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“What-if” questions are intuitively generated and commonly asked during the design process. Engineers
and architects need to inherently conduct design decisions, progressing from one phase to another. They
either use empirical domain experience, simulations, or data-driven methods to acquire consequential
feedback. We take an example from an interdisciplinary domain of energy-efficient building design to
argue that the current methods for decision support have limitations or deficiencies in four aspects: para-
metric independency identification, gaps in integrating knowledge-based and data-driven approaches,
less explicit model interpretation, and ambiguous decision support boundaries. In this study, we first
clarify the nature of dynamic experience in individuals and constant principal knowledge in design.
Subsequently, we introduce causal inference into the domain. A four-step process is proposed to discover
and analyze parametric dependencies in a mathematically rigorous and computationally efficient manner
by identifying the causal diagram with interventions. The causal diagram provides a nexus for integrating
domain knowledge with data-driven methods, providing interpretability and testability against the
domain experience within the design space. Extracting causal structures from the data is close to the nat-
ure design reasoning process. As an illustration, we applied the properties of the proposed estimators
through simulations. The paper concludes with a feasibility study demonstrating the proposed frame-

work’s realization.
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

most needed for assessing design schemes [G]. Subsequently,
numerous simulation and optimization tools emerge to support
decision-making [7,8]. It is well established that the digitalization
progress benefits the design process [9]. Despite the advantages
and achievements of effective decision-support systems driven
by digitalization, we identified four major limitations existing in
the current research:

1. Introduction

Sustainable building design is challenged by multi-objective
and multi-variable design tasks [1,2]. Driven by the development
of Building Information Modeling (BIM) [3] and parameterization
[4], building designers tend to reach their decision by setting
boundary conditions to run virtual optimization or building simu-
lations for scheme validations. Significant energy savings can be

achieved in buildings if they are properly designed [5], which
raises the requirement for building designers to progress their
work in an energy-efficient manner under an environmentally
friendly and cost-effective consideration. This manner usually asks
for interdisciplinary knowledge from architects and engineers, e.g.,
building envelope improvements, heating/cooling capacity reduc-
tions, etc. Such qualitative and quantitative knowledge about the
design parameters and decisions in the early stage is considered
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e Parametric independence: Building design optimization and
building performance simulation (BPS) tools use a set of design
parameters for representing the building design; however, the
dependencies among the different building components and
their parameters are not carefully considered, taking into
account their influence on simulation results. The well-known
mantra in statistics, “correlation does not imply causation”
[10,11], remains under-appreciated and rarely discussed in
the building design context [1,12].

o Integration of knowledge-based and data-driven methods:
As for the methodology, two major BPS approaches, the first-
principles model (known as rule-based or knowledge-based
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Nomenclature

Al Artificial Intelligence

ANN Artificial Neural Network

ATE Average Treatment Effect

BIM Building Information Modeling

BPS Building Performance Simulation
CATE Conditional Average Treatment Effect
DAG Directed Acyclic Graph

DSS Decision Support Systems

EP EnergyPlus

GES Greedy-Equivalent-Search

iid. independent and identically distributed
LOD Level of Development

MAPE  Mean Absolute Percentage Error
ML Machine Learning
RF Random Forest

SCM Structural Causal Model
WWR  Wall-to-Window Ratio

models) and the machine learning (ML) approach [13], similar
to the debate of symbolism and connectionism (mathematical
models) in the artificial intelligence (Al) community [14], exist
in parallel. Research investigations for the method or process
development to integrate both approaches are missing.

Model interpretation: The design process involves multi-
variates (features of building composition, geometry, material,
structure, etc.) interactions and correlations with specific
sequential constraints. In practice, there is often limited explicit
consequence explanation given for approaches (especially
machine learning methods) [15,16] to assist informed
decision-making.

Ambiguous boundaries of decision support: Throughout the
design phases, the attention of domain experts oscillates
between understanding the problem and developing a solution.
Although various guidelines exist for describing the expected
deliverables at every milestone (such as the U.K's RIBA [17]),
the required semantic and geometric information and their
topological relationships are not explicitly defined [18]. Hence,
the scope of the potential design space in each phase is ambigu-
ous, leading to a wide spectrum of performance uncertainties.

In this context, both ambiguous boundaries of decision support
and the less comprehensive machine assistance methods need to
be delicately defined. The optimization analysis by manipulating
parameters independently without considering the sequential hid-
den relationship within variables brings biased results or spurious
relationships. Such results will lead to false assumptions for
decision-making support, which is the gap in the above-
mentioned methods for flexible alternative analysis in potential
design space exploration. Essentially, the design process aims to
develop interactions with users to determine the most compatible
adjustment with set objective(s). The design scheme adjustment is
to “control” variables, receive causal effect information, and
attempt to optimize the target, e.g., building energy performance,
cost, user comfort, even occupants’ habits [19,20], etc. The interop-
erability and the interchange information capability from model-
ing are essential for optimizing design schemes, involving “what-
if” scenarios analysis, and verifying the tool’s reliability [6]. In this
context, it is important to separate representation for the implicit,
transferable feature relationships and explicit, quantifiable change
impacts individually.

In this study, we introduce causal inference into the energy-
efficient building design domain, by proposing a four-step process
framework of causal structure finding and causal effect estimation
with a nexus for integrating domain knowledge with data-driven
approaches. We provide building designers a higher dimension to
inspect their own design case continuously with a simple case
for framework implementation. Finally, based on this work, we
establish the foundation for researchers, engineers, and designers
to engage in what is now called “causal modeling” and use princi-

ples of causality to encode domain knowledge with data interpre-
tation processes in various application domains.

The remainder of this paper is organized as follows: The expan-
sion studies of the abovementioned defects and causality introduc-
tion are presented in Section 2. It is followed by the necessary
method support for the proposed causal process (Section 3).
Finally, a case study of the building design process is presented
in Section 4 to illustrate the application of the causal process with
data validation. Sections 5 and 6 discuss the future potential and
conclude.

2. Method: Causal inference

Initiated by medical statistic research [21], causal inference is
now a critical research topic in many domains given observational,
multivariate data to reveal an effect and the cause that’s influenc-
ing it, making interventions (“What-if..”) and counterfactual rea-
soning (“What if I had...”) possible [10,22]. In more detail, a
process of drawing a conclusion based on the conditions of the
occurrence of an effect [22,23]. Causality is commonly confused
with correlation, but the former presents a different interpretation
from observational data: it analyzes the asymmetric change and
response between cause variables and effect. Such reasoning abil-
ity is essential for informative and sequential decision-making
support in the design process. In an overview, causal research
focuses on two main objectives: learning causal relations and learn-
ing causal effects [24], with preliminaries for two general logically
equivalent frameworks: Structural Causal Model (SCM) [25] and po-
tential outcome framework [26]. For the extension introduction of
causal inference, we point to Pearl [27], Spirtes et al. [28,29], and
Peters et al. [30].

If we inspect the design process itself, the sequential series of
activities is equivalent to a process of data generation and refine-
ment. The laws of traditional probability theory do not dictate
how one property of distribution ought to change with structure-
based logic [31]. If we carefully review the way how human
designers think, we find that expert design relies on the same
knowledge base (physical principles, directionality of the causal-
ity, deterministic, universal) and variety with their personal expe-
rience (preferences, design variation, statistic, individual). In this
process, the knowledge base is reusable and stackable (especially
the sequential logic in the design process) since physical laws
and foundations are less likely to be changed. Subsequently,
designers make changes via experience intuitively for different
cases based on objective restrictions or personal preference;
whereas in modeling simulations, the physical knowledge (causal
relationships) encoded for each simulation remains unchanged,
and requires simulations for individual cases and design phases,
making it cost-inefficient in practice with full-scale experiments
and extended for design alternatives.
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To address this issue, we argue that it is necessary to distinguish
and deal with knowledge and experience in different methods.
With the conceptual framework comparison of current simula-
tions/tools, we proposed a new paradigm of design process assis-
tance and presented different paradigms illustratively in Fig. 1.
Essentially, it refers to a core issue of how to integrate knowledge
into the modeling process so that each simulation run is based on
the same cognitive foundation rather than from scratch.

Here, we want to underline that the “knowledge-encoded tool”
we defined in Fig. 1, subgraph (c), is different than the classical
rule-based, symbol-manipulation expert system or decision sup-
port systems (DSS) [8,32,33], which normally require a predefini-
tion in a semantic grounding context. In fact, given the wide
range of diversity and individuality in design cases, the utility of
this semantic rule-based system will find it hard or computation-
ally expensive to exhaustive all potential design spaces. The nov-
elty we want to mention is: Instead of manually hardcoding
domain rules embedded causal constraints (first-order method
for causality encoding, semantic grounding required), the gap
we found that needs to be filled is, to make machine assistance
acquire the ability to conduct cause-effect reasoning in a data-
driven process. Substantially, most analysis scenarios in our
domain usually come with assumption questions. In this context,
a systematic generalization method to manipulate parameters
freely and adapt to different cases is needed (second-order
method for causality emergence, a tool to find and encode
causality directly from data, no semantic grounding required).
To sum up, the new paradigm brings a significant advantage for
the assistance: It inherits the fast and interpolable characteristics
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of the data-driven approach while containing the causal sequential
logic for knowledge-based extraction and reuse.

In this context, causal inference reveals a possible solution of
two-part objectives: causal structure finding and causal effects esti-
mation. In this study, we use graph representation to clarify the
estimand and causal interpretation for design adjustments, which
we call causal inference.

2.1. Causal relationships: Causal structure finding

The first pitfall in our domain research to adopt ML/AI methods
is that, we usually neglect that their modeling processes often
assume input parameters are independent, or even independent
and identically distributed (i.i.d.) [34] by default. That is, the prob-
ability distribution of each value (parameter) should have no
dependence on other values; however, the design process is a ser-
ies of sequential interactions between designers and the scheme
(generated data) under dynamic conditions. These conditions con-
stitute different objectives (structures, energy efficiency, emis-
sions, etc.) within a set of shared parameters. The design process
itself also contains strong nature of interventions and counterfac-
tual assumptions embedded in the system. In other words, investi-
gating parameters/properties without considering cause-effect
logic sequence leads to unrealistic conclusions. In this case, the
directionality of cause and effect should not be neglected, which
is the realm of causality. In this study, we encoded the causal struc-
ture knowledge and represented it in the form of the directed acyc-
lic graph (DAG) [31]. DAGs are graph diagrams composed of
variables (nodes) connected via unidirectional arrows (arcs) to
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Fig. 1. Different design process paradigms: (a) using only personal knowledge & experience to design, poor performance/time trade-off because of the absence of feedback,
and heavily rely on personal knowledge scope; (b) using knowledge encoded simulations/surrogate models and running them recursively, receive feedback for design
exploration & optimization, without explicit distinguish knowledge and experience, most of the decision support systems are categorized in this class, time-consuming; (c)
using separated tools/adjustments to deal with knowledge & experience, individually, loop calculation for only adjustment, knowledge could be inherited from external
resources or discovered in data, enable designers to focus on the intuitive exploration based on personal experience. In this study, we emphasize inheriting knowledge of
causal inferences logic (data-driven) to enhance the flexibility and efficiency of the feedback of the potential design space exploration process.
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depict hypothesized causal relationships. A directed edge x — y
denotes a causal effect of x (treatment) on y (outcome). Intuitively,
it means that y is directly influenced by the status of x; altering x
by external intervention would also alter y.

DAGs are often defined by prior knowledge and could be incom-
plete [24]. They are commonly used for SCMs to express the direc-
tionality of the underlying process, and help to provide a precise
graph for communicating assumptions under which the questions
need to be answered to avoid spurious causal relationships. As the
form shown in Fig. 2, causal knowledge-encoded DAG helps to
clarify-two things in the design process:

o If we make “what-if” assumptions without causality inference,
the confusing relationship between the measurement variables
and outcome results will remain unclarified, leading to poten-
tially biased estimates, incorrect correlations, and finally, unre-
alistic potential design reasoning.

The rules of causal DAGs embedded the information of condi-
tional independence, which is identified by graph-based crite-
ria, such as dependency separation rules (d-separation) [27].
Thus a DAG depicting a causal model contains genuinely more
general, transferable information, which helps to rule out spuri-
ous conclusions from statistical relationships among design
variables.

The causal model with a fixed causal skeleton provides the flex-
ibility to allow designers to base on adjusted variables and out-
comes to confirm causal paths, explore different design spaces,
and necessary variables that need to be conditioned. In SCMs, DAGs
provide principled structural equations for identifying suitable sets
of covariates for removing structural confounding bias through
adjustments, e.g. back-door criterion [35] and its extensions. By fol-
lowing the causal independence of the variables, biased results and
unrealistic schemes are then avoided. DAG illustrations in the
remaining contents of this paper are generated by DAGitty [36].

Apart from the content of how we represent and store knowl-
edge via DAGs with causal rules, we also need methods for knowl-
edge extraction from data to complete the mechanism of causal
structure finding. In the causal inference community, such algo-
rithms are served as causal discovery: identify and return the
equivalence class of the true causal structure based on observa-
tional data. They are broadly classified into three categories: ap-
proaches assuming no hidden confounders, using a mix of
observational and interventional data, and approaches assuming hid-
den confounders [23]. To alleviate the complexity caused by real-
world data noise, potential bias, or missing information, in our case
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study, we use first-principles modeling simulation to clarify the
estimand; hence, we present the process in the scope within
approaches assuming no hidden confounders. In this context, typ-
ical causal structure finding algorithms based on observational
data are categorized into: constraint-based, score-based methods,
and hybrid methods. Considering the building model is represented
as a set of design parameters (high-dimensional sparse data), given
the vast search space, greedy algorithms have been proposed [23].
In this study, we selected one of the typical score-based methods,
Greedy-Equivalent-Search (GES) [37,38], to fit our design process
scenario.

From the practical point of view, the causal discovery with
information attached causal skeleton plays a vital role in the
data-driven process: It helps designers/engineers to discover
domain insights among input features, overcome subjective bias,
and comprehensively examine whether there are any hidden rela-
tionships neglected. Fig. 3 illustratively presents a case of how cau-
sal structure assists the data-driven model for potential outcomes:
Suppose we use a monolithic black-box model (single, compact,
trained model, normally refer to ML/AI methods) for potential out-
comes estimation, and assume that we have no corresponding
domain knowledge, SCMs could offer information regarding which
input variables we should manipulate to obtain unbiased, correct
consequential outcomes.

To sum up, in the scope of causal structure finding, the SCM pro-
vides a representation of causality consisting of causal graphs
(DAGs) and corresponding structural equations. A DAG contains a
coherent mathematical foundation for causal structure representa-
tion followed by theories to provide a precise language for encod-
ing the nature of causal rules. The causal structure finding
algorithm converts domain knowledge to a formal model of causal
assumptions and implies conditional statistical independence. Fur-
thermore, DAGs provide a nexus for integrating data-driven
approaches with domain knowledge to allow experts and building
designers to examine knowledge fundamentals and change accord-
ingly. The graph then will significantly shape the causal effect
estimation.

2.2. Causal effect estimation

Based on the information of causal structure, a further impor-
tant pillar of causal inference is causal effect estimation.

As an extension of traditional statistics, the causal effect
estimation investigates to what extent manipulating the value
of a potential cause would influence a possible effect: A
standard dataset with n instances for learning causal effects

[ e \

( Building area ‘ _— Hildmg !
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I
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Fig. 2. Causal confounder and collider examples in the building design process. Left: Building area is a common cause affecting both building structure strength and building
energy efficiency, if this confounder is not controlled, it might lead to the wrong conclusion (“You need to adjust the building strength to change the building energy
efficiency.”); Right: Building operation cost is a common effect of both building area and building occupancy, if this collider is controlled, it leads to the spurious correlation
between treatment and outcome: Building area and building occupancy are correlated (d-connected)[27]; Correlation should not imply the causation.
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Fig. 3. Causal-informed assistance case in data-driven building energy demand estimation. The data-driven model stands for the ML/AI monolithic method, in which the
causal structure helps to provide insights into input dependencies and, by controlling them accordingly, to generate unbiased outcomes.

X, t,¥) = [(x1,t1,¥1),- -, (Xn, tn,¥,)], includes feature matrix X, a
vector of treatments (factor that need to be controlled) t and out-
comes y. In our study, we use a more straightforward tool: potential
outcome framework, a logically equivalent method to SCMs [27], to
describe the causal effect quantification. The problem can be
defined as: Given (X, t,y), how the outcome y is expected to change
if we modify the treatment from c to t, which denote as
T = E[y|t] — E[y|c], where c to t represent and the control and the
treatment.

Depending on the treatment, we care about different causal
relationships and effects by conditions, sub-datasets, or individual
cases. The most common treatment effect is the Average Treat-
ment Effect (ATE), which is helpful in making decisions on
whether a treatment should be introduced. In terms of evaluation,
regression error metrics are fit for ATE learning; however, in the
design process, users care less about the ATE because each design
is an individual case and potential design space is conditional on
the current design scheme. In this case, Conditional Average
Treatment Effect (CATE) is defined as to learning causal effect that
consists of heterogeneous groups based on the graph information
(causal relationships) presented by DAGs and graphical-based
rules (e.g., do-calculus) [25]. Essentially, it allows interventions
from data and ensures that the effect is correctly learned in each
homogeneous group to avoid spurious or paradoxical conclusions
presented in Fig. 2; For extension understanding, we recommend
Simpson’s paradox [39].

Once we properly eliminate confounding bias from data by
transforming interventional distributions (block all “back-door”
paths in the DAG), causal effect based on estimating the outcome
model can be quantified using general regression models or ML-
based algorithms. In this study, we use simple linear regression.

With ?f estimated by modeling expectation E[y|t,;], we estimate
the causal effect 7 by:

1N/t e
T= n {;(% —J’iﬂ
Thus, within the same causal structure, the causal effect (poten-
tial outcomes) under the same assumption requires only a single
run of calculation. The output distribution contains the corre-
sponding subset of (X,t,y) with the information of all variate fea-
ture condition details within the set range. One huge advantage
of this method lies in its low computation complexity: To conduct
the same result, simulation or ML needs to run repetitively to cover
possible combinations within all ranges of features. For the coding
implementation, we use open-source packages DoWhy [40].

3. Design process with causal inference

The design process involves a series of interactions between dif-
ferent entities (designer, engineer, client, etc.), which are affected
by various requirements in design features, combinations of prop-
erties, concepts, needs, etc. In the building design process, design-
ers need to make sequential decisions at different stages,
containing possible building components geometry, components
properties, alternative materials, and energy systems under sus-
tainability criteria. For example, the architect and structural engi-
neer need to collaboratively develop and exchange design
information to coordinate the placement of the energy system
through the required voids in structural systems. The design is typ-
ically progressed iteratively from a coarse Level of Development
(LOD) to a finer one, where additional object attributes are pro-
vided or specified more accurately [41]; however, in practice, the
decision-making process involves invertible assumptions: Feed-
back is generated after the result is presented, the intervention
often occurs in different scenarios: reconsideration by the
designer; new conditions attached by experts’ feedback; regula-
tions; or even client changed the idea.

In this background, BPS tools have been developed to inform the
design process. Essentially, they are applied to generate conse-
quences from assumptions to answer causal questions by setting
up simulation scenarios as design assistance [42]. It is undoubtedly
beneficial for creating simulations with more details to enhance
the performance accuracy [43]; however, we argue that it is not
only helpful but essential to allow the tool to inspect the potential
design space toward a higher dimension - reversible design pro-
cess assistance and alternative potential space exploration. Accord-
ingly, we presented a summary illustration describing design
assistance dimensions in Fig. 4.

As shown in Fig. 4, a single run of simulation via the first-
principles model reveals one specific potential design scheme at
the one-dimensional point (node); Optimization algorithms [44]
elevate the inspection scale to the two-dimensional consequential
design space (“what-if") by searching for combinatorial optimums
to reduce the calculation complexity of repetitive simulations in
parametric permutation. ML methods further accelerate the com-
bination process by discovering and inducing relationships
between variables; however, they lack corresponding mechanisms
to address hidden relationships between different features and the
result: multi-causes, confounders and, lurker variables [10]; Ignor-
ing the implicit variable relationships will bring potentially biased
estimates or spurious relationships, which restrain the ML meth-
ods properly applied into the third dimension that arises during
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Fig. 4. Design assistance dimensions: (a) one-dimension: running simulations for each design scheme and receiving feedback point by point; (b) two-dimension: running
simulations with a heuristic algorithm or using machine learning to traverse sequential design space for optimal schemes; (c) three-dimension: combining with the causal
inference model would allow designers to inspect reversible, alternative design spaces for optimal schemes searching efficiently and correctly.

the design process: the parallel potential design space (“what-if-I-
had-done”). Compared to our aforementioned-invertible process
with causal inference, the differences (which are usually neglected
or less rigor distinguished) are:

e ML methods and optimization process: “I don’t see the conse-
quential result. I wonder how objective Y would change if I
set variable(s) X” - what if — no directional change of cause
and effect - based on observation (i.e., subgraphs a, b in Fig. 4)
Causal inference model process: “I saw the consequential result,
if I take variable(s) X and adjust it, how would objective Y
change; will there be designs (related independent combina-
tions) that are better than the original after the adjustment?”
- what if I had done - directional change of cause and effect
required - based on counterfactual intervention (i.e., subgraph
cin Fig. 4)

To sum up, we argue that the causal model provides the neces-
sary ground for developing a design space exploration mechanism.
The DAG presents the cause-effect structure and enables the corre-
sponding intervention assumptions to be made and examined dur-
ing the design process. Moreover, if the assumption is within the
scope of the same causal structure, the computational complexity
is low to explore potential design space via a causal model infer-
ence than through exhaustive simulations. It lays the foundation
of the engineering feasibility to gain real-time feedback, when
the computation difficulty does not increase drastically when the
number of input variables increases. The core advantage of embed-
ding a causal model is: It allows designers to correctly inspect
potential design alternatives with elevated dimensionality in a
computationally attractive way.

Meanwhile, the causal structures characterize the underlying
physical composition of the building at the current design phase.
As a representation of the design process at a certain stage, the
causal skeleton draws a clear boundary that the building variants
follow the same intellectual context to an extent, thus regulating
the boundaries of design assistance.

Based on the advantages mentioned above, we propose a four-
step framework consisting of causal relationships learning and
causal effect learning as a realization of causal inference in the

building design process. In this framework, we use the combina-
tion of graphical representation in SCMs to intuitively process the cau-
sal relationships, and use the potential outcome framework (Robin
causal model) to formalize quantitative effects, as presented in
Fig. 5. Especially, the extraction of the causal DAG enables the
interconnection with the experts’ domain knowledge. Especially,
the pruning and modification with domain knowledge is an impor-
tant step in relating data-driven information. In this way, the cau-
sal DAG provides a reusable bridge to connect and augment design
and engineering reasoning.

For an intuitive understanding, we put this framework into a
process scenario description: a construction project starts by
identifying boundary conditions, and focusing on deciding upon
the building’s footprint, construction type, and shape. At this
phase, the available information mainly describes the outer shell
with various assumptions (associated with uncertainty) corre-
sponding to the design intention or, in some cases, reversal
alternative design. The objective of such assumptions normally
is to have a lower cost/energy consumption/environmental
impact, which in practice, the precise and informed scenarios
via causal models could balance with the cost of making changes
and guide further decision-making (subfigure c, Fig. 4). The
extracted causal knowledge lays down a sufficient structure that
can be enriched by design assumptions and intentions. As the
design progresses, additional information becomes available,
and the uncertainties decrease. The outcome: DAGs store and
represent causal principles and outline the boundary of the
current design phase; With the ongoing design process, DAGs
are expanded or modified to adapt new design phase for further
assistance analysis (Fig. 5).

In summary, the combined Sections 2 and 3 introduces the cau-
sal inference into the design assistance by four central pillars:

1. An analogy between personal experience and physical knowl-
edge provides a channel for integrating data-driven and
knowledge-based methods through causal DAGs. We aim to
make designers focus on empirical exploration, reducing the
need for repetitive inputs of modeling causal physical knowl-
edge. This separation would achieve a fast cross-sectional
examination and avoid conducting erroneous conclusions.
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Fig. 5. The four-step framework implementation of causal inference in the building design process: The first two steps of the framework aim to conduct causal relationships
extraction at a certain level, and present them in a skeleton by SCMs; the process could be data-driven and/or knowledge-based. DAGs provide a medium for experts to
interpret and integrate their domain knowledge. The final two steps use data-driven quantification methods (Robin causal model) to first identify the target based on
conditions extract from the causal skeleton, which uses graph-based criteria. Then target causal effect is estimated with interventional outcomes in potential design space
(alternative realities) by running a single calculation based on the assumption. The causal model grows with the design stage detailing and allows for incomplete input for

inference of answering “what-if” questions.

2. Causal model provides a data-driven knowledge extraction
method for design process analysis with reduced computational
difficulty; Furthermore, we clarify different design assistance
dimensions. The causal model allows users to quickly check
potential design alternatives in a higher dimension.

3. We clarify the boundary of design assistance based on DAGs.
The growth of DAG with reduced uncertainties aligns with the
nature of the design process.

4. A four-step framework is proposed to implement causal infer-
ence into the design domain with causal structure finding and
causal relationship quantification.

4. Framework implementation: Illustrative example

To implement the framework mentioned above, we consider an
intuitive energy performance evaluation case in the building
design phase. This case focuses on specific geometric and semantic
features for a comprehensive understanding. Design decisions have
a substantial impact on the resultant energy performance in the
early phases, and at the same time hard to evaluate alternatives
in the detailed design phase as it might require reconstructing sim-
ulation fundamentally.

In this context, design-sequential embedded causal inference
owns advantages and flexibility to make adjustment assumptions.

4.1. Data

[llustrating the counterfactual/assumption causal case with val-
idation is a widespread difficulty in causal inference research. The
one advantage of our domain in adopting the causal model
research is well-developed, sophisticated first-principles simula-
tions, which encode rule-based knowledge/causality through

efforts by engineers and experts to provide a solid foundation for
data-driven research and counterfactual validation.

In this case study, we illustrate how the causal inference and
model extract knowledge from the simulation data and benefit
decision-making support. The dataset contains 1000 simulations
in various scenarios that were targeted in the climate zone of
Munich, Germany [45], generated via EnergyPlus (EP) [46]. We
chose this dataset for the case study based on two major reasons:

1. The dataset emphasizes buildings in different geometric prop-
erties. It serves for energy performance evaluation in the early
design phase, which contains relatively simple building para-
metric representations with comprehensive causal relation-
ships that could be examined by our common sense. The first-
principles simulation process itself provides verification for
extracted knowledge.

2. The accuracy of performance results from this dataset is tested
through a real-world case study [15], which means that it is
solid for validating the causal effect estimation.

The selected parameters from the dataset with their corre-
sponding sampling ranges are presented in Table 1.

4.2. Causal-informed assistance, part 1: Causal skeleton determination

The causal inference starts with the causal structure finding. In
this subsection, we use the case to illustrate steps 1 and 2 from
Fig. 5 framework: Discover skeleton by causal relationship finding
algorithm, and how domain-knowledge helps to prune
relationships.

As mentioned in Section 2, the GES algorithm is applied to
extract causal relationships from the dataset and then presented
via DAGitty. An important milestone is that: instead of manually
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Table 1
Parameters and their ranges for the generated dataset, representing the early design
phase.
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Table 2
Causal kinships extracted by GES. Most of them can be easily validated by domain
knowledge; The process is purely data-driven without rule-based predefinition.

Parameter Unit Min Max Node (Cause) Descendant (Effect)

Ground Floor Area ! m? 250 800 Height Volume, Heating_Load,

Height M 3 4 Number_of_Floors External_Wall_Area, Window_Area
Number of Floors - 2 5 Ground_Floor_Area

External Wall Area m? 200 1800 WWR External_Wall_Area, Window_Area
Windows Area m? 30 850 WWR_West WWR

u-Value (Wall) W/m? K 0.15 0.25 WWR_East

u-Value (Internal Wall) 0.4 0.6 WWR_South WWR, Heating_Load

u-Value (Ground Floor) 0.15 0.25 WWR_North

u-Value (Roof) 0.15 0.25 Volume Heating_Load

u-Value (Internal Floor) 0.4 0.6 External_Wall_Area

u-Value (Windows) 0.7 1.0 Window_Area

g-Value (Windows) - 0.3 0.6 u_Value_Wall

Permeability m3/m? h 6 9 u_Value_Ground_Floor

WWR ? - 0.1 0.5 u_Value_Roof

Equipment Heat Gain W/m? 10 14 u_Value_Windows

Building Occupancy Person/m? 16 24 g_Value_Windows

T Ground Floor Area for random shapes buildings.
2 Window-to-wall ratio (WWR) varies independently in each direction.

hardcoding rules, a data-driven process is applied to find causal
relationships from the simulation dataset, which means we obtain
the building physics causality (cause-effect in parameters) in a
machine understandable representation. These causal relation-
ships can be extracted directly from data (simulation or real-
world collection), which opens opportunities for further augmen-
tative encoding (we can always gather more data) and wider adap-
tation. The illustrative process is shown in Fig. 6 with relationships
in Table 2.

The subgraph (b) of Fig. 6 presents the pruned causal structure
result for the dataset generated by Table 1 configurations (Sec-
tion 4.1) evaluating the building heating load in the DAG skeleton.
We need to point out that the extracted skeleton by the algorithm
has represented the causal relationships quite accurately and com-
prehensively. Only slight adjustments are required from the origi-
nal skeleton by removing the bidirectional arrow between external
wall area and window area. This means that the algorithm fails to

Selected Knowledge encoding Target
features by simulation or real- dataset
& world collection

ey @O »E

Weight Volume NUmDer Extemal Ground Window u-Value u-Value u-Value
of Floors Wall  Floor  Area  (Wall) (Ground (Roof)
105136 537.09 357.575 0.23828 0.21797 0.20234
610.043 529.49 305.469 0.18828 0.16797 0.15234
1050.95 7211 597.062 0.22031 0.15156 0.24531
467.647 242.61 195.751 0.23438 0.15313 0.21563
1018.12  417.69 476369 0.20313 0.23438 0.19688
259.2 144 288 015 015 015
1039.34 43739 200.297 0.22656 0.24531 0.15156
341,977  427.26 192.714 0.17656 0.19531 0.20156
1119.71 61049 463.823 0.18438 0.20313 0.16563)
866.57 243.894 0.15313 0.18438 0.24688
803.25 65025 34425 0225 0175 0175
938.138 501.86 425.843 0.20703 0.18672 0.19609)
243495 17955 110.933 015703 0.23672 0.24609
691.053 3817 302516 0.20156 0.17031 0.22656
790.975 452.58 363.533 0.15156 0.22031 0.17656
503.973 403.64 253.556 0.17969 0.16719 0.19844
583.649 254 163422 022813 0.15938 0.22188
533.64 270.98 171735 0.15625 0.15625 0.15625

3.74219 8039.57
3.24219 5150.12
3.82813 11041.8
3.46875 2524.66
3.65625  7635.9
3 864
3.64063 6369.49
3.14063 2683.73
3.96875 9691.53
3.15625 8205.33
3.75 7315.31
3.80469 7637.68
3.30469 1186.71
3.89063 4455.16
3.39063 6138.12
3.04688 3689.52
3.90625 2976.56
3.5625 2896.1
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(a) Dataset

Building_Equipment_Heat_Gain

Permeability
Building_Equipment_Heat_Gain
Building_Occupancy
u_Value_Internal_Floor None
u_Value_Internal_Wall

conduct the cause-effect direction between these two features
from the given data. By applying design domain knowledge, i.e.,
usually, we design first the building body leading to the external
wall; then we design the facade with the fixed window-to-wall
ratio (WWR) determining the window area. It does not mean that
the external wall area always has a direct correlation to the win-
dow area (confounder: WWR). In fact, the need for removing the
bidirectional arrow perfectly presents an example of “correlation
does not imply causation” in the building design domain.
In more detail, the following conclusions were observed:

1. Causal dependence and interpretability: Most of the causal
relationships are correctly presented in DAG, i.e., building geo-
metric features: height, ground floor area, and the number of
floors determine the external wall area and building volume;

Extracted causal
structure (knowledge)

Target Causal structure
dataset finding algorithm

H » == » &

| Ground_Floor_Area | | WWR_West | I WWR_South I I u_Value_Internal_Wall I

I T

| Number_of_Floors |

I WWR_East I IWWR_Norm I I u_Value_Internal_Floor |

Permeability
Building_Occupancy

u_Value_Windows

= Window_Area

Heating_Load

(b) Causal DAG

Fig. 6. Causal structure finding via GES: knowledge extraction from data in the building’s early design phase. (a) The data generation process: Via knowledge-based
simulations or real-world data collection, causal relationships have been implicitly encoded in the dataset. In this figure, the presented dataset is generated by Table 1
configurations with real-world case validation [15,45]. (b)The mechanism of the causal structure finding algorithm is designed to extract casual relationships directly from
data and can be further transferred into DAGs. In the skeleton, arrows in bold represent the atomic direct effects, which means removing one of these arrows from the
diagram implies that there will no longer be any causal effect between the corresponding variables.
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WWRs in different directions - WWR combined with building
geometric determine the window area; Properties features (u-
values, g-value, etc.) are independently related to heating load,
excepts u-values of internal wall & floor.

2. Kinships and design process: The causal skeleton depicts a set
of hypotheses about the causal process and offers users the
minimal sufficient adjustment sets for estimating the direct
effect from treatment to the outcome as a map. These kinship
relations reflect the sequence of design process decision-
making: building body with external dimensions — facade with
WWR — property & material features.

3. Domain-knowledge integration: Except for the causal rela-
tionship, there are bidirectional correlations that exist in the
DAG, i.e. building external wall area and window area: They are
related but not causal because both features are determined
by the geometric dimensions and WWRs. In this context, skele-
ton modification and enrichment via domain knowledge are
necessary.

4.3. Causal-informed assistance, part 2: Causal relationships
identification

In this stage, the skeleton encoded causal information provides
logistical insights, which helps to examine the complete input
independence or their prerequisites (Fig. 3), and further answer
hypothetical questions. In this section, on a case base, we provide
the necessary information to address typical assumptions during
the design stage based on the previous section’s outcome. We
use exemplary questions occurring frequently in building design
for that a general answer is not available but individual answers
are required. These questions demonstrate the causal inference:

e Scenario i: What if [ change the window area, how does it change
the heating load?

e Scenario ii: What if I change the building floor height, how does it
change the heating load?

Essentially, DAGs provide valuable information to designers on
whether some specific features should be controlled or not, based
on the given assumption scenario (target treatment) and the target
outcome. The design process knowledge is transformed into the
skeleton; this encoding process makes machines understand
domain causalities for assistance. Notably, causal rules in DAGs

Ground_Floor_Area

AY
Height

WWR_West

/I
Number_gf_Fhlfors

Window_Area
< |

> ftreatment

'WWR_South u_Value_Internal_Wall
\ /
VWWR Eest| | WWR North | [ u_Value_internal_Fioor

Permeability
Building_Occupancy

[ outcome
ancestor of exposure
I ancestor of outcome
ancestor of exposure
and outcome
[] other variable
[ adjusted variable
== causal path
== biasing path

u_Value_Roof

RS2
Heating_Load
1

u_Value_Wall
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/o Value_Ground_Floor

_Value_\Mndows
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enable machines to correct errors that we could normally neglect
in sensitivity analysis.

To address Scenario i dealing with window area, we firstly set
the treatment variable (Window Area) and outcome (Heating Load),
the skeleton based on the relationships and casual rules to exam-
ine whether there are biasing paths. The biasing path means one
needs to be blocked by controlling variable(s) in the path to avoid
biased results [47,48], which we refer to in subfigure (a), Fig. 2. A
process visualization is presented in Fig. 7.

The rules extracted from DAGs are interpreted as the
suggestion:

e Suggestion to Scenario i: To correctly estimate the direct causal
effect between Window Area and Heating Load, Ground Floor
Area, Floor Height, Number of Floor, and WWR should be
adjusted.

An interpretation by domain knowledge is: The causal skeleton
only refers to buildings with different facade areas (shapes) but the
same volume and WWR to get rid of:

1. Confounder from building Volume.
2. Correlation between External Wall Area and Window Area.

From the perspective of the design process, the answer delivers
a different layer of information: we should only start considering
the window area of the building when we have set the abovemen-
tioned features.

Sequentially, Fig. 8 illustrates the analysis process regarding
Scenario ii.

To address the Scenario ii: Investigating how the floor Height of a
building (treatment) would affect the Heating Load (outcome). In
this case, the treatment variable, building floor height, owns causal
descendants but no ancestors. The important reminder is that we
should not infer nodes along direct causal paths (bold arrows in
Fig. 8) from Height to Building Load, to create other bias paths
(please refer to the collider situations in the subfigure (b), Fig. 2).
They contain causal relationships with other features, blocking
them would involve new biasing paths to the model by controlling
them. Hence, the suggestion is as follows:

e Suggestion to Scenario ii: To correctly estimate the direct causal
effect between floor Height and Heating Load, Volume, External
Wall Area, and Window Area shouldn’t be adjusted.

WWR_West

Ground_Floor_Area WWR_South u_Value_Internal_Wall

|
WWR_é?s( \1,4% _North u_Value_Internal_Floor

Window_Area
>

uildlng_Occupancy
-

/ 7

' f Value_Ground_Floor

L4 Value_Windows
u_Value_Roof
u_Value_Wall

Building_Equipment_Heat_Gain

To estimate the total causal effect from [Window Area] to [Heating Load], WWR, Ground Floor Area, Number of Floors and Height

should be controlled (fixed) to eliminate biasing paths (red arrows).

Fig. 7. Design process support, Scenario i: If the designer wants to know how the window area would affect the heating load, Rules of causal DAGs suggest that they need to
consider controlling the WWR and building floor height, floor area, and the number of floors to get an unbiased effect estimation.
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To estimate the total causal effect from [Height] to [Heating Load], Window Area, External Wall Area, and Volume should not be

adjusted (controlled) to avoid biasing paths.

Fig. 8. Design process support, Scenario ii: If the designer wants to know how the total effect of height (treatment of exposure) on heating load (outcome), Rules of causal
DAGs suggest that they should leave all causal paths open and not cause new biasing paths by controlling features of window area, volume, and external wall area to get

unbiased effect estimation.

It means that when we consider the direct effect of changing
building floor height, the building volume, facade, and especially
the window area should change accordingly, to avoid bringing
new bias (caused by WWR, floor area, etc.) into the outcome. Nat-
urally, this suggestion is also adaptable to the support of the design
process sequence.

Here, we’d to strengthen that the process mentioned above runs
in causal modeling automatically, which is embedded in the pro-
cess once the skeleton is fixed. The target identification, including
treatment, outcome, and conditions extracted based on the causal
skeleton via graph-based criteria, is called estimand identification.
We refer to this process as Step 3, and the follow-up quantified
mathematical formulation and calculation as Step 4 in the four
steps of the framework, Fig. 5.

4.4. Causal-informed assistance, part 3: Causal effects quantification
In this subsection, we further investigate and quantify the cau-
sal effect by using the potential outcome framework to explain a

quantitative scenario during the design process:

e “What if I had changed floor height from 3 m to 3.2 m, how does it
make difference on heating load?”

Table 3

Causal effect estimation scenario: “what if [ had changed floor height from 3 m to

32 m?".
Parameter Unit Value
Ground Floor Area m? 300
Height m 3532
Number of Floors - 3
External Wall Area m? Unknown
u-Value (Wall) W/m?K Unknown
u-Value (Internal Wall) Unknown
u-Value (Ground Floor) 0.2
u-Value (Roof) 0.2
u-Value (Internal Floor) Unknown
u-Value (Windows) Unknown
g-Value (Windows) - Unknown
Permeability m3/m?h 7.5
WWRs - 0.3
Equipment Heat Gain W/m? Unknown
Building Occupancy Person/m? Unknown

10

Once the causal relationship has been clarified between the
treatment and the outcome, the investigation of causal effect esti-
mation is relatively intuitive. In this case, we set an experiment
based on Fig. 8, and are particularly interested in the putative
effect of how the building heating load is influenced by altering
floor height via intervention (Step 3, Fig. 5). To simulate the scenar-
io, we set values to random features and keep others unknown to
represent a certain stage of the ongoing design phase, as shown in
Table 3.

The counterfactual experiment is designed in the following pro-
cess: We firstly set building height as treatment and heating load as
the outcome. Based on the result we conclude from the DAGs (Sec-
tion 4.3), the Volume, External Wall Area, and Window Area are in
the direct causal path and should remain open. The potential out-
come expresses as:

= E[Heating Load|Height = 3.2m, X]
— E[Heating Load|Height = 3m, X]

in which:

o If we calculate the ATE, the X should be the set of [Ground Floor
Area, Number of Floors, Building Equipment Heat Gain, Building
Occupancy, WWRs, u Value Roof, Ground Floor u Value, Permeabil-
ity] sampled in their ranges, independently.

o If we calculate the CATE, the X is then adapted with the Table 3
conditions and becomes the set of [Building Equipment Heat
Gain, Building Occupancy, Ground Floor Area = 300, Number of
Floors = 3, WWRs = 0.3, u Value Roof = 0.2, u Value Ground Floor
= 0.2, Permeability = 7.5]

For the result evaluation, we use EP to run simulations and val-
idate the accuracy of outcomes by generating ATE dataset and
CATE dataset. Both datasets have two different data batches: con-
trol height of 3 m and 3.2 m. We generated 200 samples for each
batch based on set ranges (ATE: ranges from Table 1; CATE condi-
tions from Table 3) as the ground-truth test set.

In comparison, we also applied the data-driven method without
a causal-informed scenario: We selected three typical ML/AI
regression methods widely used in the BPS domain [12]: Gradient
Boost (LightGBM) [49], Random Forest (RF), and Artificial Neural
Network (ANN), evaluated by two common metrics: Mean Abso-
lute Percentage Error (MAPE) and R? coefficient of determination.
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Table 4 presents their 4-fold cross validation [50] accuracy scores
trained by the dataset described in Table 1.

Based on the performance result, we select LightGBM to run the
conditioned data on Table 2 (ATE) and Table 3 (CATE) scenarios. To
simulate the data-driven process with neglect of feature depen-
dencies, the unknown features are sampled individually (i.i.d.) as
their original distribution ranges shown in Table 1 without consid-
ering causal relationships. The outcome comparison between
ground-truth simulation, potential outcome framework (causal

Table 4

Accuracy performance of three typical data-driven methods trained by the Table 1
dataset for heating load prediction. We used the default setting of models in their
open-source code implementation [49,51] with a certain range of optimal hyperpa-
rameter grid-search conducted. The score is generated by 4-fold cross-validation.
LightGBM shows the best performance in prediction.

MAPE R?
LightGBM 6.972 % 0.924
RF 11.016 % 0.81
ANN 13.152 % 0.746

u_Value_Internal_Floor

(a) ATE scenario skeleton

Fig. 9. Causal effect estimation process, ATE scenario: (a) Causal skeleton based on Fig. 8
framework calculates ATE estimation with its accumulative distribution.

<7
AV R
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model), and LightGBM without causal-informed (pure data-
driven model) is shown in tables of Figs. 9 and 10 for both
scenarios.

Fig. 9 illustrates the causal estimation process of ATE: The causal
model based on the Fig. 8 skeleton conducts the intervention result
of the heating load in different conditions. The estimation result
conveys critical information for design decision-aids: Within the
range of Table 1, if we intervene the building height from 3 to
3.2 m, the heating load changes would vary between 0 and 900
kWh/year. The average changes and the distribution are validated
by simulations, which show only minor differences. Based on vali-
dated ATE, Fig. 10 presents the condition dependencies from the set
feature conditions in Table 3 and the resampling process from ATE.
The CATE shows that the changes should be 207.28 kWh/year on
average, with the validated simulation result of 218.52 kWh/year.
In both scenarios, the pure ML method without causal-informed
fails to produce correct potential outcome ranges to answer
“what-if" questions, even though they perform well in the predic-
tion task. The reason is: In the pure ML forecasting process, the
input range sampling ignores the constraints of feature dependen-
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Changes of Heating Load, ATE kWh/year
ATE based on simulations 389.38
ATE based on causal model 390.52
ATE based on pure ML model 65.77

(b) Result comparison, ATE

scenario information; (b) Based on the given causal skeleton, the potential outcome

Distribution of heating load changes, ATE and CATE

Building_Equipment_Heat_Gain

(a) CATE scenario skeleton

u_Value_lInternal_Wall
0.08 4 @ Changes of Heating Load
[ Conditional cases
u_Value_Internal_Floor 0.07+
0.06 -
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=
S 0.04
I
0034
Permeability 0.024
0.014
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u_Value_Ground_Floor | Ck of Heating Load, CATE kWh/year
CATE based on simulations 218.52
CATE based on causal model 207.28
CATE based on pure ML model 47.24

If the treatment variable [Height] increases from 3 to 3.2
m based on Table 3 condition, causes an increase of
207.28 kWh/year in the direct expected value of the
outcome [Heating Load]

(b) Result comparison and conclusion, CATE

Fig. 10. Causal effect estimation process, CATE scenario: (a) Causal skeleton based on Table 3 condition; (b) From the comparative results resampled from ATE output
distribution (Fig. 9), the causal model presents quantified potential outcomes of CATE and answers the Table 3 question.
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cies, which leads to unrealistic input combinations involved in the
forecasting, causing biased results and wrong information.

To sum up, by encoding causality knowledge into the skeleton
with potential outcome estimation, the causal model achieves
compact and accurate decision-aid information. The case presents
a scenario in energy-efficient design, including counterfactual
design variants. It is a computationally efficient way than simula-
tions and compensates for the deficiencies of current widely used,
data-driven methods.

5. Discussion

In this section, framework adaptability, limitations, and the pro-
spects of causal inference in the design process are discussed.

For the framework adaptability, this study uses DAGs, causal
discovery algorithms, and simulation to introduce causal inference
in the scope of energy-efficient building design. The framework fits
the general data-driven process assistance. Causal inference offers
a flexible but mathematical rigor approach to intervene or examine
counterfactuals to discover facts in predictive scenarios and adapt
strategies [5]; in other words, it serves as Explainable Artificial
intelligence (XAI) [52] in a causal-aware manner for model inter-
pretation. We intend to raise a call for the energy domain and
building design community to pay more attention to reviewing
ML methodologies and examining the parametric independence
for decision-making support.

For the limitation, obstacles to causal inference application in
our domain come from two major aspects: 1. The inherent data-
driven nature of the method, and 2. The validation of counterfactu-
als. Causal models are essentially data hungry as a complement to
statistical methods. In this context, the integration of causal mod-
els in our domain is advantageous due to the well-fundamental
first-principles models and simulation tools developed by prior
knowledge. In this study, we use a dataset from the BPS description
to extract knowledge based on physical causal relations to conduct
the design process; however, to our best knowledge, a gap regard-
ing the mutual parameter adaptability still exists between tools in
BIM and BPS communities for building and process representation,
which causes difficulties in data acquisition from the design pro-
cess in BIM or mutual transfer for design process integration. Fur-
ther effort in the methods regarding data acquisition or
enrichment to describe the design process, design parameters,
and causal relationships are meaningful. Particularly, the dataset
for the test of counterfactual, and the combination of simulated
data in variance with real-world data validation are required for
further evaluation support.

If we consider design cases in reality, absurd conclusions from
Fig. 2 are less likely to occur in individual design cases when there
are only a few variables. Architects and engineers could generally
rule out absurd conclusions by their domain knowledge or experi-
ence and make further decisions. Those decisions in the early
design phase will significantly shape the building performance,
which during the design process will derivative many “what-if”
questions for particular alternative feature importance analysis;
however, when the design case is complex (multiple confounder
and collider combined), or when the building designer lack of rel-
evant domain knowledge, oversights or wrong decisions are highly
possible to occur by data-driven decision-making support tools
without investigation of causal relationships.

In our case study, we only investigated causal relationships by
involving basic building characteristics and statistics energy per-
formance. If we consider the scope of the energy-efficient building
design, further research is worth conducting to gain causal insights
by involving more factors: external conditions (e.g., weather, geog-
raphy), life-cycle assessment, internal influences (e.g., user behav-
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iors), causality analysis in dynamic time-series data, or even
perspectives from design cognition domain, etc. In the community,
we see successful symbolic-based approaches such as energy-
emergy integration for building shape optimization [53] by unify-
ing different objectives into the energetic flow form to support
design decision-making. It could be a knowledge-based way to rec-
oncile different parametric representations into the same context
for data enrichment. However, from another perspective, the
potential risk of wrong conclusions by applying current analysis
tools is increasing: the development of simulations and the spread
of digitalization are raising the data volume dramatically with the
trend of interdisciplinary requirements. In this context, we argue
that causal inference is not only beneficial but necessary to be
involved in any design assistance; The knowledge discovery via
DAG structure finding from data would effectively help architects
to make better decisions and avoid wrong judgments. Since the
knowledge is stackable and transferable in different design cases,
establishing general knowledge libraries by collective intelligence
contains a huge potential, which would help every designer to
reach informed optimal scenarios in each “what-if" question dur-
ing the process, simultaneously.

6. Conclusion

In this study, we introduce causal inference into the sustainable
building design domain for the first time and propose a two-part
process to construct the causal model: 1. Using DAG from SCMs
to discover causal relationships from the set of design parameters
representative of the design scheme; 2. Developing estimators to
evaluate a given treatment effect by combing DAGs and potential
outcomes framework. The framework design aims to involve cau-
sal analysis in the parametric design process. It provides a compu-
tationally efficient behavior with extendable structures and
mathematical rigor rules for inferring consequences under condi-
tions that changes during the design: induced by treatments or
external interventions. Eventually, allow the machine assistance
to discover and extract causal knowledge from data directly with-
out semantic grounding required, conduct “what-if" questions,
reveal correct design alternatives, and eventually, reach energy-
efficient optimal with causal-informed design assistance. At the
same time, the idea of differentiating knowledge and experience
based on reusability needs to be integrated into the design assis-
tance. DAGs offer an excellent medium for the general knowledge
storage purpose for the following reasons:

e DAGs provide a complete mathematical language for describing
and utilizing invariant knowledge, principles, and design
sequences in different design schemes. More importantly, the
generation and modification of DAGs are supported by causal
structure finding algorithms and domain knowledge.
To address “what-if” questions during the design process, the
structure of the DAG describes a clear boundary for alternative
generation within reasonable design space. With set target
treatment(s) and output, DAGs solve the design parameter
entanglement issues by providing interpretable information
on which features need to be conditioned.

With the extensibility of the DAG, it is possible to further sup-

plement general knowledge from different design cases and

provide the basis for incremental learning or collective intelli-
gence for consensus decision-making.

o The methodology opens a possibility to encode and express cau-
sal inference in a rigorous mathematical way. As a data-driven
process, it owns the huge potential to expand in scale, and
adapts different aspects to support sophisticated, advanced
design decision-making.
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Nowadays, the rapid advancements of Al have attracted atten-
tion in most fields; however, due to its inherent connectionism
structure and data-driven nature, significant progress has been
made in areas where the data fundamental is more advantageous,
such as images, speech, and text processing. Nevertheless, many
domains are still dominated by empirical disciplines and princi-
ples, such as architecture. In this context, it is worth exploring
how to transfer our knowledge that enables ML algorithms to
exploit instead of data pattern induction. The globally shared
vision of sustainability raises challenges for designers and engi-
neers to equip with interdisciplinary professions due to the
requirement from different aspects: life-cycle assessment, environ-
mental impact, cost, etc. The big picture of future development
indicates that the knowledge and information volume will keep
increasing. In this context, the causal model provides a new and
necessary foundation to reconcile the knowledge in a mathemati-
cal rigor and computationally efficient way to combine it with a
data-driven process. By extending the graphical-based causal rules
and potential outcome estimation, the framework would cover a
more comprehensive field and become a necessity. Thereby sup-
porting designers and engineers to design more efficiently and to
reach beyond their personal capabilities.

DAGs with causal inference offer a possibility to achieve this
integration and remind us to distinguish between correlation and
causation. For answering “what-if" questions and toward higher
intelligence of machine assistance in the empirical science domain,
more exploration, effort, and practice are required for knowledge
abstraction and reformatting for deeper compilation. Interestingly,
the extraction of causal structures from the data gives a form of
interpretability that is very close to the common design reasoning
process. In this way, it reveals an intuitive path with a higher
degree to guide the data exploration and interpretation process
for bridging interdisciplinary professions. The causal model pro-
vides a methodology for rules abstraction based on data and an
efficient medium of compilation and reformatting knowledge. In
this context, the proposed two-part process inherits the advan-
tages of symbolism and plays a complementary role to data-
driven approaches. We believe this is one of the potential solutions
to extend digitalization and the benefit of artificial intelligence into
the empirical science domain. To further explore the domain inte-
gration of causal modeling, requires further examination of the
nature of compiled representations, intrinsic limitations, the types
of reasoning they support, and the effectiveness in getting the
answers that users expect to get.
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