

tion, which is why we drop estimates when the auto-covariance turns out to

be positive.

Roll Measure with Absolute Covariances (RollAbs) We also include

a variant of the Roll model following Easley et al. (2021) that handles positive

covariances by taking the absolute value as

s = 2
√

|Cov[∆pt,∆pt−1]|. (A.9)

Roll’s Measure Estimated with a Gibbs-Sampler (RollGibbs) Has-

brouck (2004) proposes using a Gibbs-sampler to estimate the Roll model

(and extensions). The sampler sequentially updates and draws from full con-

ditional distributions including drawing vectors of trade indicators Qt. Each

month and for each commodity we estimate the spread using 1000 sweeps but

discard the first 200 as a burn-in.
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Effective Tick (EffTick) Holden (2009) proposes a spread estimator that

relies on the observation that prices tend to cluster on certain multiples of

ticks. He assumes that prices that cluster at, e.g., quarters, cannot be gen-

erated by a spread of whole dollars. We assume different clustering for dif-

ferent minimum tick-regimes (decimal, fractional). Since the method relies

on price clustering alone, we include all prices that are available: high, low,

open, and settlement prices. For a minimum tick-size of one cent, we as-

sume that prices tend to cluster at either $0.01, $0.05, $0.1, $0.25 or whole

dollars. So S = (0.01, 0.05, 0.1, 0.25, 1). Let j denote the jth element in

S and J the number of elements in S. For decimal minimum tick sizes

of, e.g., $0.001 or $0.1, we assume that clustering occurs at the same mul-

tiples of the minimum tick. Following the notation of Holden (2009), we

define A = (100, 20, 10, 4, 1), B = (80, 8, 8, 3, 1), and Ojk = 0 ∀j, k except

for O2,1 = 20, O3,2 = 10, O4,2 = O4,3 = 2, and O5,4 = 1. For a frac-

tional regime with a minimum tick-size of $1
8
we set S = (1

8
, 1
4
, 1
2
, 1). So

A = (8, 4, 2, 1), B = (4, 2, 1, 1), and Oj,k = 0 except for O2,1 = 4, O3,2 = 2,

and O4,3 = 1. For a minimum tick-size of 1
4
, we assume S = (1

4
, 1
2
, 1, 2), so

A, B and O are identical to the eights scheme. When the minimum tick-size

is 0.05, we set S = (0.05, 0.1, 0.25, 0.5, 1), so that A = (0.05, 0.1, 0.25, 0.5, 1),

B = (8, 8, 2, 1, 1) and Oj,k is zero except for O2,1 = 10, O3,1 = 2, O3,2 = 2,

O4,3 = 2, and O5,4 = 1. Holden (2009) defines Nj as the number of prices

that can be generated by the Sj but not by elements of S that are larger than

Sj. The empirical probabilities are then given by

Fj =
Nj∑J
j=1Nj

∀j = 1, ..., J. (A.10)
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The unconstrained probabilities are

Uj =

 A1F1

B1
, for j = 1

AjFj

Bj
−

∑j−1
k=1

Oj,kFk

Bk
, for j = 2, ..., J

 (A.11)

and the constrained probabilities are computed iteratively for j = 1, ..., J as

γ̂j =

 min(max(Uj, 0), 1), for j = 1

min(max(Uj, 0)1−
∑j−1

k=1 γ̂k), for j = 2, ..., J

 (A.12)

which are used to compute the spread estimate relative to the price by

EffTick =

∑J
j=1 γ̂jSj

P̄
. (A.13)

High–Low Spread Measure (HighLow) Corwin and Schultz (2012) pro-

pose an estimator that relies on the assumption that the high price likely being

a trade that hit the ask and the low price likely being a trade that lifted the

bid. Their estimator for the spread is

st =
2(eαt − 1)

1 + eαt
(A.14)

with

αt =

√
2βt −

√
βt

3− 2
√
2

−
√

γt

3− 2
√
2
, βt =

1∑
j=0

[log(
Ht+j

Lt+j

)],

and γt = log(
max(Ht, Ht+1)

min(Lt, Lt+1)
),

(A.15)

where Ht and Lt are high and low prices of time-interval t, respectively. The

measure requires only two days (or other intervals) of data to compute an

estimate of the spread. We average across all daily estimates in a given month.
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High–Low–Close Measure (AbdiRanaldo) Abdi and Ranaldo (2017)

build on the idea of high and low prices but include the last price. We use

their two-day corrected version because they argue that it exhibits a higher

correlation with their high-frequency benchmarks. It is computed as

stwo−day−corrected =
1

N

N∑
t=1

st, st =
√
max(4(ct − νt)(ct − νt+1), 0),

and νt =
lt + ht

2
,

(A.16)

where ct, lt, and ht are close, low, and high log-prices, respectively. N is the

number of trading days in the month.

Volatility over Volume Spread Measure (VoV(Spread)) Kyle and

Obizhaeva (2016) derive volatility over volume as an illiquidity measure of

the form

V oV (Spread) = (
σ2

V olume
)
1
3 . (A.17)

where V olume is the daily dollar volume of a contract. Daily dollar volume is

the number of contracts traded times the futures settlement price times the

size of the contract. We follow Fong et al. (2018) and estimate σ using the

estimator proposed by Parkinson (1980)

σ =
√
8/π log(High/Low) (A.18)

and set the invariant proportionality factor to 8, i.e., we multiply VoV(Spread)

by 8.

Volatility over Volume Impact Measure (VoV(λ)) Building on the

results by Kyle and Obizhaeva (2016), Fong et al. (2018) propose a proxy for
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root-volume impact. The estimator has the form

V oV (λ) =
σ

V olume1/2
, (A.19)

where σ is estimated again using σ =
√
8/π log(High/Low) following Parkin-

son (1980). VoV(Spread) and VoV(λ) are highly correlated with an average

Pearson time-series correlation of 0.98 and an average cross-sectional Spear-

man correlation of 0.99 in our sample. Both can therefore be used as spread

and price impact proxies.

Amihud Amihud (2002) proposes using a low-frequency version of Kyle’s

lambda in absolute terms to estimate the price impact of order flow

Amihud =
|r|

V olume
. (A.20)

|r| is the absolute log-return on a day and V olume is the daily dollar Volume.

We calculate this fraction for every trading day and take a simple average to

obtain a monthly estimate.

Pástor Stambaugh (PastorStambaugh) Pástor and Stambaugh (2003)

suggest using a regression of returns on signed volume to capture price impact.

Even though they recommend not using it for single assets, we include it in

our analysis for completeness. In their model, volume obtains the same sign

as the return rt of that particular day t. We estimate the regression

rt = θ + ϕ rt−1 + γ sign(rt−1) V olumet−1 + ϵt, (A.21)

where γ is the price impact measure and V olumet is the volume at day t.
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Spread–Impact Measures Following Goyenko et al. (2009), we also in-

clude price impact versions of different relative spread measures. They call

these ‘Extended Amihud Proxies’. These are simply calculated as

Extended Amihud Proxy =
Spread

V olume
. (A.22)

We use the Roll, RollAbs, EffTick, HighLow, AbdiRanaldo, and RollGibbs

estimates for the spread to compute such impact proxies which we name,

e.g., RolloV for Roll over volume. Lou and Shu (2017) point out that the

pricing component of the Amihud ratio is mainly attributable to volume in

the denominator. To address concerns that price impact proxies might simply

be driven by volume, we also include 1oV = 1
V olume

as a proxy in our analysis.

Proxies We Do Not Consider Several other liquidity proxies have been

proposed that build on the number of days without a trade occurring (see, e.g.,

the FHT measure by Fong et al. (2017), or Zeros by Lesmond et al. (1999)).

However, in our application, none of the commodity contracts exhibits a

sufficient number of zero-trade days which is why we omit these measures

from our study.

A.2 Efficiency

Efficiency: High-Frequency Benchmark Measures

Pricing Error Volatility from a VAR(5) (σ
V AR(5)
s ) Hasbrouck (1993)

proposes a VAR model to estimate the joint dynamics of price changes and

order imbalance. The model decomposes the price process into a random-walk

and a transitory component. He assumes that the log-price process is

pt = mt + st, (A.23)
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wheremt is the efficient price that follows a random walk and st is a stationary

pricing error that can arise from any source. Hasbrouck (1993) suggests using

the pricing error variance σs as a proxy for market efficiency.

Each day, we estimate a bi-variate vector auto-regressive model with 5

lags, VAR(5). We employ actual trade returns rt and order imbalance OIBt

sampled at the 1-minute frequency. The VAR(5) model is

rt =
5∑

i=1

airt−i +
5∑

i=1

biOIBt−i + ν1,t (A.24)

OIBt =
5∑

i=1

cirt−i +
5∑

i=1

diOIBt−i + ν2,t. (A.25)

We then invert the model into a vector moving average model (VMA) of the

form

rt =
∞∑
k=0

a∗kν1,t−k +
∞∑
k=0

b∗kν2,t−k (A.26)

OIBt =
∞∑
k=0

c∗kν1,t−k +
∞∑
k=0

d∗kν2,t−k. (A.27)

Next, we truncate the number of VMA parameters at 11 lags. The return

process is then given by

rt = θ1ν1,t + θ2ν1,t +∆st, (A.28)

where θ1 =
∑11

i=0 a
∗
i and θ2 =

∑11
i=0 b

∗
i and the pricing error is

st =
11∑
j=0

αjν1,t−j +
11∑
i=0

βjν2,t−j

when imposing the Beveridge and Nelson (1981) restriction. Finally, αj and
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βj are given by

αj = −
11∑

k=j+1

a∗k, βj = −
11∑

k=j+1

b∗k. (A.29)

A lower bound for the pricing error variance is then

σ2
s =

11∑
j=0

[
αj βj

]
Cov(ν)

αj

βj

 . (A.30)

In the literature, σs is sometimes used as a measure of price efficiency (see,

e.g., Hendershott and Moulton, 2011; Rösch et al., 2017) but also as a measure

of price impact (see, e.g., Collin-Dufresne and Fos, 2015). Hasbrouck (1993)

refers to it as a measure of market quality.

Pricing Error Volatility from a MA(1) (σ
MA(1)
s ) Hasbrouck (1993) also

proposes using a moving average process for returns alone to infer the pricing

error variance. Thus, we estimate a MA(1) model of the form

rt = ϵt − aϵt−1. (A.31)

After imposing the Beveridge and Nelson (1981) restriction, a lower bound

for the pricing error volatility can be estimated as

σ̂s =
√
a2σ2

ϵ . (A.32)

Adjusted Market Inefficiency Magnitude (AMIM) Tran and Leirvik

(2019) propose a measure for the level of market inefficiency which they call

‘Adjusted Market Inefficiency Magnitude’, short AMIM. To implement their

measure, we first estimate an AR(10) model for the mid-quote returns mrt
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(differences in log mid-quote prices) of a given day:

mrt = α +
10∑
q=1

βqmrt−q + ϵt. (A.33)

Then, they propose to standardize the vector of coefficients by calculating

β̂standard = L−1β̂, (A.34)

where β̂ is a column vector of the coefficients and L is a lower triangular

matrix from the Choleski decomposition of the covariance matrix of β̂. AMIM

is then calculated as

AMIMt =
MIMt −RCI

1−RCI

, (A.35)

where

MIMt =

∑q
j=1 |β̂standard

j,t |
1 +

∑q
j=1 |β̂standard

j,t |
(A.36)

and RCI = 0.9184596 for 10 lags.

Variance Ratio (V R30) Lo and MacKinlay (1988) propose variance ratios

to test if a process follows a random walk. We approximate price efficiency

as

|1− σ2(mrk,t)

kσ2(mrt)
|, (A.37)

where mrk,t refers to overlapping mid-quote returns aggregated to a k-minute

frequency while mrt are mid-quote returns at the 1-minute frequency. We

estimate variance ratios for k = 30. We follow O’Hara and Ye (2011) and

subtract the ratio from one and take the absolute value, such that a high
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value corresponds to higher degrees of inefficiency, as it is the case for the

other measures as well.

Absolute First-Order Autocorrelation (|AR1|) A simple way to mea-

sure deviations from the random walk is to calculate first-order autocorre-

lation. This is related to the variance ratio measure as well as the AMIM

measure, that incorporates multiple lags. Nevertheless, using AR(1) coef-

ficients is a common proxy for market efficiency (see, e.g., Chordia et al.,

2008; Boehmer et al., 2021). Let mrt denote 1-minute mid-quote returns.

We estimate the AR(1) process

mrt = α + βmrt−1 + ϵt (A.38)

and use |β| as a proxy for market efficiency.

Efficiency: Low-Frequency Proxy Measures

Since most of the measures can be computed on any sampling frequency, we

employ the same methods to estimate low-frequency proxies. Only σ
V AR(5)
s

cannot be estimated without order imbalance. We compute monthly esti-

mates with daily settlement prices. We use σMA1
s , AMIM, |AR1|, and a

variance ratio with k = 2 (V R2).

Microstructure-Adjusted Variance Ratio (V RSmith) Smith (1994) de-

velops a class of variance ratio estimators that account for microstructure

effects. We use the version proposed in his paper that incorporates the model

by Blume and Stambaugh (1983) whose analytic solution is described in the

appendix of his paper. The adjusted variance ratio is

Vk =
1
T

∑T
t=1(ln(Pt)− ln(Pt−k)− kµ)

km2

− 1, (A.39)
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where Pt is a trade price,

µ =
1

T

T∑
t=1

ln(Pt)− ln(Pt−1), and (A.40)

m2 =
1

T

T∑
t=1

(ln(Pt)− ln(Pt−1)− µ)2 − 2σ2
δ , (A.41)

where in turn

σ2
δ =

j
T

∑T
t=1(ln(Pt)− ln(Pt−1)− µ)− 1

T

∑T
t=1(ln(Pt)− ln(Pt−j)− jµ)2

2j − 2
.

(A.42)

We set j = 2 and k = 4. This estimator allows us to use 5-minute trade

price data to compute a variance ratio estimate that is not overshadowed

by bid–ask bounce induced autocorrelation which could substantially bias

standard variance ratios.

A.3 Average of Proxies (Avg)

We also consider proxy combinations which potentially reduce noise of the

different approaches. In the forecasting literature, the simple mean of dif-

ferent estimates has been shown to be a useful combination method (see,

e.g., Clemen, 1989). This approach does not require estimating weights. Our

proxies, however, are on different scales. The Amihud measure, for example,

does not have an intuitive unit of measurement. Thus, we first standardize

each proxy for each commodity. Then, we compute the simple average across

all proxies. We compute an average of all spread proxies (AvgSpread), of

all price impact proxies (AvgImpact), and of all (inverse) proxies for market

efficiency (AvgEff).

Standardizing in the time-series dimension eradicates all cross-sectional

differences between commodities. This is why we take a rank-based approach

when studying the performance of aggregate measures cross-sectionally. We
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first calculate the rank of each commodity for each measure. For exam-

ple, the commodity with the lowest spread according to the Amihud mea-

sure is assigned rank one. Then, we average ranks across measures in every

commodity-month.

A.4 Time-Series Correlations by Commodity

To get an idea of the cross-sectional distribution of the correlations, we pro-

vide individual estimates for each commodity in Tables A.4, A.2, and A.3 for

the vwRES, vwRPI, and σ
V AR85)
s , respectively. We test each correlation co-

efficient against the null of zero correlation with the benchmark and indicate

significance by stars. For each commodity, we test the correlation against

the null that it is equal to the correlation of the best proxy using the test

by Zou (2007). If we cannot reject such a test at the 5% level, we print the

correlation coefficient in bold font.
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Table A.2: Time-Series Correlations of vwRPI with Proxies by Commodity

This table shows Pearson correlation coefficients of a single benchmark with different proxes (column) for different commodities (row). We test

if each correlation coefficient is different from zero. ∗∗∗, ∗∗, and ∗ refer to significance at the 1, 5, and 10% level, respectively. Bold numbers

indicate the highest coefficient exceeding 0.4 and any other in that row that is not different at a 5% significance level using the test by Zou

(2007).

Amihud 1oV V oV (λ) RolloV RollAbsoV RollGibbsoV EffTickoV HighLowoV AbdiRanaldooV PasStam AvgImpact
BO 0.535∗∗∗ 0.458∗∗∗ 0.573∗∗∗ 0.544∗∗∗ 0.457∗∗∗ 0.535∗∗∗ 0.410∗∗∗ 0.474∗∗∗ 0.542∗∗∗ 0.086 0.578∗∗∗

C 0.408∗∗∗ 0.520∗∗∗ 0.312∗∗∗ 0.342∗∗∗ 0.338∗∗∗ 0.386∗∗∗ 0.461∗∗∗ 0.450∗∗∗ 0.407∗∗∗ −0.259∗ 0.457∗∗∗

CC 0.694∗∗∗ 0.599∗∗∗ 0.694∗∗∗ 0.610∗∗∗ 0.535∗∗∗ 0.644∗∗∗ 0.472∗∗∗ 0.693∗∗∗ 0.665∗∗∗ 0.042 0.679∗∗∗

CL 0.735∗∗∗ 0.473∗∗∗ 0.853∗∗∗ 0.639∗∗∗ 0.735∗∗∗ 0.820∗∗∗ 0.566∗∗∗ 0.777∗∗∗ 0.648∗∗∗ 0.543∗∗∗ 0.813∗∗∗

CT 0.758∗∗∗ 0.455∗∗∗ 0.743∗∗∗ −0.137 0.580∗∗∗ 0.643∗∗∗ 0.314∗∗∗ 0.634∗∗∗ 0.711∗∗∗ −0.019 0.678∗∗∗

FC 0.749∗∗∗ 0.617∗∗∗ 0.785∗∗∗ 0.269∗ 0.466∗∗∗ 0.716∗∗∗ 0.743∗∗∗ 0.764∗∗∗ 0.666∗∗∗ −0.226∗ 0.770∗∗∗

GC 0.751∗∗∗ 0.398∗∗∗ 0.864∗∗∗ 0.191 0.704∗∗∗ 0.760∗∗∗ 0.805∗∗∗ 0.847∗∗∗ 0.750∗∗∗ −0.247∗∗ 0.846∗∗∗

HG 0.900∗∗∗ 0.889∗∗∗ 0.941∗∗∗ 0.413∗∗∗ 0.877∗∗∗ 0.891∗∗∗ 0.831∗∗∗ 0.890∗∗∗ 0.765∗∗∗ −0.528∗∗∗ 0.905∗∗∗

HO 0.799∗∗∗ 0.708∗∗∗ 0.802∗∗∗ 0.565∗∗∗ 0.546∗∗∗ 0.746∗∗∗ 0.627∗∗∗ 0.789∗∗∗ 0.655∗∗∗ −0.115 0.768∗∗∗

KC 0.320∗∗∗ 0.306∗∗∗ 0.331∗∗∗ 0.126 0.257∗∗∗ 0.401∗∗∗ 0.309∗∗∗ 0.263∗∗∗ 0.228∗∗ 0.240∗ 0.351∗∗∗

KW 0.498∗∗∗ 0.234∗∗∗ 0.504∗∗∗ 0.349∗∗∗ 0.447∗∗∗ 0.434∗∗∗ 0.387∗∗∗ 0.452∗∗∗ 0.539∗∗∗ −0.391∗∗∗ 0.464∗∗∗

LB 0.555∗∗∗ 0.312∗∗∗ 0.651∗∗∗ 0.222 0.431∗∗∗ 0.493∗∗∗ 0.396∗∗∗ 0.392∗∗∗ 0.506∗∗∗ −0.023 0.517∗∗∗

LC 0.728∗∗∗ 0.581∗∗∗ 0.770∗∗∗ 0.481∗∗∗ 0.548∗∗∗ 0.692∗∗∗ 0.620∗∗∗ 0.671∗∗∗ 0.705∗∗∗ 0.154 0.763∗∗∗

LCO 0.723∗∗∗ 0.542∗∗∗ 0.751∗∗∗ 0.368∗∗∗ 0.591∗∗∗ 0.695∗∗∗ 0.715∗∗∗ 0.743∗∗∗ 0.677∗∗∗ 0.603∗∗∗ 0.737∗∗∗

LGO 0.593∗∗∗ 0.570∗∗∗ 0.590∗∗∗ 0.409∗∗∗ 0.375∗∗∗ 0.503∗∗∗ 0.461∗∗∗ 0.576∗∗∗ 0.525∗∗∗ −0.006 0.563∗∗∗

LH 0.647∗∗∗ 0.585∗∗∗ 0.731∗∗∗ 0.403∗∗∗ 0.460∗∗∗ 0.525∗∗∗ 0.599∗∗∗ 0.717∗∗∗ 0.614∗∗∗ 0.166 0.700∗∗∗

NG 0.615∗∗∗ 0.381∗∗∗ 0.698∗∗∗ 0.438∗∗∗ 0.401∗∗∗ 0.552∗∗∗ 0.512∗∗∗ 0.552∗∗∗ 0.547∗∗∗ −0.371∗∗∗ 0.643∗∗∗

NGLNM 0.654∗∗∗ 0.375∗∗∗ 0.742∗∗∗ 0.301∗∗ 0.654∗∗∗ 0.678∗∗∗ 0.586∗∗∗ 0.565∗∗∗ 0.658∗∗∗ −0.080 0.633∗∗∗

O 0.336∗∗∗ 0.061 0.584∗∗∗ 0.402∗∗∗ 0.227∗∗ 0.186∗∗ 0.276∗∗∗ 0.259∗∗∗ 0.414∗∗∗ 0.144 0.401∗∗∗

OJ 0.190∗ 0.225∗∗ 0.422∗∗∗ 0.193 0.374∗∗∗ 0.250∗∗∗ 0.130 0.280∗∗∗ 0.175∗ 0.232∗ 0.372∗∗∗

PA 0.785∗∗∗ 0.771∗∗∗ 0.821∗∗∗ 0.635∗∗∗ 0.703∗∗∗ 0.757∗∗∗ 0.685∗∗∗ 0.740∗∗∗ 0.676∗∗∗ −0.197∗ 0.775∗∗∗

PL 0.907∗∗∗ 0.779∗∗∗ 0.853∗∗∗ 0.788∗∗∗ 0.841∗∗∗ 0.741∗∗∗ 0.774∗∗∗ 0.768∗∗∗ 0.793∗∗∗ −0.343∗∗∗ 0.844∗∗∗

RR 0.637∗∗∗ 0.147 0.754∗∗∗ 0.297∗∗ 0.152 0.332∗∗∗ 0.236∗∗ 0.471∗∗∗ 0.517∗∗∗ 0.221 0.501∗∗∗

S 0.515∗∗∗ 0.486∗∗∗ 0.500∗∗∗ 0.269∗∗ 0.275∗∗∗ 0.412∗∗∗ 0.462∗∗∗ 0.500∗∗∗ 0.381∗∗∗ −0.074 0.500∗∗∗

SB 0.417∗∗∗ 0.364∗∗∗ 0.413∗∗∗ 0.399∗∗∗ 0.401∗∗∗ 0.394∗∗∗ 0.365∗∗∗ 0.388∗∗∗ 0.273∗∗∗ 0.000 0.439∗∗∗

SI 0.845∗∗∗ 0.739∗∗∗ 0.853∗∗∗ 0.380∗∗∗ 0.768∗∗∗ 0.855∗∗∗ 0.837∗∗∗ 0.879∗∗∗ 0.788∗∗∗ 0.338∗∗∗ 0.887∗∗∗

SM 0.279∗∗∗ 0.218∗∗ 0.315∗∗∗ 0.335∗∗∗ 0.249∗∗∗ 0.282∗∗∗ 0.170∗ 0.364∗∗∗ 0.296∗∗∗ 0.047 0.309∗∗∗

W 0.458∗∗∗ 0.276∗∗∗ 0.362∗∗∗ 0.315∗∗∗ 0.324∗∗∗ 0.357∗∗∗ 0.312∗∗∗ 0.372∗∗∗ 0.421∗∗∗ −0.157 0.391∗∗∗
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Table A.3: Time-Series Correlations of σ
V AR(5)
s with Proxies by Commodity

This table shows Pearson correlation coefficients of a single benchmark with different proxes (column) for different commodities (row). We test

if each correlation coefficient is different from zero. ∗∗∗, ∗∗, and ∗ refer to significance at the 1, 5, and 10% level, respectively. Bold numbers

indicate the highest coefficient exceeding 0.4 and any other in that row that is not different at a 5% significance level using the test by Zou

(2007).

σ
MA(1)
s AMIM V R2 |AR1| AvgEff AvgSpread AvgImpact

BO 0.361∗∗∗ −0.096 0.025 −0.109 0.093 0.822∗∗∗ 0.749∗∗∗

C 0.137 −0.053 −0.336∗∗∗ −0.176∗ −0.186∗∗ 0.782∗∗∗ 0.683∗∗∗

CC 0.241∗∗∗ −0.109 −0.057 −0.119 −0.010 0.785∗∗∗ 0.725∗∗∗

CL 0.560∗∗∗ 0.101 −0.114 0.080 0.224∗∗∗ 0.916∗∗∗ 0.884∗∗∗

CT 0.285∗∗∗ −0.062 −0.098 −0.069 0.007 0.733∗∗∗ 0.488∗∗∗

FC −0.011 0.170∗ 0.068 0.045 0.090 0.535∗∗∗ 0.573∗∗∗

GC 0.320∗∗∗ 0.095 0.063 −0.044 0.120 0.858∗∗∗ 0.836∗∗∗

HG 0.513∗∗∗ 0.153 0.116 0.020 0.237∗∗∗ 0.894∗∗∗ 0.828∗∗∗

HO 0.176∗ 0.059 −0.179∗ −0.079 0.024 0.873∗∗∗ 0.863∗∗∗

KC 0.327∗∗∗ 0.047 0.079 0.146 0.214∗∗ 0.581∗∗∗ 0.419∗∗∗

KW 0.335∗∗∗ 0.143 0.196∗∗ 0.252∗∗∗ 0.286∗∗∗ 0.817∗∗∗ 0.712∗∗∗

LB 0.256∗∗∗ −0.010 −0.046 0.064 0.091 0.814∗∗∗ 0.805∗∗∗

LC 0.058 −0.108 −0.012 −0.173∗ −0.071 0.733∗∗∗ 0.553∗∗∗

LCO 0.414∗∗∗ 0.104 −0.240∗∗∗ 0.058 0.118 0.930∗∗∗ 0.910∗∗∗

LGO 0.167∗ 0.005 −0.094 −0.014 0.033 0.898∗∗∗ 0.882∗∗∗

LH 0.158∗ −0.068 −0.071 0.106 0.032 0.822∗∗∗ 0.745∗∗∗

NG 0.346∗∗∗ −0.008 0.055 −0.011 0.172∗∗ 0.807∗∗∗ 0.670∗∗∗

NGLNM 0.636∗∗∗ 0.142 0.279∗∗∗ 0.085 0.401∗∗∗ 0.799∗∗∗ 0.876∗∗∗

O 0.063 0.058 0.064 −0.056 0.015 0.664∗∗∗ 0.558∗∗∗

OJ 0.321∗∗∗ −0.031 0.022 0.082 0.123 0.612∗∗∗ 0.452∗∗∗

PA 0.457∗∗∗ −0.200∗∗ −0.004 −0.120 0.056 0.904∗∗∗ 0.918∗∗∗

PL 0.609∗∗∗ 0.145 −0.075 −0.249∗∗∗ 0.193∗∗ 0.890∗∗∗ 0.899∗∗∗

RR −0.037 −0.012 −0.179 −0.103 −0.045 0.687∗∗∗ 0.690∗∗∗

S 0.342∗∗∗ 0.198∗∗ 0.086 −0.134 0.171∗∗ 0.751∗∗∗ 0.683∗∗∗

SB 0.197∗∗ 0.004 −0.102 −0.038 0.008 0.610∗∗∗ 0.486∗∗∗

SI 0.228∗∗ −0.137 −0.096 −0.087 −0.034 0.881∗∗∗ 0.800∗∗∗

SM 0.414∗∗∗ 0.092 −0.119 −0.154∗ 0.084 0.840∗∗∗ 0.810∗∗∗

W 0.411∗∗∗ 0.156 0.244∗∗∗ 0.173∗ 0.308∗∗∗ 0.788∗∗∗ 0.575∗∗∗
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The estimates in Table A.4 show that for most commodities, VoV(Spread)

is the best proxy. Nevertheless, there are differences between commodities in

how easily spreads can be approximated using low-frequency measures. For

example, spreads of NYMEX WTI (CL) futures can be approximated rea-

sonably well by a multitude of proxy measures, while for example variation

in the spread of CBOT Corn (C) futures can only be approximated by few

measures.

The individual results for relative price impact (vwRPI) in Table A.2 are

similar. The VoV(λ) measure emerges as the best proxy for almost all com-

modities. It is able to approximate price impact for all commodities except

for CBOT Corn (C). The Amihud measure is able to produce significantly

correlated estimates but is for most commodities inferior in terms of corre-

lation compared to VoV(λ). Based on these findings, we thus recommend

using VoV measures to approximate spreads and price impact of individual

commodities.
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Table A.4: Time-Series Correlations of vwRES with Proxies by Commodity

This table shows Pearson correlation coefficients of a single benchmark with different proxies (column) for different commodities (row). We test

if each correlation coefficient is different from zero. ∗∗∗, ∗∗, and ∗ refer to significance at the 1, 5, and 10% level, respectively. Bold numbers

indicate the highest coefficient exceeding 0.4 and any other in that row that is not different at a 5% significance level using the test by Zou

(2007).

Amihud VoV(Spread) Roll RollAbs RollGibbs EffTick HighLow AbdiRanaldo AvgSpread
BO 0.684∗∗∗ 0.754∗∗∗ 0.391∗∗∗ 0.331∗∗∗ 0.448∗∗∗ 0.383∗∗∗ 0.558∗∗∗ 0.531∗∗∗ 0.657∗∗∗

C 0.477∗∗∗ 0.345∗∗∗ −0.135 −0.078 0.027 0.546∗∗∗ 0.170∗ 0.213∗∗ 0.274∗∗∗

CC 0.861∗∗∗ 0.887∗∗∗ 0.418∗∗∗ 0.426∗∗∗ 0.476∗∗∗ 0.337∗∗∗ 0.554∗∗∗ 0.565∗∗∗ 0.744∗∗∗

CL 0.775∗∗∗ 0.867∗∗∗ 0.607∗∗∗ 0.653∗∗∗ 0.751∗∗∗ 0.653∗∗∗ 0.678∗∗∗ 0.651∗∗∗ 0.828∗∗∗

CT 0.744∗∗∗ 0.822∗∗∗ 0.204 0.292∗∗∗ 0.542∗∗∗ 0.516∗∗∗ 0.715∗∗∗ 0.750∗∗∗ 0.779∗∗∗

FC 0.761∗∗∗ 0.780∗∗∗ −0.025 0.032 0.091 0.714∗∗∗ 0.342∗∗∗ 0.317∗∗∗ 0.608∗∗∗

GC 0.826∗∗∗ 0.931∗∗∗ 0.164 0.489∗∗∗ 0.624∗∗∗ 0.720∗∗∗ 0.792∗∗∗ 0.547∗∗∗ 0.841∗∗∗

HG 0.921∗∗∗ 0.949∗∗∗ 0.626∗∗∗ 0.746∗∗∗ 0.789∗∗∗ 0.715∗∗∗ 0.740∗∗∗ 0.827∗∗∗ 0.907∗∗∗

HO 0.740∗∗∗ 0.804∗∗∗ 0.520∗∗∗ 0.497∗∗∗ 0.649∗∗∗ 0.213∗∗ 0.690∗∗∗ 0.623∗∗∗ 0.708∗∗∗

KC 0.279∗∗∗ 0.423∗∗∗ 0.223∗ 0.298∗∗∗ 0.338∗∗∗ −0.075 0.429∗∗∗ 0.374∗∗∗ 0.431∗∗∗

KW 0.645∗∗∗ 0.663∗∗∗ 0.232∗∗ 0.396∗∗∗ 0.316∗∗∗ 0.411∗∗∗ 0.463∗∗∗ 0.523∗∗∗ 0.577∗∗∗

LB 0.631∗∗∗ 0.619∗∗∗ 0.426∗∗∗ 0.375∗∗∗ 0.493∗∗∗ 0.524∗∗∗ 0.299∗∗∗ 0.547∗∗∗ 0.628∗∗∗

LC 0.801∗∗∗ 0.817∗∗∗ 0.069 0.134 0.328∗∗∗ 0.559∗∗∗ 0.351∗∗∗ 0.408∗∗∗ 0.676∗∗∗

LCO 0.686∗∗∗ 0.792∗∗∗ 0.491∗∗∗ 0.586∗∗∗ 0.690∗∗∗ 0.474∗∗∗ 0.742∗∗∗ 0.696∗∗∗ 0.780∗∗∗

LGO 0.665∗∗∗ 0.725∗∗∗ 0.388∗∗∗ 0.315∗∗∗ 0.482∗∗∗ 0.658∗∗∗ 0.563∗∗∗ 0.571∗∗∗ 0.682∗∗∗

LH 0.706∗∗∗ 0.786∗∗∗ 0.236∗∗ 0.296∗∗∗ 0.278∗∗∗ 0.674∗∗∗ 0.480∗∗∗ 0.520∗∗∗ 0.709∗∗∗

NG 0.627∗∗∗ 0.601∗∗∗ 0.331∗∗∗ 0.207∗∗ 0.353∗∗∗ 0.355∗∗∗ 0.169∗ 0.335∗∗∗ 0.512∗∗∗

NGLNM 0.856∗∗∗ 0.875∗∗∗ 0.228∗ 0.593∗∗∗ 0.676∗∗∗ 0.835∗∗∗ 0.468∗∗∗ 0.536∗∗∗ 0.816∗∗∗

O 0.501∗∗∗ 0.790∗∗∗ 0.404∗∗∗ 0.293∗∗∗ 0.518∗∗∗ 0.548∗∗∗ 0.535∗∗∗ 0.538∗∗∗ 0.783∗∗∗

OJ 0.047 0.516∗∗∗ 0.496∗∗∗ 0.386∗∗∗ 0.319∗∗∗ 0.523∗∗∗ 0.466∗∗∗ 0.532∗∗∗ 0.637∗∗∗

PA 0.884∗∗∗ 0.952∗∗∗ 0.446∗∗∗ 0.648∗∗∗ 0.529∗∗∗ 0.775∗∗∗ 0.703∗∗∗ 0.590∗∗∗ 0.918∗∗∗

PL 0.934∗∗∗ 0.909∗∗∗ 0.623∗∗∗ 0.536∗∗∗ 0.624∗∗∗ 0.690∗∗∗ 0.659∗∗∗ 0.721∗∗∗ 0.882∗∗∗

RR 0.791∗∗∗ 0.897∗∗∗ 0.288∗ 0.249∗∗ 0.377∗∗∗ 0.171 0.517∗∗∗ 0.502∗∗∗ 0.725∗∗∗

S 0.709∗∗∗ 0.719∗∗∗ 0.173 0.229∗∗∗ 0.432∗∗∗ 0.562∗∗∗ 0.574∗∗∗ 0.555∗∗∗ 0.635∗∗∗

SB 0.404∗∗∗ 0.297∗∗∗ −0.025 0.046 0.021 0.227∗∗∗ −0.058 −0.119 0.142
SI 0.884∗∗∗ 0.876∗∗∗ 0.307∗∗∗ 0.184∗∗ 0.401∗∗∗ 0.841∗∗∗ 0.552∗∗∗ 0.433∗∗∗ 0.737∗∗∗

SM 0.751∗∗∗ 0.759∗∗∗ 0.194∗ 0.284∗∗∗ 0.397∗∗∗ 0.497∗∗∗ 0.483∗∗∗ 0.596∗∗∗ 0.656∗∗∗

W 0.593∗∗∗ 0.576∗∗∗ 0.296∗∗∗ 0.335∗∗∗ 0.334∗∗∗ 0.494∗∗∗ 0.422∗∗∗ 0.421∗∗∗ 0.551∗∗∗



CHAPTER 2. MEASURING COMMODITY MARKET QUALITY 66

Table A.3 reports the individual correlations of all price efficiency prox-

ies with σ
V AR(5)
s . σ

MA(1)
s is the only single proxy that is significantly corre-

lated with the high-frequency benchmark. However, correlations are rather

low. Average spread and impact proxies are significantly correlated with the

benchmark of almost all commodities.

A.5 Time-Series Correlations by Year

In our main analysis, we have shown that volatility-over-volume measures

are superior to the oft-used Amihud (2002) measure in terms of correlation

with their benchmarks. As a robustness check, we compute proxy–benchmark

time-series correlations for each year in our sample. The average correlation

coefficients are reported in Tables A.5 for spreads, in Table A.6 for price

impact, and in Table A.7 for price efficiency. In every year between 2008

and 2018, the VoV(Spread) measure is either the single best spread proxy

or insignificantly worse than the best. In about half of the years, the Ami-

hud measure exhibits a significantly lower average correlation. The picture

is the same for price impact measures. In every year, V oV (λ) outperforms

or performs at par with the Amihud measure. This confirms that the VoV

measures are indeed consistently superior in capturing time-series variation

in commodity liquidity when compared to other measures, including the pop-

ular Amihud measure. The year-by-year results for price efficiency proxies

estimated from daily data also affirm our previous results.
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Table A.5: Time-Series Correlations of Spread Proxies and Benchmarks by Year

This table shows average Pearson moment-correlation coefficients of benchmark–proxy pairs of bid-ask spreads. We calculate the correlation

of a benchmark–proxy pair for each commodity and average it across all commodities. Bold numbers indicate the highest coefficient that is

greater than 0.4. Those that are not different from it at a 5% significance level are also in bold font. We use a t-test of Fisher z-transformed

coefficients in the spirit of Fama and MacBeth (1973).

Panel A: twRQS

Amihud VoV(Spread) Roll RollAbs RollGibbs EffTick HighLow AbdiRanaldo AvgSpread
2008 0.660 0.713 0.278 0.274 0.487 0.428 0.427 0.479 0.623
2009 0.664 0.677 0.377 0.309 0.355 0.297 0.449 0.400 0.599
2010 0.497 0.538 0.032 0.155 0.209 0.102 0.254 0.261 0.369
2011 0.366 0.494 0.186 0.177 0.332 0.137 0.265 0.371 0.448
2012 0.333 0.452 0.004 0.081 0.216 0.240 0.256 0.394 0.334
2013 0.383 0.492 0.169 0.187 0.223 0.134 0.234 0.229 0.356
2014 0.474 0.637 0.387 0.275 0.375 0.194 0.445 0.336 0.503
2015 0.471 0.566 0.192 0.180 0.238 0.252 0.373 0.296 0.432
2016 0.516 0.568 0.214 0.247 0.316 0.190 0.344 0.327 0.498
2017 0.407 0.592 0.371 0.282 0.256 0.122 0.331 0.325 0.478
2018 0.545 0.683 0.274 0.162 0.320 0.145 0.417 0.337 0.492

Panel B: vwRES

Amihud VoV(Spread) Roll RollAbs RollGibbs EffTick HighLow AbdiRanaldo AvgSpread
2008 0.663 0.758 0.313 0.379 0.511 0.353 0.442 0.512 0.657
2009 0.745 0.830 0.373 0.357 0.406 0.354 0.474 0.458 0.683
2010 0.562 0.610 0.002 0.172 0.215 0.191 0.266 0.243 0.399
2011 0.421 0.627 0.180 0.184 0.323 0.257 0.331 0.364 0.491
2012 0.494 0.630 0.204 0.228 0.315 0.208 0.371 0.444 0.509
2013 0.431 0.584 0.347 0.305 0.316 0.070 0.247 0.268 0.445
2014 0.559 0.718 0.441 0.341 0.373 0.203 0.448 0.381 0.563
2015 0.395 0.465 0.126 0.228 0.209 0.238 0.310 0.298 0.425
2016 0.438 0.485 0.162 0.195 0.300 0.282 0.327 0.239 0.457
2017 0.335 0.429 0.151 0.085 0.131 0.034 0.173 0.107 0.237
2018 0.529 0.601 0.314 0.203 0.266 0.155 0.299 0.236 0.405
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Table A.6: Time-Series Correlations of Price Impact Proxies and Benchmarks by Year

This table shows average Pearson moment-correlation coefficients of benchmark–proxy pairs of price impact. We calculate the correlation of a

benchmark–proxy pair for each commodity and average it across all commodities. Bold numbers indicate the highest coefficient that is greater

than 0.4. Those that are not different from it at a 5% significance level are also in bold font. We use a t-test of Fisher z-transformed coefficients

in the spirit of Fama and MacBeth (1973).

Panel A: vwRPI

Amihud 1oV V oV (λ) RolloV RollAbsoV RollGibbsoV EffTickoV HighLowoV AbdiRanaldooV PastorStambaugh AvgImpact
2008 0.524 0.323 0.583 0.370 0.455 0.481 0.398 0.516 0.500 0.146 0.541
2009 0.477 0.347 0.559 0.258 0.365 0.444 0.298 0.421 0.426 −0.009 0.492
2010 0.269 0.212 0.323 0.028 0.140 0.271 0.204 0.292 0.315 0.033 0.328
2011 0.217 0.043 0.354 0.183 0.129 0.197 0.119 0.257 0.266 −0.080 0.230
2012 0.250 0.045 0.373 0.053 0.114 0.229 0.127 0.296 0.237 −0.054 0.241
2013 0.129 −0.058 0.259 0.182 0.108 0.103 0.018 0.131 0.180 −0.041 0.161
2014 0.347 0.184 0.448 0.254 0.239 0.312 0.234 0.337 0.337 −0.134 0.354
2015 0.389 0.331 0.361 0.181 0.272 0.310 0.269 0.257 0.267 −0.132 0.350
2016 0.387 0.274 0.369 0.192 0.241 0.277 0.264 0.335 0.283 −0.003 0.377
2017 0.277 0.065 0.263 0.311 0.165 0.263 0.036 0.182 0.241 −0.097 0.237
2018 0.350 0.152 0.404 0.226 0.234 0.290 0.161 0.284 0.244 0.083 0.327

Panel B: λ

Amihud 1oV V oV (λ) RolloV RollAbsoV RollGibbsoV EffTickoV HighLowoV AbdiRanaldooV PastorStambaugh AvgImpact
2008 0.795 0.682 0.790 0.552 0.612 0.775 0.652 0.796 0.732 0.106 0.837
2009 0.708 0.548 0.802 0.539 0.488 0.596 0.487 0.658 0.573 −0.099 0.728
2010 0.508 0.505 0.517 0.194 0.302 0.404 0.421 0.447 0.272 0.036 0.551
2011 0.453 0.269 0.514 0.178 0.251 0.419 0.322 0.470 0.405 −0.046 0.496
2012 0.451 0.272 0.596 0.281 0.332 0.438 0.233 0.465 0.368 0.103 0.555
2013 0.247 0.021 0.389 0.216 0.224 0.218 0.087 0.223 0.228 −0.107 0.270
2014 0.521 0.279 0.633 0.333 0.359 0.397 0.301 0.506 0.383 −0.161 0.531
2015 0.506 0.481 0.458 0.257 0.332 0.349 0.291 0.439 0.342 −0.163 0.529
2016 0.544 0.362 0.639 0.385 0.333 0.464 0.407 0.559 0.443 0.107 0.603
2017 0.424 0.218 0.542 0.091 0.162 0.363 0.172 0.420 0.362 0.043 0.383
2018 0.516 0.305 0.720 0.361 0.315 0.598 0.196 0.611 0.507 0.189 0.606

(continued)
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Table A.6: Time-Series Correlations of Price Impact Proxies and Benchmarks by Year (Continued)

Panel C: λroot

Amihud 1oV V oV (λ) RolloV RollAbsoV RollGibbsoV EffTickoV HighLowoV AbdiRanaldooV PastorStambaugh AvgImpact
2008 0.748 0.567 0.818 0.506 0.595 0.752 0.602 0.765 0.708 0.165 0.804
2009 0.729 0.506 0.839 0.553 0.501 0.612 0.462 0.668 0.612 −0.093 0.742
2010 0.556 0.396 0.638 0.181 0.325 0.442 0.375 0.464 0.361 0.055 0.576
2011 0.489 0.193 0.650 0.171 0.264 0.447 0.272 0.497 0.484 −0.050 0.508
2012 0.553 0.204 0.723 0.318 0.336 0.523 0.248 0.506 0.474 0.032 0.602
2013 0.363 0.066 0.558 0.277 0.303 0.317 0.109 0.322 0.356 −0.159 0.371
2014 0.657 0.314 0.790 0.435 0.423 0.466 0.321 0.595 0.496 −0.210 0.638
2015 0.617 0.471 0.617 0.386 0.394 0.420 0.318 0.528 0.409 −0.090 0.630
2016 0.604 0.346 0.732 0.427 0.372 0.471 0.338 0.570 0.471 0.005 0.636
2017 0.522 0.178 0.705 0.139 0.236 0.403 0.142 0.445 0.444 0.067 0.460
2018 0.613 0.279 0.783 0.433 0.335 0.605 0.235 0.636 0.556 0.173 0.660
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A.6 Temporal Stability of Cross-Sectional Correlations

We also inspect the stability of cross-sectional correlations over time. Instead

of averaging the correlation coefficients across months, we plot them in Figure

A.3 and Figure A.2. To ease the visual inspection, we estimate and plot a

LOESS-regression for each benchmark–proxy pair.6

6LOESS stands for Locally Estimated Scatterplot Smoothing (see, e.g., Cleveland et al.,
1993).
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Table A.7: Time-Series Correlations of Price Efficiency Proxies and
Benchmarks by Year

This table shows average Pearson moment-correlation coefficients of benchmark–proxy

pairs of market efficiency. We calculate the correlation of a benchmark–proxy pair for

each commodity and average it across all commodities. Bold numbers indicate the high-

est coefficient that is greater than 0.4. Those that are not different from it at a 5%

significance level are also in bold font. We use a t-test of Fisher z-transformed coeffi-

cients in the spirit of Fama and MacBeth (1973).

Panel A: σ
V AR(5)
s

σ
MA(1)
s AMIM V R2 |AR1| AvgEff AvgSpread AvgImpact

2008 0.241 0.150 0.021 0.030 0.168 0.631 0.555
2009 0.196 0.070 −0.004 0.018 0.138 0.638 0.611
2010 0.164 0.094 0.051 −0.051 0.089 0.456 0.389
2011 0.100 0.067 0.039 0.017 0.086 0.428 0.287
2012 −0.000 −0.079 −0.068 −0.054 −0.040 0.500 0.419
2013 0.199 0.070 0.057 0.057 0.126 0.447 0.323
2014 0.254 0.000 0.030 0.065 0.113 0.562 0.467
2015 0.204 0.032 0.089 0.062 0.118 0.521 0.413
2016 0.147 −0.029 0.049 0.085 0.079 0.563 0.456
2017 0.182 −0.068 −0.097 −0.048 −0.025 0.457 0.286
2018 0.086 −0.057 −0.008 0.068 0.041 0.484 0.419

Panel B: AMIM

σ
MA(1)
s AMIM V R2 |AR1| AvgEff AvgSpread AvgImpact

2008 0.046 0.082 0.098 0.054 0.117 −0.119 −0.187
2009 −0.104 −0.118 −0.062 −0.087 −0.130 0.004 0.006
2010 −0.121 0.035 −0.223 0.047 −0.116 −0.008 0.076
2011 0.006 0.002 −0.021 −0.059 −0.021 −0.080 −0.020
2012 −0.107 −0.052 −0.006 −0.039 −0.008 −0.071 −0.051
2013 −0.032 0.157 −0.093 −0.015 0.011 0.029 0.035
2014 0.095 0.001 0.115 0.044 0.078 0.009 0.005
2015 0.021 −0.082 0.069 0.049 0.019 0.086 0.065
2016 0.114 0.044 0.067 0.063 0.073 −0.045 −0.078
2017 0.032 0.032 0.029 0.058 0.097 −0.004 0.072
2018 0.002 0.063 −0.002 −0.008 0.015 0.022 0.025

Panel C: V R30

σ
MA(1)
s AMIM V R2 |AR1| AvgEff AvgSpread AvgImpact

2008 0.121 0.066 0.045 0.002 0.085 0.143 0.144
2009 0.007 0.042 0.087 0.049 0.035 −0.016 0.003
2010 −0.159 0.162 −0.027 −0.087 −0.082 −0.149 −0.019
2011 −0.101 0.036 −0.024 0.023 0.000 −0.083 −0.064
2012 −0.070 −0.077 −0.076 −0.129 −0.112 −0.095 −0.031
2013 −0.084 0.065 −0.031 −0.040 −0.034 −0.079 0.069
2014 0.077 0.019 0.109 0.043 0.131 0.032 0.078
2015 0.130 0.111 0.094 0.045 0.119 −0.065 0.010
2016 0.081 0.161 0.118 0.140 0.165 0.018 −0.047
2017 0.035 −0.031 −0.031 0.005 −0.066 −0.027 −0.039
2018 −0.191 −0.127 −0.156 −0.147 −0.207 −0.131 −0.039

Panel D: |AR1|

σ
MA(1)
s AMIM V R2 |AR1| AvgEff AvgSpread AvgImpact

2008 0.026 −0.042 0.004 0.016 0.004 −0.030 −0.071
2009 0.001 −0.019 −0.042 −0.017 −0.018 0.016 0.116
2010 −0.022 0.019 −0.078 −0.059 −0.056 −0.089 0.008
2011 0.050 0.067 0.061 0.055 0.098 0.043 0.018
2012 −0.043 0.126 0.007 0.067 0.068 −0.030 0.003
2013 0.031 0.049 0.019 −0.047 0.025 −0.047 0.023
2014 −0.016 −0.096 −0.032 −0.125 −0.086 −0.125 −0.092
2015 0.014 0.028 −0.010 −0.003 0.011 −0.146 −0.118
2016 −0.008 0.199 0.049 0.060 0.057 0.074 0.053
2017 0.018 −0.006 0.004 0.008 −0.043 −0.083 0.088
2018 −0.086 0.022 −0.064 −0.036 −0.058 −0.056 −0.095
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Figure A.2: Temporal Stability of Cross-Sectional Correlations: Price Efficiency

This figure shows monthly cross-sectional correlations for each benchmark–proxy pair. To ease the visual inspection of the estimates, we estimate

a LOESS-regression for each benchmark–proxy pair.
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Panel A: Spread
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Panel B: Price Impact
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Figure A.3: Temporal Stability of Cross-Sectional Correlations: Liquidity

This figure shows monthly cross-sectional correlations for each benchmark–proxy pair. To ease the visual inspection of the estimates, we estimate

a LOESS-regression for each benchmark–proxy pair.
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The results for spreads in Panel A of Figure A.3 suggest that the cross-

sectional correlation of the best proxies, VoV(Spread) and Amihud, is fairly

stable over time. Correlations declined only slightly. The EffTick measure

started at a lower correlation in 2008. At the end of the sample in 2018,

its correlation with both benchmarks is at the same level as the ones with

VoV(Spread) and Amihud. The correlations of other measures increased dur-

ing the second half of the sample.

In Panel B of Figure A.3, we plot the cross-sectional correlations of price

impact benchmarks and proxies by month. The correlations of all measures

except for the PastorStambaugh measure are at a similar level. Their corre-

lations with vwRPI slightly declined during the sample period. Correlations

with λ-benchmarks are more stable and do not exhibit a clear trend.

Finally, we show the monthly cross-sectional correlations for price effi-

ciency benchmark–proxy pairs in Figure A.2. The correlation of σ
MA(1)
s with

σ
V AR(5)
s is positive and stable but on a low level. Correlations of the spreads

and price impact proxies with σ
V AR(5)
s appears to be stable over time. AMIM

is not captured by any proxy. Cross-sectional variation in V R2/10/30 and

|AR1| can be captured by impact proxies but correlations decline during the

sample period.

These results imply that even after increased market speed with the rise

of algorithmic trading (AT), traditional proxy measures are able to capture

cross-sectional liquidity. This hints at these measures being robust to changes

in market design. The question is, whether these proxies also work when

commodity futures were mainly traded in pits instead of electronic limit order

markets. High cross-sectional correlations of volume-based liquidity proxies

during the first half of the sample might be interpreted as an indication that

this is the case and that these proxies are also most suitable for approximating

liquidity pre-2008.
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A.7 Proxy Combinations

Our results suggest that forming simple, equally weighted averages of stan-

dardized proxies produces estimates that often perform at par with the best

single-proxy measure. The fact that combining several proxies reduces noise

is well known in the forecasting literature with simple averages having the

advantage of not requiring parameter estimation (Stock and Watson, 2004).

We test if it is possible to obtain superior market quality proxies by com-

bining different individual proxies. We also compare these to the already

tested simple average (SA). First, we standardize all proxy and benchmark

measures across the entire sample. Since most of the methods require data

for parameter estimation, we repeatedly split the sample into a training and

a testing sample. For all years from 2008 to 2018, we leave out one year, use

all the other years to estimate parameters, and then forecast the year we left

out (leave-one-year-out cross-validation).

We use the following methods to combine the proxies. (1) The simple

average (SA) is an equally weighted average across all standardized proxies.

No estimation is required. (2) Bates and Granger (1969) (BG) introduced

the idea of forecast combination. Their method calculates the weights based

on the diagonal of the mean squared error (MSE) matrix. (3) The approach

suggested by Newbold and Granger (1974) (NG) is also based on the same

matrix of mean squared errors as (BG) but imposes the condition that the

weights must add up to one. The extension by Hsiao and Wan (2014) allows

non-diagonal MSE matrices. (4) The trimmed eigenvalue forecast combina-

tion (TEFC) of Hsiao and Wan (2014) discards the worst predictors in terms

of RMSE and estimates optimal combination weights based on the eigenvec-

tors of the mean squared prediction error matrix. (5) The constrained least

squares (CLS) forecast combination suggested by Bates and Granger (1969)

determines the weights by performing ordinary least squares without inter-
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cept and with the constraint that all weights must add up to one. (6) The

least absolute deviation (LAD) method is also called median regression and

estimates a linear regression by minimizing the sum of absolute deviations.

(7) The random forest (Breiman, 2001) (RF) is an aggregate of regression

trees where both the sample for each tree and the proxies at each split are

bootstrapped. This way, individual trees are less correlated and the RF is less

prone to overfitting. We grow 1,000 regression trees each of which randomly

samples one third of the proxies. (8) Boosted stumps (BS) are gradient-

boosted single-node regression trees estimated with 100 boosting iterations.

Except for SA, we fit each model using the training sample and use the

testing sample to compare realized to predicted values. We pool all com-

modities into one sample for estimation to ensure that sufficiently many data

points are available for parameter estimation. Then, we compute time-series

Pearson moment-correlations for each commodity and report the average in

Table A.8. Again, we identify the best (combined) proxy and test the average

correlation of all other proxies against the one of the winner using a t-test in

the spirit of Fama and MacBeth (1973). We highlight the best (combined)

proxy and all those whose average correlation is not different from it at the

5% level in bold font.

In Panel A, we report the results for spreads. Most of the proxy combina-

tions exhibit a very similar average correlation with the benchmark compared

to the best proxy VoV(Spread). None of the methods that we employ appears

to be clearly superior to the other.

In Panel B, we report the correlations for price impact (combined) benchmark–

proxy pairs. Again, no combination method is significantly different from the

best single proxy VoV(Spread) or other combination methods.

The correlations for price efficiency in Panel C show that no combination

method is able to achieve a correlation with σ
V AR(5)
s that is higher than that

with σ
V AR(5)
s .
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Table A.8: Proxy Combinations

This table shows average Pearson time-series correlation estimates. First, we split the

sample into a training sample (2014.01–2018.12) and a testing sample (2008.01–2014.12).

We standardize all proxy and benchmark measures in each sub-sample. Then, we estimate

different models to combine the proxies using the pooled training sample. Finally, we com-

pute correlations of combined proxies with their benchmarks for each commodity and report

averages. Bold numbers indicate the highest correlation exceeding 0.4 and those that are

not significantly different from the highest at a 5% level using a standard t-test of Fisher

z-transformed coefficients. Besides the single measures we use different combination tech-

niques. Their codes are: SA = Simple Average, TEFC = Trimmed Eigenvalue Forecast

Combination (Hsiao and Wan, 2014), CLS = Constrained Least Squares, BG = Bates and

Granger (1969), LAD = Least Absolute Deviation, NG = Newbold and Granger (1974),

RF = Random Forest, BS = Boosted Stumps.

Panel A: Spreads

twRQS vwRES

Amihud 0.704 0.699
VoV(Spread) 0.744 0.750
Roll 0.279 0.275
RollAbs 0.336 0.341
RollGibbs 0.435 0.439
EffTick 0.518 0.530
HighLow 0.519 0.511
AbdiRanaldo 0.530 0.515
SA 0.674 0.677
BG 0.717 0.719
NG 0.758 0.762
TEFC 0.728 0.738
CLS 0.758 0.762
LAD 0.756 0.756
RF 0.748 0.747
BS 0.747 0.750

(continued)
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Table A.8: Proxy Combinations (Continued)

Panel B: Price Impact

vwRPI λ λroot

Amihud 0.615 0.796 0.810
1oV 0.480 0.641 0.590
V oV (λ) 0.660 0.825 0.882
RolloV 0.366 0.492 0.516
RollAbsoV 0.492 0.642 0.646
RollGibbsoV 0.574 0.759 0.761
EffTickoV 0.524 0.666 0.640
HighLowoV 0.598 0.791 0.791
AbdiRanaldooV 0.567 0.744 0.746
PastorStambaugh 0.004 0.044 0.029
SA 0.629 0.824 0.826
BG 0.640 0.840 0.858
NG 0.652 0.849 0.887
TEFC 0.621 0.843 0.882
CLS 0.652 0.850 0.885
LAD 0.654 0.845 0.884
RF 0.625 0.836 0.878
BS 0.628 0.835 0.871

Panel C: Efficiency

σ
V AR(5)
s AMIM V R30 |AR1|

σ
MA(1)
s 0.269 0.008 0.005 0.038

AMIM 0.007 −0.013 −0.003 0.011
V R2 −0.032 0.016 0.025 0.009
|AR1| −0.035 0.019 0.000 −0.012
SA 0.076 0.012 0.010 0.015
BG 0.104 0.012 0.010 0.015
NG 0.203 0.006 0.007 0.020
TEFC 0.131 0.013 0.007 0.022
CLS 0.203 0.006 0.007 0.020
LAD 0.209 −0.066 −0.050 −0.079
RF 0.194 0.029 0.027 −0.013
BS 0.227 −0.015 −0.025 −0.062
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Overall, proxy combination does not significantly improve the correla-

tion beyond that of the best single proxy. We thus recommend using VoV

measures instead. More involved combination techniques do not seem to yield

a noteworthy benefit.

A.8 The Noise in Price Efficiency Measures Estimated

at Different Frequencies

Our analysis shows that the efficiency estimates of commodity futures prices

is sensitive to the sampling frequency. Proxies estimated from daily data are

not correlated to their benchmarks computed from intraday data, except for

pricing error volatility.

In this section, we explore possible reasons and implications. First, both

daily and intraday price efficiency could exhibit a low signal-to-noise ratio

(SNR) if commodity futures price efficiency does not vary much over the

sample period. Second, either one could exhibit a low SNR if one is able

to detect inefficiencies, but the other is not. Third, both could have a high

SNR but long- and short-lived price inefficiencies might be driven by differ-

ent market forces and therefore be largely unrelated. For example, Chordia

et al. (2005) show that inefficiencies in equity markets are short-lived with an

average time-span of 5 to 60 minutes. Then, measures based on daily data

cannot detect these. On the other hand, price inefficiencies that are longer-

lived than a whole trading day (e.g. momentum) could be entirely different.

Intraday measures of price efficiency might not be able to capture these. For

example, evidence from other asset classes suggests that inventory effects last

up to two months in equities (Hasbrouck and Sofianos, 1993; Subrahmanyam,

2008) and at least one day in equity options (Muravyev, 2016).

To explore this, we compute SNRs for benchmark, TAS, and daily proxy

measures and compare their cross-sectional averages. First, we aggregate
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the benchmark and TAS measures to a monthly frequency by taking simple

averages. For each measure, we estimate the signal as a local non-linear

trend using a LOESS-regression (Cleveland et al., 1993). We use second-

degree polynomials and smoothing parameters (α) ranging from 0.1 and 0.9

in steps of 0.1. A high α corresponds to a smoother LOESS-estimate. For

each commodity and α, we compute the R2. Then, we transform them to

SNRs using the relation

SNR =
R2

1−R2
. (A.43)

We report cross-sectional averages for different values of α in Table A.9. The

second column indicates the data from which the measures were computed.

Unsurprisingly, the measures computed from quote data (Benchmark) exhibit

the highest SNR for all measures and all degrees of smoothing. The SNR of σs

is the highest among all measures. It is possible that there is less variation in

weak-form price efficiency than in its semi-strong variant. This could explain

why we see higher SNRs and correlations in pricing error volatilities but not

in purely autocorrelation-based measures like variance ratios, AMIM or the

absolute first-order autocorrelation. The SNR of the σs proxy estimated from

TAS data decreases with an increase in α. For all other measures, the SNR of

both TAS and daily proxies deteriorates faster with increased smoothing. The

SNR of TAS measures is not far from the SNR of its benchmarks, while price

efficiency proxies computed from daily data appear to be noisier. Overall,

these results suggest that the low correlation of daily price efficiency proxies

is likely due to high levels of noise in daily measures, which can be reduced

by increasing the sampling frequency and using TAS data. Thus, intraday

price efficiency appears not to be pure noise, but to exhibit trends that can

be captured if measured at high frequencies. Price efficiency estimated from

daily data, however, requires longer time-series than a month to estimate.

The low correlation of daily and intraday price efficiency measures has
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implications for regulators as well as investors, who are advised to measure

and monitor price efficiency at different frequencies to react accordingly. Sev-

eral papers measure commodity futures price efficiency using proxies that rely

on daily settlement prices (Kim, 2015; Brogaard et al., 2019; Bohl et al., 2021).

Their results might therefore be affected by high levels of noise, which might

explain why some of their results are different from those using intraday data

(Chen and Chang, 2015; Bessembinder et al., 2016; Raman et al., 2020).
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Table A.9: Signal-to-Noise Ratios of Price Efficiency Measures

This table shows average SNRs of LOESS-regressions with different values for the smooth-

ing parameter α. The second column, Data, indicates the frequency at which the price

efficiency measure was computed.

α Data σs VR AMIM |AR1|
0.100 Benchmark 7.899 1.741 1.346 1.165

TAS 3.633 1.064 1.116 1.049
Daily 0.586 0.433 0.443 0.412

0.200 Benchmark 3.691 0.972 0.621 0.615
TAS 1.978 0.488 0.468 0.462
Daily 0.265 0.172 0.155 0.166

0.300 Benchmark 2.843 0.744 0.473 0.473
TAS 1.506 0.349 0.312 0.329
Daily 0.189 0.113 0.099 0.113

0.400 Benchmark 2.267 0.622 0.382 0.382
TAS 1.216 0.264 0.240 0.254
Daily 0.146 0.082 0.069 0.084

0.500 Benchmark 1.903 0.555 0.324 0.326
TAS 1.019 0.224 0.198 0.208
Daily 0.120 0.064 0.053 0.067

0.600 Benchmark 1.668 0.506 0.274 0.284
TAS 0.910 0.201 0.169 0.181
Daily 0.103 0.053 0.044 0.058

0.700 Benchmark 1.495 0.463 0.237 0.247
TAS 0.837 0.184 0.151 0.161
Daily 0.091 0.046 0.038 0.051

0.800 Benchmark 1.381 0.434 0.214 0.221
TAS 0.777 0.169 0.137 0.146
Daily 0.082 0.038 0.033 0.043

0.900 Benchmark 1.296 0.406 0.193 0.197
TAS 0.726 0.155 0.121 0.131
Daily 0.074 0.032 0.027 0.036



Chapter 3

Financialization,

Electronification, and

Commodity Market Quality*

3.1 Introduction

Markets are places where supply meets demand and prices are formed. A

high-quality market is liquid and forms efficient prices (O’Hara and Ye, 2011).

Market quality is time-varying and driven by a multitude of factors that in-

clude the market’s design and the composition of participants. Uninformed

traders play a central role in microstructure theory. In models, they randomly

submit buy or sell orders and are required for a market to exist in the first

place (Akerlof, 1970; Bagehot, 1971). Their share determines the ease with

which informed traders can hide, which affects both the speed of convergence

to the fair price and the width of the bid–ask spread (e.g., Glosten and Mil-

grom, 1985). However, it is possible that uninformed traders unanimously

*This chapter is based on the Working Paper “Financialization, Electronification, and
Commodity Market Quality” by Tobias Lauter, Marcel Prokopczuk, and Stefan Trück,
2023.
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trade in one direction, which results in order imbalances creating inventory

risk that affects prices set by risk-averse liquidity suppliers (e.g., Stoll, 1978).

Additionally, unanticipated order imbalances might be mistaken for informed

trading. This can happen when the activity of uninformed traders overlaps,

e.g., due to correlated fund flows from investors or shared portfolio rebalanc-

ing triggers. In this paper, we investigate the influence of both unanticipated

and anticipated trading of uninformed market participants on market quality.

We do this by studying commodity index traders (CITs) that are accused of

disrupting price formation by buying and selling large volumes unanimously.1

In the 2000s, commodity futures markets saw a substantial change in first

trader composition and then market design that provides an opportunity to

study their impact on market quality.

First, the composition of market participants changed. After regulatory

relaxations following the Commodity Futures Modernization Act (CFMA)

in 2000, commodity index ETFs attracted large amounts of mostly passive

financial investment. Index investments rose from $13 billion in 2003 to

$317 billion in 2008 (Masters and White, 2008). Yan et al. (2019) provide

aggregate estimates of global commodity-linked investment peaking at more

than $400 billion around 2012. Stoll and Whaley (2010) report that index

investments made up 24% of open interest in US commodity futures. This

development was coined the ‘financialization’ of commodity markets. ETFs

turned commodity markets into an easily accessible asset class. Because

commodity futures serve as benchmarks for fragmented spot markets and as

a tool for hedging, concerns about the impact on market quality were raised

by policymakers and regulators.2

Second, market design changed. Starting around mid-2006, commodity

1This is also called the “Masters Hypothesis”, named after hedge fund manager Michael
Masters and his testimony before the US Senate (Masters, 2008; Masters and White, 2008)

2See, e.g., U.S. Senate Permanent Subcommittee on Investigations (2006); U.S. Senate
Permanent Subcommittee on Investigations (2009).
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futures markets saw a technological transformation. For decades, trading

activity was concentrated in open-outcry markets where traders interacted

physically and used hand signals and their voice to submit orders. The mar-

ketplace was an exclusive community with high barriers of entry, where roles

were visible by colorful jackets and badges. Traders knew each other and

were subject to reputational concerns. Electronic limit order trading existed,

but was limited to overnight hours when the pits were closed. Between 2006

and 2008, the major exchanges switched to a hybrid model and allowed side-

by-side trading of floor and electronic trading during the main trading hours.

Volume gradually shifted to the electronic limit order book and the pits dried

out, resulting in most marketplaces closing their commodity pits. For exam-

ple, CME shut down its commodity trading pits at NYMEX in 2016 due to

low trading volume.

In this paper, we investigate how these changes affected market quality,

i.e., the duality of liquidity provision and price formation. We use a broad

panel of commodity futures that spans 23 years from 1996 to 2018, covering

both event periods as well as multiple years before and after. To estimate

liquidity and price efficiency, we use 11 years of millisecond-stamped trade

and quote data that are available and reliable from 2008 onward. We employ

the most suitable proxies for commodity market quality following Lauter and

Prokopczuk (2022). For tests that span the entire sample period, we use

time-and-sales data to estimate proxies of market quality. After comparing

conditional means and trends, we employ a battery of identification strategies

to test, if and how, the two changes affected market quality.

Our contribution to the literature is an in-depth study of commodity

market quality across regimes. The data consist of a broad cross-section of

commodities, is sampled at intraday frequency, and includes both the pre-

and post-financialization period. In contrast to most previous studies, we

also analyze the effects of commodity futures electronification. Exceptions to
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this are Martinez et al. (2011), Raman et al. (2020), and Hu et al. (2020).

First, we perform a simple sample split to assess differences in market

quality across regimes as well as index versus non-index commodities. We

find that market quality has improved over the sample period, including and

especially during the years of financialization and electronification. The im-

provements also appear to be more pronounced in commodities that are part

of a major index. Next, we employ position data on index trading published

by the Commodity Futures Trading Commission (CFTC) and run panel re-

gressions to test if the trading activity attributable to speculators or CITs

affects market quality. We find that neither predictable nor unpredictable

trading activity appears to be convincingly harmful to market quality. Elec-

tronic trading appears to coincide with increased price efficiency. We then

perform a case study to analyze whether an exogenous but predictable shock

in CIT participation impacts market quality. In particular, we study the

soybean meal market as this commodity was added to the Bloomberg Com-

modity Index (BCOM, formerly DJ-UBSCI) in 2013. Using soybean futures

as a benchmark, we again find no harmful effect. Lastly, we focus on pre-

dictable trades and their effects on market quality during roll days. We argue

that event-study approaches suffer from the fact that market quality and vol-

ume are not flat around roll days. Thus, we compare market quality during

roll days across pre- and post-financialzation regimes. The data suggest that

roll activity produces a significant increase in volume which translates to in-

creased liquidity, supporting the ‘sunshine trading effect’ hypothesis (Admati

and Pfleiderer, 1991). Moreover, informational efficiency does not seem to

be affected significantly. In total, throughout our tests, we do not find any

evidence of harmful effects on market quality.

Our work is related to the literature on empirical market microstructure,

especially studies of trader composition and index investing in general. For

example, Boehmer and Kelley (2009) show that the informational efficiency
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in equity markets is related to both institutional trading and holdings. Israeli

et al. (2017) document a decline of liquidity and informational efficiency in

increased ETF ownership of stocks. Our work is also related to studies that

compare the quality of markets across market designs. In the commodities

context, it is related to Shah and Brorsen (2011) who analyze side-by-side

trading in KCBT wheat futures. Instead of modeling differences in pit versus

electronic trading within a commodity, we model differences between com-

modities depending on the degree of electronification. It is also related to

Raman et al. (2020) who study the electronification of NYMEX WTI futures.

Our work expands the literature on commodity market financialization

(Cheng and Xiong, 2014).3 Haase et al. (2016) provide a meta study on

the impact of speculation on commodity futures markets that highlights the

controversy. Several studies examine commodity index traders and long-term

(several days or weeks) pricing errors (e.g., Singleton, 2014). Others rely

on predictable trades like index rolls (e.g., Mou, 2011; Bessembinder et al.,

2016) or trades hedging commodity linked notes (Henderson et al., 2015) to

study potential price impacts or effects on liquidity. We also model the effects

of the Goldman Sachs Commodity Index (GSCI) roll but instead of testing

measures during the roll period against that around it, we are able to test

the effects between regimes (pre- versus financialization). This is particularly

useful because market quality appears to exhibit strong trends around the

roll period.

Theoretically, besides no-arbitrage arguments in models that emphasize

the role of storage (Kaldor, 1939; Working, 1960), the price formation of

commodity futures is driven by the trading motives of market participants.

The classical hedging pressure theory of Keynes (1923) explains risk premia

in futures prices by the interplay of short producers wishing to hedge and

long speculators providing this service in return for a risk premium. The

3See Natoli (2021) for a recent literature review.
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more recent literature builds on these ideas and describes additional effects

of financialization on commodity market quality. One example are models

that relate limits to arbitrage to market quality (e.g., Acharya et al., 2013;

Singleton, 2014). They explore channels that can explain how financial spec-

ulators might lower the informational efficiency of futures prices. Goldstein

and Yang (2022) develop a two-period model in which financial traders are

informed speculators but also trade to hedge the commodity exposures of

other assets in their portfolio. In this model, speculation of financial traders

increases price efficiency, while hedging has the opposite effect. Because the

former effect only dominates when the share of financial traders is low, their

model predicts a negative net effect when the share of financial traders con-

tinues to grow beyond a threshold. The effect on liquidity in their model is

mainly positive.

The effect of the electronification and the arrival of additional financial

traders as a result of this is explored by Raman et al. (2020), who show

that informational efficiency in the NYMEX WTI market has improved af-

ter the introduction of electronic and open-outcry side-by-side trading on

September 5th 2006. Their proprietary CFTC data document that short-

term oriented informed institutional traders joined the market due to lower

barriers of entry. These provide liquidity, trade in multiple markets and im-

prove informational efficiency measured by intraday pricing errors. Raman

et al. (2020) list three channels through which electronification might affect

market quality: (1) lower barriers of entry, (2) improved transparency, both

of which reduce information asymmetries leading to increased competition,

and (3) a simple decrease in order processing costs. Their results suggest

that the electronification does not only affect market quality directly, but

also indirectly by attracting additional institutional traders. They find that

the activity of financial traders is concentrated in short-term contract, so they

can use longer-term contracts as a control sample. Our paper, in contrast,
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measures effects across commodities and regimes. It also explicitly aims at

(uninformed) CITs instead of (informed) financial traders. Martinez et al.

(2011) study side-by-side trading of corn, soybeans, and wheat futures. They

find that electronic trading exhibits lower transaction costs and is able to

incorporate information more quickly. Hu et al. (2020) document a positive

impact of algorithmic trading on the market quality of corn, soybean, and

live cattle futures.

Studying commodity market quality is not only an interesting avenue per

se, since market quality has been shown to affect the real economy. Futures

markets are not just mirror images of spot prices because producers rely on

futures prices in their decision-making (Sockin and Xiong, 2015; Goldstein

and Yang, 2022). Spot markets are often fragmented and futures contracts

act as benchmarks. Because they are an input for production decisions, noise

in futures prices can be mistaken for fundamental information about future

commodity demand, leading to misallocations. Brogaard et al. (2019) study

the link between firm profitability and futures price informativeness empiri-

cally. They document a decline in the informational efficiency of index com-

modity futures, leading to reduced operating profitability of companies with

high exposure to index commodities.

The existing literature relies on several identification strategies to test the

effect of financialization on market quality. Those can be generally classified

into easily predictable volume and (largely) unpredictable volume.

Conceptually, the literature tests two opposite effects of easily foreseeable

uninformed volume. One is the ‘sunshine trading effect’ of Admati and Pflei-

derer (1991). They argue that pre-announced liquidity demand by traders

that are credibly perceived as being uninformed attracts additional liquidity

and improves both liquidity and efficient price formation. Opposite to that is

the effect of front running or predatory trading. Instead of meeting the liq-

uidity demand with additional supply, other traders can trade ahead of pre-



CHAPTER 3. FINANCIALIZATION, ELECTRONIFICATION ... 90

dictable trades, which leads to a decrease in liquidity and to inefficient pricing

(Brunnermeier and Pedersen, 2005). Studies of commodity financialization

aim at different predictable trading patterns. A trading pattern that is easily

predictable is the activity of index traders mimicking the largely overlapping

roll schemes of major diversified commodity indices like the GSCI or BCOM

index, or single commodity ETFs like the US Oil Fund (USO). The GSCI

and BCOM index consist of the most liquid commodities that are traded in

the US or Europe. Their composition is rarely changed. In our sample pe-

riod, for example, only soybean meal was added to the BCOM index which

was announced months ahead. Both indices existed long before the start of

the financialization. Thus, index membership can be seen as exogenous and

used to identify the financialization treatment group. The evidence of these

studies is mixed. Most of them document no significant effect of index roll

trades on liquidity (e.g., Shah and Brorsen (2011) for crude oil, Shang et al.

(2018) for corn) or a positive effect (Wang et al. (2014) for corn, Bessem-

binder et al. (2016) for WTI). Mou (2011), on the other hand, documents

abnormal returns around GSCI roll days, whereas Stoll and Whaley (2010)

do not find such an effect. Yan et al. (2019) take a different approach on

predictable trades and study annual GSCI target weight adjustments that

come into effect in January. They document temporary abnormal returns

with the same sign as the weight change. Yet another approach to study-

ing predictable trades is taken by Henderson et al. (2015), who document

abnormal returns on days when commodity linked notes (CLN) are initially

priced or their terminal payoff is determined, the days when delta hedges are

initialized or unwound in the futures market.

Volume that is less easy to predict might have a different impact on

market quality. If liquidity demand hits the market when it is in low supply,

effects would be expected to be of larger scale. Liquidity suppliers might not

be willing to meet this demand because it is harder to discern whether it
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originates from informed traders. Empirical evidence mostly suggests that

unpredictable index investment or speculation does not harm market quality

(see, e.g., Stoll and Whaley, 2010; Chen and Chang, 2015; Kim, 2015; Bohl

et al., 2021). In contrast, Ready and Ready (2022) find price impact estimated

from intraday data being related to changes in CFTC SCOT reports.

The remainder of this paper is structured as follows. Section 3.2 de-

scribes the sample and our approach to measuring market quality. Section

4.4 presents the results and Section 3.4 concludes.

3.2 Measurement and Data

3.2.1 Data

To study the quality of commodity futures contingent on the market being

in a pre- or post-financialization and electronification regime, we aim for a

sample period that covers years before and after 2004. In the literature, the

year 2004 is commonly considered as a breakpoint indicating the start of the

financialization of commodity markets (e.g., Tang and Xiong, 2012; Brogaard

et al., 2019). Intraday data in Thomson Reuters Datascope Select (formerly

TRTH SIRCA) starts in January 1996. We download Time-and-Sales data

(trade prices and time-stamps) for the period January 1996 to December

2018. Additionally, we download millisecond time-stamped trade and quote

data from January 2008 to December 2018.4 We obtain daily (open, high, low,

and settlement) price and volume data from Thomson Reuters Datastream.

We include the largest (mostly) US-based commodity futures markets

in our analysis. From the energy sector, these are New York Mercantile Ex-

change (NYMEX) WTI crude oil (CL), heating oil (HO), natural gas (NG),

Intercontinental Exchange (ICE) (EU) natural gas (NGLNM), Brent Crude

4These data are only reliable from 2008 onwards, since side-by-side trading started
around mid-2006 and large parts of the volume had shifted to electronic markets by 2008.
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Oil (LCO), and gas oil (LGO). For grains, we use Chicago Board of Trade

(CBOT) soybeans (S), corn (C), wheat (W), Kansas City Board of Trade

(KCBT) hard red winter wheat (KW), CBOT soybean meal (SM), soybean

oil (BO), rough rice (RR), and oats (O). For metals, we consider Commod-

ity Metals Exchange (COMEX) gold (GC), silver (SI), and copper (HG),

NYMEX platinum (PL), and palladium (PA). Softs are represented by ICE

(US) cotton (CT), sugar No.11 (SB), coffee (KC), cocoa (CC), Chicago Mer-

cantile Exchange (CME) lumber (LB), as well as ICE (US) orange juice (OJ).

From the livestock sector, we use CME live cattle (LC), lean hogs (LH), and

feeder cattle (FC). We do not always use all commodities in our analysis be-

cause some are traded too infrequently during the first half of the sample,

which results in patchy estimates of market quality (e.g., PA, PL, and SB).

We tabulate the commodities included in our sample in the appendix. We

also cannot include futures traded on the London Metals Exchange (LME),

because its data is not stored in the Datascope Select database.

For each of the commodities, we use the contract with the highest volume,

which is often the front month contract, but can sometimes be the up to fifth-

nearest contract, as is the case for soybean meal or soybean oil. To identify the

most liquid contract, we use a five-day moving average of volume. Overnight

periods are excluded from the sample to avoid low volume periods.

We download data on trader composition like the COT reports, SCOT

reports, and index investment data (IID) from the CFTC website. COT data

contain weekly (as of each Tuesday) data on the long and short open interest

of commercial and non-commercial traders. These reports are available for

contracts trading on US exchanges for the entire sample period. The data

are, however, of limited use when trying to measure index trading activity,

since index traders are present in both the commercial and non-commercial

category. Many ETF providers hedge their commodity exposure via swap

dealers who are then classified as commercials. Other ETF providers choose
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to hedge directly using futures and are classified as non-commercials. Due

to this shortcoming, the CFTC started publishing more detailed supplemen-

tary reports in 2006. These SCOT reports contain three categories: (1)

speculators, (2) hedgers, and (3) commodity index traders, but cover only

agricultural commodities. Another shortcoming is that positions are netted

internally for each trader. IID is considered to be the best proxy for in-

dex investment activity (Irwin and Sanders, 2012). These reports contain

non-netted data on all major commodities traded on US exchanges and are

available from December 2007 on a quarterly frequency which was increased

to monthly in July 2010. The collection and reporting of IID was discontinued

by the CFTC after October 2015.

3.2.2 Measuring Market Quality

We follow O’Hara and Ye (2011) and measure market quality with separate

proxies for liquidity and price efficiency.

To measure liquidity, we consider using two dimensions: (1) transaction

costs captured with the relative effective bid–ask spread, and (2) price impact

of market orders. Both are commonly estimated from trade, quote and volume

data. However, in the pits, quotes and volumes were not recorded. Side-by-

side electronic and pit trading during the main hours started in late 2006

or 2007 depending on the contract and exchange. Therefore, to be able to

examine the years before 2008, we resort to proxies for the entire sample

period. These proxies are computed from trade prices alone.

Lauter and Prokopczuk (2022) show that liquidity in the form of effec-

tive spreads and price impact can effectively be proxied using a volatility-

over-volume measure. Their results also demonstrate that market efficiency

measures are noisy but can be approximated using 5-minute time-and-sales

data. We follow their recommendations and employ the following measures
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to capture commodity market quality.

For the time period 2008–2018 in which bid-ask prices were recorded, for

each day d and commodity futures contract i, we compute relative effective

spreads (EffSprd), price impact as Kyle’s λ using regressions of signed root-

order imbalance on midquote returns (e.g., Hasbrouck, 2009), absolute devia-

tions of 1-minute to 30-minute variance ratios (Lo and MacKinlay, 1988) from

unity (V R), and the volatility of pricing errors (Hasbrouck, 1993) (σ
V AR(5)
s ).

In samples that include previous years, we resort to proxies computed from

time-and-sales data. We estimate the Roll (1984) measure at trade-frequency

as a proxy for effective spreads (EffSprdR) following Easley et al. (2021),

a volatility-over-volume measure following Fong et al. (2018) and Kyle and

Obizhaeva (2016) (λKO) to capture price impact, a microstructure-adjusted

variance ratio by Smith (1994) (V RS), and pricing error volatility (σ
MA(1)
s )

following Hasbrouck (1993). Note that all measures are inverse measures of

market quality, so a high level corresponds to an illiquid and inefficient mar-

ket. We scale our proxies to their respective benchmarks, so their levels are

interpretable. A detailed description of the measures and a brief analysis of

their validity can be found in the appendix.

3.3 Empirical Results

Our empirical identification strategy is split into 4 parts. First, we descrip-

tively document an increase in commodity market quality during the finan-

cialization period and especially during the electronification regime. We find

that this increase is stronger for indexed commodities. Second, we use two

different CFTC datasets on aggregate position data of CITs to study the ef-

fect of their activity.5 We find no harmful effects. Third, we use the BCOM

index addition of soybean meal (SM) as a predictable but exogenous event.

5We provide evidence on the impact of speculative traders in the appendix.



CHAPTER 3. FINANCIALIZATION, ELECTRONIFICATION ... 95

Despite a large increase in long index open interest, market quality does not

change. Fourth, we study predictable GSCI roll trades. We find a significant

increase in trading volume but no harmful effect on market quality.

3.3.1 Has Commodity Market Quality Changed over

Time?

We begin by descriptively studying the time-series of aggregate market quality

of indexed commodities. If the influx of index money affects all indexed

commodities contemporaneously, we should be able to identify trends in all

commodities and thus in cross-sectional aggregates. Aggregating the proxy

measures also reduces their noise components.
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Figure 3.1: Individual and Aggregate Market Quality

This figure shows monthly market quality variables (top panels) and aggregated market quality variables that are averaged across commodities

(bottom panels). EffSprdR, λKO, V RS, and σ
MA(1)
s are scaled proxies for the relative effective spread, price impact, random walk deviations,

and pricing error volatility, respectively. The vertical dashed line indicates January 2004, which is a commonly used breakpoint for the start of

the financialization of commodity markets.
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First, we aggregate our daily estimates to a monthly frequency by taking

simple averages. The top panels in Figure 3.1 depict monthly estimates for

our proxy measures. The two left panels show liquidity proxies, i.e., EffSprdR

in bps and λKO in bps per root million dollar volume. The two right panels

show V RS and σ
MA(1)
s in % p.a..

We observe that among indexed commodities, there exists considerable

cross-sectional heterogeneity. Temporal variation is also visible, as well as

some commonality in the variables. For example, a spike in price impact

around 2008 is visible when commodity prices peaked. An overall downward

trend also seems evident.

The bottom panels in Figure 3.1 show monthly averages across all com-

modities. Here, trends and spikes are clearly visible. The vertical dashed line

indicates January 2004 which is commonly used as the starting point of com-

modity financialization (e.g., Tang and Xiong, 2012; Brogaard et al., 2019).

Up to this breakpoint, all four aggregate inverse measures of market quality

seem to plateau and start to decline after around 2003. The overall trend

continues until 2014. The period 2004–2014 includes the electronification of

commodity futures trading, which occurred between 2006 and 2008. We are

not aware of other substantial changes in commodity trading that might be

responsible for the trend starting around 2004. Therefore, the financialization

might be a plausible candidate for causing improvements in market quality.

Next, we formally test this conjecture for all commodities in a panel

setting. To do so, we estimate a model of the form

MQi,d = µi + γ1FINd + γ2ELEi,d + ϵi,d, (3.1)

where MQi,d is a set of (inverse) measures of market quality of commodity i

on day d, i.e., EffSprdR, λKO, V RS or σ
MA(1)
s . We capture the financialization

effect with a simple dummy FINd that takes on a value of one from January
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2004 onwards. The dummy variable ELEi,d equals one if the commodity

contracts trade electronically during pit trading hours and zero otherwise.

With this set up, we can test for a level shift in market quality. Note that

ELEi,d is not identical for all commodities. Side-by-side electronic and open-

outcry trading on NYMEX started in September 2006, CBOT and KCBT in

August 2006, COMEX in December 2006, CME meats in September 2006,

ICE Europe in April 2005, and NYBOT (now ICE US) in March 2008 (except

for orange juice which started in February 2007). µi is a commodity fixed

effect and accounts for unobserved cross-sectional heterogeneity in MQi,d.

We pool daily data of 20 indexed commodities and estimate the model using

OLS. Note that we intentionally do not include any control variables because

we aim at a simple first description of the evolution of commodity market

quality across commodities and regimes.

We report estimates for γ1 and γ2 in Table 3.1. Since all the variables

are inverse measures of market quality, a negative level shift is evidence for

an improvement of market quality. The results suggest that average effec-

tive spreads remained stable after the start of the financialization and were

reduced on average by 10.342 bps after the migration of the main trading ac-

tivity to electronic limit order books. Price impact was lower after the start

of the financialization and the electronification of each commodity as well.

The results for V RS and σ
MA(1)
s are similar. Price efficiency was higher or

remained unchanged after 2004 and improved further, reaching a higher level

after the staggered electronification of commodity trading.

Comparing levels across regimes as above is most appropriate if the

regime shift occurs abruptly instead of gradually. However, the majority of

index investors gradually entered commodity markets starting around 2004.

Also, once electronic trading became available during pit hours, volume grad-

ually migrated from pits to limit order books. Thus, a piece-wise linear trend

model might be more appropriate. We define four different regimes for our
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Table 3.1: Average Market Quality across Regimes

This table shows estimates of regressions estimated using OLS. The regressions are of

the form

MQi,d = µi + γ1FINd + γ2ELEi,d + ϵi,d,

where MQi,d is a set of (inverse) measures of market quality of commodity i on day

d, i.e., EffSprdR, λKO, V RS or σ
MA(1)
s . We capture the financialization effect with a

dummy FINd that equals one if day d is past the year 2003. The dummy variable ELEi,d

is one if the commodity contracts trade electronically during pit trading hours and zero

otherwise. µi are commodity fixed effects that account for unobserved cross-sectional

heterogeneity in MQi,d. The sample includes daily data of 20 indexed commodities (in

GSCI, BCOM or both) and ranges from 1996 to 2018. Standard errors are clustered by

day and commodity. t-ratios are in parentheses. ∗∗∗, ∗∗, and ∗ indicate significance at

the 1, 5, and 10% level, respectively.

Dependent variable:

EffSprdR λKO V RS σ
MA(1)
s

(1) (2) (3) (4)

FIN −1.590 −1.450∗∗∗ −0.013∗ −0.464
(−1.424) (−3.904) (−2.048) (−0.646)

ELE −10.342∗∗∗ −3.189∗∗∗ −0.052∗∗∗ −4.993∗∗∗

(−7.102) (−11.298) (−7.985) (−5.959)

Observations 111,182 111,649 111,264 112,445
Adjusted R2 0.493 0.590 0.262 0.266

sample: (1) the pre-financialization period from January 1996 to December

2003, (2) the financialization period starting in January 2004, (3) the elec-

tronification period which is different for each commodity and begins on the

day when a specific commodity futures started trading electronically during

pit trading hours, and (4) the modern period starting 2 years after the start

of the electronification period. In an attempt to separate the effects of the

financialization and electronification, we assume that once the electronifica-

tion started, its effect overshadowed financialization effects. We also assume

that it took no more than 2 years for major parts of the volume to migrate

from the pits to the electronic limit order books.6

6If volume migrated within less than 2 years, the estimate of the electronification regime
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We estimate regressions of the form

MQi,d = µi + θ1tr
PRE
d + θ2tr

FIN
d + θ3tr

ELE
i,d + θ4tr

MOD
i,d + ϵi,d. (3.2)

MQi,d is again a set of (inverse) measures of market quality of commodity

i on day d, i.e., EffSprdR, λKO, V RS or σ
MA(1)
s . trPRE

d is a linear trend

starting from 0 on 1996-01-02 and increasing by 1/250 each business day

d. trFIN
d is a piece-wise linear trend (hockey stick function) that is 0 until

2004-01-02 and increases by 1/250 each business day after. trELE
d is a piece-

wise linear trend that is 0 until the day the commodity futures started trading

electronically during pit hours and increases by 1/250 each business day after.

Lastly, trMOD
d is a piece-wise linear trend that is 0 until 2 years after the day

the commodity futures started trading electronically during pit hours and

increases by 1/250 each business day after. µi captures unobserved time-

invariant cross-sectional heterogeneity in MQi,d. The resulting piece-wise

linear function is continuous by design and admits non-zero slopes in each

regime. The parameters {θp}p=1:4 measure the annual change inMQi,d during

or after the regime. Thus, the estimated annual change in MQi,d in the nth

regime is given by
∑n

i=1 θ̂p.

OLS estimates for {θp}p=1:4 are in Panel A of Table 3.2. To ease the

interpretation, the cumulative coefficients are in Panel B of Table 3.2. The

latter estimates are regime-conditional annual changes in the respective mar-

ket quality variable. The results suggest that before 2004 none of the variables

exhibits a significantly negative trend. After 2004, the start of the financial-

ization, the commodity-wide trend turns negative. That means that market

quality significantly improved between January 2004 and the start of side-

by-side trading. During the electronification regime of each commodity, the

will be downward biased. Since 2 years are a rather long period for some commodities,
our estimates can be interpreted as a lower bound for the evolution of commodity market
quality during the electronification regime.
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trend remains negative. For some commodities, however, the 2008/2009 price

spike in commodities that was accompanied by a spike in λKO and σ
MA(1)
s

(Figure 3.1) seems to lead to a reduction in the trend during the electroni-

fication regime. In the modern age regime, which we define to start 2 years

after the start of the electronification of each commodity, the overall trend

remains negative but less steep.

So far, we have considered only indexed commodities. The shift in means

and the regime-conditional trends hint at an increase in market quality, but

the change could be driven by market forces that we do not consider in our

analysis. For example, it could be the case that commodity market quality

increased for all commodities, but CITs dampened the increase in market

quality of indexed commodities. If this were the case, we would see an even

larger increase in market quality of non-indexed commodities. Although our

complete sample includes seven non-indexed commodities, three of them (PL,

PA, and NGLNM) have no or insufficiently many intraday observations before

2008, which reduces the group of non-indexed commodities to four (LB, O,

OJ, and RR).

We begin with a visual inspection of the aggregate variables. First, in

order to reduce noise, we average each measure for each commodity over

a monthly frequency. Then, we scale each measure for each commodity to

have a mean of one before 2004 by dividing it by its pre-2004 mean. Finally,

we average each measure across all index or non-index commodities. The

resulting averages are shown in Figure 3.2. They hint at a rather larger

increase in market quality of indexed versus non-indexed commodities.
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Table 3.2: Trends in Market Quality across Regimes

This table shows estimates of regressions estimated using OLS. The regressions are of

the form

MQi,d = µi + θ1tr
PRE
d + θ2tr

FIN
d + θ3tr

ELE
i,d + θ4tr

MOD
i,d + ϵi,d. (3.3)

MQi,d is a set of (inverse) measures of market quality of commodity i on day d, i.e.,

EffSprdR, λKO, V RS, or σ
MA(1)
s . trPRE

d is a linear trend starting from 0 on 1996-01-02

increasing by 1/250 each day d. trFIN
d is a piece-wise linear trend that is 0 until 2004-

01-02 and increases by 1/250 each day after. trELE
d is a piece-wise linear trend that is

0 until the day the commodity futures started trading electronically during pit hours and

increases by 1/250 each day after. trMOD
d is a piece-wise linear trend that is 0 until 2

years after the day the commodity futures started trading electronically during pit hours

and increases by 1/250 each day after. µi capture commodity fixed effects. The resulting

piece-wise linear function is continuous by design. The sample includes daily data of 20

indexed commodities (in GSCI, BCOM or both) and ranges from 1996 to 2018. Panel

A shows the estimates for θ1:4. Standard errors are clustered by day and commodity.

t-ratios are in parentheses. Panel B shows cumulative coefficients
∑n

i=1 θp which is the

estimated annual change in MQi,d in the nth regime. ∗∗∗, ∗∗, and ∗ indicate significance

at the 1, 5, and 10% level, respectively.

Panel A: Coefficients

Dependent variable:

EffSprdR λKO V RS σ
MA(1)
s

(1) (2) (3) (4)

trPRE 0.015 0.184∗ 0.0004 0.216∗

(0.079) (1.811) (0.389) (1.742)
trFIN −1.422∗∗ −1.782∗∗∗ −0.010∗∗∗ −1.567∗∗∗

(−2.325) (−5.318) (−4.952) (−3.286)
trELE −2.776∗∗∗ 1.440∗∗∗ −0.010∗ 0.892

(−3.907) (4.703) (−2.028) (1.690)
trMOD 4.101∗∗∗ −0.046 0.018∗∗∗ 0.007

(7.175) (−0.413) (5.709) (0.018)

Observations 111,182 111,649 111,264 112,445
Adjusted R2 0.504 0.629 0.264 0.274

Panel B: Cumulative Coefficients

EffSprdR λKO V RS σ
MA(1)
s

trPRE 0.015 0.184 0.000 0.216
trFIN -1.407 -1.598 -0.010 -1.351
trELE -4.183 -0.158 -0.019 -0.460
trMOD -0.082 -0.203 -0.001 -0.453
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Figure 3.2: Index (Dashed Blue) vs Non-Index (Solid Red) Aggregate Market Quality

This figure shows monthly market quality measures averaged across all 20 index (dashed blue) and four non-index (solid red) commodities.

Before aggregation, we scale the respective market quality measure of each commodity to a pre-2004 mean of 1 by dividing each series by its

pre-2004 mean. EffSprdR (top left), λKO (top right), V RS (bottom left), and σ
MA(1)
s (bottom right) are scaled proxies for the relative effective

spread, price impact, random walk deviations, and pricing error volatility, respectively.
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To test this, we adapt and augment the model in Equation (3.1) in the

following way

MQi,d = µi + γ1INDEXi × FINd + γ2FINd + γ3ELEi,d + ϵi,d, (3.4)

where the variables are defined as previously in Equation (3.1) but we add

INDEXi which is a dummy that is 1 if commodity i is an index commodity

(in GSCI or BCOM). The commodity fixed effects µi capture cross-sectional

heterogeneity in MQi,d and subsume the INDEXi dummy outside the in-

teraction term. The sample includes the daily market quality measures of 20

index and four non-index commodities. If the financialization is substantially

harmful to market quality, we would expect γ1 to be positive.

We report OLS estimates in Table 3.3. Two out of four estimates are

significantly negative while the other two are not significantly different from

zero. These results suggest that the market quality of indexed commodities

increased by a larger extent compared to non-index commodities. This is

evidence against a harmful effect of index trading on market quality. The

size of the estimates suggests that the electronification period appears to

coincide with larger increases in market quality than the financialization one.

Overall, this analysis shows that commodity market quality changed sub-

stantially during the time period after 2004. Contrary to the hypothesis that

the financialization had a negative effect on commodity market quality, we do

not find such an effect, but a trend and significant shift in the level that co-

incides with the financialization and electronification of commodity markets.

In the following sections, we follow different identification strategies in order

to analyze the effect of speculators and index investors on market quality.
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Table 3.3: Index vs Non-Index Market Quality across Regimes

This table shows estimates of regressions estimated using OLS. The regressions are of

the form

MQi,d = µi + γ1INDEXi × FINd + γ2FINd + γ3ELEi,d + ϵi,d,

where MQi,d is a set of (inverse) measures of market quality of commodity i on day

d, i.e., EffSprdR, λKO, V RS or σ
MA(1)
s . We capture the financialization effect with

a dummy FINd that equals one if day d is past the year 2003. The dummy variable

ELEi,d is one if the commodity contracts trade electronically during pit trading hours

and zero otherwise. INDEXi is a dummy variable that is 1 if commodity i is part of

the GSCI, the BCOM index, or both. µi capture commodity fixed effects. The sample

includes daily data of 20 (4) (non-)indexed commodities and ranges from 1996 to 2018.

Standard errors are clustered by day and commodity. t-ratios are in parentheses. ∗∗∗, ∗∗,

and ∗ indicate significance at the 1, 5, and 10% level, respectively.

Dependent variable:

EffSprdR λKO V RS σ
MA(1)
s

(1) (2) (3) (4)

FIN × INDEX −8.287∗∗∗ 53.325 −0.027∗∗ −0.317
(−3.443) (1.037) (−2.534) (−0.126)

FIN 5.431∗∗∗−48.533 0.008 −0.441
(3.383) (−1.067) (0.851) (−0.231)

ELE −8.928∗∗∗−10.780 −0.046∗∗∗ −4.638∗∗∗

(−5.869) (−1.341) (−7.705) (−5.335)

Observations 127,978 133,006 131,487 133,390
Adjusted R2 0.536 0.709 0.343 0.609

3.3.2 Index Trading and Market Quality

In order to understand the interplay of index traders and market quality, we

analyze how market quality is related to their trading activity. We rely on

CFTC SCOT data, which consist of weekly reports that contain the aggre-

gated open interest of trader groups classified into commercials (hedgers),

non-commercials (speculators), and index traders if their positions exceed

the reporting threshold. Open interest in CFTC data is aggregated across

all contracts, so roll trades do not lead to changes in the data. This allows

changes in open interest to be interpreted as net buying (selling if negative)
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volume by the respective group of traders.

To draw conclusions about the impact of CITs on market quality, we

rely on the SCOT reports published by the CFTC that explicitly provide

information on the net open interest of CITs. In January 2006, the CFTC

started publishing SCOT reports for 13 agricultural, livestock, and soft com-

modity futures. Thus, the sample starts after the common starting point of

the financialization but before the electronification period which commenced

in mid-2006 for the first US exchanges. CBOT (agriculturals) started trading

electronically during pit hours on August 1st 2006, ICE (softs) on February

2nd 2007, and CME livestock on September 5th 2006. This provides an op-

portunity to study the impact of both financialization and electronification.

We use the ratio of Datascope Select volume to Datastream volume as a

proxy for the share of electronic volume relative to total volume. We reduce

the sample to only include the seven commodities traded on CME and CBOT,

because GLOBEX volume is recorded in Datascope for the entire sample

period, but ICE electronic volume was not recorded before April 2008. We

pick July 6th 2015 as the end-date for our sample because all CME commodity

futures pits were permanently closed after this date.7

We use an ARIMA(p,1,q) model estimated for each commodity to de-

compose relative net CIT open interest into predictable net volume of CITs

(absolute fitted ARIMA differences) and unpredictable net volume of CITs

(absolute residual ARIMA differences). We define relative net index open

interest (RNI) as

RNI =
CITL − CITS

OI
, (3.5)

where CITL (CITS) is long (short) open interest of CITs and OI is total open

interest. Differences in RNI can be interpreted as relative net trading vol-

ume of speculators which we decomopose into predictable and unpredictable

7https://www.cmegroup.com/tools-information/lookups/advisories/ser/SER-

7416.html.

https://www.cmegroup.com/tools-information/lookups/advisories/ser/SER-7416.html
https://www.cmegroup.com/tools-information/lookups/advisories/ser/SER-7416.html
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net trading volume. For each commodity, we fit a regression with month-

dummies and ARIMA(p,1,q) errors to the RNI time-series where p and q are

between 0 and 10. The month-dummies are intended to capture seasonality.

Each process includes a linear trend (a constant mean in differences). The

functional form is chosen for each commodity based on the minimum Akaike

information criterion using the search algorithm of Hyndman and Khandakar

(2008). In contrast to equity markets, shorting is as easy as buying in fu-

tures markets. Thus, we expect a symmetric effect of net trading on market

quality. Therefore, we use fitted (residual) absolute first differences in RNI

as proxies for predictable (unpredictable) trading volume by speculators.

We estimate a linear regression model of the form

MQi,w = µi+ γw + θ1Pred.V + θ2Unpred.V + θ3%GLOBEX +Θ′Xi,w + ϵi,w.

(3.6)

MQi,w is a set of (inverse) measures of market quality of commodity i in

week w, i.e., EffSprdR, λKO, V RS, or σ
MA(1)
s . Pred.V (Unpred.V) is (un-)

predictable net trading volume of index traders in %. %GLOBEX is the

share of GLOBEX volume in total volume as a measure of electronification.

X is a vector of control variables that are commonly used in empirical market

microstructure applications of this kind, i.e., 5-minute intraday volatility, the

natural log of dollar volume, the natural log of total (including unclassified)

open interest in commodity i, and the inverse settlement price. In order to

match frequencies with the SCOT reports, we aggregate daily measures of

market quality and controls to a weekly frequency. µi (γw) capture commod-

ity (year–week) fixed effects. If predictable (unpredictable) index trading or

increasing market share of speculators harms market quality, we would expect

θ1 (θ2) to be significantly positive.

Estimates for Equation (3.6) are reported in Table 3.4. Predictable vol-

ume does not appear to affect market quality. This is evidence in favor of
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the sunshine trading effect of Admati and Pfleiderer (1991). Unpredictable

volume has a large and significant on effective spreads. On average, CITs

appear to act as net liquidity suppliers. The migration of volume from pits

to electronic markets appears to improve effective spreads slightly. A com-

plete switch from pit to electronic trading, improves effective spreads by 8

bps. This is in line with results by Raman et al. (2020) who argue that the

electronification is a change through which more financial traders obtained

market access.

Given that the cross-sectional dimension is quite small, with only seven

agricultural commodities, we test another CFTC dataset that is considered

to be closest to true index trading activity. IID reports were published on a

monthly basis between June 2010 and September 2015. By this time, most fu-

tures contracts of all considered commodities were traded electronically. The

period from 2010 to 2015 allows us to extend the set of dependent variables

since we do not have to resort to TAS-based proxies, but can use trade, quote

and volume-based measures. We add a non-parametric price impact measure

(PrcImpct) which is the volume weighted 5-minute price impact. The mea-

sure is based on the signed difference in mid-quote prices with a 5-minute lag

after a trade and is calculated as

PrcImpctk = Qk
Mk+5min −Mk

Mk

, (3.7)

where Mk+5min is the mid-quote price five minutes after the kth trade of a

day and Qk is a dummy that equals +1 (-1) for a buyer-initiated (seller-

initiated) trade. PrcImpct thus measures longer-term price impact compared

to λ, which is estimated from 1-minute returns. This could be relevant if a

market is less resilient and any transitory price impact does not revert within

1 minute or less. We compute daily estimates by taking volume-weighted

averages.
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Table 3.4: Index Trading vs Electronification

This table shows OLS estimates of the regression

MQi,w = µi + γw + θ1Pred.V + θ2Unpred.V + θ4%GLOBEX +Θ′Xi,w + ϵi,w.

MQi,w is a set of (inverse) measures of market quality of commodity i in week w, i.e.,

EffSprdR, λKO, V RS, or σ
MA(1)
s . Pred.V (Unpred.V) is (un-) predictable net trading

volume by index traders. These are absolute first differences in ARIMA(p ≤ 10, 1, q ≤ 10)

fitted (residual) relative net speculative open interest. %GLOBEX is the share of

GLOBEX volume in total volume as a measure of electronification. X is a vector of

control variables, i.e., 5-minute intraday volatility, the natural log of $-volume, the nat-

ural log of total reported open interest in commodity i, and the inverse settlement price.

µi (γw) capture commodity (week) fixed effects. The sample includes weekly data of 7

commodities traded on CBOT or CME between January 3rd 2006 and June 30th 2015.

Standard errors are double clustered by week and commodity. t-ratios are in parentheses.
∗∗∗, ∗∗, and ∗ indicate significance at the 1, 5, and 10% level, respectively.

Dependent variable:

EffSprdR λKO V RS σ
MA(1)
s

(1) (2) (3) (4)

Pred.V 11.638 0.879 −0.364 −13.011
(1.768) (0.342) (−1.269) (−1.123)

Unpred.V −8.816∗∗ 0.743 0.003 8.818
(−2.550) (0.905) (0.018) (1.049)

%GLOBEX −0.081∗∗ −0.017∗ −0.0001 −0.046
(−3.155) (−2.111) (−0.489) (−1.494)

Controls Yes Yes Yes Yes
Observations 3,411 3,417 3,417 3,417
Adjusted R2 0.729 0.876 0.491 0.670
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We also add the time-weighted inside depth (Depth) to the set of market

quality measures. This is the number of contracts available at the lowest ask

plus the number of contracts offered at the highest bid, weighted by the time

these were standing. Then, we multiply it by the contract size, by the price

in USD, and divide it by 106 to obtain depth in million USD.

We add a proxy for algorithmic trading (AT ) activity to the set of control

variables by computing

ATi,d =
Vi,d

#Messagesi,d
, (3.8)

which is the dollar volume Vi,d of commodity i on day d divided by the num-

ber of trading messages (trades, order submissions, and order cancellations)

following Hendershott et al. (2011) and averaging it in every commodity–

month.

We employ the following model to test whether index trading activity

affects commodity market quality:

MQi,m = µi + γm + θ1Pred.V + θ2Unpred.V +Θ′Xi,m + ϵi,m. (3.9)

MQi,m is either dollar volume or an (inverse) measure of market quality of

commodity i in month m, i.e., EffSprd, λ, PrcImpct, Depth, V R, or σ
V AR(5)
s .

Pred.V (Unpred.V) is (un-) predictable net trading volume of index traders.

AT is a proxy for algorithmic trading defined in Equation (3.8) which we add

to the set of control variables X. All other variables are identical to those

in Equation (3.6) but at a monthly frequency. The full sample includes 19

indexed commodities and ranges from June 2010 to October 2015.

Pooled OLS estimation results are reported in Table 3.5. We find no

evidence of a harmful effect of trading by CITs on any of the considered

market quality measures. Thus, again, the results do not represent convincing
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evidence that CITs harm market quality.

Overall, our analysis of aggregate trader position data suggests that it is

unlikely that index trader activity is connected to a decrease in market qual-

ity. Even if index traders take directional positions unrelated to commodity

fundamentals, their orders seem to be met by enough liquidity and informed

arbitrageurs, ensuring price efficiency.

Table 3.5: Index Trading and Market Quality

This table shows OLS estimates of the regression

MQi,m = µi + γm + θ1Pred.V + θ2Unpred.V +Θ′Xi,m + ϵi,m.

MQi,m is a set of (inverse) measures of market quality of commodity i in month m,

i.e., EffSprd, λ, PrcImpct, Depth, V R, or σ
V AR(5)
s . Pred.V (Unpred.V) is (un-) pre-

dictable net trading volume by index traders. These are absolute first differences in

ARIMA(p ≤ 10, 1, q ≤ 10) fitted (residual) relative net speculative open interest. X is a

vector of control variables, i.e., 5-minute intraday volatility, the natural log of $-volume,

the natural log of total reported open interest in commodity i, and the inverse settlement

price. µi (γm) capture commodity (year–month) fixed effects. Depth is in thousand USD.

The sample includes 19 indexed commodities and ranges from 2010-06 to 2015-10 (65

months). Standard errors are clustered by week and commodity. t-ratios are in paren-

theses. ∗∗∗, ∗∗, and ∗ indicate significance at the 1, 5, and 10% level, respectively.

Dependent variable:

EffSprd λ PrcImpct Depth V R σ
V AR(5)
s

(1) (2) (3) (4) (5) (6)

Pred.V 0.016 −0.012 0.004 −0.073 −0.004 −0.022
(1.065) (−0.746) (0.282) (−0.006) (−1.396) (−0.371)

Unpred.V −0.001 0.016 0.003 3.644 −0.002 −0.003
(−0.122) (1.266) (0.355) (0.531) (−0.654) (−0.069)

Controls Yes Yes Yes Yes Yes Yes
Observations 1,207 1,207 1,207 1,207 1,207 1,207
Adjusted R2 0.887 0.848 0.708 0.794 0.329 0.820
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3.3.3 A Case Study of Soybean Meal

In January 2013, CBOT soybean meal (SM) was added to the BCOM index.

Previously, soybean meal has never been part of a major commodity index

and, thus, commodity index ETF issuers did not have to hedge its price risk

in the futures market. The BCOM composition is based on known criteria

including liquidity. Changes are known about 2 months in advance before the

start of the next year. Index weights for 2013 were announced on October

24, 2012.8 The addition of SM is visible in CFTC reports, as illustrated in

Figure 3.3. IID data exhibit a level shift in long index investment in January

2013.9 We treat the addition of SM as an exogenous event, which provides

an opportunity to test possible effects of (uninformed) index investment on

market quality.

First, we compare the means in our market quality variables of SM for

2012 to 2013. We estimate a regression of the form

MQSM,d = µ+ θ12013d + ϵd. (3.10)

MQSM,d is either dollar volume or an (inverse) measure of market quality

of SM on day d, i.e., EffSprd, λ, PrcImpct, Depth, V R, or σ
V AR(5)
s . Since

the sample period starts with the year 2012, we use measures estimated from

quote data. 2013d is a dummy variable that is 1 if the respective date d is in

the year 2013 when SM was part of the BCOM index.

8https://www.spglobal.com/spdji/en/documents/index-news-and-

announcements/20121024-spdji-ubs-commodity-target-weights.pdf. In 2012
and 2013, BCOM was named Dow Jones-UBS Commodity Index.

9Index investment before 2013 has not been zero, because other (individual) commodity
indices exist.

https://www.spglobal.com/spdji/en/documents/index-news-and-announcements/20121024-spdji-ubs-commodity-target-weights.pdf
https://www.spglobal.com/spdji/en/documents/index-news-and-announcements/20121024-spdji-ubs-commodity-target-weights.pdf
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Figure 3.3: Index Investment in Soybeans (S) and Soybean Meal (SM)

This figure shows monthly index investment in CBOT Soybeans (S) and Soybean Meal (SM) from CFTC index investment data (IID). The

graph shows futures equivalent (futures and options) contracts long in thousands of contracts. SM was added to BCOM in January 2013.
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The OLS estimates are reported in Panel A of Table 3.6. They imply that

average daily volume remained almost unchanged, while all market quality

variables are either insignificantly different from zero or negative. Depth was

reduced in 2013, but this is not reflected in increased spreads or price impact.

Thus, although long index investment quadrupled in 2013 compared to 2012,

market quality does not appear to have undergone a comparable shift.

However, this result might be driven by an overall (negative) trend in

the variables that overshadows the effects of index traders. If this was the

case, then their influence would unlikely be substantial. Nevertheless, we

try to put changes in market quality into perspective. Soybeans (S) have

been part of both the GSCI and the BCOM index throughout the depicted

sample period. We construct a sample of daily measures of SM and S futures

that spans the years 2012 and 2013. Soybean meal is a physical derivative

of soybeans, which is ‘crushed’ into soybean meal and soybean oil. Thus,

both commodities’ demand and supply dynamics are intertwined. Hedgers

and other traders often trade both simultaneously (‘crush spread’ trading).

We deem spillover effects of index trading from SM to S as unlikely since

S futures are more liquid than SM futures.10 In the years 2012 and 2013,

the returns of SM and S exhibit a correlation of 89%. The market quality

measures of S and SM are also correlated (69% for EffSprd, 84% for λ, 42%

for PrcImpct, 74% for Depth, 56% for VR, and 64% for σ
V AR(5)
s ).

In our test, we rely on this relation between S and SM. We assume that

any demand and supply shock that is likely to affect the market quality of

SM futures affects S futures similarly, except for the BCOM index addition

in January 2013 which is exclusive to SM. Our goal is to examine if mar-

ket quality measures of SM are different from what the measures of S would

suggest. In this setting, with a two-year sample period of paired commodi-

ties, we assume that these variables are parallel in both SM and S so that

10The volume of S exceeds that of SM by a factor of more than three in 2012 and 2013.
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Table 3.6: A Case Study of Soybean Meal

This table shows estimates of regressions estimated using OLS. In Panel A, the regres-

sions are of the form

MQSM,d = µ+ θ12013d + ϵd

and in Panel B of the form

MQi,d = µ+ γ1SMi × 2013d + γ2SMi + γ32013d +Θ′Xi,t + ϵi,t.

MQi,d is either dollar volume, or an (inverse) measure of market quality of commodity

i (Soybean meal SM or soybeans S) on day d, i.e., EffSprd, λ, PrcImpct, Depth, V R,

or σ
V AR(5)
s . SM is a dummy that is 1 if commodity i is soybean meal SM. 2013 is a

dummy variable that is 1 if the respective date is in the year 2013 when SM was part of

the BCOM index. X is a vector of control variables, i.e., 5-minute intraday volatility,

the natural log of $-volume, the natural log of total reported open interest in commodity

i, and the inverse settlement price. Depth is in million USD. The data are sampled at

a daily frequency and spans the years 2012 and 2013. In Panel A, we use Newey and

West (1987, 1994) standard errors. In Panel B, standard errors are clustered by day.

t-ratios are in parentheses. ∗∗∗, ∗∗, and ∗ indicate significance at the 1, 5, and 10% level,

respectively.

Panel A: Change in SM Market Quality from 2012 to 2013

Dependent variable:

Volume EffSprd λ PrcImpct Depth V R σ
V AR(5)
s

(1) (2) (3) (4) (5) (6) (7)

2013 0.086 0.008 −0.473∗∗ 0.074 −0.321∗∗∗ −0.362∗∗∗ 0.369
(1.264) (0.074) (−2.540) (0.537) (−4.160) (−3.661) (0.339)

Constant 1.654∗∗∗ 3.393∗∗∗ 3.756∗∗∗ 1.847∗∗∗ 1.052∗∗∗ 0.842∗∗∗ 16.209∗∗∗

(32.239) (44.267) (28.891) (21.500) (14.189) (8.985) (22.757)

Observations 495 498 500 500 498 500 498

Adjusted R2 0.006 -0.002 0.044 -0.001 0.152 0.038 -0.002

Panel B: Difference-in-Differences Approach

Dependent variable:

Volume EffSprd λ PrcImpct Depth V R σ
V AR(5)
s

(1) (2) (3) (4) (5) (6) (7)

SM × 2013 0.338∗∗ 0.086∗ −0.115 −0.114 0.902∗∗∗ 0.003 0.101
(2.041) (1.933) (−1.480) (−0.949) (7.975) (0.033) (0.128)

SM −16.957∗∗∗ 1.277∗∗∗ 0.138 0.752 4.102∗∗∗ 1.371∗∗∗ 4.287
(−17.026) (5.986) (0.334) (1.212) (5.849) (2.649) (0.945)

2013 −0.386∗∗ 0.037 −0.261∗∗∗ 0.267∗∗∗ −1.212∗∗∗ −0.355∗∗∗ 0.984
(−2.324) (1.251) (−6.034) (3.129) (−9.980) (−4.456) (1.321)

Constant 2.980 3.707∗∗ 7.995∗∗∗ −12.537∗∗∗ −3.907 9.381∗∗∗ −85.839∗∗∗

(0.848) (2.554) (2.650) (−2.849) (−1.296) (3.192) (−2.829)

Controls Y es Y es Y es Y es Y es Y es Y es
Observations 993 991 993 992 989 992 992

Adjusted R2 0.836 0.654 0.687 0.214 0.589 0.086 0.319
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any difference can be attributed to SM undergoing a shift in the degree of

financialization due to its index addition.

We estimate a regression of the form

MQi,d = µ+ γ1SMi × 2013d + γ2SMi + γ32013d +Θ′Xi,t + ϵi,t. (3.11)

MQi,d is either dollar volume or an (inverse) measure of market quality of

commodity i (SM or S) on day d, i.e., EffSprd, λ, PrcImpct, Depth, V R, or

σ
V AR(5)
s . SM is a dummy that is 1 if commodity i is soybean meal SM. 2013 is

a dummy variable that is 1 if the respective date is in the year 2013 when SM

was part of the BCOM index. X is a vector of controls, i.e., intraday volatility,

log-volume, log-open-interest, inverse price, and algorithmic trading. If the

newly arrived index traders harm the market quality of SM futures, we would

expect the coefficient of the interaction term γ1 to be positive.

The estimation results are reported in Panel B of Table 3.6. The coeffi-

cients of the interaction term are designed to capture the effect of the index

addition. Relative to soybeans, volume, effective spread, and depth increased.

The increase in the spread is less than 0.1 bps, which is very small and un-

likely to be economically relevant, and only significant at the 10% level. Thus,

the market quality of SM relative to that of S does not seem to have suffered

from the influx of index money.

Overall, the results of this case study do not show evidence of index

trading activity substantially harming market quality, even if the arrival of

CITs in a market is highly concentrated.
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3.3.4 Market Quality During and Around Index Roll

Days

We now turn to studying the possible impact of predictable trades on market

quality. One strategy is to focus on measures on and around the roll days of

major commodity indices. Bessembinder et al. (2016), for example, compare

the (overlapping) USO and GSCI roll periods with the days [-7:-3] before the

roll event. This is a valid strategy if the variables tested are considerably

constant around the index roll days. In the following, we show that this is

not the case for the commodities we consider. However, since our sample con-

tains the pre-financialization period, we are able to compare patterns across

regimes. We test if volume or market quality on the index roll days behaves

differently after 2004 compared to before.

To do so, we use a sample of 14 commodities that have been constituents

of the GSCI from 1996 to 2018. Instead of focusing on the highest-volume (or

the front-month) contract, we study the contracts that are explicitly defined

in the roll schemes of the GSCI index.11

The GSCI rolls 20% of its contracts on each of the five days ranging

from the 5th to the 9th business day of a month. Thus, if the index rolls

affect market quality, we should see an effect on these days. Since the long

and short sides behave differently, we construct two samples. We define days

relative to the first roll day, which we index by 0. For those contracts that the

index mimicking traders go long, we include the business days [-22:22], i.e.,

one month before and after the roll period. Because trading in some contracts

terminates up to eight days after the first roll day, we include the days [-22:7]

for the shorted contracts. In order to eliminate cross-sectional differences

and temporal trends, we scale the variables of interest of each individual

11https://www.spglobal.com/spdji/en/documents/methodologies/methodology-

sp-gsci.pdf.

https://www.spglobal.com/spdji/en/documents/methodologies/methodology-sp-gsci.pdf
https://www.spglobal.com/spdji/en/documents/methodologies/methodology-sp-gsci.pdf
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futures contract in the time window [-22:22] or [-22:7] to zero mean and unit

variance. We also split each sample (long and short) in 2004 and test averages

for equality in the measures during the roll period.

We depict the average scaled volume and market quality measures around

the initial roll day in Figure 3.4. The two upper rows show volume and quote-

based inverse market quality measures for the time period 2008–2018. We can

observe trends in some of the variables around the roll period. As expected,

volume exhibits a notable spike on roll days, which is likely to be the activity

of index traders. In contrast, such a clear increase is not visible in any of the

market quality variables.
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Volume and Quote-Based Measures: 2008–2018
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Volume and TAS-Based Measures: 1996–2003 (red circles); 2004–2018 (blue triangles)
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Figure 3.4: Market Quality During and Around Index Rolls

This figure shows daily averages of contract-scaled market quality measures around GSCI rolls. EffSprdR, λKO, V RS, and σ
MA(1)
s are proxies for

the relative effective spread, price impact, random walk deviations, and pricing error volatility, respectively. We use a sample of 17 commodities

that have been constituents of the GSCI from 1996 through 2018. The roll period (0 to 4) is highlighted in gray. We scale each individual

contract within the time frame [-22:22] for long and [-22:7] for short trades to zero mean and unit variance.The top (bottom) panels depict the

variables corresponding to contracts that are ‘bought’ (‘sold’) by index mimicking traders.
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Testing the measures in an event study research design as in Bessem-

binder et al. (2016) would require us to define a pre-event reference period,

which might be problematic due to the trending behavior of some variables.

Thus, we take a different approach, resorting to TAS-based market quality

measures that span the sample period 1996–2018 and split the long and short

sample at the start of 2004. The averages of the scaled measures split by

regime are depicted in the bottom two rows of Figure 3.4. The overall pat-

terns in TAS-proxies are similar to the measures that use quote data. The

spike in volume is visible in post-2003 averages, but not in those of the other

half of the sample.

To test if the mean of the scaled variables during the roll period is dif-

ferent for the period before 2004 and after 2003, we use a simple two-sample

t-test with standard errors clustered by commodity. Test statistics for a sam-

ple of 17 commodities are reported in Panel A of Table 3.7. A high positive

(negative) statistic implies that the post-2003 mean is higher (lower) than the

pre-2004 mean. In line with the visual inspection in Figure 3.4, the statistics

suggest that after 2003 a significantly larger share of volume was concentrated

on the GSCI roll days than previously. Effective spreads in short contracts

are significantly lower after 2004. The price impact is significantly reduced

in both long and short contracts. However, differences in price efficiency

measures are all insignificantly different from zero.

As a robustness check, we drop all energy and precious metal commodi-

ties from the sample and repeat the analysis with grains, livestock, and softs

only. In this sub-sample, the spikes in volume are more pronounced and ef-

fects would thus be expected to be stronger. We do this in order to ensure

that the differences in V RS and σ
MA(1)
s are not diluted by energy and pre-

cious metal commodities. Panel B of Table 3.7 shows that the volume hump

is significant in both legs, with much higher test-statistics. As in the full sam-

ple, most test–statistics suggest that during the roll period, the markets are
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Table 3.7: Volume and Market Quality during the GSCI Roll across
Regimes

This table shows t-test statistics against the null that average volume and market quality

during the GSCI roll was the same before and after 2004. We use the [-22:22] (long) or

[-22:7] (short) days around the first roll day and scale each individual contract to zero

mean and unit variance. Under the null hypothesis, the mean of the standardized mea-

sures during days [0:4] is the same for the time-periods 1996–2003 and 2004–2018. Test

statistics are calculated using standard errors clustered by commodity. A high positive

(negative) test statistic indicates that the post-2003 mean is higher (lower) than before

the start of the financialization.

Panel A: Full Sample (17 Commodities)

Volume EffSprdR λKO V RS σ
MA(1)
s

Long 4.442 -0.607 -3.406 -1.297 -0.056
Short 3.827 -2.672 -2.842 -0.208 -0.184

Panel B: Without Energy and Precious Metals (10 Commodities)

Volume EffSprdR λKO V RS σ
MA(1)
s

Long 15.975 0.585 -3.697 0.944 0.486
Short 9.224 -2.171 -6.019 -1.019 -0.360

more liquid when index traders roll their positions compared to before 2004.

This could be seen as evidence for the ‘sunshine trading effect’ of Admati

and Pfleiderer (1991). The price efficiency measures V RS and σ
MA(1)
s do not

seem to be affected by index roll trades in this sub-sample either. Overall,

again, we do not find a harmful effect of index trading activity on commodity

market quality.

3.4 Conclusion

Commodity futures markets underwent two substantial changes over the last

decades. First, passive long-only index traders became a sizable group that

changed the composition of market participants substantially. Second, vol-

ume gradually migrated from open-outcry trading pits to electronic limit

order books after exchanges introduced side-by-side trading. It is natural

to ask how these developments have impacted on market quality. We es-
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timate liquidity and intraday informational efficiency measures in a sample

that spans from 1996 to 2018 to study their long-term trends. After the start

of the financialization in 2004 and during the electronification of commodity

markets, both illiquidity and price inefficiency decreased in levels and their

trends were negative. To study if and how index traders affect commodity

market quality, we combine our market quality measures with different public

CFTC reports on aggregate holdings data. We do not find a substantially

harmful effect of index investor participation on liquidity and intraday price

efficiency. A case study of soybean meal which had seen a sudden shift in

index trader open interest affirms this result. We also compare the market

quality around the index roll days across regimes. Overall, our results imply

that, while electronification had a positive impact, index trading does not

seem to be harmful to the quality of commodity futures markets measured

via liquidity and intraday price efficiency.
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B Appendix

This appendix lists the commodities in our sample in Table B.1, provides

details on the employed measures of commodity market quality and their

validity, and reports results for speculative trading.

B.1 Measuring Market Quality

In the following, we present the measures and their respective proxies.

Effective Spread (2008–2018) We compute the relative effective spread

as of the kth transaction of a day as

EffSprdk = 2Qk
Pk −Mk

Mk

, (B.1)

where Q is a binary variable that is +1 for a buyer-initiated trade and -1

for a seller-initiated trade flagged using the Lee and Ready (1991) algorithm,

P is the trade price, and M is the prevailing mid-quote price. Chakrabarty

et al. (2015) show that the Lee–Ready algorithm has a higher accuracy than

the tick rule or bulk volume classification in classifying trades. We compute

the effective spread for each transaction and take the volume-weighted aver-

age to obtain a daily estimate. Since a high effective spread indicates high

transaction costs and thus low liquidity, it is an inverse measure of liquidity.

Effective Spread Proxy: Roll’s Measure (1996–2018) As a proxy for

the effective spread, we estimate the model proposed by Roll (1984). Under

the assumption that the fair price follows a random walk and that the bid–

ask spread consists of order processing costs alone, he shows that the relative

effective spread can be estimated via first-order co-variances of returns. We

estimate it on a tick-by-tick frequency for every day in our sample and follow
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Table B.1: Commodity Futures Considered

This table gives an overview of the commodities we consider in our analysis. NYMEX

= New York Mercantile Exchange, ICE = Intercontinental Exchange, CBOT = Chicago

Board of Trade, KCBT = Kansas City Board of Trade, COMEX = Commodity Exchange,

CME = Chicago Mercantile Exchange. CME, NYMEX, CBOT, KCBT, and COMEX

are all part of CME Group.

Sector Exchange Commodity Ticker

Energy
NYMEX WTI Crude Oil CL
NYMEX Heating Oil HO
NYMEX Natural Gas NG
ICE (EU) Natural Gas NGLNM
ICE (EU) Brent Crude Oil LCO
ICE (EU) Gas Oil LGO

Grains
CBOT Soybeans S
CBOT Corn C
CBOT Wheat W
KCBT Hard Red Winter Wheat KW
CBOT Soybean Meal SM
CBOT Soybean Oil BO
CBOT Rough Rice RR
CBOT Oats O

Metals
COMEX Gold GC
COMEX Silver SI
COMEX Copper HG
NYMEX Platinum PL
NYMEX Palladium PA

Softs
ICE (US) Cotton CT
ICE (US) Sugar 11 SB
ICE (US) Coffee KC
ICE (US) Cocoa CC
ICE (US) Orange Juice OJ
CME Lumber LB

Livestock
CME Live Cattle LC
CME Lean Hogs LH
CME Feeder Cattle FC
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Easley et al. (2021) who correct for possible positive autocovariances by taking

the absolute value. The Roll measure we employ is given by

EffSprdR
i,d = 2

√
|Cov[∆pi,d,k,∆pi,d,k−1]|, (B.2)

where pi,d,k = ln(Pi,d,k) is the kth log price of commodity futures i on day d

and ∆pk = pk−pk−1 are tick-by-tick log returns. The superscript R indicates

that the effective spread is the Roll proxy.

Price Impact (2008–2018) We estimate price impact as the slope coef-

ficient (λ) of a linear regression of 1-minute mid-quote log-returns on signed

root-dollar-volume order imbalance. We estimate λ using a regression of the

form

∆ln(Mi,d,t) = αi,d + λi,d sign(OIBi,d,t)
√
|OIBi,d,t|+ ϵi,d,t, (B.3)

where t denotes 1-minute intervals, ∆ln(Mi,d,t) is the mid-quote return calcu-

lated from the prevailing mid-quote price at the end of the 1-minute interval,

and OIBt is the aggregate signed volume (order imbalance; buyer- minus

seller-initiated trades) within the time-interval t measured in USD. Dollar

volume is the number of contracts traded times the futures price in USD

times the contract size. The theoretical results of Kyle (1985) imply a lin-

ear relationship between order imbalance and returns. In empirical studies,

however, a concave functional form with signed root-volume is preferred (e.g.,

Hasbrouck, 2009; Collin-Dufresne and Fos, 2015). A high value indicates a

high price-impact, which makes it an inverse measure of liquidity.

Price Impact Proxy: Kyle and Obizhaeva Measure (1996–2018)

Kyle and Obizhaeva (2016) suggest a measure of illiquidity that they de-

rive from their market microstructure invariance hypotheses. The measure is
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similar to the popular Amihud (2002) measure and given by

λKO
i,d =

(
σ2
i,d

Vi,d/CPId

) 1
3

, (B.4)

where σ is the annualized realized volatility of 5-minute trade returns, V is

US dollar volume which we deflate by CPI to January 2000 USD, following

Fong et al. (2018). Dollar volume is the number of contracts traded times

the futures price in USD times the contract size.

In the empirical microstructure literature, tests of market efficiency com-

monly are against the null hypothesis that a market is (weak-form) efficient.

We measure price efficiency using two standard measures: (1) variance ratios

and (2) pricing error volatility.

Variance Ratio (2008–2018) Variance ratios as a weak-form price effi-

ciency test against the null hypothesis of a random walk were first proposed

by Lo and MacKinlay (1988). We compute a variance ratio of 1-minute to

30-minute mid-quote log-returns. That is, we compute

V (30) =
σ2(mr30,t)

30σ2(mr1,t)
, (B.5)

where mr30,t refers to overlapping mid-quote log-returns aggregated to a 30-

minute frequency, while mr1,t are mid-quote returns at a 1-minute frequency.

We compute this variance ratio for every day d and every commodity i in

the subsample. Deviations from unity are commonly used as a measure for

the degree of inefficiency of a price process. Thus, we transform the variance

ratio to a scale where a higher value indicates a higher degree of inefficiency

by calculating

V Ri,d = |1− V (30)i,d|. (B.6)
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A high V R indicates deviation from a random walk. It is thus an inverse

measure of price efficiency.

Variance Ratio Proxy: Microstructure-Adjusted Variance Ratio

(1996–2018) For the estimation of variance ratios over the whole sample,

we rely on 5-minute end-of-interval trade price returns. During such short

time intervals, a large part of the variance comes from trade prices hitting

standing ask and buy orders – in limit order markets as well as in pits. To

limit the influence of this bid–ask bounce, we compute Smith (1994) variance

ratios. His modified variance ratio accounts for bid–ask-induced effects in

recorded prices by incorporating the model of Blume and Stambaugh (1983).

He provides a closed-form solutions for a bid–ask-adjusted variance ratio. The

adjusted variance ratio is

V ∗
k =

1
T

∑T
t=1(ln(Pt)− ln(Pt−k)− kµ)

km2

− 1, (B.7)

where Pt is a trade price in the 5-minute time interval t,

µ =
1

T

T∑
t=1

ln(Pt)− ln(Pt−1), (B.8)

m2 =
1

T

T∑
t=1

(ln(Pt)− ln(Pt−1)− µ)2 − 2σ2
δ , (B.9)

σ2
δ =

j
T

∑T
t=1(ln(Pt)− ln(Pt−1)− µ)− 1

T

∑T
t=1(ln(Pt)− ln(Pt−j)− jµ)2

2j − 2
.

(B.10)

We set the lag parameters to j = 2 and k = 4. This way, we keep the data

requirements low. If the underlying price process follows a random walk, then

V ∗
k = 1. We capture deviations from unity by transforming V ∗

k using

V RS
i,d = |1− V ∗

i,d|. (B.11)
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The superscript S indicates that V R was calculated from trade prices using

the variance ratio by Smith (1994).

Pricing Error Volatility (2008–2018) As a second measure, we estimate

the lower bound of the pricing error volatility σs using a vector autoregressive

process (VAR) of returns and order imbalance (buyer-initiated minus seller-

initiated trades). Hasbrouck (1993) suggests decomposing the log-trade price

process pt into a random-walk rwt and a stationary component st

pt = rwt + st. (B.12)

We estimate the volatility of st , σs, using vector-autoregressive regressions

with 5 lags, VAR(5), using 1-minute returns. We invert the VAR(5) to a vec-

tor moving average (VMA) process and truncate the VMA parameters at 11

lags. After imposing the Beveridge and Nelson (1981) restriction, we obtain a

lower bound estimate for σs which we denote σ
V AR(5)
s . In the literature, σs is

used as a measure for price efficiency (e.g., Hendershott and Moulton, 2011;

Rösch et al., 2017) but also as a measure of price impact (e.g., Collin-Dufresne

and Fos, 2015). Hasbrouck (1993) refers to it as a measure of market quality.

In contrast to variance ratios, pricing errors are related to the semi-strong

form of price efficiency (Boehmer and Kelley, 2009).

Pricing Error Volatility Proxy (1996–2018) With only trade prices at

hand, we estimate a proxy for the lower bound of the pricing error volatil-

ity σs using a moving average process of order one, MA(1), as proposed by

Hasbrouck (1993) using trade prices sampled at a 5-minute frequency. We

estimate an MA(1) model of the form

rt = ϵt − aϵt−1. (B.13)



CHAPTER 3. FINANCIALIZATION, ELECTRONIFICATION ... 129

After imposing the Beveridge and Nelson (1981) restriction, a lower bound

for the pricing error variance can be estimated by

σMA(1)
s =

√
a2σ2

ϵ . (B.14)

The superscript indicates that σs is estimated assuming an MA(1) process.

A large σs indicates large deviations from the efficient price, making it a

measure of inefficiency.

To remove outliers, we first calculate the mean and standard deviation

of each measure (for every commodity) after trimming the top and bottom

2.5%. Then, we remove those data points from the sample whose standardized

absolute value exceeds 10.

We test for a unit–root using Augmented Dickey-Fuller (Said and Dickey,

1984) tests for each of the eight measures and each commodity. For few time-

series, the null cannot be rejected.12 We do not difference our time-series

of measures, because (1) we believe that valuable information would be lost,

(2) theoretically, return variances, price impact, and relative spreads can be

assumed to be finite which puts the empirical test results into perspective,

and (3) to be in line with the majority of the previous literature.

We multiply EffSprd by 104, so it can be interpreted in bps relative to

the futures price. λ is also multiplied by 104×
√
106 such that its unit of mea-

surement is the relative price change in bps induced by a root million dollars

of trading volume. V R is the absolute deviation from unity. We annual-

ize volatilities like σ
V AR(5)
s estimated from, e.g., 1-minute data by computing

σannualized = σ1min

√
60 · 24 · 250 and use it in %.

To assess the effect sizes on our proxies in the same manner as for our

trade-, quote- and volume-based measures (benchmarks), we scale them using

12Out of 25 commodities the following number of ADF-tests have p > 0.05: EffSprd 6,

EffSprdR 1, λ 2, λKO 0, VR 0, V RS 0, σ
V AR(5)
s 0, and σ

MA(1)
s 0.
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linear regressions commodity-by-commodity for each measure–proxy pair. We

estimate regressions of the form

Benchmarki,d = θ0,i + θ1,iProxyi,d + ϵi,d (B.15)

for each commodity i with daily proxy and benchmarks estimates using Huber

(1964) M-estimation (with k = 1.345) which gives less weight to extreme

values than simple OLS. Then, we compute a scaled version of each proxy for

each commodity by

Scaled Proxyi,d = θ̂0,i + θ̂1,iProxyi,d, (B.16)

where the parameters are the commodity-specific estimates from Equation

(B.15). In our analysis, we use the scaled version of each proxy.

To assess how proxies are related to their benchmarks, we compute pair-

wise correlations for each commodity and average the correlations across all

commodities. Panel A of Table B.2 shows the average correlation coefficients.

We can observe relatively high correlations for the liquidity measures. The ef-

ficiency measures also show considerable degrees of correlation, albeit slightly

lower. This is likely due to high levels of noise in those measures.

B.2 Proxy Validity

Before we study commodity market quality, we further study the validity

of the proxies we employ, since one might be concerned that the identified

proxies might be correlated in the post-financialization sample but not before.

A drastic change in the composition of market participants might affect the

measurement of our proxies in a way that does not allow us to compare them

across the two regimes. To address this concern, we compute the correlation

of our measures conditional on the commodity being in an index (GSCI or
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Table B.2: Proxy–Benchmark Correlations

This table reports (average) correlation coefficients of benchmark measure X and proxy

measure Y (labeled X/Y). Panel A shows the results for a sample of 28 commodities (All).

In Panel B, we report proxy–benchmark correlations for soybean meal (SM). Before 2013,

SM was not part of any major commodity index. From 2013 onwards, it was part of the

BCOM index. The top (bottom) row shows correlations from 2008–2012 (2013–2018). In

Panel C, we report average proxy–benchmark correlations of all other commodities in our

sample. 20 are part of the GSCI or the BCOM index while 7 are non-index commodities

(NGLNM, O, OJ, RR, LB, PA, and PL). The sample consists of daily estimates between

January 2008 and December 2018.

Panel A: All
EffSprd/EffSprdR λ/λKO V R/V RS σ

V AR(5)
s /σ

MA(1)
s

0.644 0.756 0.300 0.402

Panel B: Soybean Meal (SM)

Index EffSprd/EffSprdR λ/λKO V R/V RS σ
V AR(5)
s /σ

MA(1)
s

Yes 0.480 0.593 0.291 0.291
No 0.813 0.607 0.265 0.265

Panel C: All but SM
Index EffSprd/EffSprdR λ/λKO V R/V RS σ

V AR(5)
s /σ

MA(1)
s

Yes 0.642 0.781 0.318 0.381
No 0.635 0.694 0.251 0.464

BCOM) or not. If proxy–benchmark correlations are unaffected by index

membership, then this can be interpreted as evidence that our proxies are

valid before the financialization started.

First, we study proxy–benchmark correlations of a single commodity

across regimes. Soybean meal (SM) was not part of a major index before

2013 but was added to the BCOM index in January 2013. This allows us to

compare correlations of proxy–benchmark measures within a commodity. We

report the correlations of our proxies and benchmarks in Panel B of Table B.2.

Most estimates are in a similar range. Only the correlation of EffSprd and

EffSprdR is higher before SM became an index–commodity. All correlations

are significantly different from zero at the 1% level.

In a second robustness check, we compare the correlations of proxy and

benchmark measures using a cross-section of commodities that either have



CHAPTER 3. FINANCIALIZATION, ELECTRONIFICATION ... 132

or have not been in a major index throughout the 11-year sample period.13

We compute correlations for all 27 commodities and report the average cor-

relation for each proxy-benchmark pair and for each group in Panel C of

Table B.2. The estimates of index and non-index commodities are of similar

size. Individual correlations of proxy–benchmark pairs of all commodities are

significantly different from zero at the 1% level (not reported).

Overall, the employed proxies appear to be robust to the ‘degree of finan-

cialization’ of a commodity proxied by index–membership. Thus, we expect

these proxies to be able to capture market quality in the pre-financialization

regime.

B.3 Speculative Trading and Market Quality

For (un-) predictable net trading activity of speculators, we rely on the same

procedure as for CITs. First, we compute relative net open interest of spec-

ulators, and then model it for each commodity using an ARIMA(p,1,q) pro-

cess. Fitted (residual) absolute first differences are then proxies for (un-)

predictable net speculative trading volume.

We aim to capture possible effects in a regression of the form

MQi,w = µi + γw + θ1Pred.V ++θ2Unpred.V +Θ′Xi,w + ϵi,w. (B.17)

MQi,w is a set of (inverse) measures of market quality of commodity i in

week w, i.e., EffSprdR, λKO, V RS, or σ
MA(1)
s . Pred.V (Unpred.V) is (un-)

predictable net trading volume of speculators. X is a vector of control vari-

ables that are commonly used in empirical market microstructure applications

of this kind, i.e., 5-minute intraday volatility, the natural log of dollar volume,

13For this analysis we use 20 index commodities, i.e., BO, C, CC, CL, CT, FC, GC,
HG, HO, KC, KW, LC, LCO, LGO, LH, NG, S, SB, SI, and W; as well as 7 non-index
commodities, i.e., LB, NGLNM, O, OJ, PA, PL, and RR.
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the natural log of total (including unclassified) open interest in commodity

i, and the inverse settlement price. In order to match frequencies with the

COT reports, we aggregate daily measures of market quality and controls to

a weekly frequency. µi (γw) capture commodity (year–week) fixed effects. If

predictable (unpredictable) speculative trading or increasing market share of

speculators harms market quality, we would expect θ1 (θ2) to be significantly

positive.

The OLS estimates are reported in Table B.3. The coefficient that re-

lates Unpred.V to λKO (σ
MA(1)
s ) is significantly negative at the 5% (10%)

level. A one percentage point change in Unpred.V thus appears to coincide

with reduced price impact and smaller variance ratio deviations, although the

coefficients are relatively small. However, the contemporaneous relationship

could be due to reverse-causality. Speculators might concentrate their trading

activity on periods of high market quality. Furthermore, the design of CFTC

COT data allows, to some degree, conclusions about the interplay of specula-

tion and commodity market quality. However, they do not allow conclusions

about a possible effect of index trading. This is because commodity index

traders (CITs) are represented both in the commercial and non-commercial

group. Some ETFs hedge their exposure using futures, so they are classified

as non-commercials. Other issuers rely on swap dealers for hedging, which in

turn are classified as commercials.
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Table B.3: Speculative Trading and Market Quality

This table shows OLS estimates of the regression

MQi,w = µi + γw + θ1Pred.V + θ2Unpred.V +Θ′Xi,w + ϵi,w.

MQi,w is a set of (inverse) measures of market quality of commodity i in week w, i.e.,

EffSprdR, λKO, V RS, or σ
MA(1)
s . Pred.V (Unpred.V) is (un-) predictable net trading

volume by speculators. These are absolute first differences in ARIMA(p ≤ 10, 1, q ≤ 10)

fitted (residual) relative net speculative open interest. X is a vector of control variables,

i.e., 5-minute intraday volatility, the natural log of $-volume, the natural log of total

reported open interest in commodity i, and the inverse settlement price. µi (γw) capture

commodity (week) fixed effects. The sample includes weekly data of 18 indexed commodi-

ties (in GSCI, BCOM or both) for which CFTC COT data are available for a sufficiently

long time period. The sample ranges from 1996 to 2018. Standard errors are clustered

by week and commodity. t-ratios are in parentheses. ∗∗∗, ∗∗, and ∗ indicate significance

at the 1, 5, and 10% level, respectively.

Dependent variable:

EffSprdR λKO V RS σ
MA(1)
s

(1) (2) (3) (4)

Pred.V −0.022 0.001 0.00003 −0.002
(−1.376) (0.249) (0.149) (−0.104)

Unpred.V −0.040 −0.014∗∗ −0.0004 −0.031∗

(−1.254) (−2.160) (−1.626) (−1.809)

Controls Yes Yes Yes Yes
Observations 20,353 20,397 20,449 20,452
Adjusted R2 0.667 0.871 0.579 0.665



Chapter 4

Market Quality, Index Trading

and Arbitrage Opportunities in

Commodity Markets:

High-Frequency Evidence from

the Options Market*

4.1 Introduction

Commodity markets underwent drastic changes over the last decades. After

2004, large institutional financial investors like hedge funds, but also passive

long-only index investors, entered the markets. During the years after around

mid-2006, trading volume migrated from open-outcry to electronic limit order

books. In 2008, in the midst of the global financial crisis, commodity prices

collectively spiked. Financial investors with no physical interest in the com-

*This chapter is based on the Working Paper “Market Quality, Index Trading and Ar-
bitrage Opportunities in Commodity Markets: High-Frequency Evidence from the Options
Market” by Tobias Lauter and Marcel Prokopczuk, 2023.
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modities themselves were accused of driving prices beyond their fair values

and harming the process of price formation.1 Consequently, this has been

controversially discussed and tested in the literature.2

In this paper, we explore the role of ETF-related trading in New York

Mercantile Exchange (NYMEX) West Texas Intermediate (WTI) sweet crude

oil futures and options. We focus on the information content conveyed in these

trades and how they relate to market quality and especially arbitrage oppor-

tunities. Besides uninformed commodity index traders (CITs), ETFs could

also be used by informed investors attempting to hide (Eglite et al., 2023, find

that informed investors trade equity ETFs to conceil insider trading). ETFs

are arguably easier to trade: their shares offer a highler granularity than an

exposure to the price of 1,000 barrels. Trading ETF shares also does not

require opening and maintaining a margin account. Both WTI futures and

large ETFs are very liquid with low spreads which in turn allows arbitrageurs

to eliminate price differences between ETFs and futures quickly. Since mod-

ern electronic markets are fast and the effects of ETF-related trading might

be short lived, we measure frictions and mispricings at high frequencies.

To do so, we use a new approach that has, to the best of our knowledge,

not been used in the context of commodity financialization: the measurement

of market quality using high-frequency options data. In a frictionless complete

market, option contracts are redundant assets. This feature greatly aids

the detection of those frictions. In contrast to futures contracts, where risk

premia arising from hedging pressure and unobservable cost-of-carry variables

like storage costs and convenience yield influence futures prices, in options

markets, the no-arbitrage relationship is much clearer to analyze. Measuring

market quality via options data has the following advantages:

1This is also called the “Masters Hypothesis”, named after hedge fund manager Michael
Masters and his testimony before the US Senate (Masters, 2008; Masters and White, 2008)

2For a recent literature overview, see Natoli (2021).
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(1) Put–call-parity (PCP) is a simple but powerful no-arbitrage relation

that allows us to measure market quality (almost) without having to select a

possibly misspecified model for the price process that is compared to another

also possibly misspecified model as a benchmark (such as a random walk).

Thus, we expect the resulting measures to be more robust and less noisy.

Futures prices are tied to spot prices via no-arbitrage in the form of cost-of-

carry (theory of storage of Working (1933) and Kaldor (1939)). However, this

is relatively difficult to measure, e.g., due to storage costs and the implicit

and unobservable convenience yield. Complementarily, the hedging pressure

theory of Keynes (1923) gives rise to a risk premium that long speculators

demand from short producers. With so many unobservable determinants,

deviations from the fair price are difficult to discern in futures markets alone.

This is why their efficiency has to be measured via return predictability in

the cross-section (see, e.g., (Bakshi et al., 2019)) or time-series (e.g., variance

ratios (Lo and MacKinlay, 1988), or pricing errors (Hasbrouck, 1993)). In all

these cases, mispricing can only be defined relative to a benchmark model,

which is often a linear factor model of the returns in the cross-section or a

random walk price process in the time-series. In contrast to spot or futures

markets, options have the advantage that their price arises from a clearer

no-arbitrage relationship because they are written on the futures price (an-

other financial asset), and not the physical spot price. In a complete market

without frictions, they are redundant in the way that their payoffs can be

replicated from other financial assets. The most simple replication is using

PCP and replicating one option with a portfolio involving another. Alter-

natively, a single option’s payoff can be replicated by trading the underlying

(futures contracts) and the risk-free asset. Futures options, the most liquid

options contract form for commodities, have the advantage that they are not

a function of any payments during the lifetime of the contract. Futures do
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not pay dividends, and have no storage costs or convenience yields.3

(2) We expect variation in inefficiency and illiquidity of futures contracts

to be reflected in an amplified way in option contracts, which should increase

the signal-to-noise ratio further. Option market making is more complicated

compared to futures markets so that we expect any variation in futures mar-

ket quality to be more pronounced and thus be measurable with more ease.

This means that slight variations in inventory risk or adverse selection risk

that might remain undetected in futures-based measures are expected to be

amplified and thus more visible in options-based measures. These advan-

tages make commodity futures options an ideal research subject for studies

of market frictions that has been overlooked in the debate on commodity

financialization. We aim to fill this gap.

(3) The measurement only requires contemporaneous prices, which allows

a highly frequent measurement and detection of very short-lived inefficiencies.

We contribute to the literature by studying the role of ETF-related trad-

ing activity at the 5-minute frequency. We employ a simple approach to

identify ETF-related trading in the order flow of WTI futures. Our option-

and bid-ask-based measures are almost model-free and yield high-frequency

pictures of frictions and mispricings. This allows a closer look at the role of

ETF-related trading that is not possible using daily or weekly data and ag-

gregate volume. First, we sign the volume of large ETFs and WTI futures at

the tick frequency and compute 5-minute order imbalances for each. Using a

simple linear regression, we decompose futures volume into ETF-related (fit-

ted) and residual imbalances. We compute a PCP-based measure of market

quality using the bid and ask prices of futures, calls, and puts to relate it in a

panel regression to decomposed imbalances. Our findings suggest that ETF-

3One complication arises due to the fact that most commodity futures options are of
the American type. However, since no dividends are paid, early exercise is rarely optimal
(Back et al., 2013).
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related trading coincides with larger PCP deviations than non-ETF-related

trading. At the same time, however, it is also less variable, which makes

inventory risk explanations less plausible. In order to gauge the information

content transmitted through those trades, we relate order imbalances to past

and subsequent returns. Slight positive futures returns following ETF-related

trading activity hint at private information contained in those trades. Lastly,

we relate order imbalances to the occurrence and size of arbitrage opportu-

nities to test if those profits stem from arbitrage trades. Our results imply

that this is not the case. From the evidence we conclude that ETF-related

trading likely carries private information that gets permanently transmitted

into prices, coming at the cost of adverse selection risk for market makers.

We add to a stream of literature that investigates the influence of spe-

cific groups on the pricing process in financial markets. In equity markets, for

example, both institutional ownership and trading appears to be associated

with more efficient pricing (Boehmer and Kelley, 2009) while ETF ownership

is associated with less informative prices (Israeli et al., 2017). In the context

of commodity markets, the influence of ETF or index investors is highly con-

troversial. Bessembinder et al. (2012) test predatory versus sunshine trading

in predictable ETF roll trades and find evidence of the latter. Ready and

Ready (2022) on the other hand, find modest but temporary price impacts of

index trade flows. They rely on weekly aggregate CFTC trader positions data

and issuances of commodity-linked notes. Our approach is more granular, as

our entire analysis is performed at the 5-minute frequency.

The main advantages of intraday data over daily data are the following:

(1) Mispricings, i.e., arbitrage opportunities, are likely to be short-lived, and

an expansion of the sample size by increasing the sampling frequency repre-

sents a natural approach to facilitate detection. (2) CME Group in-the-money

options are settled by the exchange in accordance with PCP. Thus, measures

that rely on PCP are unable to detect mispricings in daily settlement data.
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(3) Intraday options data enable us to incorporate the option bid–ask spread

into our analysis. (4) Asynchronicity issues are less severe. When either the

option or the underlying futures contract is not traded while the other is, stale

prices can imply mispricings that are not exploitable (Battalio and Schultz,

2006). The choice of the sampling frequency (5 minutes) is a trade-off be-

tween stale prices and dropping observations because they are too far apart.

For the PCP-base measures, at least one price update in a call, the compli-

mentary put, and the underlying futures have to occur in a sampling interval

of 5 minutes. Finally, price-staleness is also an aspect of market quality. In a

liquid and efficient futures and options market, arbitrageurs ensure that prices

only remain stale for very short periods of time. In order to exclude sparsely

traded options, we only retain at-the-money (0.95 > F
X

> 1.05, where F is

the futures price and X is the option strike) options with a time-to-maturity

of 10 days to 100 days.

Our paper is also related to studies of option market liquidity and effi-

ciency. In theory and the empirical literature, the main channels are adverse

selection risk, hedging costs, and inventory risk (for single-stock options see,

e.g., Christoffersen et al., 2018). Hedging costs are especially important if

the option gamma is high which requires frequent rebalancing to achieve

delta-neutrality. Thus, higher effective spreads of the underlying directly re-

sult in expensive hedging. Overall, equity option market quality appears to

be mainly driven by the liquidity of the underlying stock and option mar-

ket maker capacities. For single-stock options, Muravyev (2016) shows that

inventory risk is a major concern for those option market makers. This is es-

pecially true in net supply markets in which short-selling is costly. Shorting

is very easy in WTI futures markets and thus less relevant in our setting.

Our measurement approach is similar to (Cremers and Weinbaum, 2010)

who study PCP deviations and subsequent expected returns of the under-

lying stocks. Their findings point at option mispricings as a consequence of
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adverse selection risk. Our design aims at the role of ETF-related traders in

commodity markets.

The remainder of the paper is structured as follows. Section 4.2 describes

the sample, Section 4.3 the PCP-based measures and a simple regression that

we use to decompose order imbalances, Section 4.4 presents our results, and

Section 4.5 concludes.

4.2 Data

We download 5-minute intraday futures and options data from Refinitiv

Datascope Select (RDS, formerly Thomson Reuters Tick History, TRTH).

Our sample spans from January 2008 to October 2021. Quotes and volume

are only recorded for electronic trading for both options and futures. Option

volume is only reliably available after November 6, 2009, which is why we

drop data before 2010 for analyses that include option volume. We download

tick trade and quote data (including inside depth) for the first 5 New York

Mercantile Exchange Western Texas Intermediate Sweet Crude Oil (NYMEX

WTI) futures contracts (Reuters symbol CL) spanning January 2008 to Oc-

tober 2021. We also download tick-by-tick trade and quote data of two ETFs

for the time period January 2008 to October 2021. The first, United States

Oil fund (USO), offers exposure to WTI.4 At the end of 2022, it had total net

assets of $2.3 Billion. The second, iShares S&P GSCI Commodity-Indexed

Trust ETF (GSG) tracks the S&P Goldman Sachs Commodity Index (GSCI),

the most popular broad commodity index.5 At the end of 2022, it had total

4https://www.uscfinvestments.com/uso. USO was initiated in April 2006. Until
April 17, 2020, it held front-month futures only. Nowadays, it holds the first 7 contracts.
Since May 2020, it is rolled over the course of 10 days instead of 4. USO managers may
trade any energy futures (or option) contract on NYMEX, ICE or other exchanges, but
their benchmark is the performance of NYMEX front-month futures. On April 29 2020,
USO underwent a 1 for 8 reverse split.

5https://www.ishares.com/us/products/239757/ishares-sp-gsci-

commodityindexed-trust-fund

https://www.uscfinvestments.com/uso
https://www.ishares.com/us/products/239757/ishares-sp-gsci-commodityindexed-trust-fund
https://www.ishares.com/us/products/239757/ishares-sp-gsci-commodityindexed-trust-fund
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net assets of $1.3 Billion. With about 20%, WTI has the largest weight in the

GSCI. Additionally, we obtain 5-minute trade and quote (plus inside depth)

data of American-style at-the-money (ATM; ±5%) NYMEX WTI futures op-

tions for the sample period January 2010 to October 2021. For the risk-free

rate, we use overnight, 1 week, 1, 2, 3, 6, 12 month LIBOR offered rates by

the ICE Benchmark Administration (IBA) downloaded from Refinitiv Datas-

tream and interpolate it using cubic splines.

We focus on the NYMEX WTI oil market since this is the largest and

most liquid commodity market. Trading activity has been high during our

sample period which ensures that the sample includes sufficiently many 5-

minute intervals in which both the option and the underlying futures contract

have been traded so that the resulting sample has few gaps.

We filter the futures data as follows. Since volume is still concentrated

to the former pit trading hours 9 AM to 2:30 PM, we restrict our sample to

these hours. We remove implausible negative prices from the sample.6 Then,

we remove outliers. We define an outlier as a 100%-deviation of the bid ask

or trade price from the daily settlement price or the daily median price of

all bid, ask, last, and settlement prices of that contract–day. We remove

volume entries that exceed the daily volume and additionally truncate it at

the top 0.1%. Options data are filtered by eliminating non-positive spreads

and one-sided or non-positive quotes.

Some of the market quality measures we employ require the estimation

of implied volatilities (IV). To do so, we use the Black (1976) model for calls

and the Barone-Adesi and Whaley (1987) model for puts7, and the secant

method for optimization.8

6That includes the sample period during which WTI futures prices turned negative.
We do this, because our market quality measures cannot handle negative prices since they
include a transformation of option prices to implied volatilities.

7See also Trolle and Schwartz (2009) for a justification for this approach.
8The main analysis is performed in R. Due to the size of the data and the complexity of

the computations, we write parts of our code in C++ (which can be integrated seamlessly
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4.3 Methodology

4.3.1 Measuring Market Quality from Options Data

Our approaches to measuring market quality build on put–call–parity (PCP)

for American-style futures options

p− EEP + Fe−rT = Xe−rT + c, (4.1)

where p (c) is the price of an American-style futures put (call) option, T

is their common remaining time to maturity, X is their common strike, r

is the T -period-risk-free rate, EEP is the early exercise premium of the

put, and F is the futures price. In a frictionless complete market, PCP

dictates a no-arbitrage relation that holds irrespective of the process gov-

erning the underlying’s price. An option pricing model is only required to

compute the early-exercise premium because most traded commodity options

are American-style, and PCP only holds for European options. The fact that

the underlying is a futures contract and thus does not pay dividends makes

early exercise rarely optimal (Back et al., 2013). Early exercise depends on

the risk-free rate which was stable and low during the sampling period of our

analysis. The estimated average daily EEP in our sample is mostly below

0.1 ct and always below 1 ct. In the following, we describe measures all of

which build on PCP in Equation (4.1). All measures are driven by both

price efficiency and liquidity aspects of the markets and thus capture market

quality.

Implied Volatility Deviations

We follow an idea of Amin et al. (2004) that is also used by Cremers and

Weinbaum (2010) and Rösch et al. (2017). PCP suggests that the IVs of

in R using the Rcpp package) and run it on parallel on a 32-core machine.
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put–call option pairs should be identical. We compute the absolute difference

between the IVs of puts and calls with matching underlying, maturity, and

strike.

Implied Volatility Deviations using Bid and Ask Prices (IVDBA)

With bid–ask quotes, this is

IV DBA = |IV Ask
C − IV Bid

P |+ |IV Bid
C − IV Ask

P | (4.2)

where IV Ask
C (IV Bid

C ) is computed from call ask (bid) quotes and futures ask

(bid) quotes while IV Ask
Put (IV Bid

Put ) is computed from put ask (bid) quotes and

futures bid (ask) quotes.

Synthetic Futures Differences and Implied Arbitrage Profits

With our second measure, we follow Battalio and Schultz (2006) who study

the price efficiency of American single-stock options by computing option-

implied synthetic prices of the underlying and comparing them to observed

prices. We solve Equation (4.1) for F and use observed option prices to

compute a synthetic futures price implied by PCP. Then, we compare the

synthetic futures price to the observed one and compute absolute differences

as a measure of market quality.

In detail, the synthetic underlying futures prices is

FSyn = erT (c− (p− EEP )) +X (4.3)

where c and p are observed American-style call and put futures option prices

written on the same underlying with an identical time to maturity T as a

fraction of a year and the same strike X and r is the annualized T -period

risk-free interest rate. EEP is the early exercise premium. We estimate it by
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taking the average IV of all futures–day calls and transform it to put option

prices using the result by Black (1976). The EEP is then the difference this

estimated European and the observed American put option price.

With bid and ask quotes available, the relationship in Equation (4.3)

becomes

FAsk
Syn = erT

(
cAsk −

(
pBid − EEP

))
+X (4.4)

FBid
Syn = erT

(
cBid −

(
pAsk − EEP

))
+X (4.5)

for bid and ask prices, respectively (Battalio and Schultz, 2006). There exists

an arbitrage opportunity if FAsk
Syn < FBid or FBid

Syn > FAsk, i.e., if buying

(selling) the underlying synthetically at the ask (bid) while simultaneously

selling (buying) it at the bid (ask) yields an instantaneous risk-free profit.

Implied Arbitrage Profit (IAP) From bid-ask prices and inside depth

of options and futures, we are then able to compute a rough estimate of

arbitrage profits available. In detail, we estimate implied arbitrage profits as

IAP =min(sizeAsk
c , sizeBid

p , sizeBid
F )×max(FBid − FAsk

Syn , 0) (4.6)

+min(sizeBid
c , sizeAsk

p , sizeAsk
F )×max(FBid

Syn − FAsk, 0), (4.7)

where size is the bid or ask size (inside depth) of the respective futures or

option contract. For actual dollar profits, the profit has to be multiplied by

the contract size of the futures. Of course, IAP does not perfectly measure

arbitrage profits because we use bid-ask prices and sizes at the end of 5-

minute periods and only inside depth which does not allow walking the book.

We estimate these measures for every 5-minute interval in our sample. Recall

that in a complete frictionless market IVDBA should be zero, so it is an

inverse measure of market quality. To limit the impact of extreme values,
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we winsorize the top 0.1% of IV DBA. Since IAP contains many zeros, we

winsorize the top 0.1% of all positive IAP . We also winsorize the top (non-

negative variables) or bottom and top 0.1% of explanatory variables that

exhibit extreme values.

4.3.2 ETF-Related Futures Order Imbalances

In this section, we describe how we decompose WTI futures order imbalances

into ETF-related and residual order imbalances using a simple regression.

We use tick-by-tick quotes and trades of WTI futures, GSG, and USO to

compute 5-minute signed volume. Futures and ETFs are linked through

creation-redemption and (index) arbitrage mechanisms. Both ETFs, USO

and GSG, and WTI futures are highly liquid instruments and any profitable

arbitrage opportunity can be assumed to be traded away within 5 minutes

– the frequency of our sample. Order imbalance in one market transmits

through price impact, where we expect similar order imbalances to occur.

The conventional functional form of price impact in empirical microstructure

that links order imbalance to returns is the square–root (Hasbrouck and Saar,

2013; Collin-Dufresne and Fos, 2015). Thus, we assume a root-root link

between ETF and futures order imbalances. The square–root transformation

also lowers the influence of very high order imbalances. Lee–Ready-signed

volume (s.V ol) is aggressive buy minus aggressive sell volume in the number of

shares or contracts.9 We define root order imbalance as OIB = ±
√
|s.V ol| =

sign(s.V ol)
√

|s.V ol| and explore the relations of futures and ETF OIB.

We estimate several models whose coefficients are presented in Table

4.1. Model (1) is a logit regression and Model (2) an OLS regression, whose

estimates imply that absolute futures OIB is related to trading in futures

contracts. When ETFs are aggressively traded in one direction, futures are

9Using dollar volume instead would induce a spurious relation since the prices of futures
and ETFs tracking them are closely related.
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more likely to be traded in that same 5-minute interval and are also more

likely to be traded aggressively in one direction. This shows that trading

activity in futures and ETFs is generally contemporaneously correlated. In

Model (3), we test if and how signed OIB in ETFs and futures are related. The

estimates and large t-stats indicate that on average, buy or selling pressure

in futures and both ETFs occur simultaneously. This could be due to OIB-

induced price pressure transmitting from one market to the other via arbitrage

activity, or simply because new information is simultaneously incorporated

in all markets. Since the intercept in Model (3) is only significantly different

from zero at the 10% level, we drop it in Model (4) and use this specification

to decompose futures OIB into fitted (ETF-related) and residual (non-ETF-

related) OIB. In this case, zero OIB in ETFs also results in zero ETF-related

OIB in futures. ETF-related imbalance accounts for 2.8% of the variation in

futures OIB.

We extend Model (3) by adding 12 leads and lags (±60 minutes) of GSG

and USO OIB. The sample is restricted to the main trading hours but lagged

and leading imbalances are also sampled from before 9 AM and after 2:30 PM.

This serves as a test of possible delayed transmissions between markets but

also as a robustness check. We present OLS point estimates with 2 times the

standard error bars for all 22 slope coefficients in Figure 4.1. The estimates

show that the relationship is only significant for the contemporaneous terms.

This makes us confident that our simple regression is in fact picking up ETF-

related trading activity in futures. By ETF-related trading, we understand

trades in ETFs that are subsequently hedged using futures contracts or trades

in futures that are subsequently mimicked in ETF shares. Same-information

trades in both futures and ETFs is also captured by this approach.
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Table 4.1: Order Imbalances in WTI Futures and ETFs
This table shows the relationship between absolute signed volume in large commodity ETFs and WTI

futures. GSG is an ETF tracking the S&P GSCI, and USO offers exposure to WTI futures only.

Sample: 5-minute frequency, Jan 2008–Dec 2021, 5 shortest-maturity CL futures contracts, 9 AM to

2:30 PM. Standard errors of OLS models are clustered by futures contract. t-stats are in parentheses.
∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% level, respectively.

Dependent variable:

1s.V olF ̸=0

√
|s.V olF | ±

√
|s.V olF |

Logit OLS OLS OLS

(1) (2) (3) (4)√
|s.V olGSG| 0.058∗∗∗ 0.043∗∗∗

(35.923) (17.146)√
|s.V olUSO| 0.003∗∗∗ 0.024∗∗∗

(22.895) (15.497)

±
√

|s.V olGSG| 0.013∗∗∗ 0.013∗∗∗

(9.931) (9.934)

±
√

|s.V olUSO| 0.016∗∗∗ 0.016∗∗∗

(18.089) (18.092)
Constant 3.480∗∗∗ 6.365∗∗∗ 0.038∗

(528.016) (36.179) (1.666)

Observations 1,118,925 1,118,925 1,118,925 1,118,925
R2 0.167 0.028 0.028
Adjusted R2 0.167 0.028 0.028
Log Likelihood-121,368.000

4.4 Empirical Results

We study the determinants of IVDBA by conducting a regression analysis.

The model includes absolute futures order imbalances as our variable of inter-

est. We estimate two regressions. The second uses absolute order imbalances

disaggregated into ETF- and non-ETF-related using the approach described

in Section 4.3.2. Theoretically, we expect a positive relationship between

|OIBF | and IVDBA if the futures market is not deep and resilient enough,

so price impact leads to increased PCP violations. This might happen if

liquidity suppliers perceive the aggressive trader to be informed (e.g., in the

sense of Glosten and Milgrom (1985)) so they adjust spreads and the price

impact is persistent and does not reverse within the 5-minute interval. We
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Figure 4.1: Lead and Lagged Signed ETF Volume

This figure shows point estimates and error bars indicating 2 standard errors. The model

is

(
±
√
|s.V olF |i,t

)
= γ0 +

12∑
l=−12

θl

(
±
√

|s.V olGSG|i,t−l

)
+

12∑
l=−12

ϕl

(
±
√
|s.V olUSO|i,t−l

)
.

Standard errors are clustered by futures contract.

include further regressors that have been shown to capture option liquidity

along option contract and time-of-day fixed effects (FE) to control for unob-

served heterogeneity throughout the average day and across option contracts.

Those regressors are the following. ΓC ×σF proxies hedging costs (Engle and

Neri, 2010). ΓC is the Black (1976) option-greek gamma of the call, which

is collinear with that of the put. σF is the 5-minute standard deviation of

futures returns on that day. VC ×BASF proxies inventory rebalancing costs

(Leland, 1980; Boyd et al., 2018; Christoffersen et al., 2018). VC is the Black

(1976) option-greek vega, which is collinear with that of the put. −∆C

∆P
is a

ratio of the Black (1976) option-greeks delta which captures initial hedging
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costs. Deltas of calls and puts are closely related (correlation of around 0.8 in

our sample), so we use a ratio to capture variation in both. Time-to-maturity

effects are captured by ΓC and moneyness by deltas. To further account for

potentially temporary unobserved time or option contract effects we follow

Petersen (2009) and double cluster the standard errors by option contract

and time.

The regression results are presented in Table 4.2. In Model (1), we

can see that large order imbalances in the underlying futures coincide with

increased PCP deviations. On average, an order imbalance of plus or minus

one futures contract is associated with an about 0.8 bps higher total difference

in implied volatilites between put and call bid and ask prices. This is to be

expected because when large orders walk the book, the spread widens which

is reflected in an increase in IVDBA. Also, proxies for hedging costs and

inventory rebalancing costs are positively associated with IVDBA. If option

market makers have to adjust their hedges frequently and at a higher cost,

this leads to inefficient option quotes. The positive coefficient of the delta

ratio (put deltas are always non-positive) also implies that increased initial

hedging costs result in inefficiencies. Positive coefficients of option volume

are also expected, which is why the negative one for puts in Model (1) is

surprising.

In Model (2), we use absolute root order imbalances split into ETF-

related and non-ETF-related. The estimates suggest that large ETF-related

order imbalances are associated with increased IVDBA while the effect is

substantially lower for non-ETF-related trading. On average, an ETF-related

aggressive net buy or sell order imbalance in futures coincides with a combined

3 bps higher than average put and call bid and ask implied volatility deviation.

This result could be driven by ETF-related volume being more directional and

thus more frequently walking the book. The sample standard deviations of

|OIBF (ETF )| is 1.77 while that of |OIBF (resid)| is 7.74 which makes this
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Table 4.2: Implied Volatility Deviations in Bid-Ask Prices

This table presents OLS estimates of models for market quality in the form of bid-ask

implied volatility deviations (IVDBA) in basis points. |OIBF | is absolute square-root

order imbalance in the underlying futures contract. (ETF ) and (resid) indicate ETF-

related and non-ETF-related order imbalance as described in Section 4.3.2. F , C, and

P indicate futures, calls, and puts, respectively. Γ, V, ∆ are Black (1976) option-greeks.

σF is the 5-minute return standard deviation of the underlying futures during between

9 AM and 2:30 PM of that day. BASF is quoted log futures bid-ask spread.
√
V ol is

square-root of volume. Sample: 5-minute frequency, Jan 2010–Oct 2021, ±10− 100 day

5% ATM WTI options with their underlying futures and USO and GSG, 9 AM to 2:30

PM. All models include option contract and 5-minute interval fixed effects. Standard

errors are clustered by option contract and time. t-stats are in parentheses. ∗∗∗, ∗∗, and
∗ indicate significance at the 1%, 5%, and 10% level, respectively.

Dependent variable:

IVDBA
(bps) (bps)

(1) (2)

|OIBF | 0.799∗∗∗

(18.434)
|OIBF (ETF )| 3.267∗∗∗

(9.799)
|OIBF (resid)| 1.028∗∗∗

(15.571)
ΓC × σF 3.851∗∗∗ 4.728∗∗∗

(6.276) (7.502)
VC ×BASF 2.375∗∗∗ 2.212∗∗∗

(15.623) (14.973)
−∆C

∆P
35.293∗∗∗ 36.044∗∗∗

(28.299) (28.720)√
V olC 0.917∗∗∗ 1.438∗∗∗

(7.093) (11.074)√
V olP −1.530∗∗∗ −1.032∗∗∗

(−13.203) (−9.246)

Observations 8,028,646 8,028,646
R2 0.108 0.107
Adjusted R2 0.107 0.106
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less plausible. Another possible explanation is that ETF-related trading is

on average based on private information.

We test this by relating ETF- and non-ETF order imbalance to leading

and lagged futures returns. To do so, we regress order imbalances on 5 to

30-minute lagged returns, contemporaneous returns and on 5 to 30-minute

leading returns. Note that we do not use absolute but signed root–volume in

this specification. We also exclude the May 2020 WTI futures contract from

the sample because its prices turned negative. OLS estimates are presented

in Table 4.3. Estimates of returns lagged by 10 minutes or more suggest that

both ETF and non-ETF trades tend to trade aggressively against past price

trends (reversal-style). Positive non-ETF-related trading however appears

to coincide with lagged 5-minute short-term price increases (momentum-

style). Both order imbalances are positively associated with contempora-

neous returns. This could be a result of price impact or faster return-chasing

(momentum-style) within below 5 minutes. More interesting are subsequent

returns, as they are indicative of possible short-term private information as

a motivation for aggressive order submission. ETF-related order imbalances

appear to be weakly related to positive future returns. Returns 10, 20, and 25

minutes after a large ETF-related OIB are in the same direction with t-ratios

of 1.956, 1.714, and 2.329, respectively. This could be interpreted as evidence

for short term private information in ETF-related trading which manifests

as permanent price impact. If price impact was large but transitory due to

ETF-related volume being uninformed we would expect returns to turn neg-

ative after some time, but our estimates are positive or insignificant. We

also extend leads and lags to ±60 minutes and obtain similar results (not

tabulated).

Arbitrage Opportunities Positive subsequent returns of ETF-related trad-

ing could also stem from the exploitation of arbitrage opportunities. In the
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Table 4.3: Futures Returns and (Non-) ETF Order Imbalances

This table presents OLS estimates. OIBF is the square-root order imbalance in a futures

contract. (ETF ) and (resid) indicate ETF-related and non-ETF-related order imbalance

as described in Section 4.3.2. rt are 5-minute futures mid-quote log-returns. Sample: 5-

minute frequency, Jan 2010–Oct 2021, first 5 WTI futures and USO and GSG, 9 AM to

2:30 PM. All models include futures contract and 5-minute interval fixed effects. Standard

errors are clustered by futures contract. t-stats are in parentheses. ∗∗∗, ∗∗, and ∗ indicate

significance at the 1%, 5%, and 10% level, respectively.

Dependent variable:

OIBF (ETF )OIBF (resid)

(1) (2)

rt−30min −6.905∗∗∗ −15.322∗∗∗

(−3.630) (−2.812)
rt−25min −7.785∗∗∗ −21.337∗∗∗

(−3.427) (−3.521)
rt−20min −3.793∗∗∗ −32.016∗∗∗

(−5.311) (−7.122)
rt−15min −2.916∗∗ −21.122∗∗∗

(−2.339) (−2.777)
rt−10min −3.243∗∗∗ −17.554∗∗

(−2.918) (−2.285)
rt−5min 3.356 81.086∗∗∗

(0.998) (8.129)
rt 67.316∗∗∗ 775.020∗∗∗

(13.015) (8.763)
rt+5min 2.778 2.916

(1.373) (0.265)
rt+10min 3.912∗ −7.680

(1.956) (−1.582)
rt+15min 2.238 −1.916

(1.241) (−0.631)
rt+20min 1.236∗ −0.901

(1.714) (−0.309)
rt+25min 1.982∗∗ −1.850

(2.329) (−0.478)
rt+30min 0.384 −1.371

(0.425) (−0.293)

Observations 1,109,878 1,109,878
R2 0.014 0.046
Adjusted R2 0.014 0.046
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following, we test this alternative explanation. In our setting, an arbitrage

opportunity exists if FAsk
Syn < FBid or FBid

Syn > FAsk. Details are described in

Section 4.3. We define a dummy variable 1Arb that is 1 if either case occurs

and 0 else. In our sample, we record 1, 732 arbitrage opportunities. 23% and

34% of those were in 2010 and 2020, respectively. Moderately many occurred

in 2018 (11%) and 2019 (12%) while other years saw few. 575 of them were

in low-strike June 2020 option contracts. Excess supply in the entire mar-

ket and especially at the bottleneck in Cushing distorted prices at the start

of the Corona pandemic leading to extremely low prices. Observations with

negative futures prices are excluded from our sample because standard option

pricing methods break down.

We model the likelihood of an arbitrage opportunity occurring using a

logit regression. Again, we use absolute (ETF and non-ETF) order imbal-

ances as our main regressands of interest. The regressions include option

contract and time-of-day fixed effects. Regression estimates are presented in

Table 4.4. The results suggest that arbitrage opportunities are more likely

to occur when absolute order imbalances are large. However, we do not find

differences between the effects of ETF-related and non-ETF-related imbal-

ances.

We also investigate the size of the available arbitrage profits conditional

on an opportunity being present. To do so, we reduce our sample to those

instances with an arbitrage opportunity and model the available implied arbi-

trage profit. The sample size is thus reduced to 1, 732 observations. Results

are presented in Table 4.5. High absolute imbalances are associated with

reduced arbitrage profits according to Model (1). On average, a one con-

tract higher order imbalance coincides with 3.4 cents lower arbitrage profits.

Thus, as expected, futures traders appear to trade against market inefficien-

cies. Our previous results have shown that non-ETF-related trading is more

short momentum-oriented. Nevertheless, our analysis does not provide any
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Table 4.4: Arbitrage Opportunities

This table presents logit estimates of arbitrage opportunities. 1Arb is a dummy that

is 1 if there is an arbitrage opportunity after spreads. OIBF is the square-root order

imbalance in a futures contract. (ETF ) and (resid) indicate ETF-related and non-ETF-

related order imbalance as described in Section 4.3.2. F , C, and P indicate futures,

calls, and puts, respectively. Γ, V, ∆ are Black (1976) option-greeks. σF is the 5-minute

return standard deviation of the underlying futures during between 9 AM and 2:30 PM

of that day. BASF is quoted log futures bid-ask spread.
√
V ol is square-root of volume.

Sample: 5-minute frequency, Jan 2010–Oct 2021, +- 10–100 day 5% ATM WTI options

with their underlying first 5 futures and USO and GSG, 9 AM to 2:30 PM. All models

include futures contract and 5-minute interval fixed effects. t-stats are in parentheses.
∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% level, respectively.

1Arb 1Arb

(1) (2)
|OIBF | 0.060∗∗∗

(16.990)
|OIBF (ETF )| 0.041∗∗∗

(3.083)
|OIBF (resid)| 0.051∗∗∗

(13.923)
Γ× σF 0.022∗∗∗ 0.022∗∗∗

(7.163) (6.849)
VC ×BASF −0.026∗∗∗ −0.027∗∗∗

(−6.871) (−7.177)
−∆C

∆P
0.090∗∗∗ 0.092∗∗∗

(2.502) (2.585)√
V olC 0.071∗∗∗ 0.074∗∗∗

(5.049) (5.355)√
V olP 0.039∗∗∗ 0.044∗∗∗

(2.945) (3.377)

evidence that either group’s activity is associated with higher or lower con-

temporaneous arbitrage profits.

4.4.1 Discussion

We present evidence that ETF-related trading is coinciding with larger PCP

deviations than non-ETF-related trading. Lower variation in the former

makes larger directional trades less likely as a causal explanation. Slightly

positive subsequent returns hint private information contained in ETF-related
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Table 4.5: Arbitrage Profits

This table presents OLS estimates of arbitrage profits conditional on an opportunity

being present. IAP is implied arbitrage profit which is the available dollar arbitrage

considering spreads and inside depth. OIBF is the square-root order imbalance in a

futures contract. (ETF ) and (resid) indicate ETF-related and non-ETF-related order

imbalance as described in Section 4.3.2. F , C, and P indicate futures, calls, and puts,

respectively. Γ, V, ∆ are Black (1976) option-greeks. σF is the 5-minute return standard

deviation of the underlying futures during between 9 AM and 2:30 PM of that day.

BASF is quoted log futures bid-ask spread.
√
V ol is square-root of volume. Sample: 5-

minute frequency, Jan 2010–Oct 2021, ±10− 100 day 5% ATM WTI options with their

underlying first 5 futures and USO and GSG, 9 AM to 2:30 PM. We exclude all instances

without an arbitrage opportunity being present. All models include option contract and

5-minute interval fixed effects and standard errors are clustered by option contract and

time. t-stats are in parentheses. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and

10% level, respectively.

Dependent variable:

IAP
(USD) (USD)

(1) (2)

|OIBF | −0.034∗∗

(−2.130)
|OIBF (ETF )| −0.006

(−0.126)
|OIBF (resid)| −0.012

(−0.428)
ΓC × σF −0.0003 −0.0003

(−0.257) (−0.250)
VC ×BASF 0.029 0.031

(1.270) (1.366)
−∆C

∆P
−0.010 −0.007

(−0.043) (−0.030)√
V olC −0.088 −0.098

(−0.995) (−1.075)√
V olP 0.061 0.057

(0.584) (0.521)

Observations 1,732 1,732
R2 0.697 0.696
Adjusted R2 0.447 0.446

trades that is permanently incorporated into futures prices. Our analysis of

arbitrage opportunities and conditional arbitrage profits suggests that ex-
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ploitable arbitrage opportunities are more likely to emerge when imbalances

occur but show no differences between the two. In line with the findings of

Ready and Ready (2022), we find that ETF-related trading appears to co-

incide with price impact. This price impact is likely permanent on average.

Besides moving prices, spread adjustments due to adverse selection risk of

market makers is another plausible channel. Our analysis of arbitrage oppor-

tunities suggests that the average short-term profits of ETF-related trading

does not stem from put–call–futures arbitrage activity. Among the deter-

minants of efficient option prices, i.e., order processing costs, hedging costs

(Engle and Neri, 2010), inventory risk (Muravyev, 2016), and adverse selec-

tion risk, our results highlight the importance of the latter one. Another

possible channel for higher PCP deviations of informed ETF trades is that

market makers learn about the share of informed traders and widen spreads

after observing one-directional imbalances (Aliyev et al., 2022). Due to their

lower liquidity compared to their underlying, option prices only appear to

react to large and more permanent changes in the prices of the underlying.

In the context of commodity financialization, our results are opposite to the

notion of the Master’s Hypothesis that ETF-related trading is uninformed.



CHAPTER 4. ... EVIDENCE FROM THE OPTIONS MARKET 158

4.5 Conclusion

In this paper, we study the impact of ETF-related trading on put–call-parity

deviations in WTI futures markets. Our estimates suggest that it is asso-

ciated with higher inefficiencies in the futures–call–put triangle than other

trading activity but slightly positive subsequent expected returns imply that

it is rather informed volume. Overall, our results hint at informed trading

of financial investors improving the informativeness of prices in modern com-

modity markets while coming at the cost of adverse selection risk to market

makers.
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C Appendix

C.1 Robustness: Correlations of Order Imbalances with

Futures Returns

As a robustness check to the results in Section 4.3, we compute simple un-

conditional pairwise correlations of leading and lagged returns with (ETF-

related) order imbalance. The estimates (first two columns) and their respec-

tive p-values (last two columns) are presented in Table C.1. The results are

similar. ETF-related order imbalance is positive (negatively) correlated with

future (past) returns.

Table C.1: Correlations of Leading/Lagged Returns with (ETF-
related) Trading

This table presents correlation estimates in the first two and their corresponding p-values

in the second two columns. OIBF is the square-root order imbalance in a futures con-

tract. (ETF ) and (resid) indicate ETF-related and non-ETF-related order imbalance

as described in Section 4.3.2. rt are 5-minute futures mid-quote log-returns. Sample:

5-minute frequency, Jan 2010–Oct 2021, first 5 WTI futures and USO and GSG, 9 AM

to 2:30 PM.

OIBF (ETF ) OIBF (resid) p(OIBF (ETF )) p(OIBF (resid))
rt−30min -0.0109 -0.0035 0.0000 0.0002
rt−25min -0.0131 -0.0065 0.0000 0.0000
rt−20min -0.0060 -0.0080 0.0000 0.0000
rt−15min -0.0041 -0.0038 0.0000 0.0001
rt−10min -0.0059 -0.0054 0.0000 0.0000
rt−5min 0.0026 0.0173 0.0058 0.0000
rt 0.1084 0.2109 0.0000 0.0000
rt+5min 0.0016 -0.0043 0.0881 0.0000
rt+10min 0.0058 -0.0023 0.0000 0.0163
rt+15min 0.0040 0.0013 0.0000 0.1823
rt+20min 0.0018 -0.0001 0.0560 0.9502
rt+25min 0.0025 -0.0014 0.0081 0.1544
rt+30min 0.0005 -0.0000 0.5805 0.9635
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C.2 Average Implied Volatility Deviations over Time

In order to compare the evolution of commodity market quality over time with

our results from Chapter 3, we compute absolute implied volatility deviations

IV D = |IVC − IVP |. (C.1)

That is, the difference in implied volatilities computed from futures and op-

tions trade prices observed at the end of each 5-minute interval in which all

assets were traded at least once. We depict daily averages of the natural loga-

rithm of IV D in Figure C.1. In line with the findings from Chapter 3, market

quality has improved during the financialization and the electronification.
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Figure C.1: Implied Volatility Deviations over Time

This figure shows daily averages of the natural logarithm of implied volatility deviations

computed from trade prices.



Chapter 5

Conclusions and Further

Research

5.1 Summary and Conclusion

This thesis investigates the measurement and drivers of commodity market

quality. Chapter 2 conducts a horserace to identify the best approach to mea-

suring commodity futures liquidity and price efficiency. It provides guidance

for researchers facing the decision, which proxy measure and which sampling

frequency to employ. We find that volatility-over-volume measures (Kyle and

Obizhaeva, 2016; Fong et al., 2018) are best at capturing (aggregate) time-

series and cross-sectional variation in liquidity and also being superior to the

commonly used Amihud (2002) ratio. While proxies computed from daily

data exhibit high correlations with both bid–ask spread and price impact

benchmarks, price efficiency requires intraday data in order to reduce the

noise to an acceptable level.

Chapter 3 studies commodity market quality before and after both the

start of the financialization and the introduction of side-by-side open-outcry

and electronic trading. First, we study its evolution across regimes and then

161
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relate it to both predictable and unpredictable index trader activity by us-

ing aggregate open interest data, an exogenous shift of index open interest

in soybean meal, and predictable roll trades. We find that commodity mar-

ket quality increased after the start of the financialization and continued to

improve when volume shifted to electronic markets. Neither predictable nor

unpredictable index trading appear to be harmful, but coincide with improved

market quality.

Chapter 4 studies inefficiencies in West Texas Intermediate sweet crude

oil options and futures to unveil the role of ETF-related trading in commod-

ity markets. Using put–call–parity allows us to obtain almost model-free

high-frequency measures of market quality. We find that implied volatility

differences are increased when ETF-related absolute order imbalances are

high. Our subsequent analysis for drivers of this effect hints at adverse selec-

tion risk being the main channel. Inventory risk and arbitrage activity seem

to be less plausible explanations.

The results presented in this thesis have implications for academics, mar-

ket participants and regulators. The liquidity of commodity derivatives is

important for the producing sector to hedge price risks in the desired quan-

tity at any time. Efficient pricing of benchmarks for goods that make up

a substantial part of the (poorer) peoples’ consumption basket is of central

interest to regulators. This thesis provides insights into measurement, evolu-

tion, and drivers of commodity market quality. Overall, our findings highlight

the beneficial impact of increased competition through easier market access

and transparency of the trading process. The overall quality of commodity

markets appears to benefit from them being more integrated into financial

markets with players being active across markets and having a variety of in-

vestment vehicles available including ETFs which can be used not only for

passive portfolio diversification but also informed speculation. Extreme com-

modity prices are thus likely driven by physical demand and supply shocks
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and therefore present in fundamental prices. If regulators aim at limiting

these, they should focus on diversifying supply chains, encouraging reason-

able levels of inventory, and fostering more sustainable production especially

in farming.

5.2 Suggestions for Further Research

Related to the measurement and analysis of market quality of commodity

markets (in the context of commodity financialization) but also other asset

classes, the following questions and avenues for future research emerge.

During the measurement of price efficiency of commodity derivatives

but also of other asset classes, the sampling frequency is a decision made

by the researcher. However, it is not arbitrary and its influence would be

worth exploring. At what frequency are asset prices unpredictable? Chordia

et al. (2005) perform an empirical study of equity markets and find a lag

between 5 and 60 minutes, but their latest data are now almost 20 years

old. Instead of measuring return predictability at a certain frequency the

way it is standard in modern empirical market microstructure, it would be

more direct to measure the speed at which information incorporated in prices

(price adjustment). Hillmer and Yu (1979) and Damodaran (1993) propose

such measures, but they are based on returns alone. A new measure could

include not only returns, but also lagged order imbalances. In Chapter 2, a

combination of proxies did not prove to be useful. In equity markets, cross-

sectional differences are likely to be more pronounced, which could make

proxy combinations more effective.

Rösch et al. (2017) find a systematic price efficiency component in equity

markets using principal component analysis. It appears to be correlated with

funding liquidity (proxied by the TED spread), algorithmic trading activity,

and hedge fund size. Their analysis could be extended to other asset classes
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including commodities. The extent to which a systematic price efficiency

factor exists for commodities and its relation to those of other markets could

be interesting to analyze in order to understand the degree of integration of

commodity markets into financial markets.

Analyzing the activity of commodity index traders in detail at a high fre-

quency is hindered by the aggregation level of positions data that are made

public by the U.S. Commodities Futures Trading Commission (CFTC). The

non-public Large Trader Reporting System (LTRS) contains daily positions

data disaggregated by contract maturity. For intraday microstructure anal-

yses, tools are required to infer the trading activity of financial traders and

especially index traders. A combination of tick-level ETF trades (as used in

Chapter 4) and (LTRS) CFTC data might result in higher-quality proxies of

index-related trading activity. Ideally, future work on the impact of finan-

cial (index) traders on commodity prices should source data from exchanges

like the Commodity Mercantile Exchange (CME) or the Intercontinental Ex-

change (ICE) that include both aggressor flags and trader IDs, which allow

the researcher to assign signed volume to particular groups.

Generally, the microstructure of commodity markets has many open

questions. For example, what is the role of liquidity in the pricing of fu-

tures along the futures curve or option moneyness? Or, how do market mak-

ers handle inventory risk when the assets have a limited life (in contrast to

stocks where inventory can persist for months (Hasbrouck and Sofianos, 1993;

Subrahmanyam, 2008))? Muravyev (2016), for example, suggests using mul-

tiple exchanges to separate asymmetric information risk from inventory risk

in trading the same asset. WTI futures are traded on CME and ICE and

could be studied using his methodology. What is the role of ETFs and op-

tions in price discovery? Further research is also required that explores how

the liquidity provision of hedgers, speculators and other investors is linked to

time-varying risk premia or funding liquidity constraints.
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