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Abstract 

Solving job shop scheduling problems (JSSPs) with a fixed strategy, such as a priority dispatching rule, may 

yield satisfactory results for several problem instances but, nevertheless, insufficient results for others. From 

this single-strategy perspective finding a near optimal solution to a specific JSSP varies in difficulty even if 

the machine setup remains the same. A recent intensively researched and promising method to deal with 

difficulty variability is Deep Reinforcement Learning (DRL), which dynamically adjusts an agent's planning 

strategy in response to difficult instances not only during training, but also when applied to new situations. 

In this paper, we further improve DLR as an underlying method by actively incorporating the variability of 

difficulty within the same problem size into the design of the learning process. We base our approach on a 

state-of-the-art methodology that solves JSSP by means of DRL and graph neural network embeddings. Our 

work supplements the training routine of the agent by a curriculum learning strategy that ranks the problem 

instances shown during training by a new metric of problem instance difficulty. Our results show that certain 

curricula lead to significantly better performances of the DRL solutions. Agents trained on these curricula 

beat the top performance of those trained on randomly distributed training data, reaching 3.2% shorter 

average makespans. 
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1. Introduction 

Inspired by the way humans learn, deep reinforcement learning (DRL) is a machine learning paradigm in 

which a system, or agent, autonomously learns from gathered experience. Most famously, DRL has been 

successfully applied to board and video games [1,2] with superhuman performance. In recent years, DRL 

has also shown promising results in industrial use-cases and combinatorial optimization problems such as 

the job shop scheduling problem (JSSP) [3–5].  

Scheduling problems deal with the allocation of resources to jobs over time to optimize criteria such as total 

time spent to process all jobs, called makespan [6]. The JSSP in particular is a problem formulation, where 

each job must visit each machine in a factory in a fixed order, and is considered NP-hard to solve optimally. 

In practice, scheduling problems are often solved using priority dispatching rules (PDRs) consisting of 

simple rules for determining the priority of jobs over a scheduling sequence [6]. The main promise of DRL 

for the scheduling problems compared to alternative solution approaches is that it may yield better solutions 

than commonly used PDRs but with much shorter computation times and less formulation effort than optimal 

solvers [7]. Yet, DRL for scheduling problems is only in its infancy. On the one hand, the field still neglects 
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some problem conditions inherent to real-world problems [8], and on the other hand it lags behind in the 

application of promising DRL paradigms such as curriculum learning (CL). 

CL is a recent but very active research field in DRL and is built on the premise that, as with human learning, 

curricula play a critical role in effective learning behaviors in DRL. More precisely, CL is concerned with 

generating and learning from suitable experience sequences for the DRL agent. These sequences form the 

curriculum, which typically progressively varies the task difficulty leading up a final goal. The transfer of 

CL to the JSSP domain, has only recently been attempted [3]. Such existing methods design curriculums 

which vary between different problem sizes, i.e. numbers of jobs and machines per problem instance. While 

applicable to toy-box scenarios, the number of machines is often constant in real-world scenarios and 

corresponding usable training data. More granular CL within one fixed problem size, however, has not been 

studied yet. The missing component to accomplish CL in this granularity is a common definition of a degree 

of difficulty of problem instances within the same problem size. 

In this work, we present such a definition and propose a new CL strategy for solving the JSSP with DRL.  

Comparing the learning behavior with and without CL, we empirically show the superiority of our approach 

with respect to the achieved average makespan. Our main contributions are summarized as follows: 

• The introduction of a measure for the relative difficulty of a problem instance in JSSPs of the same 

problem size. 

• A curriculum learning strategy for JSSPs suitable to steer the learning behavior of DRL agents and 

to receive shorter average makespans (compare Figure 1). The observed behavior shows that starting 

training on the most difficult instances decreases the resulting makespans by 3%.  

The remainder of this paper is structured as follows: In section 2 we summarize latest achievements in DRL-

based JSSP solutions and introduce CL in this context. Section 3 details our solution method and 

experimental setup, followed by the presentation of the results and insights in section 4 and their  discussions 

in section 5. Finally, section 6 provides a conclusion and outlook to future work.  

 

 

Figure 1: Comparison of the common method with our proposed method. Extension through calculations on the 
training instances and difference in training procedure. 

2. Related Work 

2.1 Deep Reinforcement Learning for Job Shop Scheduling Problems 

Literature on DRL based JSSP solutions is rapidly increasing in volume and can roughly be divided into two 

classes: ground research and applied research. Ground research is generally concerned with new 

architectures [10,11,5], learning design decisions [3,4] and their comparison to existing solution methods, 
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such as priority dispatching rules, meta heuristics and optimal solvers [12]. Here, we find continuously better 

performance of DRL on standard JSSP problems and benchmark datasets, matching and outperforming 

PDRs in recent years.  

Applied research often considers an additional dimension in the problem formulation inspired by real-world 

use-cases, such as stochasticity [13,14], machine flexibility [15–17], dynamic job releases [18], machine 

failures [19] or multi-objective optimization criteria [20,21]. These studies show the general feasibility of 

DRL to learn, but are typically not very competitive with expert systems. Our contribution lies closer to the 

first class, as it methodologically extends an existing approach by means of a new learning paradigm for CL 

in job shop scheduling. 

2.2 Curriculum Learning in Deep Reinforcement Learning based Job Shop Scheduling 

According to Narvekar et al. [9], curriculum learning consists of three key elements: task generation, which 

deals with the division of the overall goal into easier sub-goals and the generation of suitable training 

experience; sequencing, dealing with the order in which to present the training experience; and transfer 
learning, comprising methods to tackle forgetting skills acquired from past experience when confronted with 

new experience.   

CL for DRL-based JSSP is not much investigated in the current state of research. In a wider sense, CL is 

used in several approaches to DRL-based job shop scheduling by applying variations of experience replay 

[22–25,11,18], in which the gathered experience is rearranged and sampled aiming to make learning more 

stable. In that way, it is loosely related to the sequencing element of CL. However, experience replay works 

with the experience once it is already gathered, skipping the task generation element of CL. Task generation 
is less studied and a remaining challenge for solving combinatorial optimization problems with DRL [26]. 

In our work, we propose an own metric for the importance of experience based on the performance of priority 

dispatching rules, which serves as a discriminating factor for easy and hard tasks. 

Iklassov et al. [3] explicitly propose CL in the JSSP domain. They define the easiness of sub-goals of JSSPs 

through problem sizes, as most common in combinatorial problems because of the solution space scales with 

the problem size [27]. By this definition, a problem instance with more jobs and machines is harder than one 

with less jobs and machines. Making use of a problem size agnostic neural network architecture, the authors 

introduce an automatic sequencing algorithm which favors collecting experiences from the currently hardest 

problem size. Their results indicate that models trained with CL drastically outperform those trained without 

CL. Our approach differs from that of Iklassov et al. [3] in that we apply CL for problem instances of the 

same size. Hence, we are closing an important gap that enables applying CL to those manufacturing scenarios 

in which the number of machines remains the same.  

3. Methods 

In the following, we first summarize the work by Zhang et al. [5], which serves as our methodological testbed 

and baseline, followed by the details of our CL extension and experimental setup. 

3.1 Deep Reinforcement Learning Approach 

Our approach extends the method and framework presented in Zhang et al. [5], which shows competitive 

results on recognized benchmark datasets of the JSSP with makespan optimization. Specifically, our method 

adapts the interaction logic of the DRL agent with the simulation (action-space and environment step), the 

action evaluation signal (reward), the input formulation (observation-space), and the network architecture.  

The studied DRL agent iteratively plans tasks of a JSSP by choosing from the list of still unfinished jobs in 

each iteration step. The corresponding next task of this job is scheduled to start at the earliest still possible 
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time by a mechanism called left-shifting: left shifting means that if the current plan, consisting of all 

scheduled tasks up to that point, can be optimized by switching the position of the chosen task with the 

previous one on the used machine, this switch is executed by the simulation. The corresponding reward 

signal consists of the difference of the makespan of the already scheduled tasks before and after the last step, 

such that the cumulative reward received throughout the planning process equals the negative makespan of 

the final plan. The scheduling decision is based on a size-agnostic embedding: For each task, the embedding 

contains the information whether it is done and what its current lower bound of the makespan is. Each task 

represents a node in a graph neural network in which the corresponding information is propagated from node 

to node and finally aggregated by summation. 

In the original paper, the 40.000 training instances per agent were generated on the fly by randomly sorting 

processing orders on machines and drawing processing times randomly from a normal distribution. Our 

central extension is a different sampling procedure as part of the CL approach.  

3.2 Curricular Training Procedure 

Task Generation (definition of instance difficulty): In order to carry out curriculum learning, a feature to 

divide problem instances into subtasks that vary in difficulty is essential. Since instances of the same problem 

size by definition share the same computational complexity, we resort to a feature defined by how well we 

are already able to solve instances through an established set of rules, i.e. PDRs. We call this discriminative 

feature difficulty to solve (DTS). DTS is defined as the makespan, which the most competitive PDR achieves 

on any given problem instance. Accordingly, we speak of those instances on which a shorter than average 

makespan is realized through the best PDR as easy tasks and those on which a longer makespan is realized 

as hard tasks. Applied to our use case, we proceed as follows (cf. Figure 1, step 1 and 1.1 of our method): 

As in Zhang et al. [5], we generate 40.000 random 6x6 JSSP training instances from normal distributions 

with respect to machine orders and processing times. After solving the training data with six commonly used 

priority dispatching rules jointly with the left-shifting procedure used in Zhang et al. [5], we find that the 

most tasks remaining (MTR) prioritization rule performs best with an average of a 16% larger makespan 

compared to the optimal makespan (optimality gap). The results of all considered PDRs are shown in the 

appendix (Table A1). MTR only performed marginally better than the least remaining processing time 
(LRPT) prioritization, but much better than the most often used shortest processing time (SPT). Optimal 

solutions were generated using the CP-SAT solver by OR-Tools [25]. Figure 2a) depicts the distribution of 

achieved makespans through MTR, which is our used DTS metric.  

Sequencing: The creation of training sequences is the next step. Often the difficulty is gradually increased 

over training in CL, following the intuition that an agent learns a basic strategy first and refines it later to 

match more difficult scenarios. To cover this sequence, but also others, we sort the training instances by 

 

Figure 2 Training data consisting of 40.000 unique instances. a) Histogram of training instances by their DTS 
(makespan through the MTR dispatching rule); b) Elements of the curriculum: portions of training data sorted by 
DTS. (e_n = easy, normal order; e_r = easy, reversed order; h_n = hard, normal order; h_r = hard, reversed order) 
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Figure 3: Schematic representation of all 16 possible curricula. As in Figure 2b), halves consist of CEs containing 
datapoints ordered by DTS (y-axis) along the training procedure (x-axis). 

DTS, as depicted in Figure 2b), then split it into the easy and hard halves and keep the original, or normal, 

order (e_n, h_n) or reverse it (e_r, h_r). For example, e_n (red line in Figure 2b)) consists of half of the 

training data in normal order, i.e. starting from the lowest DTS around 300 and ending at the mean DTS of 

about 580. The four portions make up our ordered training curriculum elements (CE). One entire training 

curriculum consists of two concatenated CEs, e.g. [e_n, e_n] or [e_n, h_r], resulting in the 16 possible 

curricula, schematically depicted in Figure 3. 

3.3 Experimental Setup 

The experiments are designed such that differences in the agent behavior and performance may only be 

attributed to the training curricula. To this end, a separate RL-agent is trained for each of the 16 curricula 

until all training instances within the curriculum have been shown once. As baseline, we also train three 

RL-agents on unordered training data, where the problem instances were randomly shuffled and the agents 

are randomly initialized with varying random seeds. Training hyperparameters are fixed in accordance with 

Zhang et al. [5] for all experiments. All agents are tested on a fixed test dataset containing 1000 problem 

instances each time 2000 training instances have been shown. For more statistically significant results, we 

sampled three different training datasets with varying random seeds as described in section 3.2. The above 

experiments are carried out separately on all three datasets.  

4. Experiment Results 

Figure 4 shows the results of agents tested on the validation instances over the course of training. Agents 

trained on the same CE in the first half of the training period, e.g. on e_n in [e_n, e_n], [e_n, e_r], [e_n, h_n], 

[e_n, h_r], are averaged across the three datasets and depicted as solid lines. Generally, one can observe a 

rapid decline to a first dip of the optimality gap from the first validation point after 2.000 training instances 

to 6.000 training instances, followed by an increase in the optimality gap and a gradual subsequent 

convergence to final values towards the end of the training. Interestingly, more than 70% of the agents reach 

their global minimum in the first dip. This indicates that the agents develop the most successful strategy in 

the very beginning of training and never return to it, but converge towards a higher (worse) optimality gap 

instead. Moreover, the best agents 10% of all agents reached their minimum in the first dip.  

A closer look at the first dip (cf. the zoom-in on the right in Figure 4) reveals that the lowest point is directly 

related to the easiness of the first data shown to the agent, hence the training curriculum. More precisely, the 

lowest point corresponds to agents trained with the h_r CE (blue line), meaning that they have been trained 

on the hardest training data. Inversely, agents trained on e_n (red line) remain highest among all points at 
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Figure 4: Performance of the agents on the test instances over training progress. Lines indicate the mean across three 
random seeds for the training instance generation. Shaded areas indicate the minimum and maximum values across 
three runs. Colored lines represent agents trained on curricula, where the first curriculum element is indicated in the 

legend. The second curriculum element is h_r for all depicted agents.  The black line represents agents trained on 
randomly ordered training instances.  

the first dip. Noteworthily, all agents trained on a CE perform better than those trained without a curriculum 

(black line) on average. This means that it is advisable to use a curriculum, specifically the h_r curriculum 

in the beginning of the training, to achieve the best results. In our case, we achieve 7% better results (1.1%p) 

in the first dip. Overall, we achieve 3% better results (0.5%p). 

Next, we analyze the training behavior of the agents regarding the second half of training, where the second 

CEs are presented. Note that in some cases, such as [e_n, e_n], the agent sees only one half of all instances. 

We study two main questions: Firstly, does the second CE have a consistent impact on the final result? 

Secondly, does the curriculum have a reproducible impact upon introduction in the middle of the training 

(difference between test after 20,000 and 22,000 training instances)? The latter may help to steer the agent 

away from a local minimum. Figure 5 shows the learning curves of agents trained on different curriculums 

composed from the same training dataset. In each plot, learning curves of four agents are displayed. The 

plots overlap in the first half of the training because of being trained on the same first CE, but diverge in the 

middle upon introduction of the second CE. Across all plots we were not able to find significant correlations 

between second curriculum elements and the learning curve with respect to optimal performance.  

This answers the first question: the curriculum element in the second half does not have a consistent impact 

on the final overall result. However, we observed trends regarding the local behavior in the beginning of the 

second half of training. Similar to the behavior in the first half, h_r generally invokes the largest drop in 

optimality gap compared to the other CEs in three out of four cases. In some cases, this goes so far that while 

h_r invokes a drop in the optimality gap, e_n invokes a rise in the optimality gap. 

Figure 6 visualizes the statistics of the immediate local impact of the CEs in the second half of training. 

Figure 6 a) shows the relative statistical impact of the CEs compared to the CEs by rank. The first bar 

indicates that in nine out of twelve cases, h_r invoked the largest immediate drop in optimality gap. 

Analogously, the last bar indicates that in five cases, e_n achieves the lowest performance. Generally, we 

find that h_r ranks highest and e_n lowest, whereas h_n and e_r rank in between. Similarly, in Figure 6 b), 

we can look at the absolute impact and count the number of times a CE caused an immediate jump towards 

better or worse optimality gap. Evidently h_r and h_n rather cause jumps towards better optimality gaps, 

whereas e_r is neutral and e_n causes jumps towards worse optimality gaps more often than not.  
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Figure 5: Zoom-ins on the second half of trainings. In each plot, training was performed on the same curriculum 
element in the first half (top left on [h_r], top right on [h_n], bottom left on [e_r] and bottom right on [e_n]) 

 

 

Figure 6: Statistical analysis of the local impact of training on first 2000 instances of each CE in the second half of 
training. a) Relative impact compared to other CEs. b) and c) Absolute immediate impact: count, how often each 

respective CE caused a drop (better) or rise (worse) in the optimality gap. 

5. Discussion of Results 

The presented results suggest that the learning behavior of the DRL agent can be positively influenced 

through the CEs defined in this study. As a practical consequence, we achieve better global results after a 

comparatively short training period. We therefore propose using CL according to our methodology, which 

is easily implemented and integrated into existing solution approaches. On a more fundamental level, the 

results suggest that the proposed DTS metric is useful to evaluate the easiness of a JSSP problem instance, 

a novum in this particular domain. During the experiments, we further observed the global minimum in the 

dip (cf. Figure 4) during training. Though useful in this particular case, in RL we much rather observe 

smooth, almost monotonically decreasing learning curves. An investigation for the reason behind the 

learning curve may be subject of future work. 

Another noteworthy observation is that learning on the hardest problems first achieves the best outcomes. 

CL methods otherwise typically start from easier sub-problems and transfer this knowledge into the actual 

final problem. Our initial explanation attempt, is that the harder problems introduce a stronger negative 
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reward signal through the larger makespan (note that our definition of DTS is related to the achieved 

makespan), pushing the agent more towards a certain initial strategy. Another intuitive hypothesis is that a 

strategy working well on harder problems, which inhibit a larger makespan, very effectively decreases the 

large optimality gap of these problems and leads to the strong results. To test whether a strategy that 

minimizes the particularly large optimality gaps may be incentivized through a curriculum, one may try 

using the optimality gap instead of the makespan achieved by MTR as DTS metric in the future. Note, 

however, that this requires solving every training instance optimally, which is much slower than our MTR-

based approach especially when applying the method to larger problem instances. 

6. Conclusion and Outlook 

CL is a promising DRL paradigm, yet not well studied in the context of JSSP solutions. In this study we 

investigated the impact of a learning curriculum within a fixed problem size of the JSSP. We found that 

ordering training instances by how well an established priority dispatching rule, MTR, performs on these 

instances provides meaningful metric for forming curricula that allow us to improve the learning behavior 

of DRL agents and to increase the scheduling performance. By starting the training with instances sorted 

from worst to best performances of MTR, our approach consistently outperforms agents trained on randomly 

ordered training data. 

Motivated by the presented results, in our future work we will investigate other metrics for the difficulty of 

problem instances of the same problem size. These may stem from priority dispatching rules that are 

combined for better performance or well suited for certain modifications of the JSSP. This is especially 

necessary for the successful transfer the methodology to other scheduling problems which include more 

challenging optimization objectives and additional constraints. 
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Appendix 

Table A1: Average optimality gap of priority dispatching rules on the training data.  
SPT=Shortest Processing Time First (job-wise); LPT=Longest Processing Time First (job-wise); MTR=Most Tasks 
Remaining (job-wise); LRPT=Least Remaining Processing (job-wise); MPTLOM=Most Processing Time Left On 

Machine (machine-wise); RANDOM: Random Prioritization of Jobs 

PDR SPT LPT MTR LRPT LOUM MPTLOM RANDOM 

opt. gap 0.40 0.32 0.16 0.16 0.41 0.35 0.29 
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