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extended supercontinuum spectra, such as the modulation in-
stability [11], soliton-fission [12,13], and self-frequency shift of
Raman solitons [10]. It furthers forms the basis for modeling
optical rouge waves [14-17], and the interaction of solitons and
dispersive waves in presence of an optical event-horizon [18-
21]. The GNLS describes the real-valued optical field in terms
of a complex-valued envelope at a fixed reference frequency
using a nonlinear wave equation of first order in the propagation
coordinate. It has proven to yield reliable results even in the
single cycle regime [22]. Overall, the GNLS provides a classical
description of the propagation dynamics of input pulses. Basic
phenomena described by the GNLS are susceptible to the pres-
ence of noise. When attempting to model noise on the quantum
level, a fundamental issue arises since the rigorous description
of quantum noise sources requires the introduction of quantum
mechanical operators [23-26], which are incompatible with clas-
sical fields. When the number of photons in the input pulse is
large, however, semiclassical approaches exist that account for
quantum fluctuations by randomizing physical interactions using
a classical background field of low power, entering the GNLS via
the initial condition. Such input pulse noise is modeled by simply
adding to the coherent input pulse an incoherent, stochastic noise
field. We consider commonly adopted one photon per frequency
mode [3,27-30], and half a photon per temporal mode [31-33]
noise models, and further implement a background field based on
a classical analog of the zero-point field of quantum field theory
(QFT) [34]. Including noise by perturbing the initial conditions
is in accord with the Wigner method, an efficient computational
approach for modeling quantum noise in optical fibers [25,26,35].
Considering an ensemble of independent simulation runs per-
turbed by noise, coherence properties of the simulated spectra
can be investigated. Accounting for shot-to-shot fluctuations in
numerical simulations appears essential for the dynamics and
enables a better comparison to actual experiments, employing
multishot measurement techniques [27,28].

In this article we present software tools allowing to reliably
simulate and analyze basic phenomena described by the GNLS in
presence of various types of input pulse shot noise. We detail
the scientific problem addressed by the provided software in
Section 2, and discuss its implementation, with emphasis on
input pulse noise models, in Section 3. Section 4 reports verifica-
tion tests, reproducing results for a supercontinuum generation
process in a photonic crystal fiber, well documented in the scien-
tific literature, where it has been used for illustrating nonlinear-
optics effects [3], and for benchmarking algorithms [36-40]. We
comment on impact and conclude in Section 5.

2. Scientific problem solved by the software

The provided Python tools enable simulation and analysis of
the dynamics of ultrashort laser pulses, governed by the general-
ized nonlinear Schrédinger equation (GNLS) [1,3]

~— B, . i,
d,u = lzn—?(laf)nu +iy 1+ ;;

n>2
x [u(z,c)fR(t’)m(z,t—t’)|2 dt’], (1)

for a complex-valued field envelope u = u(z, t) on a periodic
time-domain of extend T with boundary condition u(z, —T/2) =
u(z, T/2) and propagation distance z. An initial condition u(z =
0,t) = up(t) needs to be specified. In Eq. (1), B, (in units of
ps"/wm) is the nth order dispersion coefficient, y (W~!/um) is
a scalar nonlinear coefficient, and wg (rad/ps) a reference fre-
quency. t is a retarded time, measured in a reference frame mov-
ing with the group velocity at wg. The Raman effect is included
via the total response function

R(t) = (1 — fr) 8(t) + fr hx(t), (2)
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where the first term results in an instantaneous Kerr-type non-
linear response, and where the Raman response function hg(t)
enters with fractional contribution fy [41,42]. A generic two-
parameter model is

2 2
T+
2

T,

hg(t) = e”t/™ sin(t/71) O(t), (3)
with the Heaviside step function ©(t) ensuring causality [41].
Based on a single damped harmonic-oscillator approximation of
molecular responses, this simple model reproduces the Raman
gain spectrum measured for silica glass reasonably well. For silica
fibers, numerical values for the three relevant model parameters
are fr = 0.18, 1y = 12.2 fs, and 1, = 32 fs [41]. More
complex response functions, based on improved response models
and valid for other media, exist [43-45]. In this framework, using
a discrete sequence of angular frequency detunings 2 € ZT”Z

relative to wy, the expressions

1 72 )
Flu(z, t)] = —/ u(z, t)e'?t dt = up(z), (4a)
T J_rp
Fllup(z)] = ) ug(z)e™ = u(z, 1), (4b)
2

specify forward [Eq. (4a)], and inverse [Eq. (4b)] Fourier trans-
forms, relating the field envelope u(z, t) to the spectral envelope
ugp(z). Using Parseval’s identity for the transforms (4), the energy
in both domains is

772
By = [ o & =T Y lua(a)P, (5)
- 2

T/2

with instantaneous power |u(z, t)|> (W = J/s) and power spec-
trum |ug(z))? (W). While Eq. (1) represents the GNLS in its time-
domain formulation, a consistent formulation in the frequency
domain is also possible [46].

Input pulse noise is modeled by simply adding to the coherent
input pulse ug(t) an incoherent, stochastic noise field Au(t) with
properties

(Au(t)) =0, (6a)
(Au(t)Au*(0)) = o?8(t), (6b)
where (...) denotes an ensemble average over independent in-

stances of noise, and o2 is the noise variance. According to

Eq. (6a), at each point t, this background field has zero mean.
The S-function in the autocorrelation (6b) indicates that the
noise varies fast in comparison to any reasonable field ug(t),
and that subsequent actions of the noise are uncorrelated. For
instance, considering half a photon with energy hiw, per temporal
mode [31-33], the noise variance is 02 = hwy/2 with reduced
Planck constant fi. Noise models for treating more specific pump
laser spectra exist [47,48].

Let us note that there also exist formulations of the propa-
gation dynamics in terms of stochastic equations, derived from
a quantum theory of fibers with quantum noise sources taken
into account via stochastic processes [49-51]. Technically, this
amounts to adding multiplicative noise which contributes to the
nonlinearity of the propagation equation [25]. More specifically,
a stochastic variant of the GNLS, which extends Eq. (1) by sponta-
neous Raman scattering, is discussed in Ref. [52]. Recently, pulse
propagation in presence of quantum noise has been general-
ized to waveguides with arbitrary frequency-dependent nonlin-
ear profiles [53]. Such approaches are powerful for modeling and
design of quantum devices based on nonlinear waveguides, for
which quantum limits become important [53]. When aiming at
describing the propagation dynamics of intense classical fields,
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a phenomenological inclusion of quantum-limited shot noise via
the above method is common practice [28].

In the frequency domain, shot-to-shot fluctuations of the field
can then be characterized by the spectrally resolved modulus of
first order coherence for zero time-lag

u u*
|g12(£2)| = (Ug mUo ) mzk , "

(lugml®) (Jug il*)

where the angular brackets specify an average over nonidentical
pairs of fields, labeled m and k, obtained from an ensemble of
M simulation runs with independent noise fields [3,27,28]. At a
given angular frequency detuning £2, 0 < |g12(£2)| < 1, where
|g12(£2)] ~ 1 indicates good stability in amplitude and phase.
Different from this measure of interpulse coherence, the modified
intrapulse coherence

| (uﬂl,mu?)z.m”

(821, 625) = (8)

<|u(21,mu?22,m|>

allows to assess the coherence between different spectral com-
ponents within a pulse. With focus on f-to-2f (f = frequency)
setups, the intrapulse coherence was shown to play an important
role in carrier-envelope phase measurement and stabilization of
ultrashort pulses [54]. Eq. (8) modifies the intrapulse coherence
of Ref. [54] by relaxing the f/2f condition. Instead, two general
distinct frequencies §21, and §2, are considered.

3. Software description

GNLStools is written using the Python programming lan-
guage [55], and depends on the functionality of numpy, scipy [56],
and matplotlib [57]. It can be cloned directly from GitHub (see the
link to the repository in the Code metadata), where it is available
under the MIT license.

3.1. Software functionalities

The current version of GNLStools features:

e A data structure for the GNLS (1), which can be easily
tailored to a specific nonlinear waveguide.

e Functions that implement optional input pulse noise mod-
els considering both, pure spectral phase noise as well as
Gaussian noise.

e Functions for calculating the coherence properties of simu-
lated spectra.

The software can be used on its own, it includes a basic driver
script implementing a fixed stepsize “fourth-order Runge Kutta
in the interaction picture” (RK4IP) solver [36] (Section 4.1), or
as extension module for py-fmas [40] (Section 4.2). In the latter
case, a user can take advantage of variable stepsize z-propagation
algorithms and more elaborate Raman-response functions. The
presented software is not overly feature-rich (Fig. 1), but allows to
reliably simulate the complex physical processes that enable gen-
eration of supercontinuum spectra in nonlinear waveguides [3].

3.2, Implementation details

Solving the GNLS in the time-domain formulation Eq. (1)
presents several disadvantages. Higher-order dispersion is diffi-
cult to handle. Even for the lowest order t-derivatives, introduc-
tion of finite-difference operations comes with unwanted trunca-
tion errors. It is therefore advantageous to perform some of the
operations in the frequency-domain, allowing to employ spectral
derivatives df'u = F1[(—if2)"up]. The operating principles
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GNLStools.py

If--» noise_model 01 @
[€)] #--» noise_model 02

TR

mOdTel $--» noise model 03
' L =
H
i
- GNLS ---»object :.--o coherence_interpulse (c)
' ¢--» coherence_ intrapulse
t--> Lw i
i..-» Nw :

[l number_of photons_naive @

4--+ claw_Ph ¢--» number_of photons

Fig. 1. Pictorial outline of the GNLStools module. (a) GNLS data structure, see
Section 3.2.1. (b) Functions implementing the noise models, see Section 3.2.2. (c)
Functions for computing coherence properties, see Section 3.2.3. (d) Functions
for computing the number of photons within a field pulse (documentation
provided within the code). Solid arrow indicates class instantiation (“creates”
relationship), dashed arrows indicate functions and methods (“has-a” relation-
ship), dash-dotted arrow indicates reference to an object (“is-a” relationship).
The model in (a) integrates well with the propagation algorithms implemented
in py-fmas [40], see Section 4.2.

of common algorithms for the solution of nonlinear Schrod-
inger-type equations, like the split-step Fourier method [58,59],
the RK4IP method [36], and the variable step-size conservation
quantity error method [37,38], exploit this. To facilitate imple-
mentation, the interval —T/2...T/2 is divided into N equal
subintervals with temporal grid spacing At = T/N, yielding
discrete grid points t,, = m At, and detuning grid points 2, =
mASR, A2 =27 /T, withm = —N/2, ..., N/2—1. Subsequently
we write u(z, t)li=, = Um(z), and ue(z)|lo=0, = Uqe,(Z). Re-
specting the sign choice and normalization of the transforms (4),
we use the numpy native discrete Fourier transform (DFT) routine
ifft to implement Eq. (4a), and £ft to implement Eq. (4b) [60].

3.2.1. The GNLS data structure

Instantiating an instance of the class GNLS requires a user
to specify several input parameters. Below, they are listed as
“parameter_name (data type): description”:

e w (array, float): discrete angular frequencies (.(2,11)2’1/:2 :,\l, P in

units of rad/fs;

e beta_n (array, float): ordered sequence of dispersion pa-
rameters (ﬁn);@;" = (B2, B3s - - - » BNimax )» With Npmax > 2 and
B in units of fs" /um;

e gamma (float): nonlinear parameter y (W~1/#m);

e wO (float): reference angular frequency wy (rad/fs);

e fR (float): Raman contribution f; (default: 0.18);

e taul (float): time-scale 7y (fs) (default: 12.2 fs);

e tau? (float): time-scale 7, (fs) (default: 32 fs).

While the angular frequency grid w is passed as positional
argument, all other parameters are passed as keyword arguments.
An example is discussed in Section 4.1. For using an instance
of the GNLS class with a z-propagation algorithm, several in-
stance methods are available. Below, they are listed in the format
“method_name (argl,arg2, . . . ): description”:

Lw(self): Using spectral derivatives, the frequency domain rep-
resentation of the linear operator L =i} _, =i(id,;)" on the

right-hand-side (rhs) of Eq. (1) can be written as

Nmax

Lo Eiz%(z". (9a)
n=2 !

For practical reasons, the sum has to be truncated at a finite
integer number Ny.x > 2. This class method returns Lg,

evaluated at the points (£, );\::7,\, /2

Input parameters:
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e The method relies on class attributes only.

Output parameters:

N/2—1

e Lw (array): Le [Eq. (9a)] at the points (Qm)m:_N/z.

The method is decorated as @property, so it can be conve-
niently used as gnls_instance.Lw.

Nw(self, uw): Using the convolution theorem for the trans-
forms (4), the second term on the rhs of Eq. (1) can be written
in a mixed representation as

No(u) = iy(1+ oy 'Q2)FI(1-fR)T1 + frT2]. (9b)

where Z; = |u|?u, Z, = F~'[Ag(£2)F[|u|*]]u, and
02 4 g

72— (240t 2

The method takes on input the spectral envelope ug, re-

trieveszu = F'[ug], and evaluates and returns Eq. (9b) at
N/2—1
(2nnZx 2

hr(£2) = T Flhg(t)] = (9¢)

Input parameters:

e uw (array): Spectral envelope ug, at the angular fre-
. . N/2—1
quency grid points (2, )m:—N/Z'

Output parameters:

e Nw (array): Ng [Eq. (9b)] at the points (Qm)z/:zj,/z.

claw_Ph(self,i,zi,w,uw): Class method evaluating a con-
servation law of the GNLS (1), related to the classical analog
of the photon number [41]. This method considers the energy
[Eq. (5)] in the form E = h) ,ne(wo + $2), where the
dimensionless quantity ng = T|ug |?/[(wo+$2)] specifies the
number of photons with energy h(wo+ $2). The total number
of photons is then given by

2 2
Con(2) = ;ng - M—”g ; L:lff).('z (9d)

In a rigorous quantum mechanical treatment, the photon
number is instead defined using photon creation and anni-
hilation operators [24]. Let us note that while the GNLS (1)
conserves the total number of photons Eq. (9d), it does not
conserve the pulse energy [Eq. (5)] [41].

Input parameters:

e i (int): Integer label of the current z-propagation step.
e zi (float): Current propagation distance.
e w (array): Angular frequency grid (£2,, )%/:2 :,3, 2
e uw (array): Spectral envelope ug,, at the angular fre-
. . N/2—1
quency grid points (‘Qm)m:—N/Z‘
Output parameters:

e Cph (float): Total number of photons Cpy, at the current
point along z [Eq. (9d)].

The method has the structure of an user-action function for
use with py-fmas [40] (Section 4.2).

3.2.2. Implemented noise models

We provide optional functions for generating time-domain
representations of input pulse noise, consistent with Egs. (6). Be-
low, they are listed in the format “function_name(argl,arg?2,
. . . ): description”:
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noise_model_01(t,w0,s0): Function generating an instance
of noise by directly sampling in the time-domain. The under-
lying noise model assumes normally distributed amplitudes.

Input parameters:

e t (array): Time-grid (tm)z/:z__,\l,/z.

e wO (float): Pulse center frequency wy.

e s0 (int): Integer seed sy for pseudo random number
generator.

Output parameters:

e du_t (array): Instance (Aum)ﬁf:,z, /2 of time-domain

noise.

An instance of this type of noise is obtained by directly
sampling a sequence (Aum)ﬁ/,_2 :,3, P of complex-valued noise-
amplitudes in the time domain as

ha)o
Au = —_— X ly N
m aaL X HiY)

(10a)
where the independent random variables X and Y yield in-
dependent identically distributed (iid) standard normal ran-
dom numbers [i.e. X, Y ~ A0, 1)]. Performing an ensemble
average, this type of noise exhibits the properties

(Aup) =0, (10Db)

(At AuE) = 10 5

m o/ — AL mO0»
i.e. the average field is zero and the autocorrelation (10c)
is equivalent to Eq. (6b) on a discrete grid with grid spac-
ing At [31]. An instance of this noise has average energy
> [um|® At) = Nhawqo/2, corresponding, on average, to half a
photon with energy hw, per temporal mode.

(10c)

noise_model_02(t,w0,s0): Function generating an instance
of time-domain noise by sampling its Fourier representation.
The underlying noise model assumes pure phase noise.

Input parameters:

e t (array): Time-grid (tm)Zf:;,/z.

e wO (float): Pulse center frequency wo.
e sO (int): Integer seed so for pseudo random number
generator.

Output parameters:

e du_t (array): Instance (Aum)x/j:;/

noise.

, of time-domain

An instance of this type of noise is obtained using a Fourier
method by first sampling a sequence (Aug, )ﬁ/j :,\1, 2 of ran-
dom complex-valued spectral amplitudes

ﬁ(wo +-Qm ) e*i<13
T

where the random variable @ yields iid phase-angles uni-
formly distributed in the range 0...2x [ie. @ ~ U(0, 27)];
an inverse Fourier transform, consistent with Eq. (4b), is then
used to obtain the sequence (Aum)':/:z :,\1, j» of time-domain
noise amplitudes.

For this type of noise, the magnitude of the spectral ampli-
tudes (11) is definite and the energy per mode £2 is T|ug|*> =
h(wo + £2). With the number of photons ng, as per Eq. (9d),
adding noise as up — ug 4+ Aug results in ng — ngo + 1. The
photon occupation number is thus increased by the minimal
definite amount of one (entire) photon per mode. The phase

Aug, = , (11)
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of this photon is, however, entirely indefinite and the noise
in different modes has no particular phase relationship. An
instance of the noise has total energy T ), [ug|? = Nhaw.

noise_model_03(t,w0,s0): Function generating an instance
of time-domain noise by sampling its Fourier representation.
The underlying noise model assumes normally distributed
spectral amplitudes.

Input parameters:

e t (array): Time-grid (tm)ﬁf:;/z.

e w0 (float): Pulse center frequency wy.

e s0 (int): Integer seed so for pseudo random number
generator.

Output parameters:

e du_t (array): Instance (Au,,,)'r\’n/:2 :,3, /

noise.

, of time-domain

An instance of this type of noise is obtained using a Fourier
. . N/2—1

method by first sampling a sequence (Aug, )m:—N/Z of ran-

dom complex-valued spectral amplitudes

h(wo+9m)ﬁe—i¢
T 9

where the random variable I obeys an exponential distribution
with rate parameter 2 [i.e. | ~ Exp(2) with expectation value
(I) = 1/2], and @ is uniformly distributed in O0...27 [ie.
@ ~ U(0, 27r)]; an inverse Fourier transform, consistent with
Eq. (4b), is then used to obtain the sequence (Aum)ﬁ/:2 :,3, P of
time-domain noise amplitudes.

Averaging over the noise in a mode £2 yields energy (T|Aug|?)
= h(wo+ 2){I) = h(wp+$2)/2, corresponding, on average, to
half a photon per mode. In contrast to the pure phase noise
model implemented by noise_model_02, this type of noise
exhibits instance to instance fluctuations of the energy in each
mode. Thereby, the random variable I takes the role of an
occupation number with support I € [0, co). On average, an
instance of this noise has energy (T ) lug|?) = Nhwy/2.
Alternatively, using the Box-Miiller transform [61], we may
rewrite +/Te™*®, with I ~ Exp(2), ® ~ U(0, 27), in Eq. (12)
as (X +iY)/2, with X, Y ~ N(0, 1) two iid standard normal
random variables. This noise model is based on a classical
analog of the zero-point field of QFT, which exactly reproduces
the statistics of the electromagnetic vacuum [34].

AUQm = (12)

Fourier methods that obtain time-domain noise by sampling
frequency dependent spectral noise amplitudes generally result
in correlations (AupAug) ~ |tm|~'. This is demonstrated in
Fig. 2, where the ensemble averaged field and autocorrelation for
the three noise models are shown. As evident from the inset in
Fig. 2(b), both Fourier methods result in correlations that persist
over many grid spacings At.

Let us note that the above noise models differ with respect
to details of implementation and interpretation. Nevertheless,
with some degree of approximation, they can easily be related to
each other. For instance, under the assumption that the required
bandwidth of the computational domain is small compared to
the pulse center frequency, i.e. NA2 < wp, we may approximate
Eq. (11) by Aug, =~ /hwo/T exp(—@). All terms in the inverse
Fourier transform [Eq. (4b)] of these noise spectral amplitudes
are then identically distributed. Approximating these sums using
the central limit theorem yields Eqg. (10a) times a factor of v/2
(this is a consequence of one model assuming one entire photon
per mode, while the other assumes half-a photon per mode). Let
us note that this approximation is accompanied by difficulties:
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2 j (@ —— noise model 01
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Fig. 2. Ensemble averaged noise moments. (a) Real part of the time-domain
noise amplitudes as function of the grid point index m = tp/At. (b) Scaled
autocorrelation. The inset shows a close up view of the index range —6...6.
Noise is sampled on a grid with temporal extent T = 4 (ps), N = 23 grid points,
and for wy = 2.2559 rad/fs. Averages are performed over 10* independent
instances of noise.

it corresponds to one (entire) photon per mode if the energy (5)
is written as E = hwo Y_,, N, With nfy = Tlug|*/(hwy). Thus,
irrespective of £2, all photons are assumed to contribute the same
energy hwy. Put into the context of pulse propagation models,
this is a feature of standard nonlinear Schrédinger-type equations
for which energy conservation and photon number conservation
are trivially linked. This, however, is at odds with the GNLS (1)
which conserves the number of photons but not the energy [41].
Under the same assumption and approximation, Eq. (12) can
easily be related to Eq. (10a): applying the inverse Fourier trans-
form, we may rewrite the individual terms using the Box-Miiller
transform [61] to directly obtain Eq. (10a). Moreover, in terms
of a Fourier method and in the above approximation, practically
any iid spectral amplitudes will yield time-domain noise with
properties Eqs. (6) [62]. As a technical detail, let us note that
when using a Fourier method to set up noise, the noise spectral
amplitudes also depend on the normalization of the transform
pair (4). For instance, in Ref. [30], a GNLS on the infinite t-domain
with a different transform pair and, consequently, spectral noise
amplitudes with different normalization, was considered.

3.2.3. Functions for calculating coherence properties

We provide optional functions for calculating the coherence
properties of spectra obtained from pulse propagation simula-
tions in terms of the GNLS (1). Below, they are listed in the format
“function_name (argl,arg2, . . . ): description”:

coherence_interpulse(w,uw_list): Function computing

the interpulse coherence Eq. (7).

Input parameters:

e w (array): Angular-frequency grid (2, )m/:z :,3, /2

e uw_list (array): List [uwl, uw2, ...], comprising
independent spectra uwl, uw2, ..., obtained for the
same propagation distance z but for different instances
of input pulse noise.

Output parameters:
e gl12 (array): g12(£2) [Eq. (7)] at the points (Qm)ﬁf:;,/z.

coherence_intrapulse(w,uw_list,wl,w2): Function com-
puting the intrapulse coherence Eq. (8).
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Fig. 3. Supercontinuum generation in a photonic crystal fiber. (a) Instantaneous
power, and, (b) spectrum after 14 cm of propagation. In (b), result of the
presented implementation (labeled A) is compared to pyNLO [63] (labeled B).
(c) Propagation of the instantaneous power, and, (d) spectrum as function of
propagation distance. White boxes in (c) show a close-up view of the soliton
fission process. (d) Normalized deviation of photon number (Cp) and energy (E)
along the fiber.

Input parameters:

e w (array): Angular-frequency grid (2, )ﬁf :,3, /2
e uw_list (array): List [uwl, uw2, ...], compris-
ing independent spectra uwl, uw2, ..., obtained

for the same propagation distance z but for different
instances of input pulse noise.

e w1 (float): Reference angular frequency £2;.

e w2 (float): Reference angular frequency £2,.

Output parameters:

e G (float): I"*P(2,, £2,) [Eq. (8)].

4. Sample results

As a verification test of the presented Python tools, we con-
sider a supercontinuum generation process in a photonic crystal
fiber, detailed in Ref. [3]. Specifically, we perform simulations in
terms of the GNLS (1), using the sequence of dispersion coeffi-
cients B = —1.183x 1072 fs?/pm, B3 = 8.10383x 1072 fs> /um,
Bs = —9.5205 x 1072 fs*/um, fs = 0.20737 fs°/um, B =
—0.53943 fs® /um, B; = 1.3486 s’ /um, B = —2.5495 fs®/pum,
Bo = 3.0524 fs°/um, B1p = —1.7140 fs'°/pm, and y = 0.11 x
107 W~!/um. For the Raman response we use the standard
values for silica fibers fr, = 0.18, ry = 12.2 fs, and 7, =
32 fs [41]. As initial condition we take a hyperbolic-secant pulse
ug(t) = /Py sech(t/ty), with duration to = 28.4 fs, peak power
Py = 10 kW, and pump wavelength Ag = 835 nm corresponding
to wg = 2mc/Ag ~ 2.2559 rad/fs (with speed of light ¢ =
0.29979 pwm/fs). The number of photons [Eq. (9d)] in this pulse
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Fig. 4. Shot-to-shot fluctuations of (a) instantaneous power, and, (b) correspond-
ing spectra, for input pulses with ty = 85.0 fs duration input pulses and 10 cm
of propagation (cf. Fig. 18 of Ref. [3]).

amounts to Cpp, &~ 2.4 x 10°. The z-propagation dynamics of the
above propagation scenario without noise background, followed
over 14 cm, is shown in Figs. 3(a-d).

4.1. A minimal working example

To demonstrate how to initialize and use the GNLS data struc-
ture for performing pulse propagation in terms of Eq. (1), we
provide a minimal example in code-listing 1. The provided code
initializes the GNLS data structure in lines 10-28, sets up the
input pulse in line 30, retrieves an instance of input pulse noise in
line 31, and propagates the initial field for 10 cm using the fourth-
order Runge Kutta in the interaction picture (RK4IP) method [36].
This type of algorithmic approach is also referred to as integrating
factor method [64], or linearly exact Runge Kutta method [65].
Pulse propagation is performed in lines 35-42 using a fixed step-
size of 10 wm, and using a temporal domain of extent T = 7 ps
with N = 2 grid points. The script terminates in just under
15 s (Apple M1 chip @ 3.2 GHz) and reproduces Figs. 3(a,b) [cf.
Figs. 18(a,b) of Ref. [3], Fig. 2(a) of Ref. [36], Fig. 1(a) of Ref. [38],
and Fig. 2(b,c) of Ref. [40]]. The script shown in listing 1 is located
in project folder numExp01 provided with the code [66].

4.2. Using GNLS with py-fmas

Integration with py-fmas. Fig. 3 is produced by using the GNLS
data structure in conjunction with py-fmas [40], a Python pack-
age for the numerical simulation of the z-propagation dynamics
of ultrashort optical pulses in terms of the analytic signal of the
optical field. GNLStools can be used as an elaboration module,
providing an envelope based model which integrates well with
the propagation algorithms provided by py-fmas. Specifically,
pulse propagation in Figs. 3-5 is performed by the variable step-
size conservation quantity error method [37,38,40], using Eq. (9d)
to guide step-size selection. Fig. 3(e) shows the numerical er-
ror accumulated for the photon number [Eq. (9d)] and energy
[Eq. (5)], showing that Cpy, is conserved up to order 108, while
E is not conserved [41]. Considering Cpy, the feature at z ~ 1 cm
indicates the onset of soliton-fission (close-up view in Fig. 3c),
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and the change of the trend at z &~ 7 cm indicates the onset of
the interaction of a soliton and a dispersive wave which mainly
determines the interaction dynamics and generation of supercon-
tinuum spectra. A small project workflow with a driver script
that performs the simulation, and a postprocessing script that
generates Fig. 3, are located in project folder numExp02 provided
with the code [66].

Shot-to-shot fluctuations. Fig. 4 demonstrates shot-to-shot varia-
tions in pulse intensity and spectrum after 10 cm of propagation,
arising from the inclusion of input pulse noise for an input pulse
with duration t; = 85.1 fs. The noise is generated via noise
model 1, i.e. by direct sampling in the time-domain. A small
project workflow with a driver script that performs the sim-
ulation, and a postprocessing script that generates Fig. 4, are
located in project folder numExp0O3_noise_model_01, provided
with the code [66].

Coherence properties. The coherence properties of input pulses
of different duration, obtained by performing ensemble averages
over 200 independent simulation runs with different noise seeds,
are shown in Fig. 5. Fig. 5 reproduces Fig. 19 of Ref. [3], wherein
a detailed discussion of the effects of input pulse noise and the
interpretation of the coherence can be found. In addition, in Fig. 5
we also show the modified intrapulse coherence [Eq. (8)] dis-
cussed in Ref. [54]. A postprocessing script that generates Fig. 5 is
located in folder numExp03_noise_model_01 provided with the
code [66]. From our experience, the slight correlations introduced
by the Fourier method based noise models, see Section 3.2.2 and
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Fig. 2, do not affect the coherence properties of the obtained
supercontinuum spectra.

5. Impact and conclusions

The presented GNLStools comprise a data structure imple-
menting the generalized nonlinear Schrédinger equation, two
commonly adopted models of quantum noise and a further noise
model based on a classical analog of the zero-point field of QFT,
and functions for assessing the coherence properties of simu-
lated spectra. It provides all features required for studying basic
phenomena supported by the GNLS in the presence of input
pulse shot noise. The provided software can be used on its own,
as demonstrated in Section 4.1, or as elaboration module for
use with the propagation algorithms provided by the py-fmas
package [40], as demonstrated in Section 4.2.

With the provided software we hope to shed some more
light on the implementation of quantum noise models for use in
pulse propagation studies, an issue that is often not thoroughly
presented in the scientific literature. We hope to directly benefit
students and researchers alike, which are new to the field of
nonlinear optics and seek a tutorial-type introduction on how to
perform pulse propagation simulations including quantum noise,
and assess the coherence properties of the resulting spectra. The
minimal example in Section 4.1 can very well serve as classroom
code or as starting point for seminar projects in computation
oriented courses, aimed at demonstrating algorithmic approaches
that go beyond simple split-step Fourier methods commonly used
for solving nonlinear Schrédinger-type equations [1,58,59].

Extending Eq. (1) to a stochastic GNLS which includes spon-
taneous Raman scattering can be accomplished using the proce-
dure described in Refs. [25,52]. Using a simple split-step Fourier
method, which uses the GNLS data structure detailed in Sec-
tion 3.2.1, and accounts for the additional multiplicative noise
during the update associated with the nonlinear part of the
propagation equation, seems the most basic way to include the
necessary changes with the provided software.

Finally, we would like to reference original research apply-
ing the presented GNLS tools. In Ref. [21] we used the pre-
sented software to demonstrate an efficient all-optical switching
scheme, based on controlling the features of soliton fission in-
duced supercontinuum spectra using a time-delayed dispersive
wave.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Data/Code is available under the link to the repository pro-
vided in the Code metadata.

Acknowledgments

We acknowledge support from the Deutsche Forschungsge-
meinschaft (DFG) under Germany’s Excellence Strategy within
the Cluster of Excellence PhoenixD (Photonics, Optics, and En-
gineering - Innovation Across Disciplines) (EXC 2122, projectID
390833453).



© N DU AW N

- o

12

53

54

Oliver

Melchert and Ayhan Demircan

SoftwareX 20 (2022) 101232

Listing 1: Python code for solving the GNLS (1) using the fourth-order Runge Kutta in the interaction picture method [36].

impo
impo
from

# -
z, d
t =
w o=
# -
gnls

# P
ut =
dut
uw =

# R
P =
for

# R
fig,

ST =

axl.
axl.

rt numpy as np
rt matplotlib.pyplot as plt
GNLStools import GNLS, noise_model_O1

SET COMPUTATIONAL GRID

z = np.linspace(0, 0.1e6, 10000, retstep=True)
np.linspace(-3500, 3500, 2**13, endpoint=False)
np.fft.fftfreq(t.size, d=t[1]-t[0])*2*np.pi

INSTANTIATE GENERALIZED NONLINEAR SCHROEDINGER EQUATION

= GNLS(

w, # (rad/fs)

beta_n = [
-1.1830e-2, # (fs~"2/micron) beta_2
8.1038e-2, # (fs~3/micron) beta_3
-0.95205e-1, # (fs"4/micron) beta_4
2.0737e-1, # (fs~5/micron) beta_5
-5.3943e-1, # (fs"6/micron) beta_6
1.3486, # (fs"7/micron) beta_7
-2.5495, # (fs~8/micron) beta_8
3.0524, # (fs~9/micron) beta_9
-1.7140, # (fs~10/micron) beta_10
1,

gamma=0.11e-6, # (1/W/micron)

w0= 2.2559, # (rad/fs)

fR = 0.18, # (=)

taul = 12.2, # (fs)

tau2 = 32.0 # (fs)

)

SPECIFY INITIAL PULSE
np.sqrt(le4)/np.cosh(t/28.4)
= noise_model_01(t, 2.2559, 1)
np.fft.ifft(ut + dut)

RK4IP PULSE PROPAGATION
np.exp(gnls.Lw*xdz/2)

n in range(l,z.size):

uw_I = Px*xuw

k1 = Pxgnls.Nw(uw)*dz

k2 = gnls.Nw(uw_I + k1/2)*dz

k3 = gnls.Nw(uw_I + k2/2)*dz

k4 = gnls.Nw(P*uw_I + k3)x*dz

uw = P*(uw_I + k1/6 + k2/3 + k3/3) + k4/6

PLOT RESULTS
(ax1, ax2) = plt.subplots(l, 2, figsize=(8, 3))
np.abs (np.fft.fft (uw)) **2

plot(t, I*le-3)
set_x1im (-200,3200) ;

axl.set_xlabel(r"Time $t$ (£fs)")

axl.set_ylim(0,6); axl.set_ylabel(r"Intensity $lul"2$ (kw)")

Iw =
ax2.

np.abs (uw) *x*2
plot (2*xnp.pi*0.29979/(w+2.2559),

10*np.logl0(Iw/np.max(Iw)))

ax2.set_x1im(0.45,1.4); ax2.set_xlabel(r"Wavelength $\lambda$ (micromn)")
ax2.set_ylim(-60,0); ax2.set_ylabel(r"Spectrum $|u_\lambdal|~2$ (dB)")

fig.tight_layout (); plt.show()
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