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Abstract 

Driven by continuous cost pressure and increasing market requirements, the optimization of lithium-ion 
battery production is the focus of attention. To save time and costs, machine learning represents a promising 
tool. But a considerable amount of training data is needed. Since data is not always available to the required 
extent, approaches for synthesizing artificial data were investigated. In this study, the quality and corre-
sponding measurement parameters in electrode production were assessed and selected. Based on this selec-
tion, coating trials have been conducted and the corresponding data set collected. The data set forms the 
basis for the synthesis of artificial coating images and parameters. The selection and design of the synthesis 
models were divided into two sub-steps. First, the synthesis of artificial coating images was investigated. A 
promising method for the data synthesis of (coating) images is Generative Adversarial Networks (GAN). 
The basic idea of GANs is to oppose two models: a discriminator and a generator. The generator generates 
artificial data samples that match the input of the training data set. Afterward, those data samples (both input 
and artificial data) are introduced to the discriminator. The discriminator's function is to identify whether the 
data presented originates from the training data set or whether it is a counterfeit (artificial data) of the gen-
erator. In a second step, the synthesis of new parameter sets in the form of tabular data is investigated. The 
requirements for the synthesis of tabular data sets correspond in principle to those for multivariate regression 
analysis. The combination of the models resulted in a method that allows the prediction of the corresponding 
measured quality values for arbitrarily selected process parameters, as well as the visualization of the asso-
ciated coating result in the form of an artificial image. 
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1. Introduction  

Due to their various properties, lithium-ion batteries have come to the fore as an energy source for mobile 
applications. As demand increases, so do the demands on their quality, performance, and service life, coupled 
with steadily growing cost pressure. To meet these requirements, not only further technological development 
and research in the field of cell technology is needed, but also continuous optimization of the production 
processes. In this context, the production of electrodes in particular represents a complex sub-step in cell 
manufacturing. [1] It has a large number of adjustable production parameters with complex influences on 
the quality characteristics of the electrodes. [2,3] This complexity makes it difficult to analyze the interrela-
tionships and thus to find suitable parameter combinations for the desired production results.  

Data-driven approaches are becoming increasingly important for such use cases. For example, image recog-
nition processes trained by means of artificial intelligence can be used to detect production defects and thus 
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help in the automated optimization and control of production processes. [4] Just as the development of hu-
man intelligence requires a large number of experiences and perceptions over the course of a lifetime, ma-
chine learning algorithms must generally be confronted with many observations in order to make accurate 
predictions. For this reason, machine learning algorithms usually require large amounts of data for their 
training. In many areas, however, these are not available in the required amount and can only be obtained 
with difficulty, for example at enormous expense in terms of time and money. [5] In the production of elec-
trodes for lithium-ion cells, for example, the large number of production parameters and their complex in-
terrelationships regarding the production result makes it very difficult to collect large amounts of data for 
process optimization supported by machine learning methods. Synthetically generated data sets represent an 
economically interesting alternative to obtaining real test data. 

For this reason, an approach to synthesizing artificial electrode coating test data was investigated. Both 
structured (tabular) and unstructured data (image data) were artificially generated. As a data basis, a refer-
ence data set was first created experimentally. For this purpose, tests were carried out on a pilot production 
line and corresponding quality parameters were measured. The basics of electrode production as well as the 
models and machine learning algorithms used are introduced in chapter 2. The experimental setup and data 
preparation, as well as the design of the models for data generation, are described in chapter 3. An overview 
of the achieved results is given in chapter 4, while chapter 5 summarizes the main conclusions. This study 
demonstrates that synthetic coating images and their associated process data can be generated using artificial 
intelligence. However, it is necessary to conduct further research to assess the suitability of this approach as 
a standalone data source, rather than relying on real data. 

2. Fundamentals 

In the following chapter, the technical principles of electrode manufacturing and relevance of surface in-
spection as well as the fundamentals of applying GANs and regression using multilayer perceptron networks 
(MLP) are established. 

2.1 Electrode manufacturing for lithium-ion batteries  

Figure 1 shows an overview of the manufacturing processes of electrode manufacturing for lithium-ion bat-
tery cells. First, the active material for the electrodes is mixed from several powder components and the 
solvent to produce the so-called slurry. In the coating step, the slurry is coated onto a metal foil as a thin film 
and dried afterwards. During calendering, the film is compressed by applying a line load over a roller ar-
rangement to reduce the porosity of the coated material. The electrodes are then cut or punched into the 
desired shape. This marks the end of electrode manufacturing, which is followed by cell assembly. [6] The 
work of this paper is focused in particular on the front-end processes from weigh-in of materials, over mix-
ing, to coating and drying. 

 

Figure 1: Schematic view of the steps in electrode production [4]  

Surface inspection during electrode manufacturing is critical for process control and minimizing scrap rates. 
By carefully examining the surface of the electrodes, manufacturers can identify and address any defects or 
irregularities that may affect the performance of the final product. This helps to ensure that the electrodes 
meet the required specifications and are of high quality. In addition, surface inspection can help identify 
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potential issues early in the manufacturing process, allowing manufacturers to take corrective action (e.g. 
based on machine learning algorithms) and prevent defective electrodes from being produced. This ulti-
mately leads to lower scrap rates, as fewer defective electrodes need to be discarded, and helps to reduce 
costs and improve overall efficiency in the manufacturing process. Optical imaging of electrode coatings 
thereby presents a consistent and automatable solution for the detection of defects. [7]  

Choudhary et al. present a promising approach to detect and classify mechanical defects in real time [4]. 
Also, in other research areas, especially in the medical field, image analysis by means of artificial intelligence 
have been widely explored in recent years. [8,9] Since the problem of lack of data also exists in the medical 
setting, Kanayama et al. developed a GAN-based model for the synthesis of endoscopic images for gastric 
cancer detection [10]. Also, Sedigh et al. used a GAN to generate synthetic skin cancer images to compensate 
for insufficient data for training a proposed CNN algorithm. [11] Generally, GANs are capable of generating 
very realistic high-resolution images [12], which make them a viable solution for the presented use case. 
However, no work could yet be found on image generation in the context of electrode coating. The experi-
mental setup and data basis will be explained in chapter 3. 

2.2 Generating synthetic images using generative adversarial networks 

The basic idea of GANs is to introduce two opposing models: A discriminative model and a generative 
model. The generator receives random noise (training data) as input and generates data samples (matching 
the form of the training data), that are later presented to the discriminator. The task of the discriminator is to 
identify whether the given sample originated from the training dataset or whether it is a "fake" of the gener-
ative model. Mutual competition drives both models to keep improving their methods until the counterfeits 
are so similar to the originals, that it is no longer possible to distinguish them. Both the generator and the 
discriminator are typically constructed as deep neural networks and use the binary cross entropy for optimi-
zation. [13] When a GAN-trained generator is used to synthesize data, the output cannot be precisely con-
trolled. For example, if the training data set includes data that can be categorized, the classic GAN method 
cannot be used to specify which category the generated data should come from. Depending on the applica-
tion, it may be necessary to control the output of the generator. In this case, conditional generative adversarial 
networks (CGAN) as shown in Figure 2 represent an alternative.  

 

Figure 2: Schematic structure of a Conditional Generative Adversarial Networks (CGAN) [14] 

In this case, in addition to the latent vector, a label expressing the membership to a class is passed to the 
generator and discriminator. The training data set, which is used to train the model must also be labelled. 
The information of the label is linked with the random signal noise and thus serves as input signal for the 
data synthesis. In addition to the data point to be evaluated, the discriminator is also provided with the label, 
which is linked with the input data point (image). [15] 
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2.3 Regression using multilayer perceptron networks 

MLPs are a type of feedforward neural network, that can be used as universal approximators and represent 
any continuous function. As the name suggests, an MLP is composed of several layers. Between the input 
layer and the output layer, there is any number of hidden layers. The number of neurons in the input layer is 
equal to the number of input values. Since in this work three parameters are varied, this also corresponds to 
the number of input neurons. Analogously the number of neurons in the output layer corresponds to the 
number of output values. The definition of the number of hidden layers and neurons in each hidden layer are 
hyperparameters that can be tuned during the optimization process. [5] 

3. Methods 

The following chapter introduces the experimental design used to generate the data basis as well as the data 
preprocessing and model design for data synthesis of electrode coating images. 

3.1 Experimental design and data acquisition 

In order to investigate the coating process, electrodes with different process parameters are produced. For 
this purpose, three sets of trials are conducted using graphite slurries with different material ratios for the 
production of anodes. Regarding the processability of the slurry, its viscosity plays a major role. [16] For 
this reason, the proportion of carboxymethyl cellulose binder (CMC), which significantly controls the vis-
cosity properties, is slightly varied for each test series. Table 1 shows the formulations of the test series for 
three different slurries. Starting from the basic formulation (Slurry 1), which is based on industrial experi-
ence [17], the mass fraction of the CMC binder is slightly increased and reduced. The mass ratios of the 
other components remain the same relative to each other, resulting in their quantities. 

Table 1: Slurry formulations for graphite anodes 

Material  Slurry 1 Slurry 2 Slurry 3 
Graphite (SG3) 564,00 g  562,30 g  565,70 g  
CMC binder 12,00 g  16,00 g  8,00 g  
Carbon black 6,00 g  5,98 g  6,02 g  
SBR binder 45,00 g  44,87 g  45,14 g  
Dist. Water 706,00 g  703,85 g  708,14 g  

 

The electrodes are coated in a roll-to-roll coating line with a slot die for single-sided coating and two drying 
units. The adjustable parameters of the system are the distance between the slot die and the metal film (which 
is kept constant at 200 μm), the web speed, and the speed of the feed pump. Table 2 shows the abbreviated 
representation with the indication of the respective value ranges. To be able to map the influences of the 
individual parameters, a full factorial experimental design is conducted.  

Table 2: Varied test parameters during the full factorial coating trials 

Parameter  Value settings 
Formulation Slurry 1; Slurry 2; Slurry 3 
Web speed 0.5 m/min; 1.0 m/min; 1.5 m/min 
Pump speed 100 rpm; 125 rpm; 150 rpm; 200 rpm 

 

Figure 3 shows extracts of the recorded coating images showing different coating patterns. It is striking that 
in many cases there is no continuous film. Rather, the coating patterns show defects or line or grid patterns. 
Also, drying flaws can be observed at high pump speeds and low web speeds. In addition to the images, 
quality characteristics such as wet film thickness and viscosity of the slurries are recorded. The coating 
images reveal a strong correlation to the wet film thickness. The ideal wet film thickness is in the range of 
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120 μm to approx. 200 μm for the defined drying parameters from a process engineering point of view, at 
which neither coating nor drying defects occur. 

 

Figure 3: Extract of characteristic images of electrode coatings from the experimental test series 

3.2 Data preparation and pre-processing 

As previously described, about half of the coating runs do not show a continuous coating film. Rather, line 
or grid patterns appear. Since in this case there is no wet film thickness to be measured for the respective 
coatings, a new parameter is introduced to evaluate the test results. The aim is to show what percentage of 
the film is coated (coating area). For this purpose, the coating images are imported and processed in Python 
with the help of the scikit-image software library. By applying a grayscale filter, each pixel of the image is 
assigned a value between 0 and 255 depending on the brightness of the pixel. The values are stored in a 
matrix with the resolution of the original images (2448x2046).  

In the next step, the images are cropped to the coating area, removing the remaining film areas on both sides 
that do not contain coating. Afterward, a threshold is set for the pixel values above which all values are 
raised to 255 (white) and set to 0 (black) below. The result is a binary image consisting only of black and 
white pixels. Dynamic adjustment of the threshold value ensures that, regardless of the exposure of the im-
age, the coated areas appear black and the uncoated areas appear white. Based on the binary image, the 
proportion of black pixels and thus the proportion of coated area can be calculated for each coating image. 

 

Figure 4: Conversion of the input coating images to binary images including exposure correction 

The same principle is used to analyze the images of the coatings that have not fully dried. Since the pixel 
values (gray levels) of the dry and wet areas are closer together, the determination of the limit value must be 
much more precise. Another complicating factor is that the images are not evenly illuminated by the camera's 
flash. Pixel values assigned to the dry state in one image area might describe moist zones in other image 
areas. In order to compensate for this effect, a brightness filter, as shown in Figure 4, is applied over all 
images. Since the relative illumination by the flash is almost identical on all images and only the absolute 
brightness values differ (presumably due to ISO adjustment of the camera), the filter is created manually 
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based on a few images and does not require any dynamic adjustment. Figure 4 shows an example of the 
binary distribution with and without the filter. 

By additionally determining the coating and drying area, a label is assigned to each image. If the edge at the 
start or end of a coating or bare copper foil is visible on the image, the label foil edge is assigned. All other 
labels are assigned depending on the fraction of coated or dried area. Coating images with a line or grid 
pattern are considered partly coated and receive values as coated40, [...], coated100, which indicate the 
percentage of coated (in increments of ten). The label coated50 for example describes a coating image, with 
which the fraction of the coated area accounts for 50-59 %. Complete coatings are labeled as coated100. 
Furthermore, fully coated but not fully dried images are labelled likewise as dried20, dried30, [...], dried90. 
If the image showed a flawless, fully dried, and continuous coating, the label OK was assigned. 

To reduce the demand for data storage the image areas of lesser interest (uncoated edges) were cropped and 
the images were scaled down from their original format of 2448x2046 pixels to 205x128. Furthermore, the 
pixel values of the images were normalized between -1 and +1 using MinMax-normalization. 

3.3 Design of the Conditional Generative Adversarial Network 

Since the aim of this paper is to generate data points representing different coating patterns according to the 
labeling logic mentioned above, a CGAN was chosen for image generation. The generator and discriminator 
were designed as fully interconnected neural networks. The dimension of the latent vector was set to 100. 
Its values are random but constrained between 0 and 1. The first level of the generator, therefore, comprised 
100 neurons. Since the scaled coating images have a resolution of 205x128 pixels, the input level of the 
discriminator has 26,240 neurons. This also corresponds to the number of neurons in the output layer of the 
generator. The labels were numbered and embedded into the input layers of each model. As the discriminator 
returns only one value, it also has only one neuron in the output layer. The models are trained in 50,000 
epochs with a batch size of 128. The Adam algorithm [18] is chosen as the optimizer with a learning rate of 
0.0002 and a momentum of 0.5. 

3.4 Regression of coating parameters 

The first modeling approach investigated uses linear regression. The assumption was made that the relation-
ships between the dependent and independent variables are linear. This assumption represents a simplifica-
tion that can be justified on the basis of the course of the measured data. 

The second modeling approach investigated is realized by the construction of an MLP network that contained 
two hidden layers with 64 neurons each. Rectified linear unit functions (ReLU) are chosen as activations 
with the exemption of the output layer for the parameters that represent the fractions of coated and dried 
areas, as they are limited between 0 and 1. Therefore a sigmoid function was used. The chosen error function 
is the mean squared error and optimization uses the Adam algorithm with a learning rate of 0.001. 

4. Results 

In this chapter, the results from the synthesis of the coating images are discussed and the application of a 
combined model to synthesize tabular data sets is validated. 

4.1 Synthesis of the coating images 

As can be seen in Figure 5, the developed CGAN is capable of generating coating images that are very 
realistic to human perception, representing all types of defects that occur in the training data set. For some 
predefined categories, the generated images show great similarity to the corresponding real images (e.g. 
coated70). This can be attributed to little variation in the images of the affected categories of the training 
dataset. In addition, the generated images show minor distortions in the form of noise.  
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Figure 5: Coating images generated by CGAN 

The validation of the “computational” quality of synthetic images remains a focus of current research. The 
most commonly used quantitative metric for evaluating artificially generated images is the Fréchet Inception 
Distance (FID). [19] The goal of this is not to analyze the generator or discriminator, but rather to take a 
more outcome-based approach in which generated images are compared to real images and a similarity score 
between them is determined. [20] The score is calculated by using the Inception-v3 model. [21] Table 3 
shows the results for comparisons of randomly selected batches of 500 images each. 

Table 3: FID-Scores for batches of 500 images 

Compared batches  Real-1, Real-1 Real-1, Real-2 Real-1, Artificial 
FID score 0 70 220 

 

As expected, the FID score for the comparison of two identical batches is 0. The FID score of two batches 
of real images represents the reference score to aim for. The comparison of real and artificial images shows 
FID scores about three times higher value than the desired reference score. [19] 

4.2 Synthesis of tabular data set 

For the synthesis of the tabular process parameter data sets, a simple linear regression model and a more 
generalizable MLP regression model were applied and evaluated. Figure 6 shows the results of the linear 
regression (top) and MLP regression analysis (bottom) for the dependent variable wet film thickness. For 
this parameter, the linear model shows a better fit toward the measured data. The error was quantified using 
the mean squared error, which reached values of 29.23 for the MLP model and 15.09 for the linear model. 

The results for the regression of the fraction of coated area can be seen in Figure 7. Here the MLP regression 
(bottom) shows a slightly better fit toward the measured data, than the linear model (top). In this case in 
particular, it is evident that the linear regression produces counterintuitive results (i.e. fraction of coated area 
greater than 100 %). This prediction requirement is addressed by the MLP. The mean squared error for the 
MLP model was calculated at 0.10, whereas the error for the linear model is 0.13. In order to achieve the 
best possible results and generate a fully synthesized dataset, the constructed models of the CGAN and MLP 
were combined. The structure of the combined models is shown in Figure 8.  

For the approximation of the wet film thickness the linear model is used and the fractions of coated and dried 
areas are calculated by the MLP regression, since these models show the smallest errors as shown in Figure 
6 and Figure 7. The values for the fraction of coated and dried areas represent the type and severity of the 
examined error and thus are transformed into the label that serves as input for image generation. 
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Figure 6: Prediction of the wet film thickness using linear regression (top) and MLP-regression (bottom) 

 

Figure 7: Prediction of the fraction of coated area using linear regression (top) and MLP-regression (bottom) 

 

Figure 8: Structure of the combined overall model for data synthesis of electrode coating images 
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5. Conclusion 

The production of electrodes for lithium-ion cells represents a complex manufacturing process with strong 
influences on the quality of the battery cells. To save time and costs, machine learning methods can provide 
helpful support for ensuring the quality of the coating process. They are capable of analysing and evaluating 
complex correlations and abstract data spaces, for which, however, they require a great amount of training 
data. To provide this amount of input even with limited availability of real test data, an approach to synthe-
sizing artificial coating data by using a CGAN was proposed. The results show that the combination of a 
linear regression model and an MLP regression model for synthesizing structured data together with a CGAN 
for synthesizing coating images is capable of generating an artificial data set. The computational quality of 
the artificial data was evaluated using the Fréchet Inception Distance and could be sufficiently confirmed. 
However, the commonly applied evaluation metrics are still part of current research. When viewed with the 
human eye, the quality of the generated images can be considered good. Only a pixel-like noise is visible on 
many artificially generated images. In summary, this study shows that synthetic coating images and the 
associated process data can be generated using artificial intelligence. However, further research is needed to 
evaluate the viability of the artificially generated images and datasets as a stand-alone data source, rather 
than relying on real data.  
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