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Abstract
This paper investigates how intuitions about scientific discovery using artificial intel-
ligence (AI) can be used to improve our understanding of scientific discovery more
generally. Traditional accounts of discovery have been agent-centred: they place
emphasis on identifying a specific agent who is responsible for conducting all, or at
least the important part, of a discovery process. We argue that these accounts experi-
ence difficulties capturing scientific discovery involvingAI and that similar issues arise
for human discovery. We propose an alternative, collective-centred view as superior
for understanding discovery, with and without AI. This view maintains that discovery
is performed by a collective of agents and entities, each making contributions that
differ in significance and character, and that attributing credit for discovery depends
on various finer-grained properties of the contributions made. Detailing its conceptual
resources, we argue that this view is considerably more compelling than its agent-
centred alternative. Considering and responding to several theoretical and practical
challenges, we point to concrete avenues for further developing the view we propose.
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1 Introduction

Researchers across the sciences increasingly explore the potential of artificial intelli-
gence (AI)1 systems to make or assist with scientific discoveries.2 Existing attempts
range from early programs such as BACON to ‘rediscover’ Kepler’s third law,
Coulomb’s law and Ohm’s law (Langley, 1977), to predicting protein structures with
DeepMind’s AlphaFold (Jumper et al., 2021; Senior et al., 2019); mining archival
materials to understand the human impact of the Industrial Revolution (Ardanuy et al.,
2019); and predicting future sea ice coverage by uncovering previously unrecognised
relationships from Arctic sea ice data (Banerjee & Monteleoni, 2014).

In light of these advances, it can be tempting to think that AI systems are already
making, or are at least along the path towards, full-fledged scientific discoveries (Ban-
nigan et al., 2021; Häse et al., 2019;MacLeod et al., 2020). However, other authors are
more sceptical and offer reasons for thinking AI systems cannot discover, pointing to
limitations such as lack of domain-general knowledge or imaginative abilities (Halina,
2021; Stuart, 2019). We do not think that questions of whether and how AI systems
(can) make discoveries are quite ready to be settled yet, however, and that this is in
part due to important deficiencies of existing views of scientific discovery. Our main
aim in this paper is to articulate these deficiencies and draw on case-based intuitions
about discovery involving AI to develop a novel view that improves our understanding
of scientific discovery, with and without AI.

Specifically, we consider an influential view of scientific discovery that continues
to prominently shape discovery narratives: the agent-centred view (AC). AC seeks to
identify a central agent (or small group of agents) responsible for a discovery and
explains the success of discovery by reference to specific qualities and abilities of
these agents. This view has been criticised extensively (e.g. Copeland, 2018; Zytkow,
1996), and we add to these criticisms by exploring how AC struggles with adequately
capturing the role of AI systems in discovery, as well as discovery sans AI more
generally.

With AC’s shortcomings articulated, we propose an alternative, collective-centred
view (CC), which insists that focusing on individual agents as discoverers is misguided
and obscures important features of scientific discovery. Instead, CC maintains that
discovery is performedby a collective of agents and entities, eachmaking contributions
that differ in significance and character, and where membership in the collective and
individual stakes in a discovery depend on various finer-grained properties of the
contributions made.

1 Throughout the paper, we use the label ‘AI’ to focus on current state-of-the-art machine learning-based
systems, such as DeepMind’s AlphaFold (Jumper et al., 2021), as they are used in scientific contexts.
2 Various definitions of ‘scientific discovery’ have been proposed (Brannigan, 1981; Hanson, 1960; Mag-
nani, 2000; Reichenbach, 1938; Schiller, 1917; Whewell, 1996 [1840]). We are not concerned here with
clarifying what counts as a discovery, or how scientific communities come to answer this question, but will
assume that the cases discussed here are indeed cases of scientific discovery and focus on how different
agents and entities play a role in these. We also gloss over the general distinction between serendipitous
and purposeful discovery, i.e. discovering things one is not actively searching for (Copeland, 2018 p. 697)
versus strategically pursuing a specific discovery (e.g. of the Higgs boson). Our discussion focuses on the
latter, mainly since existing cases of AI-based discovery often take such forms, but our arguments apply to
serendipitous discovery too.
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Beyond elucidating the role that AI plays in discovery, we argue that CC also pro-
vides a more plausible view of scientific discovery more generally, and highlight how
it can promote ameliorative efforts to (re-)characterise discovery episodes in ways that
are not only descriptively more adequate but also allocate credit more justly. CC hence
follows a rich tradition of emphasising the intrinsically social nature of scientific enter-
prises, including discovery (Brannigan, 1981; Kuhn, 1970; Longino, 1990; Zytkow,
1996). It also builds on, and reinforces, efforts to expose the historically unrepresen-
tative nature of discovery narratives that pick out a central discoverer, usually a ‘guy
in a lab’, and neglect contributions of other actors (Copeland, 2018; Qureshi et al.,
2021; Schiebinger, 1987), as well as arguments emphasising and analysing the historic
and present-day injustices experienced by female and minority groups in the context
of knowledge production and beyond (Fricker, 2007; Mills, 2007). At the same time,
our work extends significantly beyond these contributions by developing CC as a
concrete alternative to AC. Although important challenges remain in applying CC in
practice, we outline how it can stimulate ongoing efforts to capture the roles AI may
play in discovery, and improve our general philosophical understanding of scientific
discovery.

We proceed as follows. Section 2 characterises AC and highlights its central tenets.
Section 3 considers three ways of applying AC to AI discovery, explains how they
are unsuccessful, and considers additional difficulties experienced by AC in capturing
human discovery. Section 4 presents CC, details its resources for identifying and
appraising contributions to discovery, and explores how it helps us better understand
AI discovery. Section 5 considers some theoretical and practical challenges for CC,
offers suggestions for how they could be resolved, and gestures to ways of developing
CC further. Section 6 concludes.

2 Agent-centred views

Alexander Fleming’s discovery of penicillin in 1928 (Fleming, 1929) is considered
one of the most significant scientific discoveries of the twentieth century. Famously,
Fleming carelessly left out a petri dish of staphylococcus in the lab when he went on
holiday. On his return, he noticed a mould had developed and, when examining the
culture, realised the mould had prevented the staphylococci from growing. Fleming’s
realisation is often presented as a crucial discovery event that paved the way for
developing the most widely used antibiotic in the world and helped save millions of
lives.

In understanding discovery events like these, influential philosophical accounts
of scientific discovery have historically focused on identifying a specific agent who
is the ‘discoverer’ and describing this person’s experience of discovery (Klahr &
Simon, 1999; Schaffer, 1986). For instance, Whewell (1996 [1840]) emphasises the
‘eureka moment’, a sudden flash of insight and inspiration which sparks a discovery.
InWhewell’s words, discovery centrally involves “[…] some happy thought, of which
we cannot trace the origin; some fortunate cast of intellect, rising above all rules.”
(Whewell, 1996 [1840], p. 186). Other cases abound that fit this schema: take Ignaz
Semmelweis’ discovery of the cause of puerperal fever (Best & Neuhauser, 2004;
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Shorter, 1984) or Yoshida et al.’s discovery of plastic-eating bacteria (2016). Impor-
tantly, a happy thought will only arise in the mind of an agent who is able and willing
to see it: the discoverer.

A more recent view is offered by Stuart (2019), who articulates conditions for AI
discovery in social science and identifies the following elements of a discovery event:
“(1) an agent (who discovers), (2) an object of discovery (that which is discovered),
(3) a trigger event (that which prompts the discovery) and (4) an act of discovery (the
agent’s interpretation of the object, prompted by the trigger event)” (2019, p. 4).

These views share a distinctive emphasis on identifying a discovering agent who is
central to a discovery, responsible for it, and to be credited with it. Call this the agent-
centred view (henceforth AC). AC asserts that scientific discoveries usually conform
to the following schema:

(1) There is a single scientist or small research team we can pick out as the relevant
discovering agent.

(2) This discovering agent conducted all, or at least the important part, of the
discovery process.

(3) The discovering agent has particular qualities/abilities which play a significant
role in the discovery.

Being able to identify a discovering agent is important: it allows us to incentivise
and credit those responsible for a discovery, as well as hold them to account if the
need arises (e.g. Urbina et al., 2022).3 AC helps with this: it identifies agents who
conduct the process that yields a discovery and explains the success of this process
in terms of agents’ qualities and abilities that are essential to a discovery.4 This puts
clear constraints on who counts as a discoverer: for one, you are either in or out; being
a discoverer is a dichotomous, not a gradual affair. Moreover, the bar to get in is high:
you need to deploy particular qualities and abilities to significant effect, otherwise you
are part of the background at best.

Unsurprisingly, this type of view has attracted significant suspicion and criticism
from sociologists and philosophers of science. For instance, Schaffer (1986) points out
that philosophers have used idealised versions of iconic discoveries, such as ofOxygen,
Uranus, and photosynthesis, to shape their philosophical accounts, taking discoveries
“[…] rather unproblematically, as single events of individual mental labour whose
analysis requires the examination of logical or psychological manoeuvres.” (Schaffer,
1986, p. 388). However, as he goes on to argue, it is rarely the case that discovery is a
single-authored event, even for those discoveries seemingly archetypal of AC. More

3 While holding discoverers to account for negative consequences of their discoveries is important, we
focus only on the positive side of credit allocation.
4 It is sometimes not fully clear what abilities, in particular, AC takes to be central to discovery. For
instance, Stuart (2019) emphasises that producing novel, significant interpretations of events may require
specific imaginative abilities. Whewell is less precise, emphasising a “special process on the mind” (1849,
p. 40) and an ability to bring together a set of facts to afford a novel interpretation. Copeland (2018) offers
an alternative, skills-based account, where even serendipitous discoveries can be strategically promoted
through “the exercise of specific types of perception and attention that can in turn be cultivated” (2018,
p. 715). Our arguments apply across different ways of casting what abilities and qualities AC precisely
takes to be central to discovery, be they cognitive, mental abilities, including abilities to observe, connect
observations, interpret them in novel ways, and to recognise their significance, or broader virtues such as
curiosity and inquisitiveness.
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recently, Copeland (2018) emphasises that AC “[…] tends to obscure the epistemology
of discovery and to impede discussion about the importance of diffusing epistemic
credit for discovery among members of the contributing network.” (2018, p. 695).

We agree with Copeland’s and Schaffer’s assessments and follow them and other
authors (Hull, 1988; Kukla, 2012; Longino, 1990; Nersessian, 1992; Zytkow, 1996)
in maintaining that AC is unsatisfactory, as it neglects that science, by and large, is
a social enterprise that often involves various agents playing different roles, each of
which are important for enabling progress, including by discovery.

Adding to these criticisms, our first aim is to elaborate howACspecifically struggles
with capturing the role that AI systems can play in scientific discovery. We argue
that AC is unable to plausibly identify a discoverer in AI-based discovery, and is
conceptually unprepared to explore and address questions about the distribution of
credit among discoverers, what roles are played by different agents and entities, and
what constitutes significant contributions to discovery. Following this, and reinforcing
existing concerns, we argue that similar problems arise in the case of human discovery,
too, and that AC is hence not suitable for fully understanding modern, or indeed
historical, discovery.

3 AI discovery: where is our agent?

The protein folding problem is a challenge that has plagued biologists for decades
(Dill et al., 2008). Each protein is comprised of chains of amino acids and has an
intricate three-dimensional structure. Understanding these structures is crucial for
making advances in drug development and improving our understanding of disease
more generally. However, due to the complexity of interactions between amino acids
and the intractable variety of possible conformations, predicting how these chains will
fold is extremely time-consuming and costly.

To make progress on this challenge, researchers at DeepMind have developed
AlphaFold5 to speed up the process of predicting full protein structures (Jumper et al.,
2021; Senior et al., 2019). At its core, AlphaFold is a transformer-based deep learning
architecture that predicts whole three-dimensional protein structures from amino acid
sequence inputs. Beyond achieving impressive gains in predictive accuracy over rival
approaches in the recent community-wide structure prediction competition CASP14,
AlphaFold has since beenused to predict close to onemillion three-dimensional protein
structures, which have been made freely available to the scientific community (Varadi
et al., 2022) andwill shortly be followed by almost 100million additional structures. In
light of these achievements, there is nowwidespread enthusiasm among academic and
industry researchers about the potential of AlphaFold and similar, future AI systems
to make important contributions to advances in a wide range of areas, including drug
and antibody discovery (see e.g. Callaway, 2022; Mullard, 2021). Yet, as AlphaFold
begins to play a central role in identifying protein structures, should we also conclude
that it discovers them and, if so, in what sense?

5 We focus here on v2.0 (Jumper et al., 2021).
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We see three ways of applying AC to AI-based discovery. The first is to take AI
systems to be discovering agents. The second is to say that humans discover and
AI systems are mere tools. A third option considers both humans and AI systems
as discoverers.6 We consider each option in turn, arguing that none of them is fully
compelling.

3.1 AI discovers

Canwe say thatAlphaFold is discovering on its ownonAC?According to our construal
of AC, AlphaFold would have to conduct all, or at least the important part, of the
discovery process, as well as relevantly deploy abilities related to understanding and
interpretation that are essential to the discovery. There are several problems with this
option.

First, by picking out AlphaFold as the discovering agent, AC would fail to ade-
quately consider human contributions essential to the discoveries made. AI systems
do not (yet) determine their own research questions and commentators frequently
underestimate how much supervision, clever engineering, trial and error, and fine-
tuning is needed tomake AI systems function as intended (Hagendorff &Wezel, 2020;
Morgenstern, 2001; Parisi et al., 2019; Pearl, 2018; Sap et al., 2020). So focusing on
AlphaFold alone misses essential parts of the discovery process.

Second, even if we assume AlphaFold’s contribution marks the most important
part of the discovery process, and human efforts take a back seat, it is at least unclear,
and perhaps even unlikely, that AI systems like AlphaFold possess the important
qualities and abilities essential to discovery emphasised by accounts like Whewell’s
and Stuart’s.

TakeWhewell’s account: there is no ‘happy thought’, no suddenflashof insight from
which the discovery is sparked. AI systems do not currently possess even foundational
experiential abilities that could encode positive feelings and inspiration in response
to surprising observations. Perhaps this simply suggests we should abandon emotive
inflections in our conceptions of discovery, as these would uninterestingly preclude
AI systems from being discoverers. However, there are other qualities and abilities
important for discoverywhichAI systems seem to lack, even if we take out the emotive
aspects. While AI systems are capable of generating novel solutions to significant
problems, they lack domain-general knowledge, values and purposes, and are currently
unable to guide their own research (Halina, 2021, p. 323). Relatedly, following Stuart
(2019), discovery plausibly involves the ability to interpret and recognise significance.
But AlphaFold does not know it is predicting protein structures to help synthesise
drugs and cure disease. For lack of such context, AlphaFold will also remain unable to
make contributions beyond its design envelope, such as through identifying follow-on
research questions of interest, recognising the limitations of its findings, or suggesting
avenues for applying its findings in practice. Looking beyond AlphaFold, lacking
such abilities clearly restricts AI systems’ capacity to make scientific discoveries by
themselves.

6 We thank an anonymous reviewer for suggesting that we consider this option more fully.
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This is not to suggest, of course, that future AI systems could not be more
self-directed in the various ways required by ordinary expectations for standalone
discoverers (Buckner, 2018; Rafati & Noelle, 2019). Even so, the abilities of AI dis-
coverers are likely to still depend crucially on assistance by human collaborators for
the foreseeable future, if only concerning the values needed to steer discovery towards
what humans judge as significant.

What this suggests, perhaps, is that whatever contributions to discovery AI systems
make, these are not usefully captured by criteria that emphasise discoverers’ abilities
to independently understand, interpret, recognise significance, and so on. But, as we
argue later, there are reasons to think that not all significant contributions to discovery
must take such forms, whether made by machines or humans.

3.2 Humans discover, AI is a tool

A second way of applying AC to AI discovery asserts that humans do the discovering
and AI systems are merely tools, more akin to a microscope or a particle detector than
a human discoverer.

Our main concern with this option is that AC does not say much on how a distinc-
tion between genuine discovery and mere tool-like contributions could be made. One
option would be to insist that genuine discoverers are those who, beyond making other
crucial contributions, effectively deploy their interpretive abilities to recognise signif-
icance. But this seems an implausible standard. For instance, in large-scale research
projects (e.g. at CERN) it would seem odd to identify those lead researchers conve-
niently situated to synthesise conclusions from varied results as discoverers, while
discounting the role played by other researchers furnishing those results to those of
mere tools. Conversely, it is often not principal investigators but less senior researchers
who simultaneously do tedious groundwork and furnish interpretations of results. So
this option is doubly at odds with how credit is plausibly shared in large-scale research
projects.

To help AC draw a distinction between genuine discovery and mere tool-like con-
tributions, important considerations could include (1) how relevant and replaceable a
contribution is, (2) how much time and effort it requires, and (3) how much human
involvement is needed to ensure an AI system can successfully play its envisioned
role (we revisit and expand on these criteria later on).

Yet, while such criteria can help secure the place of various human contributors in
the realm of discoverers proper, AlphaFold, too, may have a claim to making more
than tool-like contributions. Its contributions are relevant, without them many protein
structures could not easily have been discovered; they are not easily replaceable (unless
we consider trivial variations of its code base as genuine rivals); and the processes
enabling them are computationally expensive (Senior et al., 2019; Skolnick et al.,
2021). So what role, exactly, does AlphaFold play? Let us consider an analogy to
further explore the tensionsAC experiences in categorisingAlphaFold’s contributions.

Consider Eric, who works as a research assistant on a project aiming to identify
protein structures, much like AlphaFold. Assume that Eric knows nothing about bio-
chemistry. Given some procedural instructions, he calculates the distances between
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pairs of amino acids and works out the angles between their chemical bonds to model
a protein structure. He then submits his results to the project’s lead researcher, who
assesses the significance of Eric’s findings. Let us assume, favourably, that Eric has
much more skill than other researchers at this particular task—they are not trained
to perform tedious manual calculations, but Eric is, and he performs them diligently
and swiftly due to his extensive experience. Without Eric, the team could not have
identified protein structures, at least not close to the pace or level of accuracymatching
Eric’s. Is Eric a discoverer?

Even when Eric has no wider knowledge, no understanding of biochemistry and
no interpretive abilities, it does not seem obvious that he is not discovering when he
works out the three-dimensional structure of proteins. Conversely, however, it also
does not seem right to name Eric a key discoverer. After all, it was not Eric who came
up with the analytical and computational procedures he followed or who interpreted
and applied his results. Turning to AI systems like AlphaFold once more, neither
engineers or researchers developing and deploying AI systems, nor the interpreters of
their results, seem to be the sole relevant target for ascribing discovery; but neither is
AlphaFold or Eric.7

So if we were to treat both Eric and AlphaFold equally, as we think we should,
which side should we lean towards? Should we consider both to make mechanical,
tool-like contributions to discovery only, or grant that their contributions should be
counted as discovery proper?

Perhaps the best response is neither of these options. It seems plausible to think
that any scientific discovery can be decomposed into multiple ingredients, some of
which are more important than others, and that we might draw a fuzzy boundary
between more redundant, easily furnished, and non-autonomous contributions, and
those significant, unique, and effortful enough to be considered genuine contributions
to discovery. AC is conceptually unprepared, however, to recognise contributions that
go beyond those of mere tools but stay shy of full-fledged discovery. On AC, being
a discoverer is all-or-nothing. But both Eric and AlphaFold suggest that this is not
always plausible. Before we turn to articulating a view that captures and systematises
these intuitions, let us briefly consider a third option for applying AC that brings us
closer to what we need, but not quite close enough.

3.3 Both humans and AI discover

A third variant of applying AC to AI discovery is to say that both the AI and the human
researchers involved in a project are discoverers proper. This construal departs from
narrower versions ofAC that focus on identifying a single discoverer. However, awider
reading seems appropriate, as at least some authors think that there can be groups of
discoverers, such as Stuart who suggests that “[t]he agent can be an individual or a
community, whose mind can be extended or distributed” (Stuart, 2019, p. 52).

7 An important difference between Eric and AlphaFold could be that Eric’s contributions are especially
meaningful for the attention, care, and sacrifice (e.g. of alternative uses of his time) they involve. We agree
that these could constitute important disanalogies, sowe ask our readers to imagine, for the sake of argument,
an especially dispassionate but professionally diligent version of Eric. We thank an anonymous reviewer
for suggesting ways to refine the analogy.
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At first blush, this option makes some progress towards accommodating the con-
cerns outlined earlier. But we think that it is not quite enough to be compelling. First, as
elaborated previously, existing AI systems like AlphaFold still lack understanding and
interpretive abilities thought to be essential for discovery on existing renditions of AC
like Stuart’s and Whewell’s. Being more lenient when it comes to how many agents
may count as discoverers leaves other tenets of AC untouched, such as that discov-
erers are those who impactfully use their abilities to understand, interpret, recognise
significance, and so on. So unless emphasis on such abilities were suspended, it seems
difficult to reconcile identifying both humans and AI systems as discoverers with
central tenets of AC.

Second, to include AI systems among the set of discoverers, we still need clearer
criteria for distinguishing the roles they play from those ofmere tools (e.g. the hardware
on which AlphaFold is running). Existing versions of AC do not offer resources for
making such distinctions in a compelling manner, and would need to be substantially
extended to provide a richer account of how discoverers could be identified among
the messy background of tools and helping factors. We make some proposals for
how such distinctions can be informed later when detailing our alternative to AC, but
importantly, to work well for AC, such distinctions would also need to address the
intrinsic tensions arising from AC’s emphasis on a discoverers’ ability to understand
and interpret: what good is it if AlphaFold is robustly identified as more than a mere
tool, but still lacks many of the abilities AC considers central for being a discoverer?

Third, while we think that, overall, recognising that AI systems can make more
than tool-like contributions is important progress, simply counting them as part of
a set of discoverers and putting everyone in this set on equal footing fails to recog-
nise important nuances about the nature of different contributions made, how they
matter individually, and how they interact to enable a discovery. In complex epistemic
projects, like those involvingAlphaFold, different agents and entities eachmake essen-
tial and non-redundant contributions to a discovery. But not all contributors seem to
be discovering in the fuller sense expected by AC. Nor is it clear that all discover in
the same sense, or, indeed, that any one individual or entity discovers by themselves.
We articulate a view that captures these ideas more fully in the subsequent section.
For now, let us briefly touch on how AC struggles not only with AI discovery, but also
with recent and historical cases where only humans are involved.

3.4 AC struggles with human discoveries

As elaborated earlier, AC resists counting AI systems as discoverers for their inability
to understand what they are discovering and to apply this understanding beyond the
scope of an epistemic project. But paradigmatic cases of human-led discovery can
exhibit similar features.

Consider Fleming again. Copeland (2018, p. 701) suggests that while Fleming
played an important role in the discovery of penicillin, recognising its bactericidal
effect on staphylococci, he did not, and perhaps could not have, proceeded from the
realisation that penicillinwas an antibiotic towards practically applying his findings. In
the case of penicillin, important advances building on Fleming’s initial discovery were
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achieved by Ernst Chain and Howard Florey, alongside many others, who successfully
identified non-trivial methods for purifying penicillin (Ligon, 2004). In light of this,
at least part of the significance often ascribed to Fleming’s findings is afforded by
the practical import that was only later realised through efforts made by others, as is
perhaps evidenced by Fleming sharing the 1945 Nobel Prize in medicine with Florey
and Chain (Ligon, 2004, p. 52).8

Relatedly, there are reasons to think that it was not Fleming’s original stroke of
genius which discovered that penicillin prevented the growth of bacteria (Copeland,
2018, p. 706). Indeed, moulds had been used since antiquity to heal wounds (Wain-
wright, 1989) and British physiologist John Scott Burdon-Sanderson observed that
bacteria did not grow in the presence of the fungus Penicillium almost 60 years before
Fleming’s finding (Keys, 1987). Moreover, as Copeland emphasises, following Chain
(1971), Fleming’s observations were not necessary for the discovery of penicillin, as
there are reasons to believe that the discovery was ‘in the air’ and would have suc-
cessfully been made by others regardless of Fleming’s contributions (Copeland, 2018,
p. 706, p. 716). Finally, Copeland argues that there was indeed a whole epistemic
community and network of collaborators (albeit perhaps a poorly connected one) that
Fleming was working within, and that played important roles in the discovery of peni-
cillin, widely construed (2018, p. 701, p. 710, p. 717). These observations do not
square up well with AC’s tendency to allocate credit in an all-or-nothing fashion, and
usually to single individuals.

Many other cases of discovery sans AI pose similar problems for AC. Some dis-
coverers never understand the significance of what they find, such as in discoveries of
elements like Lithium, whose electromagnetic properties were only explored a century
later (Reddy et al., 2020). Many mathematical discoveries are also not made in a con-
text of wider understanding or with an idea of how they may be used, but as isolated
proofs. But even when researchers lack context or are unable to apply their findings,
we still tend to think they are discoverers in an important sense, although perhaps not
in the sense demanded by AC. Reinforcing similar points made by Copeland (2018),
what such cases suggest is that AC is ill-equipped not just for understanding discovery
involving AI, but discovery more generally. Moving beyond the critical contributions
made by Copeland and ourselves, let us proceed to outline a view that helps overcome
these limitations.

4 The collective-centred view

The collective-centred view (CC)maintains that focusing on a single agent or group of
core collaborators is a misguided way of thinking about scientific discovery. Instead,
CC insists the discovering entity is a collective in the first instance. The collective dis-
covers as a whole, and in virtue of the diverse contributions made by its constituents.
While this allows that single individuals and entities may discover in the way expected

8 For lack of space, we will not address here the thorny issues of how prior and follow-on work should be
credited (see Copeland, 2018 for an interesting discussion), but note that a refined version of our proposals
should address these issues explicitly.
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by AC, including by successfully deploying specific abilities to prompt useful obser-
vations, to interpret them, and to recognise their significance, it may also be the case
that no single individual or entity discovers in this extensive way. Instead, only the col-
lective as a whole discovers in virtue of how the contributions made by its constituents
interact and complement each other.9

So in contrast to AC, CC maintains that for many (or most) scientific discoveries.

(1) There is no clear discovering agent who conducted all, or at least the important
part, of the discovery process.

(2) A collective of actors and entities all made important contributions to the
discovery.

(3) Credit for discovery should be distributed between these agents depending on
the nature and significance of their contribution.

In emphasising these features of discovery, CC hence builds on a rich tradition of high-
lighting the interconnectedness of discovery processes and the often large, unwieldy
networks involved in discoveries. For example, Kuhn (1970) has pointed out difficul-
ties that prevent historians from attributing discoveries to any single person or point
in time; Hollingsworth (2008) draws out a number of ways the discovery process is
interconnected by presenting five different levels which contribute to the development
of major discoveries; and Merton (1973) argues all discoveries are ‘in principle’ mul-
tiple discoveries. CC is also consistent with work on collective responsibility, such
as Dang’s, who rejects a unified concept of epistemic responsibility in science that
“defines epistemic responsibility as an all-or-nothing concept” (Dang, 2018, p. 1).
Instead, she proposes “epistemic responsibility should be distributed among mem-
bers of a group when epistemic labour is distributed.” (ibid.) Our account equally fits
well with insights obtained from the study of distributed epistemic enterprises (e.g.
Gargiulo et al., 2022; Huebner et al., 2017; Kukla, 2012). In cases like these, but also
less heavily distributed epistemic projects, CC insists that discovery is best understood
to happen at a collective level, with credit distributed between agents based on their
contributions.

How do AC and CC compare and relate to each other more broadly? In terms of
scope, CC extends significantly beyond AC. It handles cases that AC is conceptu-
ally unprepared to elucidate, including discovery involving AI, large-scale research
projects, decentralised distributed epistemic projects, and historic discovery episodes
that involved more widely distributed contributions on re-examination. So, at the level
of what cases the two views are prepared to capture, we might say that CC is simply
more general than AC.

But CC also makes several more substantive departures from, and improvements
over, AC. First, as emphasised earlier, by putting the collective at the centre, CC is
prepared to recognise a wider network of contributors from the start. CC urges us to
begin from the assumption that discovery is likely to be distributed among different
agents and entities, and helps us narrow the collective down, if and when appropriate.
In virtue of this change in priors, CC departs substantially from AC, which is disposed

9 We will not say much on interactions between different contributions to discovery here (e.g. how they
amplify or inhibit each other, or complement and compound) as this is not essential to our aims and seems
best explored in the context of concrete case studies.
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to identify smaller groups, and fails to recognise the contributions made by agents that
do not fit its restrictive conditions wholesale.

An immediate worrywith this change of approach could be that CC places toomuch
emphasis on the collective, at the expense of individual-level events. A second major
departure fromAC helps respond to this concern: CC is conceptually oriented towards
understanding how the various contributions to a discovery made by different agents
and entities can vary along several important dimensions and interact and compound
towards enabling a discovery. As we elaborate shortly, CC indeed offers more scope
to emphasise the role of individuals within a collective than AC, attributing credit to
individuals based on the nature and significance of their contributions. CC is hence
well-equipped to recognise that idiosyncrasies and specific backgrounds and skills of
particular scientists help themmake highly pertinent and non-redundant contributions
(cf. Barwich, 2021) and that focusing on them can be essential for understanding
discovery. CC can thus retain AC’s emphasis on discoverers’ abilities to understand
and interpret, but, importantly, also insists that not all contributions must involve such
abilities; it is enough that some do.

Finally, CC departs from AC through its ameliorative ambitions. It aims to help
us more appropriately (re-)characterise historical discovery episodes, such as Crick
and Watson’s celebrated discovery of DNA. Here, more recent reconstructions have
emphasised Rosalind Franklin’s crucial contributions to the discovery, turning away
from the prior focus on the heroic, lab-coated male discoverers as per traditional
discovery templates (Klug, 1968; Maddox, 2003; Rapoport, 2002). In pursuing such
ambitions, CC seeks to prepare the grounds for more just allocations of credit for
contemporary and future discoveries.

While extending significantly beyond AC in terms of cases captured and goals
pursued, the scope of CC must also be carefully delimited when it comes to questions
answered. CC is not supposed to provide definitive guidance on settling practical
issues, including (1) how to assign authorship, (2) how to distinguish authors from
acknowledged contributors, (3) what practices are appropriate for recognising the role
of prior work in enabling discovery, (4) how to recognise and celebrate discoveries
with awards, (5) what resources beyond those afforded by the scientific publication
system are needed to facilitate more nuanced allocations of credit for discovery, or (6)
how CC bears on the incentive structures faced by researchers and their productivity.
While these questions are highly relevant, particularly in view of CC’s ameliorative
ambitions, our aim here is to outline a general philosophical account that improves
our understanding of how discovery is constituted. While CC is hoped to inform more
specific, practical proposals addressing the issues highlighted here, it should not be
expected to address them all by itself. Instead, CC is best understood as providing
useful philosophical foundations that can support concrete attempts to understand
discovery and to study, criticise, and improve existing practices of allocating credit
for discovery across the sciences (see e.g. Dang, 2019; Kleinberg & Oren, 2022;
Rescher, 2021; Rubin & Schneider, 2021).

With its central tenets and scope clarified, let us proceed to further detail CC,
specifically focusing on the central questions of whomakes up a discovering collective
and what criteria may be used to distribute credit within the collective.
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4.1 Making up the collective and distributing credit

Consider AlphaFold again. Who in the DeepMind team should be credited for the dis-
coveries made with its help?Which contributions should be recognised as genuine bits
of discovery and which only as tool-like contributions? Should we consider contribu-
tions by other actors within and beyond DeepMind but outside the AlphaFold projects,
such as the funders enabling the research or the developers whowrote prior codewhich
AlphaFold developers built on? And how should we credit evenmore remote contribu-
tions from computer science, mathematics, statistics, and other relevant fields which
helped prepare the theoretical and technological grounds for AlphaFold’s discoveries?
Similar questions arise in other widely epistemically distributed collective discoveries,
such as in biomedical research (Huebner et al., 2017; Kukla, 2012; Winsberg et al.,
2014), or high energy physics projects at CERN, where papers often list thousands
of team members, and projects are reliant on sophisticated technology, funders, and
policymakers.

The challenge in fleshing out CC is essentially the same as that faced by AC when
distinguishing between genuine bits of discovery and mere tool-like contributions:
in order to avoid discovering collectives becoming impractically unwieldy and to
meaningfully credit thosewho contributed significantly to a discovery,we need to draw
a line somewhere.10 A second challenge follows on the heels of casting a discovering
collective in sharper outlines: how dowe share out creditwithin the collective? Neither
saying each contributor works alone nor that each discovery is made by everyone
equally seems compelling. Even when distributing credit more widely, we still want
to emphasise some contributions as more important than others, or else explain why
this is not the case. It seems plausible, then, that contributions to discovery come in
degrees and we should look to features of particular contributions to articulate how
significant they are. To make progress on both challenges, let us build on our earlier
suggestions and elaborate several features of contributions to discovery that CC can
use to informwhomay be included in the collective and how credit may be distributed.

4.1.1 Relevance

Relevance captures the idea that some contributions are more relevant to a discovery
than others in a difference-making sense.Other things being equal, an agentwhomakes
a more relevant contribution should more likely be counted as part of a discovering
collective, and be awarded a larger share of the credit. Of course, assessments of
relevance can be difficult to make, and much hinges on appropriate counterfactuals.
For instance, funding can make a significant difference to enabling discovery, but are
funders discoverers? Not plausibly. For one, we might think that their contributions,
while highly relevant, lack other important features. Moreover, there might be other
relevant counterfactuals than ‘no funding, hence no discovery’, such as a different
funder playing the same role. This idea is captured by a second feature.

10 While AI systems are the only technologies we explicitly consider, our account leaves space for other
sophisticated technologies to make more than tool-like contributions. We do not explore this possibility
here.
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4.1.2 Redundancy

Redundancy concerns how essential a particular contributor’s skills are or how replace-
able a contribution is to a discovery. For example, the role of a desktop computer as a
platform to write code on is highly redundant—there are many, easily available alter-
natives to meet the same functional role. On the other hand, a supercomputer along
with software to enable distributed computation, may be much harder to replace and
therefore stake a greater claim to being included in a collective. Once more, it also
seems that the counterfactuals used to assess redundancy must be suitably constrained
to allow for meaningful assessments: we should not assess redundancy with respect
to faraway possible worlds, e.g. where supercomputers and highly skilled researchers
can be found on every corner, but focus on whether contributions can be realistically
substituted in close-by possible worlds.

4.1.3 Time/effort

A third important feature is howmuch time and effort is spent in furnishing a contribu-
tion. For example, if a graduate student spends 100 h pipetting, it can seem appropriate
to recognise their contribution, even if they play a redundant and not highly skilled
role. But like other features, significant time and effort spent alone may not be enough
for inclusion in the collective, nor are time and effort always reliable metrics, such
as when agents use their time inefficiently. At the same time, it is also important to
recognise mere efforts towards discovery even when they do not directly pay off, such
as when researchers divide labour between them but only one strikes gold.

4.1.4 Directness

Directness captures how directly a contribution is related to a discovery. For example, a
highly skilled mechanic who is responsible for maintaining the cryogenic systems for
cooling the LHC’s electromagnets is not redundant—not many people would be able
to perform her role, shemay draw on knowledge and experience specific to proprietary
components of the accelerator, and she might put large amounts of time and effort into
her work. However, she might not be directly involved in any specific discovery, as
her work is simply aimed at making the cryogenic system and the accelerator function
more generally, regardless of what experiments are run on it. By contrast, engineers
involved in designing a particle detector to functionwithin a specific envelope required
for particular collision experiments have amore substantial claim tomaking significant
contributions, as figuring out the ‘how’ in practice can be as important as figuring out
the ‘what’ in theory, and an effective contribution by an engineer is one that connects
both in a specific, appropriate way.11

4.1.5 Originality

Discovery aims at, and partly consists in, identifying and understanding novel phe-
nomena, concepts, and ideas, and finding better ways to meet our goals. Contributions

11 We thank an anonymous reviewer for highlighting this point.
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which promote these aims hence often involve some form of originality and, in virtue
of this, seem to deserve more credit than those reusing existing approaches to familiar
ends. Determining how original a contribution is, of course, comes with its own back-
pack of challenges and we do not suggest that doing so is ever easy: applying a new
method to an old problem can be as original as the converse, and ‘new’ never guaran-
tees ‘better’ or ‘more impactful’ (see Tin, 2003). So, cashing out originality requires
significant nuance and much will hang on how we describe particular contributions.
For example, reading results off a graph does not necessarily seem to merit a high
originality score. However, just like many before and after Fleming have ‘glanced at
petri dishes’, reading off results in a way that offers a unique interpretation to a prob-
lem can indeed make highly original contributions. Without attempting to provide a
definitive guide to assessing originality, our suggestion here is that some measure of
originality, sensitive to issues of context and description, should figure in a plausible
appraisal of contributions to discovery.

4.1.6 Leadership and independence

Finally, we think it is important to consider how great a managerial role a contribu-
tor played and how independent their contribution is. For example, a lead researcher
who envisions a research project, armed with suspicions of what promise it holds, and
who designs processes, develops methodology, manages the project, and synthesises
results from different branches, may deserve more credit than a researcher who is
dependent on detailed, mechanical instructions to complete their contribution. Here,
wemight also think that goal-directedness plays an additional role—anAI systemmay
make highly direct, but entirely undirected contributions for lack of understanding its
own activities. The vision needed to conceive of a project and the managerial abilities
involved in directing available means to aims worthy of pursuit deserve special atten-
tion.12 Importantly, however, not only lead researchers can make contributions that
exhibit these features; specialised junior researchers or engineers that are in touch with
street-level challenges may often make contributions that score highly on leadership
and independence too.

How do the features outlined here help determine who is part of a discovering
collective and how credit should be distributed? First, all of them can be exhibited
to different degrees, and being part of a discovering collective can be understood
as a property that supervenes on these lower-level features, and possibly others not
considered here. Second, none of the features are individually necessary or sufficient
for being counted as part of a discovering collective or for being awarded a large
credit share, regardless of the degree to which they are realised. A more plausible
understanding is to take them as gradual conditions for candidacy: exhibiting none
or only a few and/or only to small degrees may get you nowhere near being a part
of a discovering collective. But there are various combinations that might strike us as

12 To be sure, leadership and goal-directedness may play a relatively less important role in serendipitous
discovery for lack of a clear goal to be pursued.However, asCopeland argues, even happenstance discoveries
can be strategically promoted by cultivating skills to “[…] perceive value in unexpected observations and
to utilise those observations strategically” (2018, p. 715), which might be understood as a form of goal-
directedness.
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warranting a sufficiently strong claim to be considered. This does not imply that there
is ever a sharp boundary—many interesting and controversial cases will sit on a fuzzy
border that separates those others we can place uncontroversially as within or without
the collective. This is a feature, not a bug, since crediting contributions as genuine
bits of discovery can be intrinsically controversial and substantive disagreement will
often remain. Yet, while it seems elusive to formulate general strictures on which
combinations of the features articulated here issue tickets to discovery shares, we think
that emphasising their importance is a crucial first step for improvingour understanding
of discovery.

With the outlines of CC in place, let us revisit AlphaFold once more to see how CC
can help assess its contributions.

4.2 AlphaFold is a candidate for the collective

As suggested earlier, AlphaFold makes highly relevant contributions to the discovery
of protein structures: were it not for AlphaFold, many of these structures could not
have been identified on a comparable schedule.

In terms of redundancy, AlphaFold does well, too. Not only is it highly specialised
and expensively trained (Cheng et al., 2022), but there are also few institutions which
can afford the amount of computing power needed to train AlphaFold, rendering the
software and its concrete instantiation on specialised hardware highly non-redundant.
Related considerations apply when it comes to time and effort spent: while vastly
quicker than human computation, a large amount of time and computing power goes
into the calculations AlphaFold makes.

Concerning directness, AlphaFold scores highly, too. Identifying features to predict
how proteins fold marks a significant part of what constitutes the discovery, at least
once complemented by a suitable interpretation. Unlike the LHC mechanic working
on general tasks not directly related to any specific discovery, AlphaFold is directly
involved in producing contributions that partly make up the discovery at issue.

Regarding originality, one might think that AlphaFold’s contributions cannot be
original as it merely follows its programming. This is true, but only in an unimportant
sense: deep learning-based AI systems must exhibit considerable degrees of auton-
omy and flexibility to succeed at learning tasks, and learning outcomes can be highly
novel and impossible to anticipate. AlphaFold’s functioning centrally involves learn-
ing features that promote predictive success—and in doing so it can make original
connections we have not made, and likely could not have easily made otherwise,
which plausibly warrants a claim to originality.

Finally, concerning leadership and independence, it seems that AlphaFold may not
score too highly. It does not set itself up to address real-world questions of interest to
scientists, does not devise the research questions to be addressed or the methods for
addressing them, and it generally lacks goal-directedness. While zooming in further
could suggest that AlphaFold ‘guides’ discovery at least in the sense of generating a
‘method’ for predicting protein structures, e.g. by learning connection weights that
help predict these structures, this is perhaps not enough for granting any significant
claim to leadership. However, future AI systems may well be more independent in
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choosing research trajectories and act in a more self-directed way, so it is far from
clear that AI systems, in general, cannot also exhibit leadership and independence.

On several of the features that CC emphasises, AlphaFold is hence a strong can-
didate for being counted among the discovering collective, and for being awarded a
share of credit. Interestingly, on a first assessment, AlphaFold could even be consid-
ered to deserve more credit for discovering three-dimensional protein structures than
Fleming, our archetypal discoverer, does for his contribution to the discovery of peni-
cillin. As noted by Copeland (2018, pp. 705–707), Fleming’s observations were not
necessary to the discovery of penicillin, since “[…] at least seven scientists prior to
Fleming had noted the effectiveness of penicillin in inhibiting bacterial growth” (de
Rond & Thietart, 2007, p. 548). So unlike AlphaFold, Fleming may not do too well
concerning redundancy or originality.

How do AlphaFold’s contributions compare to those of its human collaborators?
This can be difficult to tell, partly since detailed information about how AlphaFold
was developed is difficult to access, and partly because CC’s resources for appraising
contributions to discovery can only take us so far. Importantly, we should not think
that there is always a clear, correct answer to who is part of a discovering collective
or how, exactly, discovery shares should be distributed. Instead, (1) substantive dis-
agreement is to be expected, (2) much will hinge on case-specific details that may
remain unavailable, (3) those involved in discoveries are often in a better position
than outsiders to determine who contributed what,13 and (4) appraising the signifi-
cance of specific contributions often requires understanding how they interact with
and complement contributions by others (e.g. in the style of Mackie, 1965).

In light of these complications, our aims do not include issuing conclusive com-
parative judgments about discovery shares, but rather focus on offering a general
framework that helps underwrite such judgments, given details of specific cases. That
said, the features CC highlights for appraising contributions to discovery can help
us think more carefully about what we value in a contribution; stepping back from
unhelpful norms which may prevent some contributors from feeling entitled to credit
where it is due while leading others to inflate the worth of their contributions.

Let us consider and reply to some additional concerns and challenges we have not
touched on so far, and sketch out ways in which CC may be detailed further.

5 Concerns and challenges

5.1 Machines do not make contributions of their own

The first concern is straightforward: why should we think that machines make con-
tributions of their own at all, rather than humans having a full claim to any epistemic
successes on the grounds that they developed, initialised, refined, and deployed the
machines, and interpreted their findings? Many of these human contributions are

13 See Copeland (2018, p. 706) for examples of how Fleming and Chain offered more nuanced accounts
than standard narratives of the discovery episodes they and many others were involved in.
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causally prior to and necessary for machines doing their work, and so could be under-
stood to simply encompass all of what machines subsequently help discover.

However, first, much like our parents and teachers do not have a full claim to our
personal achievements on the grounds that their actions enabled them, it is at least not
obvious that researchers and developers hold a full claim to the discoveries made with
AI systems by virtue of guiding these systems to learn to predict successfully. Enabling
is not the same as doing, at leastwith regard to those achievements that involve substan-
tial autonomy on the part of the system in question. Second, in suggesting AI systems’
contributions are entirely encompassed by their creators, humans are implicitly set up
as the opposite: independent agents able to make distinct and autonomous contribu-
tions worthy of credit. But when pressed, this distinction seems difficult to maintain.
Take AlphaFold: human researchers set up and carefully tuned AlphaFold to dispose it
to learn how to predict protein structures well. But for AlphaFold to function properly,
it must not only be designed in the right way and equipped with useful constraints
on learning, but also afforded with sufficient autonomy to learn whatever there is to
learn. More generally, the structure of deep neural networks is often unpredictable;
they do not take in direct rule-based inputs; they often come up with surprising ways
to relate inputs, intermediaries, and outputs; and they regularly produce results that
their creators could not have anticipated (cf. Boge, 2022). The distinction between a
learning algorithm, i.e. the human-specified algorithm bywhich amachine learns, and
a learned algorithm, i.e. the specific, independently learnt way in which a machine
relates inputs, intermediaries, and outputs, is useful here (Zednik & Boelsen, 2022,
p. 233). While AlphaFold depends crucially on humans for its learning algorithm,
and draws on further human supervision and guidance, its learned algorithm is not
concretely determined by choices that researchers and developers make (ibid.).14

What is more, it seems plausible that if a human researcher, possibly guided by
extensive instructions, were to come up with a similarly successful learned algorithm
for predicting protein structures as AlphaFold, this would warrant a candidacy claim
for inclusion in the collective, even if they did not further interpret or assess the
significance of that algorithm, understand or grasp things about protein structures by
using it, or exploit the algorithm’s derivational resources. More generally, while many
human researchers can be dependent on extensive training, detailed instructions, and
continued oversight (consider Eric), it seems implausible to think that the contributions
they make should be entirely attributed to those enabling and guiding their functioning
as parts of a larger epistemic machinery. It is unclear, then, by what criteria a general

14 To be sure, human researchers are of course heavily involved in promoting the system’s ability to gravitate
towards a useful learned algorithm, e.g. by making architectural choices or fine-tuning hyperparameters.
Nevertheless, the way in which the learning algorithm interacts with the training data, and the relation-
ships between amino acid sequences and three-dimensional protein structures encoded in these data, more
concretely determines what structures AlphaFold ultimately predicts. Something similar may also seem
true of instruments like particle detectors, or some models and simulations: their outputs are not trivially
determined by human choices either. Intuitively, an important difference is that many AI systems can be
described as ‘learning’ and ‘making inferences’, which involves degrees of autonomy not easily matched by
scientific instruments that employ specific, human-devised mechanisms for detection and measurement, or
models and simulations, whose derivational resources are specified by humans rather than formed indepen-
dently. Despite these differences, it might be interesting to consider to what extent sophisticated scientific
instruments may also exhibit the features that CC emphasises, and what this suggests about their roles in
discovery.
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distinction between machines and humans could be sustained regarding whether they
can make contributions to discovery of their own, or whether credit is absorbed by
those enabling and steering their roles in a discovery process.

To be sure, we do not seek to offer a definitive judgement here as to whether
AlphaFold makes substantial contributions to discovery of its own—we expect and
appreciate controversy even concerning our modest suggestion that AlphaFold is a
candidate for the collective. Moreover, AlphaFold should not be taken as a definitive
reference case of machines making contributions to discovery of their own, but only
as a useful vignette to catalyse our thinking about AI discovery. But while we are
sympathetic with those remaining sceptical of attributing significant discovery con-
tributions to AlphaFold and similar systems, it seems plausible to think that future
AI systems may exhibit higher degrees of autonomy, to the point where even those
currently sceptical of ascribing discovery contributions to AI systems may be pressed
to consider this option more fully.

5.2 Machines are inadequate targets for credit

A second concern follows closely behind the first. Even if we grant that machines can
make discovery contributions of their own, we might nevertheless think that machines
are not the kinds of things that credit for such contributions can be owed to.15 Our
practices of allocating credit and responsibility for discovery are partly supposed to
express that we recognise and value someone’s contribution; but AI systems may
simply lack essential properties necessary for credit attributions to play this role.16

Relatedly, many authors emphasise that credit allocations play important instrumental
roles, for better or worse, e.g. by creating incentives for researchers to be productive or
to make certain kinds of contributions rather than others (see Goldman & O’Connor,
2021; Wu et al., 2022; Zollman, 2018). On such a view, it seems that credit may be
misallocated to machines, e.g. because they do not experience the same credit-related
needs as humans, e.g. in applying for jobs and funding.

We have several replies here. First, allocating credit only to those able to appreciate
it fails to pick out the right agents. Compare a key contributor, Carol, who routinely
downplays her contributions and feels uncomfortable in the spotlight, and a less central
contributor, Jess, who feels strongly (and perhaps appropriately) respected and valued
to receive recognition. It seems odd to give more credit/reward to Jess on the grounds
that theywould appreciate it more. Relatedly, posthumous credit sits awkwardly in this
picture of who credit may be owed to, pressing us to imagine counterfactuals of how
much a recognitionwould be appreciated if an agent were able to appreciate it. Finally,
there are numerous agents who we might think do not typically deserve discovery
credit, e.g. student lab assistants, but whose contributions we nevertheless (should)
respect and value, e.g. by paying them and/or thanking them. So, it seems unlikely that
an account of who is suitably receptive to allocations of credit can plausibly sustain a
broad distinction between humans and machines.

15 We thank Jannik Zeiser for raising this concern.
16 This is broadly related to the responsibility gap discussed in contexts of moral issues arising from AI
applications (Matthias, 2004). We thank Jannik Zeiser for highlighting this similarity.
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Second, ascribing credit to express that we value a contribution is just one among
several functions that this practice plays. Others include signalling, e.g. ‘attaching’
contributions to agents to form a broader picture of their overall achievements, which,
albeit very imperfectly, can help others assess how impactful someone’s work is over-
all, how productive they are, and how innovative they might be in the future. It seems
that similar functions could also be important in assessing and comparing the broader
epistemic credentials of AI systems, even if allocating credit and responsibility to AI
systems falls short of serving other functions.

Third, if the whole credit for a discovery that builds centrally on AI systems’ con-
tributions would be allocated only to humans, this would simply over-credit humans.
Like allocating the credit for a well-written paper to a single author but not their ghost-
writer seems problematic in many contexts, we must avoid over-crediting humans in
a way that fails to track their true contribution to a discovery. So, while it may be right
to say that we don’t owe credit to AI systems, a sound practice of credit allocation
may nevertheless involve making allocations to these systems in the ways suggested
by CC, if and when indicated by the significance of their contributions.

Finally, throughout our discussion we have taken a view of credit as being due
in proportion to the epistemic contributions an agent/entity has made. We agree that
such a view may not always seem appropriate given the incentive-related roles that
credit attributions play and that there are important questions about desert, need, and
function arising when sharing out credit. At the same time, we also believe that we
can usefully distinguish between an epistemic and practical layer of deciding where,
and how much, credit is due. Perhaps a good amount of progress is already made by
recognising that machines can make important epistemic contributions worthy of a
form of credit that tracks these contributions, even while maintaining that credit-as-
incentive should be distributed differently, taking into account additional reasons that
favour humans.17

5.3 CC is intractable in practice

A third concern focuses on the practical difficulties with tracing out varied contribu-
tions and understanding how they interact to enable a discovery. Consider massively
distributed research projects with hundreds of contributors playing different roles,
like those at CERN, where it seems unlikely that we can readily assess the individ-
ual relevance of specific contributions, how original they are, how much effort they
involved, how they productively complemented each other, and so on. Here, we might
worry that, while CC’s descriptive and ameliorative ambitions are laudable, it is just
too complicated to track and process the features it emphasises for carving out the
discovering collective and distributing credit shares.

We agree that applyingCC to concrete discovery episodes can prompt important and
sometimes insurmountable difficulties. But, as indicated earlier, CC is not supposed to
precisely identify the weight of specific contributions, capture their interactions, and
output a definitive score tracking an individual’s or entity’s discovery share. Rather, CC
is supposed to promote a general attitude for thinking about discovery that improves

17 We thank an anonymous reviewer for encouraging us to say more on this issue.
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upon AC: it urges us to be open-minded about acknowledging a potentially wide range
of contributions made by different actors and entities, and not to take for granted that
discovery can be neatly ascribed to clearly identifiable discoverers, while relegating
all else to the blurry and circumstantial background.

Moreover, the sorts of real-world complications that give rise to this worry are
best understood as properties of the discoveries in question—CC does not induce
these complexities, it just helps recognise them. Our dissatisfaction should hence lie,
if at all, with the fact that complex phenomena like scientific discovery are difficult
to understand in all their detail, rather than with a view that helps us recognise that
discovery is often more complex than ordinarily considered.

More generally, then, we do not think that the practical difficulties arising in apply-
ing CC to concrete cases should make us reluctant to endorse it as a better alternative
to AC. Andwhile more work is needed to navigate important difficulties in helping CC
elucidate concrete discovery episodes, it seems that even imperfectly precise recogni-
tion of contributions that would otherwise remain unacknowledged makes important
progress over AC: incremental progress is progress after all.

5.4 CCmakes credit distribution less just, not more

Finally, a fourth concern follows on the heels of the previous: applying CC in practice
may end up making attributions of credit not more just, but less so.18 For instance,
we might think that the features CC offers for characterising and appraising contribu-
tions to discovery exhibit scope for abuse, such as when agents already in positions of
privilege and power incorrectly describe their contributions as more significant than
they really are, but these descriptions remain unchallenged for reasons related to the
power differentials that enabled them. Or, less maliciously, we might simply think
that positions of power often come readily equipped with in-built potential for making
larger, and real, differences to discovery episodes, in non-redundant ways, and involv-
ing plenty of leadership. But some of these potentials are perhaps not credit-worthy,
e.g. being highly relevant to a discovery because one has the power to shut down a
project.

We are highly sympathetic to this concern, and think that a refined version of CC
should be complemented by safeguards to avoid over-allocating credit to agents who
are more influential mainly for the powers they can exercise, while downplaying the
contributions of other, less privileged individuals. That said, CC as we have sketched
it here is not a recipe that guarantees good results (e.g. just distributions of credit),
but only a tool that can play a supporting role in such recipes. Like with any tool, it
must be used in the right way to make an envisioned difference, there are real concerns
about improper use, and we must ensure that other tools and resources we draw on
complement it well. So, while we think that CC does not address this challenge out-
of-the-box, we hope that detailed case-study-based work (following calls by feminist
philosophers, see e.g. Richardson, 2010) can help further explore howCC can be com-
plemented with useful safeguards that help equalise power differentials in negotiating

18 We thank an anonymous reviewer for highlighting this concern.
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membership in discovering collectives. Such a project is as important for CC as it
would be for AC, which struggles with similar concerns.

With these challenges articulated and some responses sketched, let us conclude
and take stock of what CC contributes to our philosophical understanding of scientific
discovery.

6 Conclusions

Agent-centred views (AC) of scientific discovery assume that there is a neatly identi-
fiable agent (or group of agents) usefully understood as the ‘discoverer’. But despite
what narratives of celebrated historical discoveries suggest, discovery processes are
often more widely distributed and are not adequately characterised by picking out
central actors responsible for a discovery. Focusing on scientific discovery involv-
ing Artificial Intelligence (AI) systems, and building on existing criticisms, we have
argued that AC is an inadequate view not just of scientific discovery involving AI, but
also of discovery involving only humans.

Moving beyond these criticisms, we have outlined a collective-centred alternative,
CC, and argued that it is significantly better equipped to understand the complicated
nature of modern discoveries, with and without AI, as well as giving us deeper insight
into historical ones. Centrally, CC locates discovery in a collective, which can be
constituted by humans and machines. Different agents and entities can each make
important contributions to discovery, and CC offers conceptual resources to explore
and appraise the significance of their contributions depending on various finer-grained
properties.

Focusing on the role that AI can play in discovery, CC can reconcile existing enthu-
siasm about AI’s promises with important hesitations about its limited abilities: AI
systems might not discover in the extensive sense demanded by AC, but can neverthe-
less make significant contributions which must be recognised to appropriately account
for the roles they can play in discovery.

Turning to discovery more generally, with and without AI, CC’s richer concep-
tual resources can help us move considerably beyond AC’s limited perspective: CC
increases our ability to highlight why specific contributions stand out as centrally
important for discovery, if and when they do, but also provides resources to acknowl-
edge contributions made by agents and entities that AC would fail to recognise. In
doing so, CC can support ameliorative projects aiming to promote more just distribu-
tions of credit for historical, contemporary and future discoveries.

Of course, CC also faces important challenges and limitations. For instance, it can-
not precisely determine allocations of credit among a collective by itself, without rich,
case-specific information. It also seems unclear how, exactly, CC can inform existing
practices of distributing credit, assigning authorship, making acknowledgements, and
so on. We believe that spelling out such details is important, but also that doing so
is a larger project beyond the limits of this paper. While we think that our sketch of
CC already makes important conceptual progress in refining our understanding of dis-
covery, we hope that, much in the spirit of the view we defend, our proposals will be
complemented by subsequent, collective efforts involving not only philosophers but
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also sociologists of science and computer scientists to spell out CC’s details further
and examine its applicability and usefulness.
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