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A B S T R A C T

Improving the dependability of mobile network applications is a
complicated task for many reasons: Especially in Germany, the devel-
opment of cellular infrastructure has not always been fast enough to
keep up with the growing demand, resulting in many blind spots that
cause communication outages. However, even when the infrastructure
is available, the mobility of the users still poses a major challenge
when it comes to the dependability of applications: As the user moves,
the capacity of the channel can experience major changes. This can
mean that applications like adjustable bitrate video streaming cannot
infer future performance by analyzing past download rates, as it will
only have old information about the data rate at a different location.

In this work, we explore the use of 4G LTE for dependable com-
munication in mobile vehicular scenarios. For this, we first look at
the performance of LTE, especially in mobile environments, and how
it has developed over time. We compare measurements performed
several years apart and look at performance differences in urban and
rural areas. We find that even though the continued development of
the 4G standard has enabled better performance in theory, this has
not always been reflected in real-life performance due to the slow
development of infrastructure, especially along highways.

We also explore the possibility of performance prediction in LTE
networks without the need to perform active measurements. For this,
we look at the relationship between the measured signal quality and
the achievable data rates and latencies. We find that while there is a
strong correlation between some of the signal quality indicators and
the achievable data rates, the relationship between them is stochastic,
i.e., a higher signal quality makes better performance more probable
but does not guarantee it. We then use our empirical measurement
results as a basis for a model that uses signal quality measurements to
predict a throughput distribution. The resulting estimate of the obtain-
able throughput can then be used in adjustable bitrate applications
like video streaming to improve their dependability.

Mobile networks also task TCP congestion control algorithms with
a new challenge: Usually, senders use TCP congestion control to avoid
causing congestion in the network by sending too many packets and so
that the network bandwidth is divided fairly. This can be a challenging
task since it is not known how many senders are in the network,
and the network load can change at any time. In mobile vehicular
networks, TCP congestion control is confronted with the additional
problem of a constantly changing capacity: As users change their
location, the quality of the channel also changes, and the capacity of
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the channel can experience drastic reductions even when the difference
of location is very small. Additionally, in our measurements, we have
observed that packet losses only rarely occur (and instead, packets
are delayed and retransmitted), meaning that loss-based algorithms
like Reno or CUBIC can be at a significant disadvantage. In this
thesis, we compare several popular congestion control algorithms in
both stationary and mobile scenarios. We find that many loss-based
algorithms tend to cause bufferbloat and thus overly increase delays.
At the same time, many delay-based algorithms tend to underestimate
the network capacity and thus achieve data rates that are too low.
The algorithm that performed the best in our measurements was TCP
BBR, as it was able to utilize the full capacity of the channel without
causing bufferbloat and also react to changes in capacity by adjusting
its window. However, since TCP BBR can be unfair towards other
algorithms in wired networks, its use could be problematic.

Finally, we also propose how our model for data rate prediction
can be used to improve the dependability of mobile video streaming.
For this, we develop an algorithm for adaptive bitrate streaming
that provides a guarantee that the video freeze probability does not
exceed a certain pre-selected upper threshold. For the algorithm to
work, it needs to know the distribution of obtainable throughput.
We use a simulation to verify the function of this algorithm using
a distribution obtained through the previously proposed data rate
prediction algorithm. In our simulation, the algorithm limited the
video freeze probability as intended. However, it did so at the cost of
frequent switches of video bitrate, which can diminish the quality of
user experience. In future work, we want to explore the possibility
of different algorithms that offer a trade-off between the video freeze
probability and the frequency of bitrate switches.
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Z U S A M M E N FA S S U N G

Die Verbesserung der Zuverlässigkeit von mobilen Netzwerk-basierten
Anwendungen ist aus vielen Gründen eine komplizierte Aufgabe: Vor
allem in Deutschland war die Entwicklung der Mobilfunkinfrastruktur
nicht immer schnell genug, um mit der wachsenden Nachfrage Schritt
zu halten. Es gibt immer noch viele Funklöchern, die für Kommu-
nikationsausfälle verantwortlich sind. Aber auch an Orten, an denen
Infrastruktur ausreichend vorhanden ist, stellt die Mobilität der Nutzer
eine große Herausforderung für die Zuverlässigkeit der Anwendun-
gen dar: Wenn sich der Nutzer bewegt, kann sich die Kapazität des
Kanals stark verändern. Dies kann dazu führen, dass Anwendungen
wie Videostreaming mit einstellbarer Bitrate die in der Vergangen-
heit erreichten Downloadraten nicht zur Vorhersage der zukünftigen
Leistung nutzen können, da diese nur alte Informationen über die
Datenraten an einem anderen Standort enthalten.

In dieser Arbeit untersuchen wir die Nutzung von 4G LTE für zu-
verlässige Kommunikation in mobilen Fahrzeugszenarien. Zu diesem
Zweck untersuchen wir zunächst die Leistung von LTE, insbesondere
in mobilen Umgebungen, und wie sie sich im Laufe der Zeit entwick-
elt hat. Wir vergleichen Messungen, die in einem zeitlichen Abstand
von mehreren Jahren durchgeführt wurden, und untersuchen Leis-
tungsunterschiede in städtischen und ländlichen Gebieten. Wir stellen
fest, dass die kontinuierliche Weiterentwicklung des 4G-Standards
zwar theoretisch eine bessere Leistung ermöglicht hat, dass sich dies
aber aufgrund des langsamen Ausbaus der Infrastruktur, insbeson-
dere entlang von Autobahnen, nicht immer in der Praxis bemerkbar
gemacht hat.

Wir untersuchen auch die Möglichkeit der Leistungsvorhersage
in LTE-Netzen, ohne aktive Messungen durchführen zu müssen. Zu
diesem Zweck untersuchen wir die Beziehung zwischen der gemesse-
nen Signalqualität und den erreichbaren Datenraten und Latenzzeiten.
Wir stellen fest, dass es zwar eine starke Korrelation zwischen einigen
der Signalqualitätsindikatoren und den erreichbaren Datenraten gibt,
die Beziehung zwischen ihnen aber stochastisch ist, d. h. eine höhere
Signalqualität macht eine bessere Leistung zwar wahrscheinlicher,
garantiert sie aber nicht. Wir verwenden dann unsere empirischen
Messergebnisse als Grundlage für ein Modell, das die Signalqual-
itätsmessungen zur Vorhersage einer Durchsatzverteilung nutzt. Die
sich daraus ergebende Schätzung des erzielbaren Durchsatzes kann
dann in Anwendungen mit einstellbarer Bitrate wie Videostreaming
verwendet werden, um deren Zuverlässigkeit zu verbessern.

Mobile Netze stellen auch TCP Congestion Control Algorithmen
vor eine neue Herausforderung: Normalerweise verwenden Sender
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TCP Congestion Control, um eine Überlastung des Netzes durch das
Senden von zu vielen Paketen zu vermeiden, und um die Bandbreite
des Netzes gerecht aufzuteilen. Dies kann eine schwierige Aufgabe
sein, da es nicht bekannt ist, wie viele Sender sich im Netz befinden,
und sich die Netzlast jederzeit ändern kann. In mobilen Fahrzeugnet-
zen ist TCP Congestion Control mit dem zusätzlichen Problem einer
sich ständig ändernden Kapazität konfrontiert: Wenn die Benutzer
ihren Standort wechseln, ändert sich auch die Qualität des Kanals,
und die Kanalkapazität des Kanals kann drastisch sinken, selbst wenn
der Unterschied zwischen den Standorten sehr gering ist. Darüber
hinaus haben wir bei unseren Messungen festgestellt, dass Paketver-
luste nur selten auftreten (stattdessen werden Pakete verzögert und
erneut übertragen), was bedeutet, dass verlustbasierte Algorithmen
wie Reno oder CUBIC einen großen Nachteil haben können. In dieser
Arbeit vergleichen wir mehrere gängige Congestion Control Algo-
rithmen sowohl in stationären als auch in mobilen Szenarien. Wir
stellen fest, dass viele verlustbasierte Algorithmen dazu neigen, einen
Pufferüberlauf zu verursachen und somit die Latenzen übermäßig
erhöhen, während viele latenzbasierte Algorithmen dazu neigen, die
Kanalkapazität zu unterschätzen und somit zu niedrige Datenraten
erzielen. Der Algorithmus, der bei unseren Messungen am besten
abgeschnitten hat, war TCP BBR, da er in der Lage war, die volle Ka-
pazität des Kanals auszunutzen, ohne den Pufferfüllstand übermäßig
zu erhöhen. Ebenso hat TCP BBR schnell auf Kapazitätsänderungen
reagiert, indem er seine Fenstergröße angepasst hat. Da TCP BBR
jedoch in kabelgebundenen Netzen gegenüber anderen Algorithmen
unfair sein kann, könnte seine Verwendung problematisch sein.

Schließlich schlagen wir auch vor, wie unser Modell zur Vorhersage
von Datenraten verwendet werden kann, um die Zuverlässigkeit des
mobilen Videostreaming zu verbessern. Dazu entwickeln wir einen Al-
gorithmus für Streaming mit adaptiver Bitrate, der garantiert, dass die
Wahrscheinlichkeit des Anhaltens eines Videos eine bestimmte, vorher
festgelegte Obergrenze nicht überschreitet. Damit der Algorithmus
funktionieren kann, muss er die Verteilung des erreichbaren Durch-
satzes kennen. Wir verwenden eine Simulation, um die Funktion dieses
Algorithmus zu überprüfen. Hierzu verwenden wir eine Verteilung,
die wir durch den zuvor vorgeschlagenen Algorithmus zur Vorher-
sage von Datenraten erhalten haben. In unserer Simulation begrenzte
der Algorithmus die Wahrscheinlichkeit des Anhaltens von Videos
wie beabsichtigt, allerdings um den Preis eines häufigen Wechsels
der Videobitrate, was die Qualität der Benutzererfahrung beeinträchti-
gen kann. In zukünftigen Arbeiten wollen wir die Möglichkeit ver-
schiedener Algorithmen untersuchen, die einen Kompromiss zwischen
der Wahrscheinlichkeit des Anhaltens des Videos und der Häufigkeit
der Bitratenwechsel bieten.
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D I S S E RTAT I O N





1
I N T R O D U C T I O N

As the data rates and latencies of mobile communication improve,
more and more users start using the internet on their mobile devices.
As of the second quarter of 2022, mobile traffic constitutes more than
half (58.99%) of all website traffic worldwide [1] and is expected to
grow even further. To meet the growing demands of an increasing
number of users, 3rd Generation Partnership Project (3GPP), an organi-
zation responsible for the development of technical specifications for
mobile telecommunications, continues to release new versions of its
mobile communication specifications that improve performance and
dependability.

3GPP publishes its technical specifications in so called Releases. The
initial Phase 1 release was published in 1992 by its predecessor or-
ganization and was the first introduction of Global System for Mo-
bile Communications (GSM). Throughout the years, further releases
have defined technical specifications for General Packet Radio Ser-
vice (GPRS), Enhanced Data Rates for GSM Evolution (EDGE), Universal
Mobile Telecommunications System (UMTS), and High Speed Packet
Access (HSPA). The development of 4G Long Term Evolution (LTE),
the standard that will be the main focus of this thesis, started with
the 3GPP Release 8, published in 2008. The initial rollout phase of 4G
LTE started in 2010, at which time the maximum download speed
was up to 10 Mbit/s. As the development of the standard continued,
the maximum achievable data rates also became higher due to im-
provements like higher order modulation schemes, the use of higher
order Multiple Input Multiple Output (MIMO), and the introduction of
carrier aggregation to utilize the fragmented spectrum better.

Currently, the rollout of the features defined in 3GPP Release 15 is
ongoing in Germany and many other countries. This release defines 4G
LTE enhancements and introduces 5G New Radio (NR). With Release
15, LTE is supposed to provide up to ∼3.5 Gbit/s in the downlink,
whereas NR is supposed to be able to provide up to 10 Gbit/s.

With the number of users growing and more bandwidth becoming
available, it becomes more and more necessary to rethink various
mechanisms that are prevalent in modern networks. When design-
ing network protocols, it is common to think of them as belonging
to a network layer in either the Open Systems Interconnection (OSI)
or the TCP/IP model. Such protocols can then be developed inde-
pendently: For example, an application layer protocol like Hypertext
Transfer Protocol (HTTP) does not rely on a particular physical layer
implementation or a specific TCP congestion control algorithm.
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2 introduction

The possibility to design network protocols independently from
each other has made developing network applications easier; however,
there are also disadvantages to this approach: Applications and algo-
rithms often have to deal with network outages or otherwise deal with
abnormal network behavior. Dealing with such events often involves
making assumptions about their cause and the behavior of the net-
work. For example, TCP congestion control algorithms often assume
that packet losses are an indicator and a necessary consequence of
network congestion, even though this is not necessarily the case in
mobile networks. Dealing with such events can involve significant
latencies. While such latencies can still be tolerated in applications
like web browsing, in live or on-demand streaming applications they
can significantly impact the users’ Quality of Experience.

Knowing specifics about the underlying network can also help
improve application performance and dependability. While Adaptive
Bitrate (ABR) algorithms like MPEG-DASH are already used to adjust
the application performance when network conditions change, they
often assume that past network performance can help predict future
network performance, which is not necessarily the case if the user
equipment changes its position.

All of these considerations show that existing algorithms often
already make assumptions about the underlying network; however,
these assumptions are not always valid for all types of networks. In
this thesis, we will investigate how inapplicable assumptions made by
existing algorithms can impair the overall network performance.

We also investigate how the dependability of mobile network ap-
plications can be improved by making more applicable predictions.
For this, we (i) analyze the behavior of mobile networks, (ii) use our
analysis to make predictions about network behavior without having
to perform network measurements and (iii) present how such predic-
tions can be used in ABR algorithms to improve the dependability of
their performance.

1.1 thesis outline

In Chapter 2, we provide an overview of background topics for this
thesis. First, we discuss the characteristics and architecture of 4G LTE.
We especially focus on details relevant to mobile scenarios, where the
location of the user constantly changes, and the quality of the channel
between the user equipment and the base station may therefore change
as well, or the user could even be out of reach for one base station
and switch to a different one. We then talk about the challenges of
performing network measurements in mobile networks.

In Chapter 3, we present our analysis of the behavior of mobile
networks. We show that their behavior can be very volatile and vary
even if the user equipment is stationary. Such changes heavily depend



1.1 thesis outline 3

on network capacity, which can change depending on the time of the
day or the day of the week. When the user equipment is mobile, the
capacity available to a user is even more volatile due to the changes in
signal quality.

We also look at how the performance of the 4G network has devel-
oped over time. We have performed our initial measurements using a
Release 8/Category (Cat) 3 modem. As new LTE Releases have been
introduced, the network performance has also drastically improved
through the use of carrier aggregation, which helped utilize the frag-
mented LTE spectrum and significantly increase the achievable data
rates, as well as higher order modulation and coding schemes.

We then investigate how the choice of transport protocol affects the
performance of network applications. We look at the performance of
TCP and User Datagram Protocol (UDP). We also compare the perfor-
mance of various congestion control algorithms and analyze how well
they work in mobile networks. We especially focus on the assumptions
made about the network when designing these protocols and verify
how well these hold up when the algorithms are used in a mobile
network. We find that loss-based algorithms can perform poorly in
mobile networks because packet losses rarely occurred in our measure-
ments, leading to very high delays due to bufferbloat. Delay-based
algorithms had the opposite problem, where they underestimated
network capacity.

Since it is not feasible to perform active network measurements
whenever network conditions are expected to change, we analyze
the relationship between the network performance and the signal
quality measured by the user equipment. We find that the signal
quality can be used to predict network performance; however, the
relationship between the achievable throughput and signal quality is
only stochastic, i.e., only the distribution of network throughput can
be predicted.

Based on our analysis of the relationship between the signal quality
and network performance, we present a mathematical model that
estimates the distribution of the throughput based on the signal quality
indicators like Reference Signal Received Power (RSRP), Reference
Signal Received Quality (RSRQ), Signal to Interference plus Noise
Ratio (SINR), Received Signal Strength Indicator (RSSI), and Channel
Quality Indicator (CQI). This model can be found in Chapter 4.

As already discussed, having a model of the network behavior can
help to improve the performance of network applications. In Chapter 5,
we present an algorithm for ABR streaming applications that can be
used to limit the probability of a buffer underflow (which would result
in an application freeze) to a desired upper bound. This algorithm
requires the knowledge of the distribution of the achievable data rates,
which can be obtained as discussed in Chapter 4.





2
B A C K G R O U N D

This thesis deals with how mobile communication can be made more
dependable, focusing on high mobility use cases like vehicular com-
munication. In this Chapter, we discuss the basics needed to analyze
the dependability of mobile communication.

First, in Section 2.1, we discuss how 4G LTE works and what allows
it to be used in mobile scenarios. We discuss the 4G architecture,
including the backbone network, the air interface, and the scheduler.
We also briefly talk about the 4G deployment in Germany.

In Section 2.2, we talk about network measurements to analyze
the performance of mobile networks. Since data in LTE is divided
into transport blocks and the gaps between them can vary based on
system load, commonly used methods for bandwidth estimation based
on packet gaps or packet trains can fail in mobile networks if their
parameters are not chosen carefully. In this Section, we discuss how
the choice of measurement parameters affects the measurement result
and propose parameters that can be used for accurate bandwidth
estimation results.

2.1 4g in mobile scenarios

In order to enable communication in mobile scenarios, wireless com-
munication is required. 4G LTE is currently one of the most widely
used types of wireless communication for many reasons: The 4G in-
frastructure is widely available, the range of communication is high,
and the quality of service has been continuously improving. With
Release 15, LTE is supposed to provide up to 3.5 Gbit/s of throughput
in the downlink direction.

There have been efforts to develop alternatives like municipal Wi-Fi,
which have been adopted successfully in some cities [2]. However,
they are often only sparsely available and can suffer from performance
issues [3].

In this Section, we discuss how 4G works and what makes it a
good choice for mobile communication scenarios. We discuss some
implementation details of the 4G network, including the core network
and the details of the wireless communication.

2.1.1 Evolved Packet Core

In this Section, we describe the operation of the core network of 4G
LTE - the Evolved Packet Core (EPC). EPC has been introduced as the

5
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packet core of LTE in 3GPP Release 8 and is currently used as the core
network for 4G as well as 5G. EPC will be replaced by the 5G Core (5GC)
as soon as its deployment is finished.

MME S-GW

P-GWHSS

RAN

Internet

S11

S5

SGi

S1-uS1-c

S6a

Figure 2.1: Overview of the EPC architecture [4].

Unlike the core networks of the previous cellular communication
generations, the EPC no longer has a circuit-switched domain, and
both data packets and voice/Short Message Service (SMS) messages
are transferred via Internet Protocol (IP) packets.

In Fig. 2.1, we present an overview of the EPC structure. The main
components of the EPC are Mobility Management Entity (MME), Serving
Gateway (S-GW), Packet Data Network Gateway (P-GW) and Home Sub-
scriber Server (HSS):

The MME is the control-plane node of the EPC. It is responsible
for control-plane operations like connection establishment or release,
change of the activity state of the User Equipment (UE), handover
signaling, handling of security keys, etc. The interface between the
evolved Node B (eNodeB) and the MME is called the S1-c interface.
This communication is done using the Stream Control Transmission
Protocol (SCTP).

The S-GW is the user-plane node that connects the EPC to the Evolved
Universal terrestrial radio-access network (E-UTRAN). It routes and
forwards packets from the PDN-GW to the eNodeB and handles inter-
eNodeB handovers. The interface between the eNodeB and the S-GW is
called the S1-u interface. It handles data delivery of Protocol Data
Units (PDUs) between the eNodeB and the S-GW.
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The P-GW connects the EPC to external packet data networks, most
notably the Internet. For this, the P-GW handles IP address assignment
to UE. It also connects the EPC to non-3GPP radio-access technologies
like Code Division Multiple Access 2000 (CDMA2000) or Worldwide
Interoperability for Microwave Access (WiMAX). The P-GW communi-
cates with the S-GW via the S5 interface and the Internet via the SGi
interface.

The HSS is a central database that contains user-related and subscription-
related information. It performs mobility management, call and session
establishment support, user authentication, and access authorization.

2.1.2 Air Interface

The wireless communication between the UE and the EPC is handled
by the E-UTRAN.

MME

eNodeB

eNodeB

eNodeB

S-GW S-GW

X2

S1-u

Core Network

S1-c

MME

S1-c

S1-u

S1-u

S1-cS1-c

S1-u

Figure 2.2: Overview of the Radio Access Network (RAN) architecture [4].

The E-UTRAN only has a single type of node - the eNodeB. The eNodeB

is connected to the EPC via the S1 interface. Specifically, it is connected
to the MME via the S1-c interface for control-plane communication
and to the S-GW via the S1-u interface for user-plane communication.
eNodeBs are connected to each other via the X2 interface to support
active-mode mobility and packet forwarding during handovers. An
overview of the overall architecture can be seen in Fig. 2.2

The interface between the eNodeB and the UE is called the UTRAN to
user (Uu) interface. Here, the UE and the eNodeB exchange information
via a wireless link.

2.1.2.1 LTE Spectrum

The channel between the eNodeB and the UE can be located in different
frequency bands and have different bandwidths. For example, in Ger-
many, the 800 MHz, 1800 MHz, and 2600 MHz frequency bands can



8 background

be used for LTE communication. Different providers license differently-
sized frequency ranges in these bands and can divide these into
differently-sized channels. In LTE the channel size can be 1.4 MHz,
3 MHz, 5 MHz, 10 MHz, 15 MHz or 20 MHz. In most European
countries, Frequency division duplex (FDD) is used to separate down-
link and uplink communication, which means that the downlink and
uplink channels are located in two different frequency ranges. An
overview of LTE bands commonly used in Germany and their respec-
tive frequency ranges can be found in Table 2.1.

Band Range Uplink Downlink Channel Bandwidth

3 1800 MHz 1710-1785 MHz 1805-1880 MHz 1.4, 3, 5, 10, 15, 20 MHz

7 2600 MHz 2500-2570 MHz 2620-2690 MHz 5, 10, 15, 20 MHz

8 900 MHz 880-915 MHz 925-960 MHz 1.4, 3, 5, 10 MHz

20 800 MHz 832-862 MHz 791-821 MHz 5, 10, 15, 20 MHz

Table 2.1: Overview of LTE bands commonly used in Germany and their
respective frequency ranges.

The LTE spectrum is divided into so-called subcarriers, which can be
either 7.5 kHz or 15 kHz wide. These subcarriers are organized into
Resource Blocks (RBs), which consist of either 12x15 kHz or 24x7.5 kHz
subcarriers, i.e., they have a total bandwidth of 180 kHz. These RBs

have a duration of 0.5 ms, also called a slot. Multiple RBs can then be
used to form differently-sized channels. An overview of how many
RBs are needed for channels with a different bandwidth can be found
in Table 2.2.

Bandwidth RBs

1.4 MHz 6

3 MHz 15

5 MHz 25

10 MHz 50

15 MHz 75

20 MHz 100

Table 2.2: RBs needed for channels with different bandwidth in LTE. Note that
10% of the bandwidth is used for a Guard Band (except 1.4 MHz).

Two RBs constitute a subframe (1 ms), which is the smallest unit of
resources that can be assigned to a user by a scheduler. Each subframe
carries a Transport Block (TB), which is the smallest data unit that
can be scheduled for a user, and a Cyclic Redundancy Check (CRC)
checksum. Further, the subframes are organized in frames with a
duration of 10 ms, i.e., 10 subframes.
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One problem of LTE is that the standard only defines channels
of up to 20 MHz, limiting the maximum possible transmission rate.
Carrier aggregation was introduced to the LTE standard in Release
12 [5] to alleviate this problem. It allows the combined use of multiple
component carriers with up to 20 MHz each, which can be used to
increase the maximum transmission rate or load balancing. We further
discuss carrier aggregation in Section 3.3.

2.1.2.2 LTE Channels

LTE has multiple different channels to transmit different types of
information. An Overview of downlink channels can be found in
Fig. 2.3, for uplink channels it can be seen in Fig. 2.4:

PCH BCH MCH

PCCH BCCH DTCH DCCH MTCH MCCH
Logical 
Channels

Transport 
Channels

DL-SCH

Physical 
Channels

PDSCHPBCH PMCH

CCCH

PDCCH PHICH PCFICH

DCI

EPDCCH R-PDCCH

SC-MTCH SC-MCCH

MPDCCH

Figure 2.3: LTE downlink channels [4].

RACH

DTCH DCCH
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Channels

Transport 
Channels UL-SCH

Physical 
Channels

PUSCH PRACH

CCCH

PUCCH

UCI

Figure 2.4: LTE uplink channels [4].

In this Section, we are going to briefly explain the function of
some of the channels, i.e., Physical Random Access Channel (PRACH),
Physical Downlink Shared Channel (PDSCH), Physical Downlink Con-
trol Channel (PDCCH), Physical Uplink Shared Channel (PUSCH), and
Physical Uplink Control Channel (PUCCH):

PRACH is used by the UE to establish the initial connection. For this,
the UE transmits a random access preamble, which the eNodeB uses to
estimate the delay to adjust uplink timing.

PDSCH and PUSCH are the physical channels that carry the data of
all users. The data is divided into RBs as described in Section 2.1.2.1.
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PDCCH and PUCCH are the control channels that carry the schedul-
ing assignments for the data that is transported on the PDSCH and
PUSCH channels. They indicate to the UEs which RBs belong to them.
The UEs need to periodically scan these channels to find new schedul-
ing assignments. Since this can consume a lot of power, a power-saving
mechanism called Discontinuous Reception (DRX) has been introduced
to alleviate this problem. We discuss its detail in the next Section.

2.1.3 DRX

To be able to send or receive data on the PDSCH/PUSCH channels, a
UE needs to scan the PDCCH/PUCCH control channels for scheduling
assignments. When it comes to the PDCCH, the UE doesn’t know in
advance when it will receive new data, so it needs to monitor the
downlink control channel continuously. This process can consume
a lot of power, which is why LTE UEs implement a power-saving
mechanism called DRX. The main idea behind DRX is for the UE to scan
the control channel less often when no data has been sent or received
for some specified period of time. This is achieved by introducing
cycles of different lengths, during which the UE scans the control
channel with different frequencies. The UE changes the cycle duration
when no packet has been received for some time. For this, the UE uses
an inactivity timer that is restarted every time the UE is scheduled.

A UE can implement a long and a short DRX cycle to handle different
usage scenarios: A short DRX cycle that is meant to handle applications
with periodic, but not continuous activity (e.g., voice over IP), and
a long DRX cycle to handle applications that have long periods of
silence (e.g., a user interacting with a website). In [6], the authors have
analyzed a live LTE network and found that an UE had switched from
continuous reception to a short DRX cycle when the UE was inactive
between 200 ms and 2.5 s. For inactivity times between 2.5 s and 10.5 s,
the UE enters a long DRX cycle. When the inactivity exceeds 10.5 s, the
UE becomes idle.

2.1.4 LTE Deployment

Since the start of the LTE rollout in 2010, its deployment has contin-
uously advanced. As of the end of 2021, the three most significant
German LTE providers, Telekom, Vodafone, and O2, claim that they
each achieve coverage of more than 98% of the total population of
Germany. In practice, users often report coverage gaps, especially in
rural areas. We discuss our experiences with coverage gaps in Chapter
3.

A single LTE cell can have a size anywhere between a few tens of
meters and up to 100 km depending on the utilized frequency and
signal power. In order to cover larger areas, multiple cells have to be
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used. To reduce interference between cells that use the same frequency,
they should ideally cover non-overlapping areas. This way of arranging
cells is also called space division multiplexing. The area covered by
a cell is usually best represented by a circle around the eNodeB in the
middle of the cell. For a more convenient visual representation, the
coverage of a cell is usually modeled as a hexagon, which makes it
easier to arrange multiple cells in a grid than it would be with circles.
An example of such an arrangement can be seen in Fig. 2.5:

Figure 2.5: Example of an arrangement of LTE cells in a hexagonal grid [4].

Not all users in the same cell receive an equally good service: The
further away a user is from the middle of the cell, i.e., the eNodeB,
the more they will experience a reduction of signal quality due to
attenuation. When the signal quality is reduced, the Modulation and
Coding Scheme (MCS) is also changed so that it is still possible to
decode the signal in the presence of noise. Depending on the strength
of the signal, LTE uses either Quadrature Phase-Shift Keying (QPSK) or
different constellations of Quadrature Amplitude Modulation (QAM).
An overview of which MCS is used for which signal quality can be
seen in Table 2.3.

The CQI is a value determined by the UE that indicates to the eNodeB

what the highest modulation and code rate are with which the UE can
receive a single TB with an error probability not exceeding 0.1 [7]. The
UE periodically reports this value to the eNodeB so that an appropriate
MCS can be selected. When the CQI value is low, an MCS with fewer
bits per symbol and a higher redundancy is selected so that it is easier
to distinguish the weaker signal from noise.

When the UE moves even further away from the middle of a cell, it
is possible that no MCS can be selected that can keep the packet loss
under a certain threshold. When this happens, it becomes necessary to
change the cell. Usually, there is a predefined signal quality threshold
under which a cell handover becomes necessary. This threshold exists
to prevent the UE from being handed back and forth between two
cells.

A handover may occur during an ongoing data transmission, i.e.,
the eNodeB still has some packets to transmit to the UE. In such a case,
the eNodeB would use the X2 interface to forward the data packets to
the new eNodeB so that the UE can still receive the packets. This kind
of seamless handover is also one of the reasons why LTE works well in
mobile scenarios.

LTE can also be used as a technology enabling mobile Internet in
public transportation even to users without a subscription: Frequently,
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CQI index modulation code rate x 1024 efficiency

0 out of range

1 QPSK 78 0.1523

2 QPSK 193 0.3770

3 QPSK 449 0.8770

4 16-QAM 378 1.4766

5 16-QAM 490 1.9141

6 16-QAM 616 2.4063

7 64-QAM 466 2.7305

8 64-QAM 567 3.3223

9 64-QAM 666 3.9023

10 64-QAM 772 4.5234

11 64-QAM 873 5.1152

12 256-QAM 711 5.5547

13 256-QAM 797 6.2266

14 256-QAM 885 6.9141

15 256-QAM 948 7.4063

Table 2.3: CQI to modulation scheme mapping in LTE Release 12 [5].

trains or buses have LTE routers installed that allow users to connect
to them via Wi-Fi and use a limited amount of data for free.

2.1.5 LTE Scheduler

In an LTE cell, the cell’s capacity is shared among all users. In order
to divide the available resources between the users, the eNodeB uses
a scheduler to assign time or frequency resources for the data of
different users.

The implementation of LTE schedulers is not standardized and is
left up to the network providers. However, there are several common
strategies that are typically used:

max-c/i (carrier-to-interference) or maximum rate This
type of scheduler tries to optimize the utilization of available resources
by assigning the most scheduling slots to the users with better channel
conditions. It achieves the least fairness as it will starve users with
bad channel quality.

round-robin This type of scheduler serves all users in alternate
order, which maximizes the fairness between users. However, this can
lead to poor resource utilization.
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proportional fair This type of scheduler tries to improve the
fairness of max-C/I schedulers by considering the individual users’
instantaneous channel quality and scheduling users with the best
relative channel conditions. Since relative channel conditions can often
change due to fast fading, even users with bad channel quality can be
scheduled when their relative channel conditions improve.

Overall, the choice of the scheduling strategy is always a trade-off
between fairness and efficient resource utilization: When trying to
optimize the use of resources (as it is done in max-C/I schedulers),
some users with bad channel quality may not get any service at all. On
the other hand, a round-robin scheduler that tries to optimize fairness
may waste resources. The proportional fair scheduling strategy tries
to strike a balance between the two.

For any given eNodeB, it is unknown which scheduling strategy it
implements. Different network providers might use different strategies
based on location or the type of traffic. The open-source srsENB
project allows one to choose between proportional-fair and round-
robin schedulers [8].

2.2 available bandwidth estimation in mobile networks

For mobile applications to operate efficiently, it can be helpful for
them to know what data rates can be achieved at a particular moment.
Due to the previously discussed limitations of the mobile networks,
the achievable data rates can vary drastically when the UE is mobile.
Some variations can even be expected when the user is stationary.

An application can determine what data rates can be achieved in a
network using available bandwidth estimation algorithms. Here, the term
bandwidth refers to the achievable data rates and not the bandwidth
of the physical channel. Many such algorithms already exist that
work well for wired networks; an overview can be found in [9]. These
algorithms often assume a network with First-Come First-Serve (FCFS)
scheduling and a single tight link, i.e., the link with the minimum
available bandwidth. This tight link has a capacity of C that is shared
by multiple senders. The algorithm aims to find the remainder of the
capacity not used by other senders.

This is usually done by sending probe traffic with gaps of a certain
width between the packets: When the selected gap between the packet
gin is the same as the gap gout measured at the receiver, then it
means that the sending rate was equal to or lower than the available
bandwidth. When gout is greater than gin, it means that the packets
had to be queued at the tight link, either because of other senders or
limited link capacity.
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There are multiple categories to distinguish between different avail-
able bandwidth estimation methods: active vs. passive, packet pair vs.
packet train, and iterative vs. direct:

active vs . passive The first question when performing available
bandwidth estimation is whether the algorithm creates its own traffic
or uses existing traffic like, e.g., TCP traffic. When the method creates
its own traffic, it is referred to as active. Active methods tend to be
more precise as the sender has complete control of the traffic. However,
they also affect the state of the network by creating load themselves.
When existing traffic is used, the method is referred to as passive.
Such methods are often less precise because a different application
controls the traffic pattern.

packet pair vs . packet train When we use an active band-
width estimation technique and can define our traffic pattern, the next
question is what our traffic pattern should be. In the simplest case, we
deal with packet pairs [10], i.e., two packets with a gap gin between
them. Alternatively, we can send multiple packets with the same gaps
between all of them, i.e., a packet train [11, 12]. If the gaps between
the packets in the packet train are not constant but increasing, we then
speak of packet chirps [13]. Sending packet trains instead of packet
pairs can help reduce the noise in the measurements but also increases
the load on the network.

iterative vs . direct The next question is how the method uses
packet pairs/trains/chirps to discover the available bandwidth. Itera-
tive methods try to find the point where the gap at the receiver starts
to increase, e.g., by performing a binary search (Pathload [14]) or send-
ing packet chirps (Pathchirp [13]). Direct methods like Spruce [15],
TOPP [16] or DietTOPP [17] try to set the input gap gin so that the
rate exceeds the capacity of the link and then estimate the available
bandwidth from the measured output gap gout.

However, these methods often do not work well in some types of
networks as they assume FCFS scheduling. For 802.11 networks, it has
been shown that existing algorithms find the fair share, which can be
very different from the available bandwidth because the assumption
of FCFS is violated [18].

The use of such methods faces two major obstacles in LTE: First, the
scheduler used by LTE’s eNodeBs is not necessarily an FCFS scheduler.
Max-C/I or proportional fair schedulers use the information of the
UE’s signal quality to send more data to those UEs that have a better
access to the channel. Second, before sending packets to the UE, the
scheduler combines the packets into TBs with a duration of 1 ms,
thus reducing or increasing the gaps between the packets without it
being an indication of bandwidth limitation [19]. Methods like Ookla’s
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Speedtest that measure the bandwidth that can be achieved by a long-
lived TCP connection still work; however, they require either a long
measurement time or a lot of data.

2.2.1 Bandwidth Estimation with Packet Trains
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Figure 2.6: Comparison of measured throughput for packet trains of different
lengths with full-sized packets. Boxplots depict 0.05, 0.25, 0.5, 0.75,
and 0.95 quantiles.

As discussed in the previous Section, we do not expect packet pair
based methods for available bandwidth estimation to work well in
mobile networks. However, packet train based methods should still
work if the packet train spans multiple transport blocks. To analyze
how many packets a packet train should contain for a reliable band-
width estimate, we perform a series of UDP Constant Bit Rate (CBR)
measurements where we send n ∈ {5, 10, 20, 50, 100, 150, 300, 500,
1000, 3000} packets with a size of 1400 Bytes. We use a sending rate
that is higher than the observed network capacity so that the send
buffer never becomes empty. For each n, we send 50 packet trains and
calculate the throughput at the receiver. We remove the first packet
from each packet train when calculating the throughput as we have
noticed that it gets excessively delayed due to the power-saving mech-
anisms in LTE that we have discussed in Section 2.1.3. In Fig. 2.6, we
show a boxplot with the distribution of the obtained throughput for
each n. Here we can see that the estimated throughput and its vari-
ability are much higher for smaller packet trains than for larger ones.
This is because of the previously discussed grouping of packets into
transport blocks: smaller packet trains will often be combined into
one transport block, resulting in reduced packet gaps and therefore
an overestimated throughput. Packets may also be put into separate
transport blocks, resulting in an increased packet gap and a very low
throughput estimate. Both of these effects can be seen for packet trains
with less than 50 packets.
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In order to obtain more reliable estimates of the throughput, we,
therefore, have to send larger packet trains. This increases the proba-
bility that multiple packets are spread over multiple transport blocks.
In Fig. 2.6, we see that when there are more than 50 packets in a packet
train, the estimate becomes more stable and is also, on average, the
same regardless of the exact count of the packets.

Therefore, we conclude that using packet trains can be a reliable
way of throughput estimation. However, the number of packets has
to be large enough to avoid being affected by division into transport
blocks.

2.2.2 Bandwidth Estimation with Smaller Packets
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Figure 2.7: Comparison of measured throughput for packet trains of different
lengths with 500 B packets. Boxplots depict 0.05, 0.25, 0.5, 0.75,
and 0.95 quantiles.

Next, we wanted to see if making the packets smaller could help us
reduce the data needed to obtain an accurate throughput estimate. For
this, we select a packet size of 500 Bytes and repeat the experiment
described above. The resulting throughput estimates can be seen in
Fig. 2.7. It can be seen that with smaller packet trains, the variability
of the throughput estimates becomes even more prominent for smaller
packet trains. This is because the division of packets into transport
blocks depends on the size of the packets and not their number.
This means that now even for larger packet trains, we have some
probability of either the scheduler combining them into one transport
block resulting in an overestimated throughput, or dividing them
into multiple transport blocks in a way that reduces the throughput
estimate. The throughput estimate becomes stable only for packet
trains with 300-500 packets.

We conclude that there is no advantage to using smaller packets
in packet trains when performing bandwidth estimation in an LTE

network, as the division into transport blocks is based on the packet
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size. This means that the same amount of data must still be transmitted
to obtain a reliable estimate of the available bandwidth.





3
P E R F O R M A N C E E VA L UAT I O N

In order to be able to create a model for the prediction of the behav-
ior of LTE, we first need to analyze the performance of the existing
network.

In Section 3.1, we look at the throughput and delays that can be
achieved and their dependence on different factors like frequency,
bandwidth, and signal quality, as well as factors like location, time,
and day.

In Section 3.2, we analyze the performance of different popular
congestion control algorithms in LTE. For this, we analyze stationary
scenarios with a near-constant capacity and mobile scenarios where
the channel’s capacity constantly changes.

In Section 3.3, we look at the performance of carrier aggregation,
a technique used to combine multiple LTE component carriers for
more bandwidth. We analyze the possible achievable performance
improvements regarding throughput and delays, availability in our
region, and behavior during handovers.

3.1 4g lte mobile and stationary performance

In this Section, we analyze the performance of LTE. For this, we per-
form mobile and stationary measurement campaigns in a major com-
mercial LTE network. In our mobile measurements, we analyze how
parameters like the frequency band, the corresponding bandwidth,
and the channel’s signal quality affect the achievable performance
and how this has changed over time. In addition, we compare the
performance of the commonly used TCP and UDP transport protocols.
Finally, we also look at the differences in performance depending on
the time of usage. This Section is partially based on [20]. It includes
additional measurement results and evaluations.

3.1.1 Methodology & Measurement Setup

First, we describe our measurement methodology and setup. Our
measurements have been performed over several years using differ-
ent hardware setups as the development of the LTE standard has
progressed. For our LTE measurements, we have used the following
modems:

• Sierra Wireless AirPrime MC7304 [21], an LTE Cat 3 [22] modem
with up to 100 Mbit/s downlink and 50 Mbit/s uplink through-
put, installed in a PCEngines alix6f2 system board [23].

19
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Figure 3.1: Topology of the LTE measurement setup.

• Sierra Wireless AirPrime EM7565 [24], an LTE Cat 12 [5] modem
with up to 600 Mbit/s downlink and up to 150 Mbit/s uplink
throughput, installed in a PCEngines apu3c4 system board [23].

For stationary measurements, we have used two LTE quad-band
omnidirectional antennas. For mobile measurements, we have used
a Panorama Antennas LGMM-7-27-24-58 MIMO antenna for vehicular
communication [25] installed in a VW Golf VII.

In order to send and receive data to/from the 4G modem, we have
set up a test server connected to the Internet via the X-win network,
i.e., the German national research network, at a rate of 1 Gbit/s.

For stationary measurements, we keep the LTE testbed at a fixed
location in our institute. For mobile measurements, we repeatedly
drive on a city and highway route between Hanover and Brunswick.
This route is approximately 66 km and includes urban and rural
Sections. The speed in the city is around 50 km/h, while on the
highway it is 100-130 km/h. An overview of our measurement setup
can be seen in Fig. 3.1.

When performing measurements, we record throughput and delay
values, as well as other information like the cell ID, frequency, band-
width, signal quality indicators, i.e., RSRP, RSRQ, RSSI, SINR and CQI, as
well as vehicle speed and Global Positioning System (GPS) position.
We also record the time of the measurement in order to analyze how
LTE performance changes over the day and week.

We also investigate the performance of different transport layer
protocols used by infotainment applications, since many streaming
services are based on UDP, whereas TCP is commonly used for file
downloads.
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(a) Highway route, where measure-
ments have been performed in 800

MHz cells with 10 MHz bandwidth.

(b) City route, where measurements
have been performed in 1800 MHz
cells with 20 MHz bandwidth.

Figure 3.2: Highway and city routes where measurements have been per-
formed. Map data © OpenStreetMap contributors, CC BY-SA [26].

3.1.2 Mobile Measurements

In the following, we present results from mobile measurements per-
formed on the route between Hanover and Brunswick.

We initially performed these measurements with an LTE Cat 3 mo-
dem. The results of these are published in [20]. Additionally, we
have repeated these measurements with an LTE Cat 12 modem. In this
Section, we evaluate and compare the results of both measurement
campaigns.

3.1.2.1 Impact of the cell frequency & bandwidth

We have observed 13 cells in the LTE B3 band, which is located in
the 1800 MHz frequency band. The median and maximum distance
between these cells is 738 m and 1500 m, respectively. Furthermore,
we discovered 19 cells in the LTE B20 band, which is located in the
800 MHz frequency band. Here, the cell coverage is significantly more
extensive, namely 2054 m in the median and up to 12.2 km as the
maximum. By investigating the bands’ spatial distribution, we identify
a clear trend, i.e., B3 cells in the city of Hanover and Brunswick and
B20 on the highway and in rural areas. The only exception is a small
intersection at the edge of the cities, where we observed both. This
distribution is explained by the fact that higher frequencies, such
as 1800 MHz, can only cover smaller regions. Consequently, the LTE

infrastructure in rural areas often consists of only cells using the B20

band as it would not be cost-efficient to use a more dense network of
cells that use the B3 band in sparsely populated areas.

In our LTE Cat 3 measurements in the B3 band, we have observed a
bandwidth of 10 MHz, and for the measurements in the B20 band a
bandwidth of 20 MHz. The reason is that there is a total of 30 MHz
bandwidth available in the B20 band and 75 MHz in the B3 band [27].
These bands are currently licensed by 3 German providers, resulting
in 10 MHz of bandwidth being available in the B20 band and at least
20 MHz in the B3 band for each of them [28].

With Release 10/Cat 6, carrier aggregation has been added to LTE [29].
Before carrier aggregation was introduced, UEs were limited to using
only one component carrier per connection. Since single component
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carriers are limited to a bandwidth of up to 20 MHz in LTE, the result-
ing throughput is also limited by that constraint. The main purpose
of carrier aggregation is to increase the capacity available to users by
combining multiple component carriers into a single virtual carrier.
The number of component carriers that can be combined has increased
from 2 in Release 10/Cat 6 to 3 in Release 12/Cat 12. Starting with
Release 14/Cat 17, up to 32 component carriers can be combined [4].
To achieve this, an eNodeB capable of using carrier aggregation can
use its scheduler to assign TB transmissions to multiple carriers instead
of just one, thus increasing the transmission capacity. The UE has to
receive the transport blocks from all component carriers and then re-
assemble them in the correct order before higher layers can process the
data. Further details describing carrier aggregation implementation
can be found in [4, 30].

The component carriers used by Carrier Aggregation (CA) can be
in the same or different frequencies. For example, suppose a net-
work provider has 30 MHz of bandwidth in a frequency band. In
that case, the bandwidth in this frequency band can be split into 2

component carriers (e.g., 15 MHz each). These component carriers can
be combined into a single virtual component carrier with 30 MHz
of bandwidth. If the network provider has an additional component
carrier in a different frequency band, it can also be combined with the
other component carriers.

In our measurements with the LTE Cat 12 modem, we have observed
that carrier aggregation was activated with component carriers in the
bands B20 (10 MHz) and B3 (20 MHz), which we denote as B20_B3

(also known as CA_3A-20A), as well as within the B3 band, where
a 10 MHz carrier and a 20 MHz carrier were combined, which we
denote as B3_B3 (also known as CA_3C). We have not observed car-
rier aggregation with three or more carriers in any of our mobile or
stationary measurements. We have also observed measurements in
the B8 band with a bandwidth of 5 MHz, which was introduced on
17.03.2017 in Germany.

In Fig. 3.3, we present a boxplot of bitrates that have been achieved
in cells with different bandwidths in our mobile measurements with
the LTE Cat 3 modem. We observe a median throughput of 13 Mbit/s
and 29 Mbit/s for 10 MHz and 20 MHz cells, respectively, showing
that a higher bandwidth also results in higher achieved data rates.
Note that since these are the results of our mobile measurements,
the measurements have been performed in different locations and
are, therefore, not directly comparable because of different channel
conditions.

In Fig. 3.4, we present a boxplot of bitrates achieved in cells with
different bandwidths in our mobile measurements with the Cat 12

modem. We do not differentiate between cells using single or multiple
component carriers to achieve the total bandwidth. Here, we can again
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Figure 3.3: Comparison of download speeds in cells with different bandwidth
for LTE Cat 3 measurements. Boxplots depict 0.05, 0.25, 0.5, 0.75,
and 0.95 quantiles.

see that a higher bandwidth also usually results in a higher bitrate: The
median bitrates are 7.8 Mbit/s for 5 MHz cells, 9.3 Mbit/s for 10 MHz
cells, 22 Mbit/s for 20 MHz cells and 34.2 Mbit/s for 30 MHz cells.
Note that even though the measurements have been performed at a
later time with a modem that can achieve higher data rates according
to its specification, the median data rates for the same bandwidths
are lower than for the Cat 3 modem. Also note that these results are
not directly comparable because of different measurement locations
- the measurements were taken on the same route, but possibly not
in the same spots. However, this still shows that even though the
improvements in the LTE specification can enable higher data rates,
these cannot always be observed when evaluating data rates in a live
network.

5 MHz 10 MHz 20 MHz 30 MHz
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Figure 3.4: Comparison of download speeds in cells with different bandwidth
for LTE Cat 12 measurements. Boxplots depict 0.05, 0.25, 0.5, 0.75,
and 0.95 quantiles.

In Figs. 3.2a and 3.2b, we present maps of every performed downlink
throughput measurement for the highway and city routes performed
with the LTE Cat 3 modem. Each marker represents a single measure-
ment. Red markers indicate rates of 20 Mbit/s or less, yellow markers
rates between 20 and 30 Mbit/s, and green markers rates of 30 Mbit/s
or more. It can be seen that the throughput generally tends to be
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Figure 3.5: Downlink throughput separated by RSSI and SINR for LTE Cat 3

measurements.

lower on the highway route and higher on the city route, which also
corresponds to our observation that cells along the highway tend to
have a lower bandwidth than the cells in the city. This has also not
changed for our more recent measurements with the Cat 12 modem.

Next, we analyze the download speed dependent on bandwidth
in Section 3.1.2.1. Based on these results, we show the impact of
signal quality indicators SINR, RSSI, RSRP, and RSSI in Section 3.1.2.2
and investigate the spatial variability of the throughput in Section 4.2.

3.1.2.2 Impact of the signal quality

In the following, we present the analysis concerning the influence of
signal quality parameters.

For our measurements with the LTE Cat 3 modems, we have origi-
nally only recorded RSSI and SINR values for each measurement. For
the measurements with the LTE Cat 12 modem, we have additionally
recorded RSRP and RSRQ values.

In Fig. 3.5 we show the download speed as a function of SINR and
RSSI. We observe a general tendency of higher rates for better signal
quality.

In order to evaluate the relation between SINR, RSSI, and download
speed, we calculate Pearson’s correlation coefficients r, see Table 3.1.
For both 10 MHz and 20 MHz cells, we observe a high correlation
between signal metrics and throughput (the correlation is considered
high if r > |0.5|, see [31]).

RSSI SINR

Download speed 10 MHz 0.64 0.69

Download speed 20 MHz 0.53 0.61

Table 3.1: Correlation between achieved download speed and signal proper-
ties in 10 MHz and 20 MHz cells for LTE Cat 3 measurements.
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In Table 3.2, we show the correlation coefficients for the LTE Cat 12

measurements which now include RSRP and RSRQ values. Overall, the
correlation between the signal quality and the achieved throughput
is somewhat lower than for the Cat 3 measurements, especially for
the RSSI values. RSRP and RSRQ values; however, both have a higher
correlation with the achieved throughput than RSSI. Only for 30 MHz
bandwidth the correlation between the achieved throughput and RSRQ

is surprisingly low. For both Cat 3 and Cat 12 measurements, SINR has
the highest correlation with the achieved throughput.

In Fig. 3.6, we also show how the measured throughput depends on
RSRP and SINR for the LTE Cat 12 measurements. Once again, it can be
seen that the throughput tends to be higher when the signal quality is
higher.

RSSI SINR RSRP RSRQ

Download speed 5 MHz 0.2 0.48 0.26 0.38

Download speed 10 MHz 0.34 0.53 0.39 0.36

Download speed 20 MHz 0.17 0.51 0.26 0.30

Download speed 30 MHz 0.56 0.44 0.68 -0.12

Table 3.2: Correlation between achieved download speed and signal proper-
ties in 5-30 MHz cells for LTE Cat 12 measurements.

When we put the signal quality values into larger groups, the rela-
tionship between the signal quality and the throughput becomes more
apparent. In Fig. 3.7, we visualize this for our LTE Cat 3 measurements:
When grouping SINR values (i.e., the signal quality indicator with
the highest correlation with the obtained throughput) into groups of
10 dB, it becomes apparent that with a higher range of SINR-values the
throughput also increases. However, even with a high signal quality, it
is still possible to obtain a low throughput.

The same can be seen in Fig. 3.8 for the LTE Cat 12 measurements.
Note that for lower channel bandwidth values like 5 MHz, the differ-
ences in obtainable throughput depending on signal quality are not
very high. This is because the channel’s capacity is smaller for lower
channel bandwidths, and not much improvement can be achieved by
having a higher signal quality.

When comparing throughput results for the same bandwidth and
signal quality between LTE Cat 3 and LTE Cat 12 modems, it once again
becomes apparent that the modem with higher capabilities does not
necessarily achieve higher throughput. Since the measurements have
been performed at different times and not necessarily at the exact same
locations, this effect could be caused by different cell loads. It is also
possible that the provider’s infrastructure has not supported the higher
capabilities of the Cat 12 modem at the time of the measurements.
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Figure 3.6: Downlink throughput separated by RSRP and SINR for LTE Cat 12

measurements.
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Figure 3.7: Downlink throughput separated by SINR values in 10 dB groups
for LTE Cat 3 measurements.

3.1.3 Stationary Measurements

In the previous Section, we investigated LTE’s downlink performance
in mobile scenarios. We observed high variations in the achievable
throughput, which we have attributed to differences in signal qual-
ity, different cells, and different performance and load at different
locations.

Implicitly, we assumed a stationary throughput performance over
time, i.e., no differences between, e.g., 6 a.m. and 6 p.m. Investigations
in [32] have shown time-of-day-dependent performance differences in
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Figure 3.8: Downlink throughput separated by SINR values in 10 dB groups
for LTE Cat 12 measurements.

cellular networks, where the throughput improves at night. This effect
is explained by a lower network load at night.

To quantify the impact of time of day and weekdays on the down-
load speed in the LTE network, we perform stationary measurements
to isolate the changes that occur due to performance varying over
time from the changes that occur due to performance differences at
different locations.

In the following, we will discuss the results obtained using the LTE

Cat 3 modem. We omit the results obtained with the LTE Cat 12 modem
as we have generally observed similar behavior, albeit the obtained
throughput was higher (up to 110 Mbit/s). The change of the signal
quality parameters RSSI and SINR was small. More precisely, for all
stationary measurements, the RSSI ranges from -51 dBm to -49 dBm
and the SINR from 7 dB to 16 dB. In contrast, in the mobile case, the
values of, e.g., the RSSI vary from -94 dBm to -29 dBm. Thus, the
stationary scenario avoids the high variance of downlink throughput
and signal quality due to location changes. All measurements were
taken in a single cell in the B3 band with a 20 MHz bandwidth.

Every day for a duration of three weeks, we performed 30 alternating
measurements for TCP and UDP at 12 a.m., 6 a.m., 12 p.m., and 6 p.m.
In total, we collected more than 2000 measurements for each protocol.
For our stationary TCP measurements, we have used TCP CUBIC as
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Figure 3.9: Comparison of TCP and UDP throughput

our congestion control. Note that the behavior can differ when using
other TCP variants. We discuss this further in Section 3.2.

We present a comparison of the transport layer protocols UDP and
TCP in 3.1.3.1. Furthermore, in 3.1.3.2, we present results comparing
TCP performance for different times of day and weekdays.

3.1.3.1 Impact of the transport protocol

As TCP and UDP are both widely utilized in mobile communication
we want to investigate the potential differences in their downlink
throughput performance in LTE.

In Fig. 3.9a, we show the average achieved download speed and the
standard deviation of 30 alternating UDP and TCP measurements. It
can be seen that after an initial phase where the congestion window of
TCP is still growing, both protocols achieve the same rate. We observe
this behavior for all measurements. Therefore, we conclude that in our
measurements TCP congestion control does not affect the achievable
throughput beyond the initial phase.

Next, we calculate the average throughput of the last second as
described in Section 3.1.1 for all stationary measurements and present
the results in Fig. 3.9b. As seen before, we obtain similar throughput
for UDP and TCP, apart from about 2 percent of the TCP runs, where
TCP retransmissions affect the download speed. In these cases, TCP

retransmissions occur during the initial development of the conges-
tion window, so that its size is heavily impacted for the rest of the
measurement. However, when a retransmission occurs later, it rarely
has any impact on the throughput. We also discuss this in more detail
in Section 3.2.

Note that the Cumulative Distribution Functions (CDFs) of the TCP

and UDP throughput have an exponential decline, meaning the down-
load speeds are very stable and vary in most cases only within a small
window.
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Figure 3.10: Comparison of different times and days.

From our experiments, we observe a stable development of the
congestion window and that retransmissions at TCP layer are rare,
which indicates an efficient layer 2 Hybrid Automatic Repeat reQuest
(HARQ) implementation.

3.1.3.2 Impact of the time of day & weekday

In the following, we use TCP measurements to evaluate how the per-
formance of the LTE downlink throughput changes over the course of
a day and the week, to verify a potential impact of cell load changes
over time.

In Fig. 3.10a, we show the variations of the measured download
speed for different times. We observe that at night (12 a.m., 6 a.m.),
the median throughput is slightly larger (41 Mbit/s) than at noon (39

Mbit/s) and at 6 p.m. (37.5 Mbit/s). The deviation increases marginally
for 1 % of the runs. We have already identified retransmissions as the
reason for this behavior in Section 3.1.3.1.

In Fig. 3.10b, we present the CDF of the throughput divided by
weekday/weekend. Here, we find that the maximum throughput
has been higher during weekdays than on weekends. However, the
measurements performed on the weekend show a more stable behavior
and, in the median, a higher download speed.

We conclude that given a fixed measurement location, the achievable
downlink throughput varies slightly by the time of day and by the day
of the week. In comparison to the mobile measurements, the impact is
negligible.

3.1.4 Conclusion

In this Section, we have analyzed which parameters have the most
impact on the achievable download speed in a major commercial LTE

network. For this, we performed and evaluated long-term measure-
ment campaigns in a stationary and a mobile environment, respec-
tively. For the original paper, we have performed measurements with
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an LTE Cat 3 modem. In this Section, we have supplemented them with
LTE Cat 12 measurements and compared the results.

We have observed differences in urban and rural infrastructures:
In cities, we have observed more cells in a higher frequency range
with a shorter range, whereas there were more low-frequency cells
with a long range on the highway. Due to the different availability of
bandwidth in different frequency ranges, this has also resulted in a
lower bandwidth in rural areas and higher bandwidth in urban areas.
When comparing Cat 3 and Cat 12 measurements, we have observed
that the bandwidth was sometimes higher when using Cat 12 due to
the use of carrier aggregation.

As a result of different bandwidth availability, we have also observed
a higher throughput in urban areas. Surprisingly, even though LTE

Cat 12 enables higher throughput due to different MCS and higher
bandwidth, we have observed, on average, similar throughput results
for both Cat 3 and Cat 12 measurements along our measurement route.

Furthermore, we identified a strong impact of the signal quality,
such as SINR and RSSI/RSRP, on the obtainable throughput. However,
the relationship between the signal quality and the throughput is only
stochastic. This means that while, on average, higher signal quality
leads to higher throughput results, it is still possible to obtain low
throughout for high signal quality and (relatively) high throughput for
low signal quality, depending on the instantaneous cell load. We fur-
ther discuss how this stochastic relationship can be used for stochastic
throughput predictions in Chapter 4.

Additionally, we have shown that the impact of the weekday and
time of day is small compared to signal quality and bandwidth.

Finally, the influence of different transport layer protocols, i.e., UDP

and TCP, is negligible after TCP has ramped up its congestion window
after slow start. We further discuss how the choice of different TCP

congestion control protocols can mitigate the effect of TCP’s startup
phase in mobile networks in Section 3.2.
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3.2 tcp congestion control in cellular networks

One of the biggest challenges in networks is the fair and efficient
distribution of resources. This problem is challenging because of the
stochastic nature of network traffic: Any number of users can send any
amount of data at any time. One way this challenge is being solved is
the use of TCP Congestion Control, a mechanism that tries to adjust
the sending rate of a sender so that it gets a fair share of the available
bandwidth without overloading the network. Since TCP congestion
control is also used in cellular networks, in this Section, we first want
to give a brief overview of what congestion control is and what types of
it exist. Afterward, we will discuss why some of the usual congestion
control methods can experience problems in cellular networks, what
can be done to mitigate these problems, and which congestion control
algorithms are better suited for mobile networks than others. This
Section is based on [33]. It includes additional measurements with TCP

Vegas, an evaluation of an additional scenario where the channel’s
capacity is continuously increasing, and further explanations and
evaluations.

3.2.1 TCP Congestion Control Basics

Upper-layer protocols like TCP usually have no knowledge of the un-
derlying network structure. This means that TCP congestion control al-
gorithms can only make limited assumptions when trying to recognize
signs of congestion. Nevertheless, without making any assumptions,
it is also impossible to recognize network congestion. Therefore most
algorithms try to make some simple assumptions about the causes
and consequences of congestion. These algorithms usually assume
that there is a bottleneck link with a buffer somewhere in the network
responsible for potential congestion. Different algorithms then use this
assumption in different ways:

loss-based algorithms Here, the algorithms assume that when
the network is congested, the fill level of the buffer of the bottleneck
link starts to increase. As the size of this buffer is limited, it starts to
drop packets when it becomes too full. Loss-based algorithms assume
that any observed packet loss likely results from this and is a sign
of network congestion. The popular TCP Reno [34] and CUBIC [35]
congestion control algorithms are loss-based.

delay-based algorithms Similar to loss-based algorithms, delay-
based algorithms try to identify congestion by inferring the state of
the bottleneck link’s buffer. However, instead of waiting for packet
loss to occur, they try to prevent it by trying to identify when the
buffer fill level starts to increase by measuring the delays. When the
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delays increase above a certain threshold, it is considered a sign of
congestion. TCP Vegas [36] is an example of a loss-based algorithm.

hybrid Hybrid congestion control algorithms combine the loss-
and delay-based approaches. Compound TCP (CTCP) [37] is an example
of such an algorithm: it has both loss-based and delay-based windows
that are handled independently. The function of these windows is
based on TCP Reno and TCP Vegas, respectively.

TCP Bottleneck Bandwidth and Round-trip propagation time (BBR) [38]
is often mentioned when talking about hybrid congestion control al-
gorithms, however in its first version it does not react to packet loss
but instead tries to be aware of the fill level of the bottleneck buffer by
always draining it after filling it in a probing phase when the observed
delays increase. TCP BBRv2, the successor of BBR that is currently still in
development, also decreases its congestion window when it observes
packet loss that exceeds a certain threshold.

Most such algorithms treat the network as a black box and assume
that packet losses and delays are likely caused by network congestion
(TCP BBR being a notable exception). In mobile networks, the bottleneck
link is typically located between the user equipment and the cell tower.
The per-user capacity of this link is often limited by the signal quality
of the link between the user equipment and the cell tower. Packet
losses and excessive delays are usually caused by the wireless channel,
not network congestion.

In the following, we look at how well different congestion control
algorithms perform in mobile cellular networks. For this, we perform
stationary measurements to analyze their behavior when the per-user
capacity remains constant due to only minor changes in signal quality.
We also perform mobile measurements to analyze what happens when
the channel’s capacity changes due to a change in signal quality.

3.2.2 Methodology & Measurement Setup

Our measurement setup is the same as described in Section 3.1.1.
All measurements have been performed with the LTE Cat 12 modem.
The client uses Ubuntu 19.04 as its operating system. The server uses
Ubuntu 19.04 for Reno, CUBIC, and BBR. For CTCP measurements,
Windows Server 2016 is used. For all congestion control algorithms,
we have used the default settings provided by the respective operating
systems. On Ubuntu, we use TCP tracepoints to record the congestion
window. On Windows Server, as the congestion window information
is not easily accessible, we use Wireshark traces to analyze the number
of bytes in flight. In our Ubuntu measurements, this number has been
identical to the size of the congestion window.

In the stationary measurement campaign, we perform greedy through-
put downlink measurements with different congestion control algo-
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rithms to assess their performance in the absence of major changes in
capacity. The corresponding results are described in Section 3.2.3.

In the mobile scenario, we send traffic from our test server to the
user equipment while repeatedly driving on a city and highway route
between Hanover and Brunswick with a speed of 100-130 km/h as
described in Section 3.1.1. The results can be found in Section 3.2.4.

3.2.3 Stationary Measurements

The primary purpose of performing stationary measurements before
mobile measurements is to isolate effects introduced by the congestion
control algorithm from the effects resulting from signal quality varying
with location and time/load-based effects. For this, we have performed
multiple consecutive TCP throughput measurements while alternating
between the congestion control algorithms. In the following, we will
first present the behavior we have observed most frequently: In most
connections, no packet loss could be observed. We then will briefly
discuss the less frequent cases in which packet losses did occur.

3.2.3.1 Loss-based congestion control

In this Section, we analyze the behavior of loss-based congestion
control algorithms in a stationary scenario. For this, we choose Reno
and CUBIC as the two most prevalent loss-based congestion control
algorithms [39]. The main difference between these two algorithms
is their congestion avoidance phase: Both algorithms increase their
congestion window when Acknowledgement (ACK) packets arrive.
However, Reno uses a linear function to increase its window, whereas
CUBIC uses a cubic one.

Both algorithms use the Additive Increase, Multiplicative Decrease
(AIMD) scheme: When in the congestion avoidance phase, they care-
fully probe for new bandwidth by slowly increasing their congestion
window. When a packet loss occurs, they assume this happened due
to congestion. In order to allow other stations to increase their con-
gestion windows, they reduce their congestion window by half (or to
its initial state if Reno has identified the loss via a timeout) and start
slowly increasing it again. This process finally converges to all stations
having a similar congestion window. Currently, Reno (in its NewReno
variation with some minor adjustments) and CUBIC are some of the
most used congestion control algorithms. Additionally, CUBIC is often
deployed in combination with the Hybrid Start (HyStart) mechanism,
which tries to exit slow start before a packet loss occurs [40].
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Figure 3.11: Stationary greedy throughput measurements with different TCP

congestion control algorithms. The Maximum Segment Size (MSS)
is 1448 Bytes. Note that the cwnd axis is scaled differently in
different figures due to large differences in the behavior of the
algorithms.

Figs. 3.11a and 3.11b display the results of two 30-second long
greedy throughput measurements using Reno and CUBIC, respectively.
The two measurements were performed right after each other, so the
signal quality conditions and the available capacity are nearly identical.
The only difference in the setup is the choice of the congestion control
algorithm; no other parameters have been changed.

In both cases, it can be seen that the congestion window, after an
initial phase of rapid growth, enters a phase where it either grows
very slowly or even remains constant. In the case of Reno, the initial
growth phase is the slow start phase, in which the congestion window
is doubled each Round Trip Time (RTT). In the presented measurement,
the threshold value of approximately 1600 MSS is reached very quickly,
and the exponential growth is then stopped. After this, the window
continues to grow linearly; however, the growth rate is very small
compared to the already oversized window.

In the case of CUBIC, the initial growth phase is much longer than
that in the case of Reno. This is because the default implementation of
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CUBIC in Linux has the HyStart feature activated: With this additional
algorithm, CUBIC can exit the slow start phase early if it detects
congestion using the gaps between the ACK packets [41]. As already
discussed in Section 2.1.2.1, the data transmitted over the LTE wireless
channel is divided into Transport Blocks with a duration of 1 ms.
These Transport Blocks are then scheduled individually, meaning that
data packets that have arrived at the eNodeB in a single burst can be
divided into multiple Transport Blocks and be scheduled with a time
gap. On the other hand, the scheduler can combine multiple packets
with a larger packet gap into one Transport Block so that the packet
gap between them decreases. Because of this, the gaps between packets
and ACKs can become bigger as well as smaller without it being a result
of congestion. For this reason, HyStart almost always exits the slow
start phase at the very beginning of the connection. A similar result
has also been reported in a previous simulation study [42]. Because
of this, the congestion avoidance phase is entered very early, and the
growth of the congestion window is much slower than that of Reno.
With HyStart turned off, the start-up behavior of CUBIC is identical to
Reno.

After the slow start phase is finished, the congestion window grows
using CUBIC’s congestion avoidance function. After about 8 seconds,
the cubic growth is stopped when the congestion window has reached
the size of the receive window (rcv_wnd). The congestion window
then stays at that value for the remainder of the connection.

The most notable detail of both connections is that neither of them
experiences any losses in a 30-second interval. Due to large buffers in
cellular networks and efficient HARQ retransmissions, the packet losses
are typically concealed to TCP congestion control. It can therefore
be impossible for loss-based TCP congestion control algorithms to
adjust their window to the actual available capacity, as they expect
the network to start dropping packets if the congestion window is too
large.

The result of this behavior is an increase in delays. While the RTT

of an ICMP ping packet without any load rarely exceeds 50 ms, the
RTT of the TCP packets during a greedy throughput measurement
can be much higher due to the self-induced bufferbloat caused by an
oversized congestion window. In the case of Reno, the delays reached
around 300-350 ms, and with CUBIC, they increased up to 450-500 ms
due to an even larger congestion window.

There are multiple ways to alleviate this problem:

• Some network providers use TCP middleboxes that divide the
single TCP connection between the server and the user equip-
ment into two separate connections: One connection between the
server and the middlebox in the LTE backbone network and one
connection between the middlebox and the user equipment [6].
This way, the application server can still maintain a TCP con-
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nection where the bottleneck link is not the wireless connection
between the eNodeB and the user equipment so that the con-
gestion control algorithm behaves properly. The middlebox can
then manage the connection to the user equipment in a way that
is aware of the limitations of TCP congestion control algorithms
in LTE connections.

• Some smartphone manufacturers simply reduce the maximum
receive window based on the type of communication/expected
capacity so that the congestion window cannot become too
large [43].

3.2.3.2 Delay-based congestion control

As we have seen in the previous Section, when no packet loss oc-
curs in an LTE connection, the congestion control algorithms cannot
be informed about network congestion, which can lead to perfor-
mance issues. As delay-based congestion control algorithms adjust
their congestion window before packet loss occurs, it can be reason-
ably assumed that they have an advantage when it comes to mobile
networks.

In this Section, we take a look at TCP Vegas and CTCP, two well-
known congestion control algorithms that use delay information when
adapting the size of the congestion window, to see if they perform
better than the loss-based algorithms.

TCP Vegas is purely a delay-based congestion control algorithm.
It saves the lowest RTT observed as baseRTT and uses it to calculate
the expected throughput based on the current size of the congestion
window. The congestion window is reduced if the actual throughput
is lower than expected.

An example of typical behavior with TCP Vegas in a stationary sce-
nario can be seen in Fig. 3.11c. Here, it can be seen that after the initial,
quick ramp-up during the slow start phase, the congestion window
remains very low (note that the cwnd-axis is scaled differently from
Reno and CUBIC). This also results in a much lower throughput than
that achieved by TCP Reno or CUBIC. The most likely cause for this be-
havior is how Vegas estimates the expected throughput: This estimate
is calculated using the lowest measured RTT value. Because of how
the scheduling works in mobile networks, this estimate can be much
lower than what would be representative of the connection, leading
to a throughput expectation that is too high. Since this expectation
can not be met, TCP Vegas keeps the congestion window low. Because
TCP Vegas fails to fully utilize the link, the delays also remain low. We
have also observed an alternative start-up behavior where TCP Vegas
first grows a slightly larger congestion window and then gradually
reduces it to a similar value as shown here over several seconds; an
example of it can be seen in Fig. 3.13c.
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CTCP, which has been the congestion control algorithm of choice for
many versions of Windows and Windows Server operating systems,
uses an approach that combines a congestion window calculated using
Reno and an additional delay window [37]. The idea behind it is to not
only be able to adjust the congestion window during loss events but
also react when an increase in queuing delays is detected. The concept
behind the detection of queuing delays is based on the same idea as in
Vegas, i.e., the current RTT and an estimate of the RTT without load are
used to calculate how many packets are queued in the network. If the
queue is too large, the delay window is reduced to 0. If the queue is
small, the additional delay window increases the congestion window.

Fig. 3.11d shows the result of one 30-second long greedy throughput
measurement using CTCP. Note that instead of the congestion window,
the number of bytes in flight is displayed, which is, however, a good
approximation of the congestion window. When comparing this figure
to Reno and CUBIC, it can be seen that the achieved throughput is
much lower, which is due to the very small congestion window. This
result is similar to what we observed with TCP Vegas. It is unclear
what exactly limits the growth of the congestion window in this case
since the loss-based window should grow even when the growth of
the delay-based window is impeded as it was with TCP Vegas. We are,
however, unable to investigate this further due to the closed-source
nature of Windows. Since the connection clearly underutilizes the link,
we can also see that the delays are much lower than those of Reno and
CUBIC, as no bufferbloat is occurring.

This result also means that both delay-based algorithms have un-
derestimated the link capacity and have caused the throughput to be
much lower than would be possible.

3.2.3.3 Model-based congestion control

As already mentioned, TCP BBR is a model-based congestion control
algorithm that tries to find an optimal working point according to [44].
In its first version, BBR periodically tries to increase its window and
uses delays as an indicator of whether this has led to a higher buffer
fill level. In its second version, it also uses packet loss and Explicit
Congestion Notification (ECN) signals; However, it defines a threshold
that should not be crossed instead of reacting to every lost packet. In
this thesis, we analyze BBR’s first version, as the second one is still in
an early development stage.

BBR works by trying to keep the fill level of the bottleneck buffer low
while periodically probing the network for more available bandwidth.
It increases its congestion window once every ten transmission rounds
and then checks if this has increased the RTT. If it has not, the increased
congestion window is kept; otherwise, it is decreased again. This way,
BBR tries to avoid self-induced congestion while still probing for newly
available bandwidth.
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In Fig. 3.11e, which displays the result of a 30-second long greedy
throughput measurement using BBR, it can be seen that it achieves a
throughput similar to that of Reno and CUBIC while maintaining a
much smaller congestion window. This also leads to much smaller
delays since the network is not as overloaded. The only times when
the throughput of BBR is reduced is during the ProbeRTT phases in
which BBR reduces its congestion window to 4 segments to measure
the RTT without load.

Overall, it can be seen that TCP BBR is the most successful in dealing
with a mobile network where the bottleneck link is located between
the user equipment and the cell tower, as it maintains a low delay and
high throughput.

3.2.3.4 Average behavior and packet losses

For a statistical evaluation, we performed 120 alternating 30-second
greedy throughput measurements with the five investigated TCP con-
gestion control algorithms (30 measurements each). All the measure-
ments have been performed consecutively so that the signal quality
conditions remained nearly the same. Fig. 3.12a shows the distribu-
tion of the achieved throughputs, Fig. 3.12b the corresponding RTTs

during the measurements. It can be seen that Reno, CUBIC, and BBR

all achieve similar throughput. CTCP and Vegas, as discussed in the
previous Section, fail to utilize the available capacity and thus achieve
a much lower throughput. When looking at RTTs, we can see that
BBR performs very similarly to CTCP and Vegas despite achieving
much higher throughput. As both Reno and CUBIC achieve their high
throughput by oversaturating the link, we can see that they both have
much higher delays than CTCP, Vegas, or BBR.
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Figure 3.12: Result of 150 alternating 30-second long greedy throughput mea-
surements with five different TCP congestion control algorithms
(30 measurements for each algorithm).

We note that while the cases we have presented in Fig. 3.11 are
the ones we have observed most frequently, many connections still
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Reno CUBIC Vegas CTCP BBR

connections with at least
one packet loss event

13.8% 30.3% 3.3% 19.3% 12.1%

Table 3.3: Percentage of TCP connections that experienced at least one packet
loss in 150 alternating 30-second long greedy throughput measure-
ments (30 measurements for each algorithm).

experience minor packet loss, as seen in Table 3.3. In about 12-30 %
of the cases (depending on the congestion control algorithm), one or
two packet loss events occurred during the 30-second measurement
period. For Reno, such events helped to reduce the delays: The conges-
tion window was halved for the remainder of the connection, which
improved the delay performance due to a decrease in bufferbloat. For
CUBIC, the packet loss led to a temporary reduction of the congestion
window by 1/3, which improved the delays slightly; however, it grew
back to the size of the receive window within about 5-10 seconds. It
can also be seen that CUBIC experienced the highest packet loss rate,
which most likely happened due to self-induced congestion, as CUBIC
also had the largest congestion window and the highest delays. The
throughput of Reno or CUBIC was not affected by packet losses in
any of the observed cases, as the reduced window was still larger than
needed to utilize the full capacity of the bottleneck link.

CTCP, Vegas, and BBR connections also experienced packet losses.
However, neither of the algorithms has reacted to packet loss in an
obvious way where a major change in the congestion window/bytes in
flight could be observed that could not be attributed to a momentary
change of capacity.

We note that while our results have been consistent with the results
in other studies like [45, 46, 47], LTE connections can behave differently
from what we have observed in this paper: The study in [48], for
example, reports much more frequent packet loss in TCP connections
using LTE than what we have observed in our measurements. While we
can not say with certainty what the cause of this difference is, possible
reasons are different service providers or operating systems (We use
Ubuntu 19.04 on our receiver, whereas this study uses Windows XP).
The authors of [49] also report a higher loss rate; however, their study
deals with TCP performance at speeds of 300-350 km/h, where losses
occur more frequently [50].

3.2.4 Mobile Measurements

In this Section, we discuss how the choice of congestion control al-
gorithm affects LTE performance in mobile environments. For this,
we have performed several hundreds of greedy throughput TCP mea-
surements for several months with each of the discussed algorithms
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while commuting on a highway between Brunswick and Hanover,
as described in Section 3.1.1. Instead of presenting a statistical com-
parison between the different algorithms, which has been done in
previous works (e.g. [45, 49]), we look at how they behave in two
typical, challenging scenarios:

• A continuously increasing bottleneck link capacity due to im-
proving signal quality conditions (e.g., while the user equipment
is approaching an eNodeB)

• A decreasing bottleneck link capacity due to deteriorating signal
quality conditions (e.g., while the user equipment is moving
away from an eNodeB)

We use the CQI value reported by the modem as the indicator of
channel capacity as it has a direct impact on the selected MCS, and
therefore the maximum throughput, see Section 2.1.4. Note that CQI

is not the only factor that influences the achieved throughput: other
factors, like additional cell load caused by user equipment in other
vehicles, can vary over time and are not considered in this study.

In Fig. 3.13, we present the results of five such measurements that
have been performed using different congestion control algorithms.
These measurements represent the typical behavior of these algorithms
that we have observed throughout the measurement campaign; we
have merely selected such cases in which the signal quality change
is continuous and not erratic. Furthermore, we have selected mea-
surements in which packet loss does not occur. As we have already
discussed in the previous Section, this is the typical behavior we have
observed in most of our measurements.

3.2.4.1 Decreasing Capacity

A continuously decreasing channel capacity can be a challenging sce-
nario for congestion control algorithms: As the capacity decreases, old
estimates of the channel capacity become invalid, and the congestion
window has to be reduced. Since this reduction of the congestion
window also has to happen continuously, particularly loss-based algo-
rithms can be at a disadvantage since they probe for new bandwidth
by increasing their congestion window.
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Figure 3.13: Mobile greedy throughput measurements with different TCP

congestion control algorithms in which a continuous decrease
of signal quality can be observed. The MSS is 1448 Bytes. Note
that the congestion window (cwnd) axis is scaled differently in
different figures due to large differences in the behavior of the al-
gorithms. Also, note that the RTT axis is scaled differently than in
Fig. 3.11 as delays can be much higher in mobile measurements.

loss-based congestion-control In Fig. 3.13a, we look at how
Reno reacts when such a decrease in capacity occurs. Before the de-
crease, Reno behaves similarly to the stationary case: the congestion
window quickly reaches the threshold value and then continues to
grow very slowly. The difference can then be observed at about the
15-second mark, where the CQI starts to decline continuously. Immedi-
ately we can see that the throughput drops, and the delay also begins
to grow slightly. As the signal quality and throughput decline even
further towards the 25-second mark, the RTT grows to 4 seconds as the
buffer can no longer be processed in a timely manner. As no packets
are lost, the delays only improve as the throughput slightly increases
at the very end of the experiment. Note that no such delay variations
were observed in the stationary case since the capacity has remained
constant throughout the measurement.
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The behavior of CUBIC in Fig. 3.13b is very similar: At the start
of the connection, we see the same long transient phase as in the
stationary measurement. After the congestion window reaches the
size of the receive window, its growth stops, and it stays at that value
until the end of the measurement, which is the same behavior we
observed in the stationary case. The main difference can be observed
around the 13-second mark: As the signal quality decreases, so does
the throughput. Since no packet loss occurs, the congestion window
remains unaffected by the decrease of capacity, which results in delays
growing to 1 second toward the end of the connection. This differs
from the stationary case, where the delay and capacity remained
constant.

In both cases, we can see that when the channel capacity decreases,
the congestion window is not reduced by a packet loss. This leads
to increased delays since more time is needed to process the same
amount of packets in network buffers. As this behavior has been what
we have generally observed in all of our measurements, it can be
said that both Reno and CUBIC are not suited for mobile scenarios in
which the channel capacity is reduced, as is the case when the user
equipment is moving away from an eNodeB.

delay-based congestion control The behavior of TCP Vegas
can be seen in Fig. 3.13c. At the beginning of the connection (0-5
second interval), we can see a behavior that we have also observed in
many stationary TCP Vegas connections, i.e., the congestion window is
reduced even though the channel capacity remains constant, resulting
in throughput becoming lower. In the 5-25 second interval, the capacity
of the channel experiences increases and decreases; however, this
does not seem to affect the congestion window as it remains on the
same level. The throughput also remains the same as it is limited
by the congestion window. Finally, when the capacity of the channel
experiences a significant decrease after the 25-second mark, we see
a slight increase in RTTs. To account for that, TCP Vegas reduces the
congestion window, resulting in reduced throughput. The RTTs become
slightly lower again afterward. Overall it can be said that because TCP

Vegas initially underestimates the channel capacity, it also does not
react to its small changes. When the reduction of channel capacity
becomes so large that it is below the initial estimate, the congestion
window finally gets reduced.

CTCP suffers from similar problems as the loss-based congestion
control methods: As we have already seen in the stationary case, CTCP

does not seem to make use of its delay-based window when using
LTE. This results in a behavior similar to what we have observed with
Reno and CUBIC: The behavior of the congestion window is identical
to the stationary case despite the decreasing capacity. When the signal
quality declines around the 20-second mark in Fig. 3.13d, the number
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of bytes in flight does not change. Similar to what we have seen with
Reno and CUBIC, no packet loss occurs to reduce the congestion
window. Because of this, we can also see an increasing delay at the
same time; however, since CTCP only grows its congestion window to a
relatively small value that usually does not utilize the entire available
capacity, this increase is very small. Note that such an increase in
delays could not be seen in the stationary case since the capacity
remained the same.

model-based congestion control BBR, unlike the other algo-
rithms, was able to adjust its congestion window to a change in signal
quality. This is because the changing capacity also changes the RTT

delays, as we have seen in the other examples. Since BBR is designed
to react to a change in delays, it is able to reduce its window when the
capacity decreases. Because of this, BBR is the only one of the analyzed
congestion control algorithms that exhibits a different behavior in the
mobile scenario than it did in the stationary measurements: In Fig.
3.13e, we see that the slope of the congestion window follows the
decreasing slope of the signal quality, instead of remaining nearly con-
stant like in the stationary case. This results in the delays remaining
low when the signal quality decreases instead of increasing like in the
other cases. Note that BBR exhibits similar, nearly constant RTT delays
in both the stationary and the mobile case.

3.2.4.2 Increasing Capacity

A continuously increasing capacity can also be a challenging scenario
for congestion control algorithms. Even though congestion control
usually continuously probes for new bandwidth, the rate at which
the capacity increases can differ from the rate at which the congestion
window grows. In this Section, we once again analyze selected traces
from our mobile measurement campaign where the capacity of the
channel, as indicated by the CQI, has been continuously decreasing.
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Figure 3.14: Mobile greedy throughput measurements with different TCP

congestion control algorithms in which a continuous increase
of signal quality can be observed. The MSS is 1448 Bytes. Note
that the cwnd axis is scaled differently in different figures due to
large differences in the behavior of the algorithms. Also, note
that the RTT axis is scaled differently than in Fig. 3.11 as delays
can be much higher in mobile measurements.

loss-based congestion-control In Fig. 3.14a, we look at
what happens when the capacity of the link increases while using
TCP Reno. Before the capacity starts to increase around the 10-second
mark, we once again see the same behavior as in the stationary case,
where the congestion window first rises during the slow start phase
and then only grows very slowly. We can also see that no packet losses
occur to adjust the congestion window so that the RTT grows to 1-2
seconds. When the CQI starts to increase, we see that the throughput
also starts growing. As increased throughput allows the bottleneck
buffers to be processed faster, we also see a declining RTT. When the
capacity decreases again around the 25-second mark, we again see
that the throughput declines and the RTT slightly increases. The con-
gestion window has the same slow growth throughout the connection
regardless of the channel capacity.
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The behavior of CUBIC is shown in Fig. 3.14b. Here we see that even
though the congestion window is already large enough to support a
throughput of about 20 Mbit/s that we see at the beginning of the
connection, the congestion window continuously grows throughout
the connection. After an initial decrease of capacity in the 0-5 second
interval, we see that the CQI and the throughput remain more or less
stable in the 5-15 second interval. Because of the growing congestion
window, we can also see the delays grow. When the capacity increases
after the 15-second mark, we see that the throughput also slowly starts
to increase. Because the congestion window keeps growing, the RTT

still increases. When the congestion window stops growing around
the 20-second mark, the bottleneck buffer begins to be processed, and
the RTT becomes smaller. Once again, the connection never experiences
a packet loss to adjust the oversized congestion window.

In both cases, we see that an increasing channel capacity results in
lower delays. However, it does not affect the growth of the congestion
window. The congestion window usually reaches a large enough size
to support the maximum throughput at the very beginning of the
connection and keeps growing. While this case is not as problematic
as the previous case, where the capacity was decreasing, it still shows
that the loss-based congestion control algorithms cannot adjust their
congestion windows to the capacity of the link.

delay-based congestion control The behavior of TCP Vegas
can be seen in Fig. 3.14c. At the beginning of the connection, we
see that the capacity of the channel is very low. Nevertheless, Vegas
starts the connection with a slightly oversized congestion window
that is then reduced over time. This is the same behavior we have
observed in both stationary and other mobile cases, meaning that this
happens regardless of channel conditions. When the channel capacity
increases in the 5-18 second interval, we see some small growth of
the congestion window, which also results in increased throughput.
When the channel capacity continues growing even further in the 18-30

second interval, we see even more significant growth of the congestion
window and the throughput. This shows that TCP Vegas can adjust its
congestion window when the channel capacity is growing. However,
as this is a measurement in a mobile environment where the total
channel capacity is unknown, we cannot say for sure whether TCP

Vegas actually utilized the total available capacity.
The behavior of CTCP is shown in Fig. 3.14d. Once again, we see

that CTCP keeps the number of Bytes in flight constant throughout the
connection. When the channel capacity increases at the 5-second mark,
we see that the throughput increases and the RTTs decrease, which
is the same behavior we have observed with Reno. This means that
in the first 5 seconds of the connection, the congestion window of
CTCP was high enough to utilize the entire channel capacity. However,
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since it did not grow afterward, it cannot be said if an even higher
throughput could have been reached if it grew further.

model-based congestion control The model-based TCP BBR

is able to adjust its congestion window in this scenario as well. In
Fig. 3.14e, we see that when the channel capacity starts to increase
around the 14-second mark, the congestion window and the through-
put also start to grow. The RTTs remain at the same level both before
and after the increase of the capacity/congestion window. Note that
just like in the case of TCP Vegas, we cannot say for sure that TCP BBR

is actually utilizing the entire available capacity since we do not know
it for the mobile scenario.

3.2.5 Conclusion

Overall, it can be said that due to the fact that the bottleneck link
in mobile networks is usually located between the user equipment
and the eNodeB, congestion control algorithms often have the task
of finding the capacity of that link instead of trying to prevent net-
work congestion. Because of large buffers in the mobile network, the
connection rarely experiences packet losses, meaning that loss-based
algorithms are often unable to adjust their congestion window. In-
stead, these buffers get filled by the congestion control, which leads
to very high delays. The lack of packet losses can also be problematic
since the channel capacity can fluctuate rapidly and even decrease
continuously in cases like when the user equipment is moving away
from an eNodeB.

Congestion control algorithms with a delay-based component like
TCP Vegas and CTCP do not cause bufferbloat like the loss-based ones.
However, they are also very cautious when probing for newly available
bandwidth. At least in our experiments, these algorithms were only
rarely able to adjust their congestion window to reach the capacity
of the wireless link. However, it should be possible to improve the
performance of these algorithms for mobile networks by simply adjust-
ing the way they calculate the expected throughput: If the algorithms
consider that the lowest measured delay is not necessarily the lowest
delay that occurs without load but instead suffers from high variability,
the estimate of the expected throughput should improve and be more
representative of the actually achievable throughput.

The model-based algorithm TCP BBR has been the only algorithm
that has been consistently able to utilize the total capacity of the
channel and react to an increase or decrease in capacity by adjusting
its window and therefore maintaining low delays. Because of this, we
recommend TCP BBR for use in mobile networks.
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3.3 carrier aggregation

Due to increasing demand for higher data rates, carrier aggregation
has been introduced as an improvement for LTE. Carrier aggregation
seeks to increase the available capacity by combining multiple com-
ponent carriers of 1.4 to 20 MHz for a total of up to 100 MHz in
Release 12 or up to 640 MHz in Release 13 [4]. To achieve this, an
eNodeB capable of carrier aggregation can use its scheduler to assign
transport block (TB) transmissions to multiple carriers instead of just
one, thus increasing the transmission capacity. The UE has to receive
the transport blocks from both component carriers and then reassem-
ble them in the correct order before higher layers can process the data.
Further details describing carrier aggregation implementation can be
found in [4, 30]. Carrier aggregation will also be used in 5G; however,
it plays a less important role as the frequency spectrum of 5G is less
fragmented.

Since the use of multiple component carriers for data transmis-
sion creates additional complexity, we want to analyze whether the
increased throughput comes with a trade-off in other areas. To an-
swer this question, we perform multiple measurement campaigns in
a commercial LTE network to analyze the possible impacts of carrier
aggregation on the application-level performance.

Existing work analyzing the performance of carrier aggregation
often focuses on comparing the average throughput with and without
carrier aggregation and the relationship between throughput and sig-
nal quality. One such study presents measurement results of multiple
test drives performed in South Korea [51]. Separate measurements are
performed with and without carrier aggregation in 850 MHz and 2600

MHz frequency bands. The study shows that combining component
carriers in the two bands using carrier aggregation allows to achieve a
throughput that is, on average, about 97% of the sum of the average
throughputs of two component carriers by themselves.

The authors of [52] use an LTE control channel decoder to analyze
how users at three locations in Spain benefit from carrier aggregation.
They find that while it is generally possible for users to achieve higher
data rates using carrier aggregation, the user throughput requirements
can often be met without it. In these cases, carrier aggregation is used
as a load-balancing technique between the component carriers.

The authors of [53] have used a simulation to analyze the throughput
achievable when using LTE carrier aggregation with 4x4 MIMO and
compared the simulation results with real-world measurements. They
have found that the correlation between the propagation paths in
real-world measurements leads to a much lower throughput than the
simulation predicts for statistically independent channels.
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Many other works like [50, 20, 45, 49] analyze achievable throughput
performance in live LTE networks; however, they do not comment on
the availability of carrier aggregation and its effect.

In this Section, which is based on [54], we analyze how the use
of carrier aggregation affects the application level performance of
LTE. We describe the improvement that is achievable in a mobile
scenario on a highway, where the user equipment faces challenges like
constantly changing signal quality (and therefore capacity), handovers,
and secondary component carriers being turned on/off during an
active connection. Unlike other studies, we not only compare the
average throughput performance but also analyze the effect of carrier
aggregation on the round-trip-time delays and present the behavior
that can be observed during the activation and deactivation of a
secondary component carrier.

We have also performed stationary measurements in controlled
signal quality conditions for a more detailed, statistical evaluation of
the achievable improvements. We performed greedy UDP throughput
measurements with and without the use of carrier aggregation. In
contrast to other studies, we have not only analyzed the average
throughput improvement but also how the throughput that can be
achieved at a particular time in the individual bands is related to
the aggregated throughput when using multiple component carriers.
This evaluation is also important for performance prediction that we
discuss in Chapter 4 as we need to know whether connections with
a specific bandwidth need to be treated differently depending on
whether this bandwidth has been achieved with or without the use of
carrier aggregation.

Additionally, we have performed measurements with CBR traffic
sent at different rates with and without carrier aggregation. We use
these measurements to present the effect of carrier aggregation on the
achievable delays, which can be negatively affected by a component
carrier with a higher loss rate but also improved due to load balancing.

3.3.1 Methodology & Measurement Setup

Our hardware and software setup is the same as described in Sec-
tion 3.1.1. When performing mobile measurements, we use TCP BBR as
our congestion control algorithm as we had found in Section 3.2 that it
adjusts its congestion window when the capacity of the link changes,
unlike other popular algorithms that often kept the same congestion
window throughout the connection. The measurements are performed
in bands B3 and B20.

For the stationary throughput evaluation, we perform alternating
greedy throughput downlink measurements with UDP in the B3 and B7

bands individually, as well as these two bands combined with carrier
aggregation. We use iperf3 as our traffic generator. For the stationary
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Figure 3.15: Map indicating availability of carrier aggregation (green = avail-
able, red = not available). In our measurements, carrier aggre-
gation was only available close to populated areas or an in-
terchange where more traffic is expected. Map data © Open-
StreetMap contributors, CC BY-SA [26].

One-Way Delay (OWD) measurements, we use a python-based CBR UDP

traffic generator.
We use different bands in the stationary and mobile measurements

since the B7 band is more commonly used in urban areas where
users tend to be stationary more frequently, and the B20 band is more
common in rural and highway areas where users are more mobile [20].

3.3.2 Mobile Measurements

In this Section, we discuss how the use of carrier aggregation affects
LTE performance in a mobile environment. For this, we have per-
formed multiple greedy throughput TCP measurements in Hanover
and Brunswick and on the highway between the two cities. We have
selected this highway since it is often used for daily commutes, and
we wanted to analyze how carrier aggregation affects the performance
of LTE communication in a frequently occurring scenario.

Since we cannot control the signal quality conditions in a mobile
environment, we only evaluate the average throughput and delay
performance in different bands with and without the use of carrier
aggregation. Additionally, we present sample traces that show the
behavior of the TCP connection when an additional component carrier
is activated or deactivated while driving on a highway.

We compare mobile highway measurements in the bands B3 and
B20 since the B7 band is rarely available outside the inner city due to
its lower range.

We also note that carrier aggregation was very rarely spatially
available in our measurements: As can be seen in Fig. 3.15, carrier
aggregation was usually only activated close to populated areas or
areas where more traffic is expected. We have also observed a similar
result in a previous study [20]: LTE coverage was more sparse in
the highway scenario, most likely due to cost-saving measures by
providers in less densely populated areas. During our measurements
on the highway, we observed that carrier aggregation was activated
with component carriers in the bands B20 (10 MHz) and B3 (20 MHz),
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Figure 3.16: Throughput and CQI values of highway measurements.

which we denote as B20_B3 (also known as CA_3A-20A), as well as
within the B3 band, where a 10 MHz carrier and a 20 MHz carrier
were combined, which we denote as B3_B3 (also known as CA_3C).
We have not observed carrier aggregation with three or more carriers
in any of our mobile or stationary measurements.

3.3.2.1 Mobile Throughput Measurements

In Fig. 3.16a, we present a CDF showing the distribution of throughput
values achieved with and without the use of carrier aggregation. In
this CDF, it can be seen that, in the median, a higher throughput has
been achieved with carrier aggregation (B3_B3: 38.5 Mbit/s, B20_B3:
26.8 Mbit/s) than without it (B3: 22.8 Mbit/s, B20: 9 Mbit/s), which
can be explained by the additional available bandwidth.

In Fig. 3.16b, we can see that for the B3, B20, and B20_B3 measure-
ments, the signal quality values were similar to each other; however,
they were lower for the B3_B3 measurements, meaning the higher
median throughput has been achieved despite the lower signal quality.

Overall, our measurements show that connections that used carrier
aggregation achieved a higher throughput, even when the signal qual-
ity was lower. In order to quantify the exact throughput improvements
achievable when using carrier aggregation in similar signal quality
conditions, we additionally perform stationary measurements, the
results of which we present in Section 3.3.3.1.

3.3.2.2 Mobile Delay Measurements

For the delay evaluation in the mobile scenario, we take RTT measure-
ments, as precise synchronization required for OWD measurements is
hard to achieve when not in the same local area network.

In Fig. 3.17a, a Complementary Cumulative Distribution Function
(CCDF) of all mobile delay measurements with and without carrier
aggregation can be seen. While the median is almost the same for
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Figure 3.17: Mobile delay measurement results.

measurements with and without carrier aggregation, the tails of the
delay measurements with carrier aggregation decay faster.

The reason for this can be seen in Fig. 3.17b, where we present how
the RTT depends on the achieved throughput. It can be seen that the
delays increase when the throughput is low since the network buffers
cannot be processed fast enough. It can also be seen that the delays
are lower when the throughput is higher.

Since higher throughput occurs more frequently when carrier ag-
gregation is activated, as we have seen in Fig. 3.16a, it can be said that
carrier aggregation can lead to lower delays. We further investigate
the relationship between throughput, delays, and utilization in Sec-
tion 3.3.3.2 by performing measurements in a controlled, stationary
environment.

3.3.2.3 Handover Behavior

In Fig. 3.18, we present two typical examples of the behavior we ob-
served when carrier aggregation had been activated or deactivated
during an ongoing connection. The state of carrier aggregation is indi-
cated by the background (green=on, red=off). Note that the firmware
of the modem has sometimes indicated the changes in the carrier ag-
gregation activation state with a slight delay so that the actual switch
might have happened slightly (1-2 seconds) before the time indicated
in the figure.

In Fig. 3.18a, we can see that when carrier aggregation is activated,
the throughput quickly starts growing because of the increased ca-
pacity, while the delays decrease. We did not observe delay spikes or
similar behavior during the switch, i.e., the improvement of through-
put and delays was the only observed effect.

In Fig. 3.18b, one of the carriers is switched off towards the end
of the connection. We can see that the throughput has already been
declining since the beginning of the connection. This is because the
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Figure 3.18: Behavior when carrier aggregation is activated (green back-
ground) or deactivated (red background).

user equipment was moving away from the eNodeB. As we have ob-
served during stationary measurements (see Section 3.3.3.2), when the
throughput requirement is low, the eNodeB does not use a secondary
carrier, which is also likely the reason for it being turned off when
the throughput is decreased. After the second component carrier has
been turned off, the throughput decreases further, and the delays also
begin to grow.

We note that this behavior is different from the results described
in [55], where the authors also analyze TCP RTTs with and without
carrier aggregation in a live LTE network. Their measurements show
that delay spikes occur more frequently while using carrier aggre-
gation, which the authors explain with more frequent Radio Link
Control (RLC) layer retransmissions. The difference may come from
different providers and hardware used in the measurements.

3.3.3 Stationary Measurements

The primary purpose of performing stationary measurements with
carrier aggregation is to isolate its effects from the effects that re-
sult from signal quality varying with location, as well as time and
load-based effects. For this, we have performed multiple consecutive
greedy throughput UDP measurements while alternating between com-
ponent carriers in the B3 and B7 bands (20 MHz each), as well as their
aggregation, which we denote as B3_B7 (also known as CA_3A-7A).

In Section 3.3.3.1, we analyze how the use of carrier aggregation
affects the throughput by repeatedly performing greedy throughput
measurements and comparing the performance in different bands. In
Section 3.3.3.2, we analyze the delay performance by repeatedly send-
ing UDP CBR traffic at different rates in alternating bands. The purpose
of using different CBR rates is to compare delays under different loads.
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Figure 3.19: Stationary throughput over time measured at the LTE receiver.
The sum of the throughputs B3+B7 is strongly correlated with
the CA performance.

3.3.3.1 Stationary Throughput Measurements

In Fig. 3.19, we present the result of 300 greedy throughput measure-
ment experiments using UDP. Each measurement experiment consists
of a measurement in the B3 band, a measurement in the B7 band, and
a measurement using carrier aggregation of component carriers in
the two bands. During each measurement, 5MB of data is transmitted
from the server to the client with a sending rate of 100 Mbit/s. Each
packet utilizes the entire MTU of 1500 Bytes. The measurements are
performed within a few seconds of one another. Additionally, as a
way to compare the performance of the individual component carriers
and their aggregation, we calculate the sum of the two throughput
values B3+B7 for each pair of consecutive measurements in these two
bands. We use this value as a benchmark for the data rate that should
be achievable using both bands simultaneously. Fig. 3.19a shows indi-
vidual throughput values for each performed measurement.

As a way to smooth out the high variability of LTE throughput over
time, we have also looked at the moving average of the measurements
in each band which can be seen in Fig. 3.19b. In the figure, it can
be seen that the sum of the throughput values in the two bands
closely follows the throughput achieved during the use of carrier
aggregation. This is also reflected in the high correlation (0.75) between
the throughput achieved using carrier aggregation B3_B7 and the sum
of the individual throughput values in bands B3+B7. The throughput
measurement results in the bands B3 and B7 themselves are only
weakly correlated (0.29), meaning that a performance change in one
of them does not necessarily lead to a change in the other.

A comparison emphasizing the difference in throughput between
carrier aggregation and the individual carriers can be seen in Fig. 3.20.
This figure shows the CDF of all throughput measurement results
using carrier aggregation compared to B3+B7. We did not differentiate
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between the cases where the Primary Cell (PCell) was in B3 from those
in B7, as the performance was nearly identical.

Overall, it can be said that in our measurements, carrier aggregation
has managed to utilize the total capacity offered by the individual com-
ponent carriers in the bands B3 and B7. This result is also important
for performance prediction that we discuss in Chapter 4: it shows that
connections that have a certain bandwidth due to the use of carrier
aggregation, as well as those that do not use carrier aggregation, can
be treated the same way when predicting the achievable throughput.

3.3.3.2 Stationary Delay Measurements

In addition to the achievable throughput performance, we have an-
alyzed the delay performance with and without carrier aggregation
under similar signal quality conditions. For this, we have transmit-
ted CBR traffic at different rates using UDP and measured the OWDs

from the server to the user equipment. In order to obtain precise OWD

values, we have used the Precision Time Protocol to synchronize the
sender and the receiver. For small sending rates of 1-2 Mbit/s, no
activation of carrier aggregation could be observed; for other send-
ing rates smaller than 5 Mbit/s, the activation was very infrequent.
Therefore we focus our analysis on sending rates of 5 Mbit/s and
higher. The available capacity in the B3 band was, on average, around
30 Mbit/s; in the B7 band it was around 40 Mbit/s. The results of
these measurements can be seen in Fig. 3.21.

For low sending rates of 5-20 Mbit/s, the delays measured with
and without carrier aggregation are very similar: The median is the
same in each case, and the delay is less than 40 ms at the end of the
tail (at 10−4). The reason for this is that when the channel utilization
is low, the delays mostly depend on the protocol delays, which are
largely independent of the specific utilization [56].

The main difference can be observed in the packet loss rate. The
packet loss rate can be seen in the CCDF by observing where the delays
start to increase above the initial 10-12 ms. In Fig. 3.21a for a sending
rate of 5 Mbit/s, it can be seen that the B3 band has a lower loss rate
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Figure 3.20: CDF of stationary throughput measurement results.
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Figure 3.21: OWD measurements for UDP CBR traffic with different rates. Note
that for 40 Mbit/s and 50 Mbit/s, some of the OWDs are so high
that they are only visible at the top of the figure (at 100).
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than the B7 band due to different channel conditions. The increased
loss rate in the second band also leads to an increased combined loss
rate when using carrier aggregation. As the loss rate in the B3 band
increases with higher load this effect becomes less pronounced.

With increasing sending rates, the difference between the delay
tails in the different bands becomes larger. In Fig. 3.21d, as the server
sending rate is close to the capacity of B3, its tail decay becomes a lot
slower, whereas the tail decay rate with the use of carrier aggregation
is not affected. This is because the scheduler of the eNodeB balances
the load between B3 and B7 when using carrier aggregation, leading
to a decreased load in each band. The same effect can also be seen in
Fig. 3.21e for the sending rate of 40 Mbit/s and band B7.

With higher sending rates of 50 Mbit/s and above, the delays when
using carrier aggregation also increase as the sending rates approach
the combined available capacity of B3 and B7. The delays increase
with higher bitrates since the utilization is also higher [56].

Overall, it can be said that the use of carrier aggregation by itself, on
average, does not significantly increase delays. However, it can impact
the tail distribution as the component carrier with the higher loss rate
will also slow down the other carrier since the transport blocks from
both carriers must be processed in the correct order. For higher loads,
carrier aggregation can improve the delay performance by offering
additional capacity.

3.3.4 Conclusion

We have performed delay and throughput measurements with and
without the use of carrier aggregation in a major commercial LTE

network using the bands B3, B7, and B20. We found that the achievable
throughput using carrier aggregation is nearly identical to the sum
of the throughput values in the individual carriers. In contrast, the
two carriers’ throughput is only weakly correlated. This result is
important for our performance prediction in Chapter 4, as this means
that connections that use carrier aggregation do not need to be treated
differently from those without it, and only the total bandwidth matters.

Our mobile highway measurements with carrier aggregation have
shown a delay and throughput performance that was as good or better
than without it. However, the spatial availability of carrier aggregation
in highway areas was very low. An activation of carrier aggregation
during an active TCP connection has always improved delays and
throughput, whereas a deactivation had the opposite effect.

For OWDs, we found that the use of carrier aggregation does not
introduce additional delays when the sending rate is low. However, if
one of the carriers experiences higher delays due to a higher loss rate,
carrier aggregation will also have higher delays and loss rate. When



60 performance evaluation

the sending rate increases, carrier aggregation exhibits lower delays
since the load is balanced between the individual carriers.

Overall, it can be said that from the application level point of view,
the use of carrier aggregation can lead to an improvement of through-
put and delays. The use of carrier aggregation can, however, negatively
affect delays if one band experiences a higher packet loss rate than the
other and the utilization is low.
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P E R F O R M A N C E P R E D I C T I O N

As we have discussed in the previous Chapter, there are many aspects
that influence the data rate of an LTE connection and can be used for
prediction:

• The hardware of the user equipment and the eNodeB has a major
influence on achievable data rates. As discussed in Section 2.1,
LTE has undergone major improvements throughout the years;
however, not all user devices are up to date. Features like car-
rier aggregation and higher-order modulation can significantly
influence achievable data rates.

• The user’s signal quality significantly influences the achievable
data rates. However, it cannot be directly used to predict the
data rates as there are other influences, e.g., the number of other
users in the same cell.

• The band in which the cell is located and the associated band-
width can also be used to characterize the achievable data rates.

• The location of the user equipment can also have a high pre-
diction value: rural areas usually have less coverage and lower
throughput than urban areas; however, they also have a more
stable throughput that does not vary as much.

In this Chapter, we devise a model that can be used to predict the
achievable throughput at a specific location without performing active
measurements. Note that due to the stochastic nature of the relation-
ship between passive indicators like signal quality and throughput,
the predicted value can also only be stochastic.

4.1 throughput prediction using signal quality

In this Section, we explore how the stochastic relationship between
the throughput and the signal quality can be exploited to predict the
achievable throughput without performing bandwidth measurements.
For this, we first analyze how well we can approximate the properties
of the empirical data, like the mean µ and the standard deviation σ
using a mathematical model.

Since we know that the achievable throughput is different for dif-
ferent user equipment categories and cells with different bandwidths,
we take this into consideration when creating our prediction.
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In the following, we create a prediction model for the throughput
that can be achieved using an LTE Cat 12 modem in 20 MHz cells. For
this, we look at the throughput values obtained in 20 MHz cells and
analyze them as a function of the measured SINR values. We aggregate
the SINR values into groups of 10 dB to reduce noise in the data like we
did in Section 3.1. For each group of throughput values, we calculate
the mean µ and standard deviation σ. Finally, we try to approximate
the µ and σ values using linear approximation.

The result of this evaluation can be seen in Fig. 4.1, where we com-
pare the mean and standard deviation of the empirical throughput
values grouped by their SINR value with their linear approximation.
On the x-axis, we always show the middle value of a 10 dB group,i.e.,
a value of 10 dB means that the throughput value is the mean of
the [5,15] dB group. Here, we can see that the linear approximation
matches the empirical data reasonably well; however, not every de-
tail can be described using this model. It is likely that with more
measurement samples, the noise in the data would be reduced even
further.
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Figure 4.1: Comparison of empirical µ and σ of the throughput values with
their linear approximation in 20 MHz cells.

Next, we model the distribution of the achievable throughput. For
this, we take a truncated normal distribution and use the mean µ
and the standard deviation σ we modeled in the previous step as
parameters. We use a truncated normal distribution as we want to
avoid the prediction of negative throughput values or values that are
higher than the empirical values. To verify the result, we use Quantile-
Quantile (Q-Q) plots to compare the quantiles of the empirical data
and the modeled distribution.

As we can see in the resulting graphs in Fig. 4.2, a truncated normal
distribution can model the distribution of the actual data reasonably
well in many cases; however, it has its limitations. In Fig. 4.2b, we
can see that some outliers at the edge of the distribution cannot
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Figure 4.2: Q-Q plots comparing the quantiles of the empirical data for differ-
ent SINR ranges in 20 MHz cells.

be modeled very well. In Fig. 4.2c, we again see that the modeled
distribution can be somewhat imprecise at the edges when compared
to the empirical data. For the highest dB range depicted in In Fig. 4.2d,
the modeled distribution tends to overestimate the throughput values
in lower quantiles.

To visualize how well the distribution of the empirical through-
put can be modeled with a truncated normal distribution, we also
compare their CDFs in Fig. 4.3. Here, we can see that the modeled
distribution matches the empirical data in many cases; however, it
tends to overestimate the obtained throughput values in the 20-30 dB
range.

Unfortunately, the small empirical values in the 20-30 dB range
cannot be explained by signal quality values. These values may have
been obtained while the cell load was higher than usual, and therefore
the user equipment was scheduled less often. To improve the model,
we would need to take the cell load into consideration. However, such
data is not readily available to standard user equipment.

In conclusion, we can estimate the throughput distribution without
performing throughput measurements by exploiting the stochastic
relationship between the signal quality and the achievable throughput.
Since the range of the throughput values in the resulting distribution
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Figure 4.3: Comparison of the empirical throughput distributions for differ-
ent SINR ranges with the modeled truncated normal distribution
in 20 MHz cells.

can be relatively high, we can only use such a prediction to provide
stochastic guarantees and not perform exact throughput predictions.
Unfortunately, the effect of the cell load can be quite high and can
significantly limit the obtained throughput even when the signal
quality is high. This effect cannot be easily considered in such a model
as cell load information is not available to the user equipment. We
further discuss stochastic prediction and their use in ABR application
in Chapter 5.

4.2 impact of the distance between measurements

The precision of a throughput prediction could further be improved by
not only considering the frequency of the channel, its bandwidth, and
the signal quality, but also the location of the measurement. In mobile
scenarios, it is likely that when a user equipment downloads data
at a certain location, the next download will occur at a neighboring
location. In this Section, we evaluate the similarity of the throughput
in neighboring locations.

In order to answer this question, we transform the (two-dimensional)
GPS coordinates of routes depicted in Fig. 4.4 into one dimension,
which we define as the distance to the reference point marked x (on the
left) in Fig. 4.4a and 4.4b. Next, we divide the route into equidistant
points (lags) and assign the closest throughput measurement to each
lag. Then, we compute the autocorrelation of the downlink through-
put for the defined transformation and different distances between
measurement points, i.e., different lags. Autocorrelation refers to the
correlation of the throughput values to values measured in the past,
i.e., if the autocorrelation is high over multiple lags, the throughput
values will be similar in neighboring locations. If the autocorrelation
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(a) Highway route, where measure-
ments have been performed in 800

MHz cells with 10 MHz bandwidth.

(b) City route, where measurements
have been performed in 1800 MHz
cells with 20 MHz bandwidth.

Figure 4.4: Highway and city routes where measurements have been per-
formed. Map data © OpenStreetMap contributors, CC BY-SA [26].

is low, then the throughput values obtained in one location will not
be able to be used to predict throughput at a neighboring location.

In Fig. 4.5a, we present the autocorrelation of downlink throughput
for the rural route. In the first five lags (corresponding to a distance of
500 m), a high autocorrelation (r > 0.5) can be observed. Further, the
autocorrelation decreases with the lags. In the city, the autocorrelation
declines more quickly and is greater than 0.5 only for the first two lags,
see Fig. 4.5b. This means that when a user equipment achieves some
throughput at one location, it is likely to achieve a similar throughput
in a 500 m range in a rural area but only a 100 m range in an urban
area. This result also corresponds to what we have observed in the
spatial distribution of the cells in Section 3.1: In the city, we have a
more frequent occurrence of cells in the B3 band, which have a lower
range than the cells in the B20 band, which mainly occur in rural
areas. This means that in the city, it is more likely to switch the cell
when changing the location. Different cells can experience different
loads, which can heavily impact the available throughput. In addition,
buildings, vehicles, and other obstacles occur more frequently in urban
areas and can temporarily impact a UE’s connection to an eNodeB.

A more intuitive interpretation of this result can be obtained when
observing the distribution of spatial throughput differences. For this,
we look at every throughput measurement and compare it to the values
obtained in a distance of 100 m, 200 m, etc. In Fig. 4.6, we present
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Figure 4.5: Autocorrelation of download speed in rural and urban regions.
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Figure 4.6: Spatial variability of download speed in rural (10 MHz) and urban
(20 MHz) regions.

the distribution of the differences of the throughput values based on
their distance from each other. A value of 50 Mbit/s corresponds to a
throughput change of this amount in, e.g., 100 m. If the value becomes
negative, the throughput is reduced by 50 Mbit/s.

Fig. 4.6a shows that in rural areas, the probability of obtaining a
significantly different throughput is small for a lag size up to 1000 m
(relatively steep curves). For a distance of 5 km, we have a greater
difference (the curve becomes more flat) which means that the proba-
bility of obtaining a substantially different throughput increases, i.e.,
the variability is higher. Fig. 4.6b shows the differences for the urban
regions. Here, the throughput is stable only for the first 200 m, i.e., we
have much higher spatial fluctuations. When we directly compare the
throughput distribution for a specific lag (e.g., 500m in Fig. 4.6c), we
can also see more directly that the throughput in rural areas experi-
ences less change at a different location than in urban areas.

4.3 conclusion

In this Chapter, we have analyzed how well the expected throughput
of a 4G connection can be predicted using information about signal
quality. For this, we have analyzed the measurements we performed
using our LTE Cat 12 modem in cells with a 20 MHz bandwidth. Our
analysis has shown that it is possible to model the obtainable through-
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put with a truncated normal distribution. However, such a model
cannot consider load-based effects, meaning that the instantaneous
throughput can be lower than predicted by the model if the cell load
becomes high.

We have also analyzed the relationship between throughput mea-
surements at different locations. Our analysis has shown that in rural
areas, the obtained throughput can remain stable over distances of
up to 1000 meters. In contrast, the throughput in urban areas can
fluctuate over a much shorter distance of 100 meters. This means that
especially in urban areas, throughput predictions must be performed
more frequently to obtain a more reliable estimate.





5
I M P R O V E M E N T O F D E P E N D A B I L I T Y

In the previous Chapter, we discussed the possibility of making predic-
tions of achievable data rates in live LTE networks. We have concluded
that stochastic predictions can be made based on the measured signal
quality. We have also observed that when the user equipment is mo-
bile, the achievable data rates experience only small changes in rural
areas. In contrast, these changes are much more significant in urban
areas.

In this Chapter, which is based on [57] and includes additional
explanations, we will discuss how stochastic predictions can be used
to improve the behavior of mobile applications. For this, we use the
example of chunk-based media streaming. Our results show that when
information about achievable data rates is available, it is possible to
limit the probability of video freezes to a desired upper bound. The
trade-off is that when this upper bound is selected conservatively, the
video quality selection is also very conservative.

5.1 adaptive bitrate streaming with performance pre-
diction

In recent years, online video streaming has become one of the most
important Internet applications, accounting for 71% of all mobile In-
ternet traffic as of November 2022 [58]. Hence, it is important to adapt
video playback methods to the challenges of mobile environments that
have a highly volatile throughput due to the variability of the wireless
channel. We have already discussed the extent of this variability in LTE

in Chapters 3 and 4.
Such volatile network behavior can be challenging for applications

that require a constant flow of data, like video streaming applications.
ABR streaming algorithms try to solve this problem by adjusting the
bitrate of the application according to a predefined metric. Typically,
such an algorithm would perform passive bandwidth estimation at
the receiver and adjust the sending rate of the data based on the result.

A commonly used video streaming method is for the server to
divide the video into chunks of fixed duration and for the client to
download these chunks one after another. The server typically offers
these chunks to the client at different bitrates, i.e., different video
coding quality. This is also visualized in Fig. 5.1. After downloading
each chunk, the client estimates the currently available throughput
and selects the bitrate of the next chunk based thereon. Examples of
such adaptive bitrate streaming methods include Apple’s HTTP Live

69



70 improvement of dependability

Streaming (HLS) [59] and Moving Picture Experts Group - Dynamic
Adaptive Streaming over HTTP (MPEG-DASH) [60].

High Quality

Chunk 1 Chunk 2 Chunk n...

Original Video

Figure 5.1: ABR video streaming applications like MPEG-DASH typically divide
a video into chunks and make each chunk available in different
quality levels.

The client typically maintains a de-jitter buffer where it can store
several chunks before playback starts. This pre-buffering can, within
certain limits, cope with possible fluctuations of the network condi-
tions. In our work, we discuss how to adapt the bitrate of a video
stream in order to avoid buffer underflow.

Methods for bitrate adaptation can be roughly divided into two
groups: throughput-based and buffer-based. Throughput-based meth-
ods like ELASTIC [61] or PANDA [62] often use an estimate of the
throughput based on the average performance in the past. In con-
trast, buffer-based methods like BOLA [63] consider the current level
of the de-jitter buffer at the client (and possibly the throughput in
addition) [64].

Existing strategies often try to achieve multiple goals: (i) They want
to stream the video in a quality that is as high as possible, (ii) they
want to minimize video freezes, and (iii) they want to reduce the
number of quality switches. Often the first goal conflicts with the
other two, meaning that a balance between the goals has to be found.

In mobile scenarios, throughput-based strategies can exhibit poor
performance since their knowledge of available throughput in the
past does not necessarily inform them about the throughput they can
achieve in the future. This is because the network capacity can be
different when the location of the user equipment changes. When
using cellular communication like 4G or 5G, instead of using the
information about the throughput achieved in the past, it is possible
to use a prediction of achievable throughput based on current signal
quality information. When information about the distribution of the
achievable throughput is available (e.g., based on the signal quality or
past performance), it is also possible to provide stochastic guarantees
for the buffer of an ABR streaming application not to run empty.
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In this Chapter, we propose a buffer-based adaptive bitrate stream-
ing method that accounts for the variability of throughput by not only
using an estimate of the average throughput but by using an estimate
of the throughput distribution. A way to obtain such a throughput
distribution for mobile networks is described in Chapter 4.

Our method aims to provide the highest possible video bitrate
while not exceeding a defined buffer underflow probability. We use
stochastic network calculus to derive the maximum bitrate for the
general case of any throughput distribution.

In the second step, we use our model from Chapter 4 to provide an-
alytical and simulation results for the specific example of the through-
put having a stationary Gaussian distribution. We have chosen this
distribution as it has been a good model to represent our empirical
measurement results in most cases. However, our method also works
with models more commonly used to describe the behavior of wireless
channels, such as Rayleigh fading [65].

An analysis of a related problem using similar mathematical meth-
ods is presented in [66]. Different from our work, the authors analyze
the fill level of a send buffer that stores data for transmission to an
LTE base station. Here, the goal is to adapt the transmission resources
to prevent the send buffer from overflowing instead of, in our case,
adapting the source data rate to avoid underflow of the de-jitter buffer
at the receiver.

Another related problem is discussed in [67]. Here, the authors
analyze a wireless video streaming scenario for which they provide
a probabilistic lower bound on the received video quality and use
this result for transmission rate adaptation. Different from our work,
the authors assume a scenario with strict delay constraints so that
the variability of the wireless channel cannot be compensated by a
de-jitter buffer at the receiver.

The main contribution of this work is a model of a de-jitter buffer
for video playback that can be used to calculate the probability of
buffer underflow. We also show how to calculate the maximum video
coding bitrate for which a desired buffer underflow probability is not
exceeded. Additionally, we provide simulation results for the concrete
example of a Gaussian throughput distribution. Our simulation results
show that a system that adjusts the video bitrate according to our
method does not experience buffer underflow within the limits of the
specified probability.

5.2 buffer model

We analyze a model of a video streaming application that maintains a
de-jitter buffer in which all downloaded data is stored before being
played back. We denote the download process, i.e., the arrivals to the
buffer, in the time interval [τ, t) by A(τ, t). When the data is played
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Figure 5.2: Time interval [τ, τ+∆) with granularity δ = 1.

back, it is removed from the buffer. For a time interval that starts
at time τ and has a duration ∆ (e.g., a video chunk), we want to
calculate the probability that the buffer level is insufficient, causing
an interruption in playback, i.e., buffer underflow. Additionally, we
want to calculate the probability that the buffer level stays above some
safety margin β after each interval. Our model uses discrete time
with time-slot duration δ, see Fig. 5.2. For notational simplicity, we
normalize δ = 1.

In order to determine if a video can be played back without inter-
ruption in a time interval [τ, τ+∆) we have to be able to determine
the buffer level at any given time t ∈ [τ, τ+∆). This is because we
must ensure that the buffer does not underflow at any point. Differ-
ent from the usual convention, we define our buffer level in units of
playback time instead of in units of bits. For a given video bitrate r,
the scaling is achieved by dividing the number of bits in the buffer by
r. Similarly, the arrivals to the buffer and the playback process from
the buffer are scaled by division by r. As a consequence, the playback
process in the interval [τ, t) is simply t− τ, regardless of the video
bitrate. We use this scaling as it avoids difficulties in the formulation
of adaptive bitrate streaming that would otherwise occur, since the
buffer may contain parts of different video chunks that are encoded at
different bitrates. A general theory of non-constant scaling processes
is provided in [68] and the following works. Using the scaling by r,
we can calculate the buffer level at time t > τ > 0 as

B(t) > B(τ) +
A(τ, t)
r

− (t− τ), (5.1)

where B(t) is the buffer level at time t and B(τ) is the buffer level that
was available at time τ. Both B(t) and B(τ) are measured in units of δ.
Eq. (5.1) is an exact equality if no buffer underflow occurs in [τ, t), i.e.,
if the playback is never interrupted. A visual representation of the
buffer process can be seen in Fig. 5.3.

Due to the random nature of wireless channels, the cumulative
arrivals to the de-jitter buffer A(τ, t) in [τ, t) are random. In each
time slot [τ, τ+ 1) for τ > 0, a random amount of data X(τ) will be
downloaded. We assume that the increments X(τ) are independent
and identically distributed (iid). Each increment has the Moment-
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Figure 5.3: In the interval [τ, t) the buffer level B(t) is increased by arrivals
A(τ, t) that have been scaled by the video bitrate r and decreased
by the elapsed play back time (t− τ).

Generating Function (MGF) MX(θ) = E[e
θX], θ ∈ R. We can calculate

the cumulative arrivals A(τ, t) for the interval [τ, t) as

A(τ, t) =
t−1∑
i=τ

X(i).

The arrival process is visualized in Fig. 5.4.
Since the cumulative arrivals A(τ, t) are random, so is the buffer

level B(t). In order to be able to play back a video in an interval [τ, t)
without interruption, the buffer has to stay above a certain threshold
bmin in every single time step. The value bmin can be, e.g., 0 or
the size of a single frame. In the following, we want to calculate the
probability of a buffer underflow, i.e., the probability of the buffer
level falling to or below bmin.

Theorem 1 (Buffer Underflow Probability) Consider a buffer whose fill
level is governed by Eq. (5.1) with iid arrivals that have an MGF MX(θ). An
upper bound on the probability ε of buffer underflow in the time interval
[τ, τ+∆] is

P [∃t ∈ [τ, τ+∆) : B(t) 6 bmin] 6 e−θ(B(τ)−bmin) := ε

if θ > 0 satisfies the condition

MX

(
−θ

r

)
eθ = 1.

Proof 1 A buffer underflow in an interval [τ, τ + ∆) occurs when there
exists a time step in which the buffer level is at or below the value bmin.
Given the interval starts with an initial buffer filling of B(τ), the probability
of this happening follows with Eq. (5.1) as

P[∃t ∈ [τ, τ+∆) : B(t) 6 bmin]

6P

[
min

t∈[τ,τ+∆)

{
B(τ) +

A(τ, t)
r

− (t− τ)

}
6 bmin

]

=P

[
max

t∈[τ,τ+∆)

{
eθ((t−τ)−

∑t−1
i=τ X(i)r

−1)
}
> eθ(B(τ)−bmin)

]
. (5.2)
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Figure 5.4: In each time step a random amount of data X(i) is downloaded.
The sum of all downloaded data is A(τ, t).

We want to find an upper bound on this probability by using Doob’s mar-
tingale inequality [69]. The inequality is frequently used in the stochastic
network calculus, e.g., [66, 70, 71, 72, 73, 74]. For this, we first need to find
a θ for which the process

U(t) = eθ((t−τ)−
∑t−1
i=τ X(i)r

−1) (5.3)

becomes a martingale, i.e., we need to show that

E[U(t+ 1)|U(t),U(t− 1), ...,U(τ)] = U(t). (5.4)

From Eq. (5.3) we get U(t + 1) = U(t)eθ(1−X(t)r
−1), which has the

conditional expectation

E[U(t+ 1)|U(t),U(t− 1), ...,U(τ)]

= U(t)MX

(
−θ

r

)
eθ,

where we used the independence of the increments X(i). Clearly,U(t) satisfies
the condition from Eq. (5.4) when θ satisfies the constraint from Th. 1.

We can now use a version of Doob’s martingale inequality [71, Lem. 2]
P[maxt∈[τ,τ+∆)U(t) > x] 6 E[U(τ)]x

−1 for non-negative U(t) and x > 0,
where we shifted the origin of the sequence U(t) from 1 to τ. Application of
Doob’s inequality to the martingale in Eq. (5.2) where x = eθ(B(τ)−bmin)

and E[U(τ)] = 1 completes the proof.

The probability ε from Th. 1 can be calculated for general arrivals
A(τ, t) with iid increments X(i) that have the MGF MX(θ). In the fol-
lowing example, we show how the probability from Th. 1 can be
calculated for a Gaussian distribution. We use this distribution as we
have observed in Chapter 4 that it can be used to model our empirical
measurement results of achievable throughput.

Example 1 In the following, we consider a simple example of a channel
that offers a mean throughput µ that varies over time with a variance σ2.
We assume that the throughput of this channel has a Gaussian distribution

with MX(θ) = e

(
µθ+σ2θ2

2

)
. Using this MGF, we can obtain the value θ =

2r(µ− r)σ−2 for which the constraint of Th. 1 is satisfied. By inserting this
value into the definition of ε, we obtain the probability of the buffer falling to
or below the minimum threshold bmin as

ε = e−2r(µ−r)σ
−2(B(τ)−bmin). (5.5)
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Figure 5.5: Graphs of the rates rbmin , rβ, rbmin,β and r∆ for parameters
X(i) ∼ N(4, 2), ∆ = 10, bmin = 0, ε = 10−2.

Bitrate Adaptation for bmin: In Th. 1, we have shown how to calculate
a probability of buffer underflow in a time interval [τ, t) given iid

arrivals A(τ, t) that are scaled by a bitrate r. We now want to consider
the case where we have some desired upper bound on the buffer
underflow probability ε, for which we want to calculate the maximum
bitrate of the video that does not violate the bound. In the following,
we call this rate rbmin , as it is the maximum source bitrate for which
the threshold bmin is not violated with probability ε. This bitrate can
be calculated at the beginning of each interval [τ, τ+∆) to adjust the
video stream to the maximum quality for which a buffer underflow
is unlikely. Note that the rate rbmin can be larger or smaller than the
bitrate from the previous interval.

Generally, we can obtain the bitrate rbmin for a given arrival MGF by
finding a θ that satisfies the condition from Th. 1, inserting this θ into
the definition of ε and solving for r. Note that the rate rbmin obtained
this way is a positive real number. In systems where the rate can only
be adjusted in discrete steps, as is the case with, e.g., MPEG-DASH, the
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bitrate can be chosen as the largest possible bitrate that is lower than
rbmin .

Example 2 For the special case of Gaussian increments that has been intro-
duced in Example 1, we can now obtain the value rbmin by solving Eq. (5.5)
for r. To keep the example simple, we choose bmin = 0. We then get

rbmin =
µ

2
+

√
µ2B(τ) + 2ln(ε)σ2

4B(τ)
. (5.6)

Using this example, we now discuss how rbmin is affected by the available
buffer level B(τ) and the desired violation probability ε. A graph showing
the influence of these parameters on the rate rbmin can be seen in Fig. 5.5a.
The x-axis is scaled to the interval length ∆, and the y-axis is scaled to the
mean download rate µ to emphasize the influence of these parameters on the
source bitrate. For small values of B(τ), the violation probability ε has more
influence on the rate rbmin than for larger values. For very small values of
B(τ) no rate rbmin can be calculated. This is because a certain amount of
pre-buffering is required for the system to function correctly regardless of
the rate. Note that the amount of required pre-buffering increases when ε
becomes more conservative. For any choice of ε the suggested bitrate rbmin
approaches the mean throughput µ as the buffer level B(τ) increases. The rate
never exceeds µ as that would violate the condition θ > 0.

Safety Margin: As we have seen in Eq. (5.6) and Fig. 5.5a, some pre-
buffering is required to achieve a desired violation probability ε - e.g.
it should be about ∆4 for ∆ = 10 and ε = 10−2. Besides, an additional
safety margin might be desirable to avoid application failure if the
average download rate changes rapidly. This safety margin can be
reached by ensuring that a certain target buffer level β > 0 is available
at the end of a time interval [τ, τ+∆). We can generalize this for longer
intervals of length n∆, n > 1 by guaranteeing this safety margin at the
end of a longer time interval [τ, τ+n∆), i.e., B(τ+n∆) > β. Note that
since B(τ) is a scaled buffer in units of δ, the safety margin β is also
in units of δ. In the following, we want to calculate the probability of
violating the safety margin β at the end of an interval.

Theorem 2 (Probability of Violating the Safety Margin β) Consider a
buffer whose fill level is governed by Eq. (5.1) with iid arrivals that have an
MGF MX(θ). An upper bound on the probability ε of violating the safety
margin β at the end of the interval [τ, τ+n∆) is

P[B(τ+n∆) 6 β]

6 min
θ>0

{
eθr(β+n∆−B(τ))MX(−θ)

n∆
}
:= ε.

Proof 2 In order to calculate the probability of violating the safety margin
β at the end of the time interval [τ, τ+n∆) it is enough to only observe the
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buffer level at the end of the interval, i.e., at time t = τ+n∆. The probability
of violating the safety margin β follows with Eq. (5.1) as

P[B(τ+n∆) 6 β]

6 P[A(τ, τ+n∆) 6 r(β+n∆−B(τ))].

By applying Chernoff’s bound P[X 6 x] 6 eθxE
[
e−θX

]
for θ > 0 and using

the independence of the increments X(i) we directly obtain the probability in
Th. 2.

The probability in Th. 2 can be calculated for arbitrary arrivals
A(τ, τ+ n∆) with iid increments X(i) which have the MGF MX(θ). If
we select a specific distribution of the increments, we can calculate the
value θ for which this probability becomes minimal.

Example 3 For Gaussian increments, which we defined in Example 1, the
probability from Th. 2 is minimal for

θ =
n∆µ− r(β+n∆−B(τ))

n∆σ2

By inserting this value of θ into the definition of ε we get

ε = exp
(
−(n∆µ− r(β+n∆−B(τ)))2

2n∆σ2

)
as the probability for violating the safety margin β at the end of the interval
[τ, τ+n∆).

Bitrate Adaptation for β in [τ, τ+∆): After obtaining the probability
for violating the safety margin β, we can calculate rβ, which is the
maximal video bitrate that ensures that the buffer level is at least β at
the end of the interval [τ, τ+∆) with a violation probability ε.

Example 4 Using the probability from Example 3 for n = 1 and B(τ) < ∆
we can calculate

rβ =
∆µ−

√
−2∆ ln(ε)σ2

β+∆−B(τ)
. (5.7)

We can also calculate a minimum source bitrate rβ,ε from Eq. (5.7)
that applies if B(τ) equals β. Since B(τ) > β with probability 1− ε,
the rate rβ falls below rβ,ε at most with probability ε. In Fig. 5.5b, we
present a graph of the rate rβ for different values of β. It can be seen
that rβ grows with increasing B(τ) without being constrained by µ as
was the case for rbmin . This is because, different from rbmin , a specific
level of the buffer only has to be guaranteed at the end of the large
interval [τ, τ+∆) and not at every single time step, therefore as B(τ)
increases, the probability of not having a buffer level β at time τ+∆
approaches 0. The black dashed line indicates the minimum rate rβ,ε.
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Note that rβ,ε is independent of β, meaning the minimum buffer level
does not affect the minimum source bitrate. The parameter β only
influences how much the source bitrate changes with increasing B(τ),
the changes being higher for less conservative values of β.

In the period [τ, τ + ∆) both constraints bmin and β have to be
satisfied. For this, we have to select the minimum of the two bitrates:

rbmin,β = min{rbmin , rβ}. (5.8)
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Figure 5.6: Effect of different values of the safety margin β on the buffer
level B(τ) and the source bitrate r for X(i) ∼ N(4, 2), ∆ = 50,
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In Fig. 5.5c, we present a graph of the source bitrate rbmin,β for
different values of β and ε = 10−2. It can be seen that for smaller
values of B(τ), the rate rβ is the minimum of the two rates, whereas
for larger values, the minimum is generally rbmin . The switching point
between the two rates depends on the choice of β: For less conservative
values, the switch happens earlier than for the more conservative ones
(if at all) since the source bitrate is adjusted towards the average
throughput more quickly.

Bitrate Adaptation for β in [τ, τ+n∆): In the case that the buffered
data is sufficient for the upcoming interval [τ, τ+∆), meaning B(τ) >
∆, we no longer have to adjust the source bitrate to ensure that the
buffer does not fall below the threshold bmin at some time t in
[τ, τ+∆). This has the advantage that we can select a source bitrate
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that is no longer bounded by the mean download rate µ as has been
the case with rbmin in Fig. 5.5a. Instead, we can now choose a new
source bitrate r∆ in a way that ensures that the safety margin β is
achieved after a larger interval [τ, τ+n∆) with probability 1− ε, where
n =

B(τ)
∆ , n ∈ R.

Example 5 Similar to Example 3, for Gaussian increments we can find a
θ for which ε from Th. 2 is minimal and solve for r∆ in order to obtain the
maximum bitrate for which B(τ+n∆) > β with violation probability ε:

r∆ =
n∆µ−

√
−2n∆ ln(ε)σ2

β+n∆−B(τ)
. (5.9)

Again, we can calculate a minimum bitrate r∆,ε from Eq. (5.9) that
applies if B(τ) equals β. Since B(τ) > β with probability 1− ε, the rate
r∆ falls below r∆,ε at most with probability ε. The resulting graph of
r∆ for different values of β and ε = 10−2 is shown in Fig. 5.5d. The
bitrate grows linearly with the available buffer B(τ). The slope of the
rate is smaller for more conservative choices of β. Because the buffer
level B(τ) is very large, the resulting source bitrate is almost always
larger than µ. The black dashed line indicates the minimum source
bitrate r∆,ε. This rate is independent of β; however, it does grow very
slightly with B(τ).

Finally, for all values of B(τ) the source bitrate selection can be
written as

r =

rbmin,β , for B(τ) < ∆

r∆ , for B(τ) > ∆.
(5.10)

5.3 simulation results

In this Section, we present and discuss simulation results to illustrate
the performance of the system that adapts its bitrate according to the
method described in Eq. (5.10). For this, we have written a discrete-
time simulator. In each time step δ the buffer level is increased by
a Gaussian increment X(i) ∼ N(µ,σ2) that is scaled by the current
source bitrate r, and decreased by δ. Each simulation run is configured
to consist of 103 intervals ∆ where ∆ = 50δ.

In all performed simulation runs, both the source bitrate r and
the buffer level B(τ) over time converged to a stationary distribution
within the first few intervals ∆. The shape of these distributions
depends on the parameters µ,σ2,bmin,β,∆, and ε. In the following,
we will discuss how some of these parameters affect the resulting
distribution by presenting the corresponding simulation results. For
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each set of parameters, we perform 103 simulation runs and show the
distribution of the results.

First, we discuss the effect of β on the resulting distributions of the
buffer level B(τ) and the source bitrate r. In Fig. 5.6a, it can be seen that
with increasing target level β, the distribution of the buffer level also
becomes larger and less variable. Note that for the selected probability
ε = 10−2 the buffer level B(τ) satisfies both specified constraints β
and bmin.

In Fig. 5.6b, we can see that for small values of β, the source bitrate
stays stable in about 90% of the cases and that there are not many
differences in the distributions based on β. For β = ∆, the distribution
becomes more variable; however, the median remains the same. The
variability is small for buffer levels B(τ) < ∆ because the source
bitrate is selected according to Eq. (5.8) as shown in Fig. 5.5c, making
it close to the mean download rate µ and changing only very slightly
with changes in B(τ). For B(τ) > ∆, the source bitrate is selected
as shown in Fig. 5.5d, meaning it increases and decreases linearly
with any change in B(τ), resulting in higher variability. We further
investigate the effect of the parameter β on the variability of the source
bitrate in Fig. 5.6c by plotting the distribution of the changes between
neighboring intervals. It can be seen that for smaller values of β,
only slight changes of the source bitrate should be expected when



5.4 conclusion 81

going from one interval to the next, with large changes being very
rare. For β = ∆, the source bitrate changes with every new interval;
however, it stays the same on average. This occurs because of the linear
behavior of r∆ that can be seen in Fig. 5.5d. A more conservative rate
selection method for large safety margins β > ∆ may remedy these
rate fluctuations.

The interval length ∆ also affects the distributions of B(τ) and r. The
comparison of the buffers in relation to ∆ in Fig. 5.7a tells us that for
higher values of ∆, the buffer is slightly smaller, which is due to the
median source bitrate being higher, as can be seen in Fig. 5.7b. Here we
can also see that for the higher value of ∆, the source bitrate r remains
stable with a higher probability, whereas for the smaller ∆, the source
bitrate is more variable. The influence of ∆ on rate changes between
intervals can be seen in Fig. 5.7c: For the larger ∆, the probability of
a rate change is very small, whereas for a smaller ∆, this probability
increases. Overall, it can be said that choosing a larger ∆ yields a
more stable distribution of bitrates as the variability of the individual
time steps becomes less important over longer intervals. Note that
increasing ∆ also means that the bitrate can be adapted less frequently.

5.4 conclusion

In this Chapter, we have presented and analyzed a buffer-based bitrate
adaptation technique for variable bitrate video streaming. We have
derived a buffer underflow probability for the general case of the
arrivals having any iid distribution and shown how this probability can
be used for bitrate selection using an example of a specific distribution.
Additionally, we have calculated a minimum possible bitrate that
is only violated with a small probability when the rate is adjusted
according to our method. Using a series of simulations, we have
analyzed the impact of different system parameters on the selected
bitrate. In all performed simulation runs, regardless of the initial buffer
level, both the bitrate and the buffer level converged to stationary
distributions after only a few intervals. For all selected parameters,
the simulated system did not violate the specified buffer underflow
probability. We have also observed that the bitrate distribution becomes
more stable and that the minimum bitrate becomes larger when the
interval length ∆ increases, i.e., when adaptation occurs less frequently.
We have shown that our system requires some minimum buffer level
which depends on the desired maximal probability of buffer underflow,
i.e., video stalling. Due to how our method adjusts the bitrate, the
bitrate distribution becomes more variable with an increase of the
desired safety margin. This might be different for more conservative
bitrate selection methods.





6
C O N C L U S I O N S A N D F U T U R E W O R K

6.1 conclusions

In this thesis, we have discussed the challenges faced when using LTE

for dependable mobile communication in vehicular scenarios. Our
approach consisted of

• Evaluating the performance of LTE and how it has developed over
time, including specific mechanisms like carrier aggregation.

• Analyzing how the performance of applications run over LTE can
be affected by the selection of different transport layer congestion
control protocols.

• Performing measurements to analyze the relationship between
the measured signal quality and obtained throughput.

• Predicting the performance of LTE using information about the
signal quality.

• Utilizing the prediction of the achievable data rates to improve
the outage performance of applications with adjustable data
usage.

Our analysis of LTE’s performance has shown that it can be quite
volatile for mobile users: As the user position and distance relative
to the base station are correlated with the capacity of the channel,
both the achievable throughput and the delays can experience sig-
nificant fluctuations when the user equipment changes its position.
The user’s location also has a high impact on the performance: In our
measurements, we have observed that there is often less infrastructure
in rural than in urban areas, meaning that the performance of mobile
communication can be reduced on highways.

When comparing the past and present performance of LTE, we have
observed that it has improved with later versions due to the use of
higher-order modulation schemes and carrier aggregation for combin-
ing the fragmented spectrum. However, due to limited infrastructure,
especially in rural areas, it is not always possible to achieve higher
performance with more recent LTE user equipment.

When looking at the performance of different congestion control
algorithms, we have observed that some of the assumptions made
by many of the existing algorithms are not always valid in cellular
systems. In our measurements, TCP connections over LTE have rarely
experienced packet loss, leading to oversized congestion windows and
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very high delays when using loss-based algorithms like Reno or CU-
BIC. The delay-based algorithm Vegas stops increasing its congestion
window very early as its baseRTT measurement looks for the lowest
RTT, which can be much lower than the average value due to schedul-
ing effects in LTE. In our measurements, TCP BBR has achieved the best
performance: It has developed a congestion window that was able
to utilize the entire available capacity without causing bufferbloat. It
also changed the size of the congestion window when the capacity of
the channel changed due to the user equipment changing its position.
However, since it has been shown that BBR can be unfair towards other
congestion control algorithms, the choice of the congestion control
algorithm for LTE can still be improved.

Our measurements of the relationship between the signal quality
and the achievable data rates have shown that while better signal
quality is correlated with higher data rates, the relationship between
the two is stochastic, i.e., better signal quality improves the probability
for higher data rates but does not guarantee them.

Knowing the factors that affect the performance of LTE connections,
we have proposed a model that predicts the achievable throughput
based on signal quality measurements when given information about
the user equipment capabilities and total channel bandwidth. Since
our measurements have shown that the relationship between signal
quality and achievable data rates is stochastic, the output of our
method is a distribution of achievable throughput values. Our method
uses a truncated normal distribution as it was well suited to model
the empirical data that we have obtained in our measurements.

When a distribution of achievable data rates is available, it is possible
to use this information to improve the outage probability of network
applications with adjustable data rate usage, e.g., video streaming with
MPEG-DASH. We have proposed a method that can limit the outage
probability to a desired upper bound and verified it using a simulation.
While limiting the outage probability works as intended, the trade-off
is that the changes between different video quality levels can be abrupt
and thus detrimental to the user experience.

Overall, it can be said that there is still much that can be improved
when it comes to the dependability of mobile applications that use
LTE. Even though the LTE specification has continuously increased
achievable data rates, the actual expansion of the infrastructure was
not always as fast. Especially in rural areas, the performance of LTE

has not always improved throughout the years. There is also still room
for improvement when it comes to the choice of the congestion control
algorithm in LTE, even though BBR already delivers a very formidable
performance. Finally, a lot can still be done in the applications them-
selves: Since volatile performance is to be expected, applications can
use this knowledge to improve their dependability. Our proposed al-
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gorithm for the rate selection in MPEG-DASH is only a small example
of how the dependability of mobile applications can be improved.

6.2 future work

The development of the cellular network has already reached the next
step with the release of 5G NR. To guarantee dependable performance
of mobile applications in 5G networks, it is also necessary to analyze
their real-world performance. We have started analyzing the perfor-
mance of 5G networks in [75]; however, our evaluation of their mobile
performance is still ongoing.

The choice of optimal TCP congestion control also remains a prob-
lem for cellular networks. While LTE-friendly TCP congestion control
algorithms have been the topic of several papers [76, 77, 78], they have
never become widely used. With BBRv2, Google has attempted to alle-
viate BBR’s shortcomings, especially concerning its unfairness towards
loss-based algorithms. An extensive analysis of BBRv2’s performance
in LTE and NR is still necessary once it is fully released.

Finally, more work is needed to develop dependable applications
for mobile scenarios. In addition to our work, other works like [79, 80]
have also looked at how the knowledge about the network can be used
in making mobile applications more dependable. Still, more work
is needed that focuses on the dependability and the quality of user
experience.
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