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Abstract
With the detection of the signal GW150914 from the collision of two black holes in 2015,

observational gravitational wave physics has begun. Many more signals have since been recorded,
and new detections are now becoming routine. These observations offer a new window to probe
fundamental physics in thus far inaccessible regimes of strong gravity, such as in the regions near
black hole horizons. The work presented here pursues this through two approaches, studying
predicted signals of either black holes of general relativity, or of proposed alternative objects
without horizons.
A binary black hole collision creates a single perturbed black hole, which settles to its final

state through the ringdown gravitational wave emission. The ringdown consists of a spectrum
of modes, which the no-hair theorem in General Relativity predicts to be determined entirely
by the black hole mass and angular momentum. Measurement of multiple modes allows to test
this prediction but is challenging due to the weak and short-lived nature of the ringdown signal.
Two studies are presented on the feasibility of such tests using current and near-future de-

tector sensitivities. Large populations of simulated ringdown signals are constructed based on
observational models of the binary black hole population. Bayesian parameter estimation tech-
niques are applied to these signals to place bounds on deviations from the no-hair prediction.
Detections leading to stringent bounds are unlikely to occur for current instruments but can
be found during a few years of operation at their planned future sensitivities. The prospects
improve when extending the analysis to combine data from multiple detections into a single
bound on deviations. At the sensitivity planned for the next observation run of current instru-
ments, the detections from one year of data can be combined into stringent bounds. Solutions
are provided to limitations uncovered for this type of study.
In a further study, strong evidence is found for the presence of a subdominant mode in

the data of the event GW190521. A new method is employed to allow the analysis of only
the ringdown part of the signal, without contamination from outside the analysis window and
preventing windowing artefacts and signal loss. Tests of the no-hair theorem are performed,
yielding unexpectedly tight constraints on deviations.
Two phenomenologically distinct signals from horizonless compact objects are studied, both

following after the primary signal which is otherwise unchanged compared to that of a black
hole binary. One takes the form of repeated pulses after the ringdown, called gravitational wave
echoes, while the other consists of a very long-lived damped sinusoid with a small amplitude.
Using a simplified waveform model for echoes, evidence for such signals in the data of several

detections is evaluated. Previous results from the first search for these are replicated, and the
methods tested thoroughly. Through improved estimation methods, low statistical significance
is established for these results, yet the presence of such signals cannot be ruled out by the
analysis. An independent Bayesian analysis is performed for the same waveform model, with
results for each event either preferring the absence of echoes in the data or being consistent with
it. Bounds on the echo amplitudes ruled out by the data are produced.
The long-lived mode signal for a broad class of horizonless objects is considered in a Bayesian

analysis. Methods are developed to accommodate the long duration of the signal, and their
performance is tested with simulated signals and off-source data. They are then applied to
the data of the event GW150914, yielding stringent bounds on the deviations from the Kerr
geometry exhibited by such objects.

Keywords: Gravitational waves, black holes, tests of gravity theory, data analysis
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Zusammenfassung
Mit der Detektion des Signals GW150914 von der Kollision zweier schwarzer Löcher im Jahr

2015 begann die beobachtungsbasierte Gravitationswellenphysik. Viele weitere Signale wurden
seither aufgezeichnet und neue Detektionen werden zur Routine. Diese Beobachtungen eröffnen
einen neuen Weg, fundamentale Physik im bisher unzugänglichen Regime starker Gravitati-
on zu untersuchen, zum Beispiel in der Umgebung der Horizonte schwarzer Löcher. Die hier
präsentierten Studien verfolgen dies durch zwei Ansätze, indem sie entweder die vorhergesagten
Signale schwarzer Löcher in der Allgemeinen Relativitätstheorie oder vorgeschlagener alternati-
ver Objekte ohne Horizonte untersuchen.
Die Kollision zweier schwarzer Löcher erzeugt ein einzelnes gestörtes schwarzes Loch, wel-

ches durch Emission der Abkling-Gravitationswellen schließlich in einen ungestörten Zustand
übergeht. Die Abkling-Strahlung besteht aus einem Spektrum von Moden, welche dem Keine-
Haare-Theorem der Allgemeinen Relativitätstheorie nach gänzlich durch Masse und Drehimpuls
des schwarzen Loches bestimmt werden. Die Messung mehrerer Moden ermöglicht die Prüfung
dieser Vorhersage, ist jedoch wegen des schwachen und kurzlebigen Abklingsignals schwierig.
Zwei Studien zur Durchführbarkeit solcher Tests mithilfe aktuell und in naher Zukunft verfüg-

barer Detektor-Empfindlichkeiten werden dargelegt. Große Populationen simulierter Abkling-
signale werden konstruiert, basierend auf beobachtungsgestützten Modellen der Population von
Binärsystemen schwarzer Löcher. Bayessche Parameterabschätzung wird auf diese Signale an-
gewendet, um Abweichungen von der Keine-Haare-Vorhersage zu beschränken. Detektionen, die
zu strikter Begrenzung führen, sind mit aktuellen Instrumenten unwahrscheinlich, können aber
innerhalb weniger Jahre des Betriebs mit ihren geplanten zukünftigen Empfindlichkeiten erreicht
werden. Diese Aussichten verbessern sich, wenn Daten mehrerer Detektionen in der Begrenzung
kombiniert werden. Mit der geplanten Empfindlichkeit aktueller Instrumente im nächsten Beob-
achtungslauf können die in einem Jahr gesammelten Daten zu strikten Begrenzungen kombiniert
werden. Lösungen für die entdeckten Limitationen dieser Art Analyse werden vorgestellt.

In einer weiteren Studie wird starke Evidenz für die Existenz einer subdominanten Mode
in den Daten des Signals GW190521 gefunden. Eine neue Methode wird eingesetzt, welche
die Analyse des Abkling-Signals ermöglicht, ohne Kontamination von außerhalb des Analyse-
Fensters, Artefakte oder Signalverlust zu verursachen. Tests des Keine-Haare-Theorems werden
durchgeführt und liefern unerwartet strikte Beschränkungen für Abweichungen.
Zwei phänomenologisch verschiedene Signale horizontfreier kompakter Objekte werden un-

tersucht. Beide folgen dem Primärsignal, das ansonsten gegenüber dem schwarzer Löcher un-
verändert ist. Eines besteht aus wiederholten Pulsen, als Gravitationswellen-Echos bezeichnet,
während das zweite die Form einer langlebigen, gedämpften Sinuswelle geringer Amplitude hat.

Anhand eines vereinfachten Modells der Echo-Wellenform wird die Evidenz solcher Signale in
den Daten mehrerer Detektionen bewertet. Frühere Ergebnisse der ersten Suche nach Echos wer-
den repliziert und die Methoden ausführlich geprüft. Durch verbesserte Abschätzungsmethoden
wird eine geringe statistische Signifikanz der Ergebnisse etabliert, allerdings kann die Anwesen-
heit solcher Signale nicht durch diese Untersuchung ausgeschlossen werden. Eine unabhängige
Bayessche Analyse wird mit derselben Wellenform durchgeführt, wobei die Ergebnisse die Ab-
wesenheit des Signals bevorzugen oder mit Rauschen vereinbar sind. Grenzen für die von den
Daten ausgeschlossenen Amplituden der Echos werden gefunden.
Das Signal einer langlebigen Mode von einer großen Klasse horizontfreier Objekte wird in

einer Bayesschen Analyse betrachtet. Methoden werden entwickelt, um die lange Dauer des
Signals handhaben zu können, und ihre Leistungsfähigkeit wird an simulierten Signalen und
signalfreien Daten getestet. Auf die Daten des Signals GW150914 angewendet, liefern sie strikte
Beschränkungen für die Abweichungen solcher Objekte von der Kerr-Geometrie.
Schlagworte: Gravitationswellen, Schwarze Löcher, Gravitationstheorie-Tests, Datenanalyse
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1 Introduction

1.1 Introduction

The theory of general relativity very successfully describes the phenomenon of gravity. It has
been rigorously tested in the regimes available to observation and experiment. Among its pre-
dictions is the existence of exotic phenomena, such as black holes as objects in the strong field
regime and the subtle effects of gravitational waves. Despite being two of the first solutions to
the Einstein field equations found, the experimental accessibility of both has proven difficult.

These very strong and very weak gravitational effects meet in the form of gravitational-wave
observations. While sources of gravitational waves are in principle ubiquitous, the majority emits
only undetectably faint signals. The gravitational wave emission increases for large masses and
accelerations, making binary systems of massive, compact objects in tight orbits a promising
candidate. Such compact objects known to exist are, by increasing compactness, white dwarfs,
neutron stars and black holes. Even these sources emit gravitational waves that for their respec-
tive typical distances result in minute effects on Earth. There, they would displace test masses
by only the 10−21-st part of their separation distance, corresponding to about a thousandth part
of the diameter of a proton for masses that are separated by kilometres.

Nevertheless, detectors have been constructed that first observed a gravitational wave di-
rectly only a few years ago and are now routinely measuring gravitational-wave signals from the
collisions of compact objects.

These detections not only allow to study the properties of gravitational waves themselves, but
to observe otherwise dark objects. While black holes are studied through the orbits of nearby
stars or radiation emitted from their accretion disk, gravitational waves allow their observation
when those components are absent or undetectable. Additionally, gravitational waves may allow
probing regions otherwise inaccessible, such as the vicinity of the black hole’s event horizon.

Individual black holes may be studied through their gravitational wave emission when they
are perturbed. As the collision of sufficiently massive compact objects creates a highly perturbed
black hole, the late stage of a binary collision’s signal consists of this emission. In many aspects,
black holes are remarkably simple objects, which is reflected in the simple relations found in
the signal of a perturbed black hole. Measuring these relations allows constraining potential
deviations from the signal predicted in general relativity. Similarly, some theories introduce
modifications to the description of black holes or propose alternative objects, leading to modifi-
cations in the expected signal that can be targeted in a search. Constraining deviations from the
expected signal and determining the support for such modifications in the data helps to select
the most promising theories for further study.

1.2 Chapters and contributions

The work presented in this thesis has been carried out in collaboration with several colleagues,
and most of it has been published in the literature or is available as pre-print. This section
presents a short overview of the contents of the respective chapters and details the individual
contributions.
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1 Introduction

Chapter 1 provides a general introduction to the basics of gravitational wave observation. The
background of the signals studied in the following chapters is discussed, in particular the quasi-
normal modes of perturbed black holes and late-time signals of proposed alternative compact
objects. Finally, the concepts and tools for the analysis of the detector data are introduced,
focusing on techniques to estimate the parameter values of given models and the preference for
these models as supported by the data. The chapter was written by the author.

Chapter 2 is an adaptation of the work published as [1] and deals with the prospects of
observational tests of the black hole no-hair theorem. We construct populations of simulated
signals based on observational models of the binary black hole merger population and perform
Bayesian parameter estimation on the signals. Tests of the no-hair prediction are carried out on
signals where a multi-mode ringdown spectrum is found. Repeating this analysis for different
current and future detector sensitivities, we estimate the rates of events suited to place stringent
constraints on deviations from the mode relations expected in general relativity.

This work was led by the author, together with M. Cabero. The author has implemented
the methods required to apply the Bayesian inference to the desired large populations of events.
The populations were constructed and the parameter estimation executed by the author and
M. Cabero. They led the discussion and interpretation of the results and the writing of the
publication, each with participation from the other authors of [1]. S. Kumar calculated the rate
of merger events occurring in the desired co-moving volumes.

The work presented in Chapter 3 has not yet been published. It continues the study of
prospects for no-hair tests by extending the previous analysis to incorporate methods combin-
ing information from multiple events into a single measurement. These methods combine the
results from the parameter estimation analysis of individual detections into a single probability
distribution for deviations from the predictions of general relativity. We discover fundamental
limitations of this type of analysis and provide strategies to prevent the recovery of biased re-
sults. Performing the analysis again on populations of simulated signals, we estimate the results
likely obtainable through these methods using one year of data with the detector sensitivity
planned for the next observing run.

The author implemented the tool used to combine results from multiple detections and per-
formed the parameter estimation analysis. The performance of the new analysis and the limiting
bias were characterised by the author. The authors of [1] participated in discussion and inter-
pretation of the results. The chapter was written by the author.

Chapter 4 is an adaptation of the work in the pre-print [2], which presents strong evidence for
the presence of multiple quasi-normal modes in the ringdown signal of the gravitational wave
event GW190521. This evidence is obtained through an agnostic and a targeted approach, either
assuming the expected relations between the modes’ parameters or allowing them to vary freely.
Each approach is applied to multiple times around the reported merger time of the event to
account for uncertainties. A new method to exclude data before the start of the ringdown from
the analysis is presented and applied, simultaneously preventing the introduction of artefacts
and the loss of signal. The measured modes are then used for an independent estimate of the
binary’s mass-ratio and to perform no-hair tests.

This work was led by C. Capano, who performed the majority of the parameter estimation
runs, while the author and M. Cabero performed subsets. C. Capano, S. Kastha and the author
implemented and tested the method for data exclusion. The accompanying data release was
prepared by C. Capano, M. Cabero and the author, and they produced the visualisation of
the results with J. Abedi and S. Kastha. All authors of [2] contributed to discussions and
interpretation of the results and to the writing of the paper.

Chapter 5 is an adaptation of the work published as [3] and deals with the statistical interpre-
tation of results found previously in the first search for gravitational wave echo signals of alter-

12



1.3 General relativity and gravitational waves

native horizonless compact objects. An independent implementation of the employed methods
is constructed and characterised in detail, uncovering features directly affecting the conclusions
drawn from the search results. The original results are replicated, and a new estimate of their
statistical significance is given, using extensive studies of simulated and real detector noise. The
statistical significance is found to be low, while at the same time the presence of such signals
cannot be ruled out confidently through these methods.
This work was led by the author, who implemented and tested the methods and carried out

the analyses, with guidance from A. Nielsen and O. Birnholtz. All authors of [3] participated in
the discussion of the results and editing of the publication. The writing of the publication was
again led by the author with contributions from A. Nielsen and O. Birnholtz.
Chapter 6 is an adaptation of the work published as [4] and provides a Bayesian analysis

searching for the same echo signals as discussed in the previous chapter. An independent assess-
ment is given for the support for such models in the data and for their estimated parameters.
Simulated signals are used to characterise the performance of the analysis. Through this, the
model selection results are validated, and bounds are placed on the amplitudes of potential
signals.
This work was led by A. Nielsen, who carried out the parameter estimation analysis. The

author provided the echo waveform model and with C. Capano implemented improvements and
increased its efficiency. Integration into the analysis pipeline was implemented by A. Nielsen,
C. Capano and the author. The author and O. Birnholtz contributed to the discussion and
interpretation of the results, and to the writing of the publication, which were led by A. Nielsen
and C. Capano.
Chapter 7 is an adaptation of the work in the pre-print [5] and presents a search for modified

quasi-normal mode signals from proposed horizonless compact objects. A new analysis method
is developed and employed to accommodate this long-lived signal. Applying it to the data of
GW150914, stringent bounds are placed on the deviation from the Kerr geometry for a class of
the proposed objects.
This work was led by the author, who implemented and tested the new methods and carried

out the data analysis. C. Capano provided guidance in the development of the methods, while
Y. Sherf led the adaptation of the model of the horizonless object. Y. Sherf and the author led
writing the publication, while all authors of [5] contributed to the text, as well as to discussions
and interpretation of the results.
Chapter 8 provides some overall conclusions from the work presented in this thesis.

1.3 General relativity and gravitational waves

In general relativity, spacetime is modelled as a 4-dimensional Lorentzian manifold (M, g) and
events are identified with points in this manifold. The metric tensor field g in Einstein’s Theory
of Gravity obeys the Einstein field equations,

Gµν = 8πTµν , (1.1)

where Gµν = Rµν − R
2 gµν is the Einstein tensor and Tµν is the stress-energy-momentum tensor.

In this description, freely falling particles follow geodesic curves. For Eq. (1.1) we used geometric
units, wherein the gravitational constant G and the speed of light c in vacuum are G = c = 1.
In SI units, an additional factor G/c4 appears on the right-hand side.

These rather compact statements are at the core of general relativity (GR), and this section
shortly reviews the concepts and gives an overview of how they lead to the phenomena mea-
sured and analysed in the following chapters. They are detailed in many textbooks, and this
introduction is based on several of them [6–11].
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1 Introduction

A manifoldM is a topological space that locally resembles Euclidean space in that it is locally
homeomorphic to it. The corresponding homeomorphisms allow us to assign coordinates to the
manifold, and several of these coordinate maps may be required to cover the manifold completely.
A manifold is differentiable if it is covered by a collection of coordinate maps with differentiable
transition functions between overlapping maps. The resulting differentiable structure allows us
to work with vectors of the tangent space TpM and the one-forms of its dual, the cotangent space
T ∗
pM , at each point p of the manifold. Consequently, we can consider tensor spaces (Tp)

m
nM

as the tensor product of m copies of TpM and n copies of T ∗
pM , or equivalently as multilinear

mappings of m one-forms and n tangent vectors into the real numbers R.
Tensor fields assign every p ∈ M an element of the corresponding tensor space (Tp)

m
nM , of

which vector fields and one-form fields are special cases. Choosing a basis of vector fields eµ
and one-form fields θν , we write a tensor field as Tµν eµθ

ν , using here and in the following the
convention of summing over indices appearing twice unless noted otherwise. The basis will often
be omitted from equations, but the equations will be those between the tensors as geometric
objects, not their components. We introduce the metric tensor field g on the differentiable man-
ifold, a non-degenerate, symmetric tensor field, which maps two tangent vectors to R. Finally,
with the metric tensor having signature (−,+,+,+), (M, g) is a Lorentzian manifold, modelling
spacetime.
Deciphering the Einstein field equations, we find therein

Gµν = Rµν −
1

2
Rgµν , (1.2)

Rµν = Rαµαν , (1.3)

R = Rµµ, (1.4)

Rαβµν = ∂µΓ
α
νβ − ∂νΓ

α
µβ + ΓαµγΓ

γ
νβ − ΓανγΓ

γ
µβ, (1.5)

Γαµν =
1

2
gαβ (∂µgβν + ∂νgµβ − ∂βgµν) , (1.6)

the Einstein tensor Gµν , Ricci tensor Rµν , Ricci scalar R, Riemann curvature tensor Rαµβν ,
and connection coefficients or Christoffel symbols Γαµν on the left-hand side, and the energy-

stress-momentum tensor Tµν on the right-hand side. Partial derivatives ∂µ = ∂
∂xµ are taken with

respect to the coordinate functions xµ. We use the convention of Greek spacetime indices taking
values 0, 1, 2, 3 and Latin spatial indices taking values 1, 2, 3. With each tangent vector, the
metric tensor gµν associates a one-form from the dual cotangent space. Similarly, the inverse of
the metric g−1, with components gµν , defines a tangent vector for each one-form of the cotangent
space. In component notation, this takes the form of raising and lowering indices,

gµαg
αν = δνµ Tµ = gµνT

ν Tµ = gµνTν , (1.7)

where δµν = 1 for µ = ν and δµν = 0 for µ ̸= ν.
The effect of gravity on a freely falling particle, i.e. with no forces acting upon it, is described

by the particle following a geodesic curve through spacetime. Its path xµ(λ), parameterised by
λ, then obeys

d2xµ

dλ2
+ Γµνα

dxν

dλ

dxα

dλ
= 0. (1.8)

If additional forces act on the particle, they appear as Fµ on the right-hand side.
The left-hand side of Eq. (1.1) describes the curvature of spacetime. On the right-hand side,

the energy-stress-momentum tensor describes its matter, energy, and momentum content, and
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1.3 General relativity and gravitational waves

their fluxes. Thus, the energy and momentum content of spacetime can be seen as determining
its curvature, while its curvature determines the motion of particles. An additional cosmological
constant term may be added on the left-hand side as Λgµν , which can also be formally absorbed
into Tµν , and which is relevant for the observed accelerating expansion of the universe.

Taking into account its components, we see that the Einstein field equations represent a cou-
pled system of nonlinear partial differential equations for the metric gµν . Finding a metric that
is a solution for the equations is thus difficult, and the known solutions rely on simplifications
or approximations. A simple analytic solution is the Minkowski-metric [12–14], a vacuum with
Tµν = 0, describing flat spacetime. Important analytic solutions are the vacuum solutions de-
scribing black holes, the Schwarzschild metric [15] for non-rotating, and the Kerr metric [16]
for rotating black holes. The Friedmann-Lemâıtre-Robertson-Walker metric [17–23] describes
a homogeneous and isotropic universe and is relevant in cosmology. Numerical Relativity uses
numerical methods to solve the Einstein field equations for more complex cases where no an-
alytic solution is known, and can yield approximate solutions of high accuracy. Finally, using
the approximation of only small deviations from a flat metric allows us to find solutions to the
linearised equation, importantly leading to a wave solution.

The components of the metric tensor are commonly shown by writing the line element
ds2 = gµνdx

µdxν , from which the individual components can be read off. The line element
of the Minkowski metric is given by

ds2 = −dt2 + dx2 + dy2 + dz2. (1.9)

The Schwarzschild solution is an asymptotically flat, static, spherically symmetric, vacuum
solution. It is used as an approximation to describe a non-rotating astrophysical black hole.

The line element of the Schwarzschild metric in Schwarzschild coordinates is given by

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (1.10)

The Reissner-Nordström metric [24] is a generalisation to include electric charge, however, as-
trophysical black holes are expected to possess only negligible electric charge.

The Kerr metric is an asymptotically flat, stationary, axially-symmetric, vacuum solution.
It is used as a more realistic approximation to describe astrophysical black holes, which are
expected to possess angular momentum. The line element of the Kerr metric in Boyer-Lindquist
coordinates [25] is given by

ds2 = −
(
1− 2Mr

Σ

)
dt2 − 4Mr

Σ
a sin2 θ dϕdt+

Σ

∆
dr2

+Σdθ2 +

(
(r2 + a2) sin2 θ +

2Mr

Σ
a2 sin4 θ

)
dϕ2,

(1.11)

with Σ = r2 + a2 cos2 θ, and ∆ = r2 + a2 − 2Mr = (r − r+)(r − r−), where r± =M ±
√
M2 − a2.

The angular momentum J and mass M appear in the spin parameter a = J
Mc , and we will often

refer to the dimensionless spin parameter χ = a
M . The generalisation of the Kerr solution to

include electric charge is the Kerr-Newman metric [26, 27].

The Friedmann-Lemâıtre-Robertson-Walker metric describes a homogeneous and isotropic
universe but is not restricted to a vacuum. Depending on whether its spatial geometry is
spherical, flat, or hyperbolic, it reads
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ds2 = −dτ2 + a2(τ)





dψ2 + sin2 ψ
(
dθ2 + sin2 dϕ2

)

dx2 + dy2 + dz2

dψ2 + sinh2 ψ
(
dθ2 + sin2 θdϕ2

) . (1.12)

Gravitational waves can be found as small perturbations of an otherwise flat Minkowski space-
time, which approximates weak gravitational fields far from sources. For this approximately flat
metric, coordinates can be found so that it can be written as

gµν = ηµν + hµν , (1.13)

where ηµν is the Minkowski metric and for all components of hµν we have |hµν | ≪ 1 everywhere
in spacetime in these coordinates [6]. We now follow the derivation in [7] and will raise and
lower indices with ηµν in the following, treating hµν like a tensor in a flat spacetime, while re-
stricting coordinate transformations to gauge- and background Lorentz-transformations. These
gauge-transformations satisfy x′α = xα + ξα(xα) with |∂βξα| ≪ 1, while the background Lorentz
transformations simply have constant components as would ordinary Lorentz transformations
when hµν vanished. Then, hµν is treated like a tensor and we define the trace reverse of hµν ,

h̄µν = hµν − 1

2
ηµνh, (1.14)

where h = hµµ is the trace of hµν . We can perform gauge transformations to use the Lorenz
gauge1, such that

∂µh̄
µν = 0. (1.15)

Discarding terms quadratic in hµν or its derivatives, as we assumed these to be small, we can
then write the Einstein tensor as

Gµν = −1

2
ηαβ∂α∂βh̄µν . (1.16)

The d’Alembert-operator □ = ηµν∂µ∂ν appears in the Einstein tensor, and inserting into the
Einstein field equations, we find the linearised field equations

□h̄µν = −16πTµν . (1.17)

We find a system of inhomogeneous wave equations, or homogeneous wave equations for a
vacuum, with Tµν = 0. This is solved by plane waves,

h̄µν = R
{
Cµνe

iηαβk
αxβ
}
, (1.18)

where k0 = ω is the angular frequency of the wave, ka are the spatial components of the direction
of propagation, and the complex Cµν represents amplitude and phase. We take the real part
R on the right-hand side of Equation (1.18) to describe the physical gravitational wave. In the
solution, kα is a null vector, kαkα = 0, and thus the propagation velocity is the speed of light,
c = 1. Indeed, any solution of the homogeneous wave equation in the Lorenz gauge can be
written as a superposition of plane waves [7, 8].

1In analogy to the gauge of electromagnetism by L. Lorenz, but often written Lorentz gauge in GR texts. A
special case of the more general de Donder or harmonic gauge [10].
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1.3 General relativity and gravitational waves

The Lorenz gauge is not unique and still allows the gauge freedom of a change in coordinates
x′µ = xµ + ξµ, where □ξµ = 0. Through such a transformation, we now use the transverse-
traceless gauge such that

Cµµ = 0 and CµνU
ν = 0 (1.19)

⇒ h̄TTµν = hTTµν , (1.20)

where Uν is a four-velocity and the condition Cµµ = 0 means tracelessness. We can perform
a background Lorentz transformation to coordinates such that Uν is the time basis vector in
these coordinates, Uν = δν0 , i.e. the four-velocity of a particle at rest in the reference frame
of the coordinates. Using Cartesian coordinates t, x, y, z, we additionally choose the spatial
coordinates such that the wave propagates in the z-direction, so (kµ) = (ω, 0, 0, ω), as kµkµ = 0
implies (k0)2 = kaka. This leads to

CTTµν =




0 0 0 0
0 C+ C× 0
0 C× −C+ 0
0 0 0 0


 , (1.21)

with only C+, C× remaining as independent free parameters (and the form justifying the term
transverse for this gauge, as CTTµz = 0). These degrees of freedom represent the two independent
polarisations of gravitational waves, plus and cross.
We can write the two polarisation components in terms of the unit linear-polarisation ten-

sors [8],

eij+ = eixe
j
x − eiye

j
y (1.22)

eij× = eixe
j
y + eiye

j
x, (1.23)

where eix, e
i
y are coordinate-basis unit vectors for the x- and y-coordinate. A gravitational wave

is linearly polarised with +-polarisation for
(
hij
)TT ∝ eij+ and ×-polarisation for

(
hij
)TT ∝ eij×.

An arbitrarily polarised wave can then be expressed as the superposition of two linearly polarised
waves

(
hij
)TT

(t, z) = h+(t, z)e
ij
+ + h×(t, z)e

ij
×, (1.24)

where t, x, y, z are the coordinates of the coordinate system chosen above, and

h+(t, z) = A+ cos(ω(t− z)− ϕ+) (1.25)

h×(t, z) = A× cos(ω(t− z)− ϕ×). (1.26)

Here, ω is the angular frequency, and the magnitude and phase of the complex C+/× =∣∣C+/×
∣∣ exp

[
iφ+/×

]
give the amplitudes A+/× =

∣∣C+/×
∣∣ and phases ϕ+/× = φ+/×.

The effect of a gravitational wave on freely falling particles can be used to measure a passing
gravitational wave, as the wave can affect the proper distance between such particles. We
consider a particle in its rest frame and use the transverse-traceless gauge corresponding to its
four-velocity Uµ. We now let the particle encounter a gravitational wave. The resting, freely
falling particle obeys the geodesic equation, with its path parameterised by its proper time τ
and determined by its initial four-velocity Uµ,

d

dτ
Uµ + ΓµνρU

νUρ = 0. (1.27)
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The particle is initially at rest, U i = 0, and the initial acceleration is

d

dτ
Uµ = −Γµ00 = −1

2
ηµν (2∂0hν0 − ∂νh00) . (1.28)

The initial acceleration vanishes as in the transverse-traceless gauge the hα0 vanish. Thus, the
particle will initially remain at rest and by the same argument stay at rest in these coordinates
indefinitely.

However, this is not a geometric statement but only refers to the coordinate distance. The
proper distance between two particles can nonetheless be influenced by the gravitational wave.
We can calculate the proper distance of two nearby particles at fixed coordinates, one at the
coordinate origin p0, and one shifted from the origin by δx along the x-axis to p1. The path
connecting the points, parameterised by λ, is pµ → (0, λ, 0, 0), and vµ = dpµ

dλ → (0, 1, 0, 0).
Integrating along this path, we find the proper length

lx =

∫ p1

p0

|gµνvµvν |
1
2 dλ (1.29)

=

∫ p1

p0

|(ηµν + hµν)v
µvν | 12 dλ (1.30)

=

∫ p1

p0

|(ηxx + hxx)|
1
2 dλ (1.31)

=

∫ δx

0

∣∣(1 + hTTxx )
∣∣ 12 dx (1.32)

≈
∣∣1 + hTTxx (x = 0)

∣∣ 12 δx (1.33)

≈
(
1 +

1

2
hTTxx (x = 0)

)
δx+O

(
h2
)
. (1.34)

As hTTxx is time-dependent, the proper distance between the particles changes over time as
the wave passes. Repeating the calculation for particles along the y- and z-axes leads to an
expression of the same form. As hTTzz = 0, the distance between particles separated in the
propagation direction of the wave remains unaffected. From hTTyy = −hTTxx we see for the x- and
y-directions that the distance in one direction is stretched when it is contracted in the other
direction. Thus distance along one direction is stretched and contracted periodically, and the
same occurs in the perpendicular direction with a phase offset compared to the first direction.

The same calculation can be performed for particles placed on the diagonals between the x-
and y-axes, where the relevant components of the metric tensor will be hTTxy = hTTxy . This leads
to the same behaviour of periodical stretching and contraction along the two diagonals, offset
by a difference in phase.

The effect of a passing gravitational wave on a ring of freely falling particles illustrates the two
polarisations in Fig. 1.1. Both polarisations of the gravitational wave leave the proper distances
along the z-direction unaffected. In the plane perpendicular to the propagation of the wave,
distances are periodically stretched and contracted along one direction, and alternately along the
direction perpendicular to the first. This behaviour is the same for both polarisations, with the
two directions of stretching and contraction rotated by π/4 compared to the respective opposite
polarisation.

We note the effect of a +-polarised wave on two particles placed on the diagonals, e.g.
(x1, y1) = (a, a) and (x2, y2) = (a,−a). These are displaced perpendicular to the diagonals,
so the displacement has no radial component and their proper distance to the origin does not
change initially. For small displacements, the proper distance to these particles will thus remain

18



1.3 General relativity and gravitational waves

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

t

Figure 1.1: Effect of a gravitational wave on a ring of freely falling particles. The two rows of
figures show the behaviour of a ring of particles in the x-y plane when encounter-
ing a gravitational wave propagating in the z-direction perpendicular to the plane.
Depicted are the proper distances between the particles. The first row shows the
effect of a wave with +-polarisation, first stretching the circle in the y-direction, then
returning to a circle, and then stretching it in x-direction, before the cycle repeats.
The shape of these distortions suggests the +-symbol for this polarisation. Similarly,
the distortions in the second row for a ×-polarised wave are strongest along the di-
agonals, suggesting the ×-symbol.

approximately unchanged, and a detector based on particles placed in this manner could not de-
tect a +-polarised wave by measuring the difference in the change of distance of these particles.
Conversely, a detector with particles on the x- and y-axes cannot detect a ×-polarised wave.
This principle is encoded in the detector antenna-pattern functions as described in Section 1.4.
We notice that the change in proper distance is proportional to the initial separation of the

particles, so placing the particles further apart increases the observable effect of the gravitational
wave in absolute terms. The alternating stretching and contraction can be used to increase
the observable effect of the wave by using three particles, one at the origin, and each one at
coordinate-distance δx = δy = L on the x- and y-axis, respectively. With the changes in proper
length δlx = lx − δx, δly = ly − δy we then find

δlx
δx

− δly
δy

=
δlx − δly

L
=

∆L

L
= hTTxx . (1.35)

Using such a set of particles and measuring the differential change in proper distance relative to
its initial value allows us to directly measure gravitational waves.
The description for gravitational waves as found for a flat background metric can be used

to approximate regions sufficiently distant to strong gravitational fields, i.e. far both from the
source of the gravitational wave and from other massive bodies. In this local wave zone, the prop-
agation of the waves is only negligibly influenced by the background curvature, and a multipole
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decomposition of the radiation field shows only quadrupolar or higher multipole contributions [8,
28]. A special case can be used to approximate the emission of a binary of compact objects,
which are orbiting each other, but are well separated, as seen from large distances. If the source
region containing the objects is small compared to the gravitational wavelength, and the mo-
tion of the source components is slow, we can express the gravitational wave emission using the
reduced quadrupole moment of the source,

Iij(t) =

∫
ρ(t, x⃗)

(
xixj −

1

3
r2δij

)
d3x . (1.36)

Here, ρ(t, x⃗) is the mass density of the source, r is the distance to the centre of the source system,
coinciding with the coordinate origin, and x⃗ = (x1, x2, x3). In the transverse-traceless gauge,
and at distance r from the source, the gravitational wave tensor to first order in the inverse
distance then is

hTTij (t) =
2

r
Ï TTij (t− r). (1.37)

In this, the second time derivative of the transverse-traceless part of the reduced quadrupole
moment Ï TTij appears, with the transverse projection perpendicular to the radial propagation
direction of the wave [8, 29]. The dominant contribution to the emission from these sources thus
comes from the second time derivative of the source mass-density’s quadrupole moment, while
the retarded time t− r appears due to the travel time from the source to the considered point
at distance r. We see that the emission described by Equation (1.37) vanishes for systems with
spherically symmetric mass-density (as follows generally from Birkhoff’s theorem [30, 31]), as
well as for axisymmetric mass distributions with movement about the symmetry axis.

1.3.1 Sources and types of signals

Several astrophysical sources are expected to produce directly detectable gravitational wave
signals [32]. Binary systems of very compact objects, such as black holes or neutron stars, emit
gravitational waves that have already been detected [33–35]. Supernova explosions and rapidly
rotating neutron stars with non-axisymmetric deformations are among further candidates that
are being searched for [36–38].
The quadrupole formula shows that rapid changes in the mass distribution and large masses

are favourable for the production of high amplitudes in the emitted gravitational waves. Binary
systems of compact objects are thus a suitable candidate, as the objects are of high mass and, due
to their small size compared to their mass, can be in tight orbits with high orbital velocities and
short periods. Figure 1.2 shows a simple overview of the expected signal strengths of different
sources and the sensitivities of different planned and existing detectors.
The gravitational wave emission of a compact binary system can be broadly divided into three

phases. These phases of the binary evolution and the corresponding signal are illustrated in Fig-
ure 1.3, using the first observed gravitational wave signal GW150914 as an example. During the
initial inspiral phase, the objects in the binary system are orbiting each other with a compar-
atively large separation and small orbital velocity, allowing a Keplerian description. Assuming
circular orbits for the component objects, the orbital distances and velocities are approximately
constant. This leads to a gravitational wave signal which is approximately monochromatic, con-
sisting of a single sine wave at twice the orbital frequency. As the system emits energy through
the gravitational waves, the orbital distance shrinks and the orbital frequency increases. Through
this, both the frequency and the amplitude of the emitted radiation increase, leading to the char-
acteristic chirp form of the signal [40]. As the distance between the objects decreases and their
velocities grow, post-Newtonian corrections become relevant for an accurate description [41,
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1.3 General relativity and gravitational waves

Figure 1.2: The expected characteristic strain for different types of sources is shown as a func-
tion of signal frequency, as well as the sensitivities of different existing and planned
detectors. Ground-based detectors target the frequency range of compact binary
systems and rotating neutron stars, while space-based detectors cover the range of
supermassive compact binaries. The figure was produced using the GWplotter online
tool, described in [39].

42]. The gravitational waveforms can be found through such post-Newtonian calculations or the
effective one-body formalism [43, 44].

When the two objects have approached sufficiently, the system enters the merger phase, dur-
ing which the individual objects form a single one. This phase is highly dynamic, with the
objects reaching relativistic velocities, and has to be described through the full Einstein equa-
tions [42, 45]. As the analytical approximations such as used for the inspiral phase become
insufficient, modelling this phase relies on the methods of Numerical Relativity to solve the
Einstein equations [46–48]. Gravitational waveforms can be extracted from numerical results,
and more efficient phenomenological and interpolated waveform models can be constructed from
them [49, 50].

The resulting single object is highly perturbed and settles down to its final state during the
ringdown phase, wherein the perturbations decrease through further emission of gravitational
waves. If the individual objects were neutron stars of sufficiently low masses, the final object
may be a single neutron star [51]. For neutron stars of higher mass, or if at least one of the
objects was a black hole, the final state will be a black hole approximated by the Kerr geometry.
The late ringdown phase of the final black hole can again be modelled analytically through
linear perturbations of the Kerr spacetime. The resulting signal consists of a superposition of
exponentially damped sinusoids with frequencies and damping times characteristic of the black
hole [52–54]. These are described in more detail in Section 1.6.

Waveforms for the complete evolution of a binary can be constructed by combining results
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Figure 1.3: Figure 2 from the publication of the first detection of gravitational waves from a
binary black hole system, GW150914, [33]. The upper panel shows a schematic
representation of the phases in the evolution of the binary system, with the corre-
sponding gravitational wave strain signal. The lower panel shows the evolution of
the orbital separation and velocity of the black holes in the binary.

for the individual phases, and banks of these waveform templates are then used in the matched-
filtering search for signals [55]. The distinction between these phases is not unique, but serves
as a guideline regarding the relevant physical effects, models, and methods at different stages of
the binary evolution.

Individual rotating neutron stars present a second type of source if their mass density is not
symmetric about the axis of rotation. Such asymmetries may be due to deformations such as
millimetre-high mountains on the surface, supported by the crust or magnetic fields, or due to
interior fluid oscillations or precession of the neutron star [56–58]. The resulting continuous wave
signal is approximately monochromatic and persists over long times, slowly shifting towards
lower frequencies as the neutron star’s rotation slows down due to the energy lost through
the gravitational wave (and electromagnetic) emission. For pulsars, the rotation frequency
of the neutron star can be well-constrained from electromagnetic observations, allowing for
gravitational wave searches targeting a narrow range of parameters and improving the sensitivity
of the search [59–61]. All-sky searches for signals from unknown rotating neutron stars are also
performed with an accordingly much larger parameter space [37, 38].

Supernova explosions, when sufficiently deviating from spherical symmetry, are another po-
tential source. Searches for unmodelled bursts of power coherent between detectors are used to
search for this type of source [62].

These signals can be broadly divided into being of transient or continuous nature, while this
distinction depends on the detector under consideration. While binary systems of compact
objects emit a continuous signal during the early inspiral, only the frequencies emitted during
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the late inspiral, merger, and ringdown are within the most sensitive range of the Earth-based
detectors. For these detectors, they are thus transient sources with the observable signal having
a short duration. Burst signals are transient due to the similarly transient nature of their
sources, while rotating neutron stars can emit continuous radiation at frequencies observable for
ground-based detectors.
Detections of gravitational wave signals from compact binaries yield information on the pop-

ulations of these objects [63, 64]. They can be used to learn about the behaviour of matter
under extreme conditions, to test predictions of general relativity, and to gain insight into fun-
damental physics in the strong-gravity regime. The signal from the collision of neutron stars
carries information about the behaviour of matter under extremely high pressures and in strong
gravity, and can be accompanied by an electromagnetic counterpart signal, as was the case for
the first such detection [34]. Vice versa, it allows for tests of general relativity in the presence of
matter [65]. Detections of continuous waves from rotating neutron stars can similarly be used to
learn about their structure and composition, and for further tests of GR [66–68]. Signals from
black hole collisions provide an opportunity to test fundamental physics and general relativity
in the regime of even stronger gravity [69–72].

1.4 Gravitational wave detectors

The most prominent gravitational wave detectors currently operating are the two advanced Laser
Interferometer Gravitational-Wave Observatory (LIGO) detectors in the US, advanced Virgo in
Italy, and KAGRA in Japan, and data of the first three is analysed in this thesis.
The effect of a passing gravitational wave on freely falling particles can be used to detect it

by measuring the proper distance between the particles. As the change of the proper distance
is very small, it is measured interferometrically, with the current detectors using a Michelson
interferometer design [73–75]. The particles or test masses are represented by the mirrors at the
ends of the interferometer’s arms. An unequal change in the proper distance along the arms’
optical paths then changes the interference pattern observed at the interferometer’s output. The
quantity measured at the output photodetector is the power at a specific point in the interfer-
ence pattern, which will change when the pattern shifts between constructive and destructive
interference. As the difference in proper distance and thus light travel time along the detector
arms changes, so does the phase difference between the two beams and the interference pattern.
The geometry of the Michelson interferometer with its perpendicular arms is beneficial as

it maximises the measurable effect for a gravitational wave’s polarisation-component aligned
with the arms. We see this from Equation (1.35), where the difference between the changes in
proper distances along the arms ∆L appears. Defining the dimensionless strain h(t) introduced
in the detector by a gravitational wave of arbitrary polarisation and orientation, we rewrite this
equation for ∆L. For a detector with arm lengths Lx = Ly = L we find

h(t) =
δlx
Lx

− δly
Ly

=
1

2

(
eixe

j
x − eiye

j
y

)
hTTij

⇒ ∆L = δlx − δly = h(t)L,

(1.38)

where eix, e
i
y are spatial unit-vectors along the detector arms [56]. The dimensionless strain

amplitude h(t) is the quantity we desire to measure. We use here the approximation that the
gravitational wave’s wavelength λ is much larger than the arm length, λ ≫ L, considering
the metric tensor to be approximately constant during the laser beam’s propagation through
the interferometer[7, 76]. We also see that larger arm lengths increase the magnitude of the
measurable change in length, so using an interferometer with long arms is beneficial. In addition,
the detectors can use a Fabry-Pérot cavity in each of the arms to increase the effective length
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of the optical path [73, 74]. The relative phase between the two arms’ beams at the output
then depends on h(t), the mean number of round trips in the cavities b, and light frequency
ν0 [77–79],

∆ϕ(t) = 2πbν0Lh(t). (1.39)

The change in length introduced in the detector by a gravitational wave depends on the
detector’s geometry, and the wave’s polarisation and direction. We have already seen this
partially from the effect of a wave on a ring of freely falling particles. A gravitational wave
consisting of plus- and cross-polarised components h+(t), h×(t), causes a strain in the detector
described using the detector’s antenna pattern functions F+, F×,

h(t) = F+(θ, ϕ,Ψ)h+(t) + F×(θ, ϕ,Ψ)h×(t). (1.40)

Here, θ ∈ [0, π), ϕ ∈ [0, 2π) are the spherical polar coordinates of the source in the frame of the
detector. They correspond to the Cartesian coordinate system in which the x- and y-axes are
oriented along the arms of the detector and the z-direction points upwards. In addition to this
detector frame, we use the geocentric, radiation, and source frames explained in the following.

The polarisation angle Ψ relates the detector and radiation frame. It is the angle between the
plane of constant ϕ = ϕs and the Cartesian x-direction of the radiation frame [80, 81], where ϕs
is the ϕ-component of the line-of-sight vector towards the source. The radiation frame is that
described in Section 1.3, with the z-axis pointing along the direction of propagation, in this case
from the source towards the Earth. It is given in the transverse-traceless gauge, with a freely
falling particle as origin, and the x- and y-axes pointing along the directions of stretching and
contraction for the +-polarisation, as shown in Section 1.3. The antenna pattern functions for
an L-shaped interferometric detector with a right angle between the arms then are [80, 81]

F+(θ, ϕ,Ψ) =
1

2

(
1 + cos2 θ

)
cos 2ϕ cos 2Ψ− cos θ sin 2ϕ sin 2Ψ (1.41)

F×(θ, ϕ,Ψ) =
1

2

(
1 + cos2 θ

)
cos 2ϕ sin 2Ψ + cos θ sin 2ϕ sin 2Ψ. (1.42)

Due to the rotation of the Earth, the angles θ, ϕ,Ψ as given in the detector frame are time-
dependent. For transient signals from compact binary systems, however, this time-dependency
will typically be negligible for the short duration during which the signal is observable.

The geocentric frame or equatorial coordinate system is independent of the considered de-
tector [82, 83], and centred on the Earth. The sky-location of an observed source is given in
this frame by the right ascension α ∈ [0, 2π) and declination δ ∈

[
−π

2 ,
π
2

]
, and the polarisation

angle Ψ can then be constructed similarly as in the detector frame. While centred on the Earth,
these coordinates are not co-rotating with it. Instead, they project the Earth’s equator onto the
visible sky and use its intersection with the ecliptic of the solar system as a reference point to
define spherical coordinates on the sky.

Finally, the source frame is fixed to the source system and coordinates adapted to conveniently
describe its properties may be chosen, often aligning one of the basis vectors with the angular
momentum vector of the system and having the origin coincide with the centre of mass. The
inclination angle ι relates the source frame to the radiation and detector frames. It is the angle
between the vector pointing from the source towards the Earth and the angular momentum
vector of the source system, meaning the orbital angular momentum for a binary and the total
angular momentum for an individual black hole [84]. The gravitational wave signal seen by an
observer depends on this angle due to the angular dependency of the multipolar expansion, as
described for the quasi-normal mode signal from a perturbed black hole in Section 1.6. Together,
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1.4 Gravitational wave detectors

Figure 1.4: Antenna patterns for a detector with arms pointing into the x- and y-directions, for
waves with polarisation angle Ψ = 0. For each direction, the absolute values of the
antenna pattern functions F+, F× and their combination F 2

+ + F 2
× are shown as the

distance of the surface from the origin. Additionally, the same quantity is mapped
to the colour of the surface, with lighter colours showing larger values.

ι, Ψ, α, and δ relate the source and radiation frames to the geocentric frame, and in turn to the
detector frames via the known positions and orientations of the detectors on the Earth.

For distant sources, the signal may be significantly redshifted due to the expansion of the
universe, which has to be taken into account when comparing quantities in the source and
detector frames. For example, the mass measured in the detector frame differs from the source
frame mass by a factor (1 + z), where z is the redshift corresponding to the distance of the
source [85].

As mentioned earlier, the LIGO and Virgo detectors are based on a Michelson interferometer
installed in a system of vacuum tubes, with additional Fabry-Pérot cavities along the arms to
increase the effective path length of the arms. These also increase the laser power circulating
in the arms, as do signal- and power-recycling mirrors placed at the photodetector and laser
source. These mirrors reflect the light coming toward the photodetector and that returning
to the laser source back into the interferometer, thus forming a cavity with the interferometer
itself. This further increases the laser power and thus sensitivity, and allows to manipulate the
most sensitive frequency band of the detector. The test-mass mirrors are mounted on a series of
pendulum suspensions to isolate them against external motion transmitted through the ground.
Active control elements such as actuators allow to manipulate the motion of the mirrors and
further compensate unwanted influences. Many components of the detector design are thus
intended to prevent or remove undesired effects.

The desired observable is the dimensionless strain amplitude h(t), but many additional effects
influence the motion of the test masses and the observable output signal, limiting the sensitivity
of the detectors as noise. Most noise sources are well understood and can be modelled, and
many additional sensors are used to monitor these in auxiliary data channels. In Figure 1.5, the
noise resulting from individual sources is shown for Advanced LIGO both for the predictions
from the design study and as measured during the second observing run.

The following are examples of noise sources, explained in [73, 78]. Quantum noise consists of
radiation pressure noise and shot noise. Radiation pressure noise is caused by the transfer of
momentum from the photons of the light beams to the mirrors and setting them into motion.
As the number of photons interacting with the mirror fluctuates, so does the transferred mo-
mentum, introducing uncertainty in the mirrors’ positions. Shot noise results from variations
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Figure 1.5: Each panel shows the strain equivalent of individual detector noise sources as a
function of frequency. The left panel lists predictions from the Advanced LIGO
design study, Figure 2 of [73]. In the right panel, the noise contributions measured
during Advanced LIGO’s second observing run are shown for the two detectors H1
and L1, Figure 3 of [86].

in the arrival rate of photons at the photodetector, introducing fluctuations in the interference
pattern being measured. Thermal effects introduce noise through several mechanisms, such as
the Brownian motion of the atoms in the coating of the test-mass mirrors. Fluctuations in the
local temperature of the suspensions result in random motion of the test masses. In addition,
the optical properties of the test masses and their coatings are temperature dependent, lead-
ing to small fluctuations also in these. Seismic noise is due to the motion of the ground at
the detector site being transferred to the mirrors. This is highly damped through the suspen-
sion system at higher frequencies but becomes dominant at low frequencies below about 11Hz.
Gravity gradient noise is due to density fluctuations in the Earth near the detectors, caused by
seismic waves, which lead to varying gravitational forces on the test masses. The vacuum in the
beam tubes is not perfect, and the residual gas causes noise through the interaction of the beam
with the remaining molecules, changing the refractive index of the beam path. Technical noise
encompasses various additional noise sources, such as frequency and amplitude fluctuations of
the laser sources, and noise from actuators in the control loops used to manipulate the mirror
position and orientation. A number of peaks, narrow in frequency, are present in the noise curve,
called lines. These have various sources, such as resonances of the mirror suspensions, the AC
power grid frequency and its harmonics, and artificial lines at known frequencies generated for
calibration [87–89].

A further ground-based detector currently operating is the technology testbed GEO600 [75,
90, 91], while a site for the construction of the LIGO India detector has been selected [92].
Third-generation detectors are planned or proposed, such as the Einstein Telescope or Cosmic
Explorer, utilising cryogenically cooled components, underground placement and even longer
interferometer arms [93–95]. Space-based detectors such as LISA are currently in development,
which offer the advantage of allowing far larger arm lengths and the removal of seismic noise
sources [96]. At the same time, the space-based nature introduces constraints such as imprac-
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tical maintenance and weight limits, while adding other noise sources such as attitude control
thrusters.

In addition to different noise sources, the arm length of the different detector types determines
in which frequency band they are most sensitive. For long arm lengths, the approximation of
the test masses being initially separated by a small distance does not hold. The sensitivity
curve for space-based detectors is then calculated depending on the lengths of the arms [97],
with an estimate of the sensitivity for LISA and expected sources shown again in Figure 1.2.
We also note that if the detector’s arm length is sufficiently larger than the wavelength of the
gravitational wave, the wave could pass it undetected as the effects of stretching and contraction
along the light path may yield no net length-change for the beam’s round trip.

1.5 Data analysis, Bayesian inference, and parameter estimation

We are interested in analysing the data collected by the gravitational wave detectors to quantify
the support it lends to various models. In particular, we often want to decide whether a specific
signal is present in the data and, if so, what are the values of the parameters used to describe
the signal. The methods we use are those of Bayesian inference, the basics of which are reviewed
here.

We write the probability of a statement A being true given that statement B is true as P (A|B).
For the probability of both A and B being simultaneously true, given that statement C is true,
we can write the product rule [98],

P (A,B|C) = P (A|B,C)P (B|C) = P (B|A,C)P (A|C). (1.43)

Writing now A for A being false, we have the sum rule, stating that the sum of the probabilities
of all possibilities should be 1,

P (A|B) + P (A|B) = 1. (1.44)

We can rearrange the product rule to find what is known as Bayes’ theorem,

P (H|D,X) = P (H|X)
P (D|H,X)

P (D|X)
, (1.45)

where we have replaced A, B, C with H, D, X, conventional for the following meaning. We
consider a hypothesis H to be tested, given some prior knowledge or assumption X and the
new data D to be used to update our belief about the hypothesis. We call P (H|D,X) the
posterior probability and P (H|X) the prior probability. For fixed data D, we call P (D|H,X)
the likelihood and P (D|X) the evidence. Here we will primarily be interested in two applications
of this, parameter estimation and model selection.

In parameter estimation, we want to use given data to assign probabilities to the values of a
considered model’s parameters. Our hypothesis now is that a parameter θ of the model H has a
certain value. Here, H means our model assumption, encompassing the description of the data,
both signal and noise, and incorporating our prior knowledge. The model’s parameters are often
continuous, with real numbers as values, and the probability for them taking a specific value
would thus vanish. So instead, we consider probability densities p, where for the parameter θ of
unknown value and the model H we have

∫
p(θ|H) dθ = 1. (1.46)
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For each interval in parameter space, p assigns a probability for the unknown true value of the
parameter θ lying in that interval. Bayes’ theorem then reads [99]

p(θ|d,H) = p(θ|H)
p(d|θ,H)

p(d|H)
, (1.47)

and in this context, the evidence p(d|H) can be treated as a normalisation constant. It depends
only on the data and model, both of which we consider fixed when estimating the parameters.
Our parameter estimation will be based on Equation (1.47), where we calculate the probability
for some value of the parameter based on an expected prior probability distribution p(θ|H) and
the likelihood p(d|θ,H) of the data to be found assuming a model and this specific value of the
parameter.

Typically, our model will depend on several parameters θi, and we want to find the joint proba-
bility density for all parameters θ = {θi}. If the joint probability density is known, an individual
parameter’s probability density is found by marginalising over the remaining parameters, e.g.
for θ1,

p(θ1|d,H) =

∫
p(θ|d,H) dθ2 . . . dθn . (1.48)

As the probability density function does not assign a probability to individual points in pa-
rameter space, we instead quote properties of the distribution to characterise results. The x%
credible interval is simply an interval in the one-dimensional space of a specific parameter which
yields a probability of x% when integrating the probability density. This may be interpreted as
the interval containing the true value of the parameter with x% probability. Commonly quoted
are 90% credible intervals, such that integrating the probability density over the interval will
yield 90% probability. This still allows freedom in the choice of the interval. Typically, we will
choose the interval such that the probabilities of values above and below the quoted boundaries
are equal. We will additionally quote the median value of the distribution, which is the value
such that the probabilities of the intervals above and below it are equal and thus each 50%.
We then write the result as A+C

−B, where A is the median value and A − B and A + C are the
lower and upper bounds of the 90% credible interval [99]. When we expect a parameter to have
a value at the edge of the parameter space, for example when constraining the amplitude of
a signal that may not be present in the data, we can also use a one-sided credible interval to
quote constraints on the possible values. In this case, the credible interval starts either at the
lowest or the highest possible values, such that the remainder of the distribution will be entirely
above or below its range, respectively. When considering a two-dimensional joint distribution
for two parameters, we can similarly show the contour bounding a credible region, where again
integration over the enclosed region yields a probability of x%. For this, we will choose the
smallest region giving the desired probability, thus choosing the region with the highest density
of the distribution.

1.5.1 Data model

To evaluate the probability for a parameter of a given model via Bayes’ theorem, we still have
to describe the likelihood L = p(d|θ,H), i.e. the probability for the observed data d to be found
given the model and its parameters. We have seen in Section 1.4 that the detectors measure
the unitless strain amplitude introduced by gravitational waves, and that various other effects
lead to the detector output responding in the same way as if there was a change in the strain.
We model the time dependent data s as consisting of contributions from the gravitational wave
signal, h, and from the noise sources, n, added linearly,

s(t) = n(t) + h(t). (1.49)
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The detector output is sampled at times ti, such that the strain-amplitude data produced by
the gravitational wave detectors is given as a series of discrete, real-valued samples si and
corresponding times ti.

The noise is modelled as a Gaussian stochastic process that is wide-sense stationary, with
zero mean and a known variance, which is estimated from the measured power spectrum of the
data [99, 100]. By stochastic process we mean a collection of random variables, in our case the
detector output due to noise at the times ti is a random variable. The expectation value or
mean of a random variable X taking possible values x with probability density function f(x)
is µ(X) =

∫
xf(x) dx. For a collection of random variables {Xti}, the autocovariance K(t1, t2)

and autocorrelation C(t1, t2) of the random variables for two different ti are

K(t1, t2) = µ ((Xt1 − µ(Xt1)) (Xt2 − µ(Xt2))
∗) , (1.50)

C(t1, t2) = µ ((Xt1) (Xt2)
∗) , (1.51)

where the star ∗ means complex conjugation [101].
Wide-sense stationarity means that the mean µ of the noise process is constant over time, and

that the autocovariance K of two samples depends only on their separation in time, thus the
latter is true also for their autocorrelation C [101, 102],

µ(t) = µ(t+ τ), ∀τ (1.52)

K(t1, t2) = K(t2 − t1, 0), ∀t1, t2 (1.53)

C(t1, t2) = C(t2 − t1, 0), ∀t1, t2. (1.54)

We can then write these as only depending on the time interval τ = t2 − t1, K(τ) and C(τ).
We use the Wiener-Khinchin theorem to relate the noise power spectral density Sn(f) to the

autocorrelation function C(τ) of the noise n through

Sn(f) =

∫ ∞

−∞
C(τ)e−i2πfτ dτ (1.55)

= lim
T→∞

1

T
µ
(
|ñ(f)|2

)
. (1.56)

We may consider either the first or the second line as the definition of the power spectral density
(PSD). In our applications, we consider discrete, finite sets of data samples and use the discrete
Fourier transform, while noting subtleties for the continuous case [103, 104]. Here, the data n is
understood to vanish outside a finite time interval of duration T , and ñ is the Fourier transform
of n. The second line has the intuitive interpretation of the PSD as the average power of the
signal in each frequency interval. By power here we mean the squared absolute value of the
data, which need not correspond to physical power, as we see in our case of a unitless strain
signal.

Given an estimate of the noise PSD, we can now construct the noise as a time-ordered set
of random variables. Each has a Gaussian distribution for the probability density function,
with mean µ = 0, and a multivariate Gaussian distribution describes the entirety of the noise
over time. The covariance matrix for the multivariate Gaussian distribution is given by the
autocorrelation function, which we can find from the estimated noise PSD using Equation (1.55).
We call the series of samples produced by one draw from this joint distribution a realisation of
the noise, approximating the output samples expected from the detector in a given time interval.
Following [100], one finds the likelihood for a specific noise realisation n in the continuum

limit for large numbers of samples with small separation in time to be

p(n) ∝ exp

[
−1

2
⟨n|n⟩

]
, (1.57)
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with the noise-weighted inner product ⟨·|·⟩,

⟨x|y⟩ = 4R

(∫ ∞

0

x̃(f)ỹ∗(f)
Sn(f)

df

)
. (1.58)

This inner product represents the matched filter for a known signal or template y in data x,
which is the optimal filter for such a known signal in stationary Gaussian noise [105, 106]. The
corresponding signal-to-noise ratio (SNR) ρ then is defined by

ρ2(t) =
| ⟨s|h⟩ (t)|2

⟨h|h⟩ , (1.59)

where s is the data and h the template.
In practice, when calculating the inner product, we account for the power spectrum by ap-

plying a whitening filter to each argument, e.g. to a template and the data. Each is divided by
the amplitude spectral density, the square-root of the power spectral density, in the frequency
domain [107, 108]. Such whitened data can be used to make features of a present signal visible
by suppressing dominant noise components, such as at low frequencies or from lines [109]. The
finite sampling-rate of the data limits the integration to frequencies below the Nyquist-frequency,
which is half of the sampling rate [86]. Above this frequency, aliasing occurs, and all our analy-
ses based on the discrete Fourier-transform will be restricted to frequencies below the Nyquist
frequency.
The actual detector noise is known not to be exactly Gaussian but can still be approximated

by this model [107, 110]. Non-Gaussian noise features can be of transient or persistent nature,
with some being of unknown origin. Transient features can often be treated individually for
parameter estimation, for example by removing the affected data from the analysis if the feature
is of sufficiently short duration. They can be problematic when estimating the significance of
detections if they mimic signals sufficiently well to yield high values in the chosen detection-
statistic. Long duration features that are limited to a narrow band in frequency, known as lines
in the PSD, can similarly be treated individually by removing the affected frequencies from the
data.
As we will use discretely sampled data, we review the construction of the noise likelihood

for this case in more detail, following the derivation in [2]. The detector output is sampled
uniformly in time, with a timestep ∆t. Starting to observe at time t0, this gives an ordered set
of samples si at times ti = t0 + i∆t which we also write as a vector s. For a total sampling
time T we collect N = ⌈T/∆t⌉ samples s0, . . . , sN−1 at times t0, . . . , tN−1. Here, ⌈a⌉ means the
smallest integer greater or equal to a, while ⌊a⌋ is the largest integer smaller or equal to a. We
model the noise n through a multivariate Gaussian distribution with covariance matrix C. If
the data consist only of the noise contributions, the likelihood p(n) = p(s|n) for a specific noise
realisation n is that of a random draw from the distribution,

p(n) =
exp

[
−1

2n
⊤C−1n

]
√
(2π)N detC

. (1.60)

We will see that for this application, knowledge of the numerator will suffice, so we concentrate
on this for now.
Assuming that the noise has zero mean and is wide-sense stationary, the elements of the

covariance matrix C are given by the autocorrelation function. The covariance matrix then is a
symmetric Toeplitz matrix [111]. A matrix is Toeplitz when its elements ai,j have the property
ai,j = ai+1,j+1, so the ai,j depend only on the difference i−j, and it is symmetric when ai,j = aj,i.
For large matrices, the inverse of a Toeplitz matrix can be approximated by the inverse of a
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circulant matrix. The eigenvectors of circulant matrices are known to be e−2πikp/N/
√
N , with

k = 0, . . . , N−1 enumerating the eigenvectors and p = 0, . . . , N−1 enumerating the components
of the vector. Solving for the eigenvalues yields a relation for the components of the inverse of
the covariance matrix, C−1, so that the j, k-th element of the matrix is

C−1[j, k] ≈ 2∆t2F−1(S−1
n )[k − j]. (1.61)

So the j, k-th element is the discrete inverse Fourier transform of 1/Sn at time step k − j, with
Sn being the PSD of the detector noise. We insert this into the equation for the noise likelihood
to find

p(n) ∝ exp

[
−1

2
⟨n|n⟩

]
, (1.62)

again with the inner product ⟨·|·⟩ defined as

⟨u|v⟩ ≡ 4R





1

T

⌊(N−1)/2⌋∑

p=1

ũ∗[p]ṽ[p]
Sn[p]



 , (1.63)

where ũ[p] is the p-th element of the discrete Fourier transform of u2.
From the noise likelihood we also find the likelihood for the case that the data consist of noise

and a signal h with parameters θ, p(s|θ, h). The residual data after subtracting the signal will
consist only of the noise, s − h = n. The probability for the data under the signal hypothesis
thus is the same as the probability for the residual under the noise hypothesis, and is described
by the likelihood found above,

p(s|θ, h) = p(s− h|n) ∝ exp

[
−1

2
⟨s− h|s− h⟩

]
. (1.64)

We can think of this as the signal shifting the expected value for each sample from zero to the
signal value. Thus, if a signal is present in the data, the residual after subtraction of the signal
will just be Gaussian noise, and will have the same probability to occur as that realisation of
the noise with no signal present.

We notice that the denominator containing the determinant of the covariance matrix will be
the same in the cases of the data being only noise or noise with a signal. So when calculating
the likelihood ratio Λ comparing the two cases, the denominators cancel, leading to

Λ =
p(s|θ, h)
p(s|n) (1.65)

= exp

[
−1

2
⟨s− h|s− h⟩+ 1

2
⟨s|s⟩

]
(1.66)

= exp

[
⟨s|h⟩ − 1

2
⟨h|h⟩

]
. (1.67)

The likelihood ratio can be used to determine whether the noise or signal hypothesis is more
likely to describe the data, and it can be maximised over different signal parameters. We often
use the natural logarithm of these quantities, such as the log-likelihood and log-likelihood ratio.
We now consider a network of K detectors d, each producing a series of samples sd, writing

the collection of all noise samples nnet. Assuming the noise in the different detectors to be

2This definition excludes the DC-component p = 0, and for even N also the Nyquist-frequency component
p = N/2. These can be treated separately or may be negligible [106].
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uncorrelated, the probability density function then consists of a product of K N -dimensional
multivariate Gaussian distributions,

p(nnet) =
exp

[
−1

2

∑K
d=1n

⊤
d C

−1
d nd

]

√
(2π)NK

∏K
d=1 detCd

. (1.68)

Written for a network of detectors, the likelihood is

L(snet|θ) = p(s|θ, h) ∝ exp

[
−1

2

K∑

d=1

⟨sd − h(θ)|sd − hd(θ)⟩
]
. (1.69)

Here, sd is the data from detector d and hd is the signal as it is observed in this detector, taking
into account the individual detector’s orientation, antenna pattern and relative time delay of
the signal due to the detector location.

We can now use the constructed likelihood to calculate the posterior probability for a given
signal model and set of parameters. Again we only need to consider the expression proportional
to the likelihood, as given in Equation (1.69). Multiplying this with the prior probability for
the chosen parameters yields a value proportional to the posterior probability. As both the
denominator in the likelihood and the evidence term in Bayes’ theorem are constants indepen-
dent of the choice of parameters, we merely need to normalise our results to find the posterior
probability distribution. In practice, we will simply calculate the product of the prior and the
expression proportional to the likelihood, which we can now find for a given signal model, PSD
estimate, and prior distribution.

We estimate the PSD from the off-source detector data, at times where we expect no signal to
be present. Welch’s method is typically used in our analyses to produce this estimate [112]. It is
based on calculating a periodogram for a given segment of data, i.e. applying the discrete Fourier
transform and calculating the squared absolute value for the resulting frequency series. This is
an approximation of the power spectral density for the segment as defined in Equation (1.56),
where we consider the given realisation of data and thus the mean is just the identity map. This
power spectrum is calculated for multiple segments of data and then averaged. The data in
each segment is usually windowed before calculating the power spectrum, down-weighting the
contributions from the edges of the segment. Therefore, Welch’s method uses overlapping data
segments to also account for the influence of the data being down-weighted in one segment by
including the same data in the unwindowed region of another.

1.5.2 Sampling parameter space

While we can calculate the posterior probability for individual sets of parameters, we now want
to find the posterior distribution over the entire parameter space. This is achieved efficiently
through stochastic samplers, often using Markov-Chain Monte Carlo (MCMC) methods. In
these methods, a set of samples θn from the parameter space is constructed which approximates
a set of random draws from the posterior distribution [99]. A Markov chain is an ordered set
of samples such that each sample only depends on its immediate predecessor. Each subsequent
element of the chain is constructed from the previous element through a two-step process of
proposal and acceptance of a new point. Starting from the current element of the chain, θl,
a new point in parameter space θl′ is proposed by random draw from a proposal distribution
Q. The probability for drawing θl′ depends only on the current and newly proposed point,
Q(θl,θl′). Based on a suitably constructed acceptance probability, the proposed point is either
accepted, θl+1 = θl′ , or rejected and the new element of the chain remains the same as before,
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θl+1 = θl. After sufficiently many iterations of this procedure, the last sample in the chain will
approximate a random draw from the posterior distribution. Using an ensemble of chains with
different starting points can then produce the desired number of independent samples.

A simple example for the construction of an acceptance probability is found in the Metropolis-
Hastings algorithm [113]. For each considered point in parameter space, the product of the
likelihood and the prior is calculated. A new candidate point is proposed by one of various
schemes used in available sampling tools. If the ratio of the posterior values for the proposed
and current points is larger than 1, the new point is accepted. Otherwise, the new point is
accepted or rejected with a probability proportional to this ratio. As we only use the ratio of
the posterior values, the normalisation factors again cancel and calculating the product of the
likelihood and prior suffices.

Care must be taken to ensure that the resulting samples are independent of the starting points
of the chains, as samples in the chain separated by only a few steps will still show correlation [99].
So sufficiently many iterations of each chain have to be performed to both remove influences from
the initial values and to reach a state where the samples represent the posterior distribution.
This also allows using multiple samples from the same chain for the final distribution if they are
separated by sufficiently many iterations to remove correlations, effectively producing multiple
shorter chains from one longer chain.

The samplers emcee pt, cpnest and dynesty have primarily been used in this work [114–116].
Parallel-tempering is used in emcee pt, meaning that multiple chains are evolved in parallel at
different “temperatures” [117]. For a temperature T , the likelihood for the sampling is raised
to the power 1/T , such that for large temperatures, the posterior being sampled approaches
the prior. This allows the sampler to cross low-likelihood regions of the posterior, which might
otherwise lead it to miss relevant parts of the distribution separated by such regions from the
starting point. The chains at different temperatures periodically exchange elements, allowing
each to sample both high- and low-likelihood regions.

Both cpnest and dynesty use the different approach of nested sampling [118]. While this
is intended primarily to calculate the evidence, it can also be used to produce samples from
the posterior distribution. Here, samples (live points) are initially drawn randomly from the
prior distribution, and the likelihood is calculated for each. In each iteration of the algorithm,
the point with the lowest likelihood is recorded and replaced with a new live point drawn from
the prior, under the condition that the new point must have a larger likelihood. In addition, a
weight is calculated for each replaced point, given by the mass

∫
p(θ|H)dθ of the prior region

with likelihood values between those of the point just recorded and that recorded in the previous
iteration. The recorded points will represent random draws from the posterior distribution when
properly weighted using the calculated weights. Knowledge of these weights then also allows to
construct additional samples if desired. Dynamic nested sampling is used in dynesty, where the
number of live points is dynamically adjusted to better cover the regions of parameter space that
will have the greatest influence on the accuracy of the results. As the nested sampling algorithms
also provide an estimate of the evidence, they are useful in model selection as described below.

1.5.3 Model selection

The second application of Bayes’ theorem that we are interested in is model selection. In this,
we consider different models to explain the data and want to quantify the preference of these
models with respect to each other as implied by the data. Here, the evidence for a model
H given data D, p(D|H), is relevant, which we have treated as a normalisation constant for
parameter estimation. The evidence is the probability of finding the data D given the hypothesis
H, marginalised over all parameters θ of the signal model. We can then compare two models
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H1, H2 by calculating the Bayes factor as the ratio of their evidences [99],

B =
p(D|H1)

p(D|H2)
. (1.70)

Model H1 is favoured as compatible with the data if B > 1, and vice versa model H2 is favoured
for B < 1. Often, the logarithm of the Bayes factor is quoted instead, where log10 B > 0 means
model H1 being favoured. Suggested interpretations for different values of the log Bayes factor
are given in Reference [119], and are shown in Table 1.1.

log10 B B Evidence

[0, 0.5] [1, 3.2] Not worth more than a bare mention
[0.5, 1] [3.2, 10] Substantial
[1, 2] [10, 100] Strong
> 2 > 100 Decisive

Table 1.1: The interpretation of the evidence in favour of one model compared to another
represented by different values of the Bayes factor as suggested in Reference [119].

A special case of this model selection procedure is comparing the model of a signal being
present in the data versus the data consisting of only the noise. However, determining the
preference for a signal being present relies on the accurate description of the noise. While the
description of the detector noise as Gaussian is a useful and often sufficient approximation,
non-Gaussian features are known to be present. As their effect on the likelihood estimation and
interaction with the signal model can be difficult to predict, we can make use of an alternative
approach.

A frequentist approach to hypothesis testing is using the p-value under the null-hypothesis
that the data are entirely due to noise [98]. Calculating the p-value is based on using a given
test statistic, a mapping of the data to the real numbers. We can then find the probability
distribution for the values of this mapping based on the probability distribution of the noise.
The p-value of a given sample value of the test statistic is the probability of finding a value
at least as extreme, i.e. the integral over the probability distribution of the test statistic over
the range of more extreme values. The meaning of a value being extreme depends on the
considered problem, for example being larger than a threshold value or deviating further from
a distinguished value. For the question of whether a signal is present, the estimated signal
amplitude or the matched-filter signal-to-noise ratio might be used, where larger values would
be considered more extreme. Note that the p-value thus just makes a statement about the
probability of finding a result at least as extreme as a given sample if the null hypothesis was
true. This is not a statement about the probability of either this or an alternative hypothesis,
which might not even be explicitly stated, being correct. Instead, it serves as a measure of
whether a result should be considered extraordinary under the null hypothesis.

We notice, however, that this procedure again relies on a description of the noise, or at least
knowledge of the test statistic’s probability distribution under the null hypothesis. Nevertheless,
if many samples of this distribution are available, in our case through large amounts of detector
noise free of signals, a simple estimate of the distribution can instead be found empirically. We
simply count the number of samples falling in a given range of values and divide by the total
number of samples to calculate an approximate probability of finding the value of a random
sample to lie in this range.

34



1.6 Quasi-normal modes

1.6 Quasi-normal modes

After the non-linear merger phase, the final black hole enters a phase where it can be described
by the Kerr solution with additional linear perturbations. For gravitational perturbations, the
metric tensor can then be written as gµν = gbµν + hµν , where the background metric gbµν is the
Kerr metric and hµν is the perturbation [54]. A master perturbation equation was found by
Teukolsky, describing different types of perturbations ψ and in particular gravitational ones,
where ψ contains the Weyl scalar Ψ0 or Ψ4 [53, 120]. The equation allows for a separation of
variables, which reads in Boyer-Lindquist coordinates, (t, r, θ, ϕ):

ψ = e−iωteimϕS(θ)R(r). (1.71)

This yields linear ordinary differential equations and an eigenvalue problem for S(θ) and R(r).
The eigenvalue problem for S(θ) has the angular separation constant A(aω) as the eigenvalue.
Assuming regular boundary conditions at θ = 0 and θ = π, the solutions for the eigenfunc-
tion are the spin-weighted spheroidal harmonics sSlm(aω, cos θ), which depend on the complex
angular frequency ω. The equation for R(r) can be written in terms of an effective poten-
tial, using a change of variables and the tortoise coordinate r∗, dr∗/dr = (r2 + a2)/∆ (confer
Equation (1.11)) [121, 122].
For gravitational perturbations, |s| = 2. The differential equations for S(θ) and R(r) then

pose an eigenvalue problem with ω as the eigenvalue. Given boundary conditions for R(r), we
can find the allowed perturbations using the solutions for ω, A, S(θ), and R(r). The boundary
conditions are physically motivated and given for the event horizon, and for spatial infinity,
where the Kerr metric is asymptotically flat. At the horizon, the gravitational wave is purely
ingoing as seen by a physical observer, as no radiation should leave the horizon. At spatial
infinity, the wave is purely outgoing, so that no gravitational waves are entering the system
from infinity. The solution for s = −2 is found to be associated with the outgoing radiation, so
we restrict to this case as only the outgoing waves can be detected, while the infalling radiation
is absorbed by the black hole.
The solutions have the form of exponentially damped sinusoids and are called quasi-normal

modes (QNMs). In contrast to normal modes of a non-dissipative system, these are generally
neither orthogonal nor do they form a complete set [54, 124]. At large distances, r → ∞, the
gravitational wave strain is then found from the Weyl scalar Ψ4 via [125]

Ψ4 = ḧ+ − iḧ×, (1.72)

where the dots mean the second time derivative.
The ringdown signal of a perturbed black hole in the linear regime is a superposition of these

quasi-normal modes. While there are subtleties involved regarding at what time after the merger
this description becomes accurate [126–129], at sufficiently late times t ≥ t0, the signal can then
be written as [54, 130]

h+ + ih× =
∑

ℓ,m,n

−2Sℓmn(ι, φ)Cℓmne
i(Ωℓmn(t−t0)) (1.73)

=
∑

ℓ,m,n

−2Sℓmn(ι, φ)Aℓmne
−t/τℓmnei(ωℓmnt+ϕℓmn), (1.74)

where we chose t0 = 0 in the second line, only considering the description valid at positive t,
and

−2Sℓmn(ι, φ) = eimφ−2Sℓm (MχΩℓmn, cos ι) . (1.75)
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Figure 1.6: The solid lines show the real and imaginary part of the spheroidal harmonics −2Sℓmn
for a black hole with spin χ = 0.8, for ℓ = 2, n = 0, and all allowed values of m. The
dashed lines show the same for the spin-weighted spherical harmonics −2Yℓm, which
can be used to approximate the spheroidal harmonics. Both are shown for varying
polar angle θ, with fixed azimuthal angle ϕ = 0. The pykerr software package was
used in generating this and all further figures in this section [123].
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Figure 1.7: The same as figure 1.6 for ℓ = 3.
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1.6 Quasi-normal modes

Figure 1.8: The real and imaginary part of the spheroidal harmonics is shown in the left and
right panel, respectively, with (ℓ,m, n) = (3, 3, 0) and spin χ = 0.2. For each direc-
tion, the surface’s distance from the origin shows the absolute value of the real or
imaginary part of the spheroidal harmonic. The colour of the surface shows the value
of the spheroidal harmonic, with dark colours corresponding to negative values and
light colours indicating positive values. The positive z-direction corresponds to the
spherical polar coordinates with θ = 0, while the positive x-direction corresponds to
ϕ = 0.
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Here, −2Sℓmn(θ, ϕ) are the spin-weighted spheroidal harmonics with spin-weight −2 [123, 131],
and −2Sℓm corresponds to S(θ) in Equation (1.71). Examples for the angular dependencies of
the spheroidal harmonics are shown in Figures 1.6, 1.7, and 1.8. The integer indices ℓ,m, n
enumerate the individual modes of the resulting infinite discrete spectrum. We have ℓ ≥ 2, the
azimuthal number m, with −ℓ ≤ m ≤ ℓ, and n enumerating the overtones, which are ordered
by decreasing damping time, starting with n = 0. The angles appearing in the spheroidal
harmonics are the inclination ι, the angle between the black hole’s angular momentum vector
and the line-of-sight vector from the black hole to the observer, and φ, the azimuthal angle of the
black hole with respect to this line-of-sight vector. The complex frequencies Ωℓmn = ωℓmn +

i
τℓmn

are determined by the Teukolsky equation3. Their real part ωℓmn describes the frequency of the
damped sinusoid, while τℓmn in the imaginary part describes the damping time of the exponential
decay. Finally, the complex amplitudes Cℓmn describe the amplitude Aℓmn and initial phase ϕℓmn
of the damped sinusoid through Cℓmn = Aℓmn exp[iϕℓmn], i.e. Aℓmn = |Cℓmn|. The amplitudes
and phases depend on the initial perturbation of the black hole, and thus on the binary’s
properties such as its mass ratio [126, 132]. The frequencies and damping times, however, are
determined entirely by the mass and spin of the final black hole. These parameters of the
spectrum are thus characteristic of the final black hole [131, 133, 134]. Examples for the values
of the frequencies and damping times for a selection of modes are shown in Figure 1.9. In
analogy to studying matter through its characteristic electromagnetic emission spectrum, the
approach of studying the properties of the black hole through measurement of its quasi-normal
mode spectrum is known as black hole spectroscopy.

For any choice of ℓ,m, n, there are two solutions, which we refer to as co- and counter-rotating,
as they have been shown to correspond to perturbations that are co- or counter-rotating with
respect to the angular momentum of the black hole for at least those modes with ℓ = m [54].
Instead of introducing an additional index for these two solutions, we use a convention making
use of the geometry of the system to label them by the sign of the spin parameter. If we allow
negative values for the dimensionless spin χ, we find two redundant descriptions of the same
physical system and observer. The orientation of the black hole is given by a vector s⃗ parallel
to its spin axis. A positive spin χ then means that the spin vector is aligned with s⃗, while a
negative spin means it is anti-aligned. The inclination angle ι is measured between the line-of-
sight vector pointing from the black hole to the observer and s⃗, thus for positive spin this is the
same description as when allowing only χ ≥ 0. Consider a black hole with positive spin χ along
s⃗, with the vector pointing towards the observer in the direction given by ι and the azimuthal
angle φ. Then the same black hole and observer are described by replacing χ→ −χ, ι→ π − ι,
φ→ φ+ π. This redundant description allows us to use the sign of the spin to determine
whether we describe the co- or counter-rotating case of the perturbation. Our convention is
to use positive χ for co-rotating perturbations and negative χ for counter-rotating ones. The
complex frequency and the frequency-dependent spheroidal harmonics will differ between the
positive and negative spin values, as these are mapped to either the co- or counter-rotating
solution.

When summing over all possible modes, we thus also must sum over the two possible signs of
the spin, which we can indicate through the additional index p = sgn(χ) added to each ℓmn in
Equation (1.74). When considering the perturbed black hole resulting from a binary collision,
we can use the binary’s orientation to determine the reference direction s⃗. We will choose it
such that s⃗ · L⃗ ≥ 0 for the orbital angular momentum of the binary L⃗. Using the value of χ to
determine co- or counter-rotation has the advantage of allowing for a smooth transition between
the cases when we analyse probability distributions for the parameters.

In the Kerr case, we find a symmetry for a given ℓ, |m|, n between the complex frequencies

3Comparing with Equation (1.71), we have R (Ωℓmn) = R (ω) and I (Ωℓmn) = −I (ω).
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1.6 Quasi-normal modes

of the m and −m modes, Ωℓ−mn = −Ω∗
ℓmn [54, 130]. So the frequencies and damping times are

related by fℓmn = −fℓ−mn and τℓmn = τℓ−mn, reducing the number of free parameters. We also
find a symmetry between the spheroidal harmonics, −2Sℓ−mn(ι, φ) = (−1)ℓ−2S

∗
ℓmn(π − ι, φ) [135,

136].
Describing only a single mode, i.e. the waveform for one specific choice of ℓ,m, n and sign

of χ, restricts to the assumption that the wave is circularly polarised, as then h+ + ih× ∝
exp[−iΩℓmn + ϕℓmn]. To describe generic polarisations, we will typically consider the sum of the
m and −m modes for a given ℓ, n,

hℓ|m|n = Cℓmne
iΩℓmnt−2Sℓmn(ι, φ) + Cℓ−mne

iΩℓ−mnt−2Sℓ−mn(ι, φ), (1.76)

with complex amplitudes Cℓmn = Aℓmn exp[iϕℓmn]. Using the above symmetries for the complex
frequencies and the spheroidal harmonics, we find

hℓ|m|n = Cℓmne
iΩℓmnt−2Sℓmn(ι, φ) + (−1)ℓCℓ−mne

−iΩ∗
ℓmnt−2S

∗
ℓmn(π − ι, φ). (1.77)

If we assume that the initial perturbations are symmetric under reflections with respect to
the equatorial plane, as may be expected for a non-precessing system [41, 130, 137], we find for
the complex amplitudes

Cℓ−mn = (−1)ℓC∗
ℓmn (1.78)

⇒ Aℓ−mn = (−1)ℓAℓmn, ϕℓ−mn = −ϕℓmn. (1.79)

With −2Sℓmn(ι, φ) = eimφ−2Sℓmn(ι, 0), and defining −2Sℓmn(ι) := Sℓmn(ι, 0), this leads to

hℓ|m|n = Aℓmne
− t

τℓmn

[
ei(ωℓmnt+ϕℓmn+mφ)−2Sℓmn(ι) + e−i(ωℓmnt+ϕℓmn+mφ)−2S

∗
ℓmn(π − ι)

]
(1.80)

= Aℓmne
− t

τℓmn [cosΦℓmn (−2Sℓmn(ι) + −2S
∗
ℓmn(π − ι))

+i sinΦℓmn (−2Sℓmn(ι)− −2S
∗
ℓmn(π − ι))]

(1.81)

= Aℓmne
− t

τℓmn

[
cosΦℓmnS

+
ℓmn(ι) + i sinΦℓmnS

×
ℓmn(ι)

]
, (1.82)

with the definitions

Φℓmn = ωℓmnt+ ϕℓmn +mφ, (1.83)

S+
ℓmn(ι) = −2Sℓmn(ι, 0) + −2S

∗
ℓmn(π − ι, 0) (1.84)

= −2Sℓmn(ι, 0) + (−1)ℓ−2Sℓ−mn(ι, 0), (1.85)

S×
ℓmn(ι) = −2Sℓmn(ι, 0)− −2S

∗
ℓmn(π − ι, 0) (1.86)

= −2Sℓmn(ι, 0)− (−1)ℓ−2Sℓ−mn(ι, 0). (1.87)

We then find for the two polarisations

hℓ|m|n = h+ℓ|m|n + ih×ℓ|m|n, (1.88)

h+ℓ|m|n = Aℓmne
−t/τℓmn

[
cosΦℓmnR

{
S+
ℓmn(ι)

}
− sinΦℓmnI

{
S×
ℓmn(ι)

}]
, (1.89)

h×ℓ|m|n = Aℓmne
−t/τℓmn

[
cosΦℓmnI

{
S+
ℓmn(ι)

}
+ sinΦℓmnR

{
S×
ℓmn(ι)

}]
. (1.90)

We can approximate the spin-weighted spheroidal harmonics through spin-weighted spherical
harmonics [138, 139], −2Sℓmn(ι, φ = 0) ≈ −2Yℓm(ι, φ = 0), where −2Yℓm(ι, φ = 0) is real.
Inserting this into hℓmn, we find

hℓ|m|n = Aℓmne
−t/τℓmn

[
Y +
ℓm cosΦℓmn + iY ×

ℓm sinΦℓmn
]
, (1.91)
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Figure 1.9: The real and imaginary part ωR and ωI of the complex quasi-normal mode frequency
ωℓmn is shown for ℓ = 2 in the top panel and for ℓ = 3 in the bottom panel. For each
case, we include all allowed m and the overtones up to n = 7. Solid upwards pointing
triangles denote co-rotating modes (i.e. with positive spin χ), and hollow downward-
pointing triangles refer to counter-rotating modes (i.e. negative spin). The absolute
value of the spin is |χ| = 0.5 in this example. The bottom and left axes show the
mass-independentMωR andMωI , while the top and right axes show f = ωR/2π and
τ = 1/ωI for the example of a black hole with mass M = 10M⊙. For each angular
mode, the value of m is indicated in the plot. The overtone number is found simply
by counting the marked points on each curve, starting with n = 0 at the lowestMωI ,
as n is chosen such that the overtones are ordered by decreasing damping time.
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with definitions equivalent to those above, with −2Y
∗
ℓm(ι, 0) = −2Yℓm(ι, 0), and

Y +
ℓm(ι) = −2Yℓm(ι, 0) + −2Yℓm(π − ι, 0) (1.92)

= −2Yℓm(ι, 0) + (−1)ℓ−2Yℓ−m(ι, 0), (1.93)

Y ×
ℓm(ι) = −2Yℓm(ι, 0)− −2Yℓm(π − ι, 0) (1.94)

= −2Yℓm(ι, 0)− (−1)ℓ−2Yℓ−m(ι, 0). (1.95)

The polarisations thus read

h+ℓ|m|n ≈ Aℓmne
−t/τℓmn

[
cosΦℓmnY

+
ℓmn(ι)

]
, (1.96)

h×ℓ|m|n ≈ Aℓmne
−t/τℓmn

[
sinΦℓmnY

×
ℓmn(ι)

]
. (1.97)

We use the model including the spheroidal harmonics in the analyses presented in Chapter 4,
and the model using the approximation through spherical harmonics in Chapters 2, 3, and 7.
So far, we have considered Aℓmn to represent the amplitude of the gravitational waves at the
location of interest, e.g. at a detector. It is conventional to redefine the amplitude by extracting
the mass M and luminosity distance DL, Aℓmn → (M/DL)Aℓmn [140, 141], with

DL =

√
L

4πF
, (1.98)

where L is the luminosity of the source and F is the energy flux received by the observer [7].
The energy flux of the gravitational wave is proportional to the square of its amplitude, and so
the amplitude falls off with the inverse of the luminosity distance, F ∝ A2 ⇒ A ∝ 1/DL. The
redefined Aℓmn is then a quantity depending only on the source and not on its distance.

This leads to the following waveform model for the quasi-normal mode signal starting at t = 0.
The QNM-modelled portion of the signal has h(t < 0) = 0, not meaning that a physical signal
should vanish before t = 0, but rather be described by a different appropriate model. We sum
over all ℓ ≥ 2, |m| ≥ ℓ, n ≥ 0, and, if both co- and counter-rotating modes are to be included,
over the sign of the spin p = sgn(χ).

h+(t) =
M

DL

∑

ℓ,|m|,n,p
Aℓmne

−t/τℓmn
[
cos(ωℓmnt+ ϕℓmn)R

{
S+
ℓmn(ι)

}

− sin(ωℓmnt+ ϕℓmn)I
{
S×
ℓmn(ι)

}]
(1.99)

≈ M

DL

∑

ℓ,|m|,n,p
−2Y

+
ℓm(ι)Aℓmne

−t/τℓmn cos(ωℓmnt+ ϕℓmn) ,

h×(t) =
M

DL

∑

ℓ,|m|,n,p
Aℓmne

−t/τℓmn
[
cos(ωℓmnt+ ϕℓmn)I

{
S+
ℓmn(ι)

}

+sin(ωℓmnt+ ϕℓmn)R
{
S×
ℓmn(ι)

}]
(1.100)

≈ M

DL

∑

ℓ,|m|,n,p
−2Y

×
ℓm(ι)Aℓmne

−t/τℓmn sin(ωℓmnt+ ϕℓmn). (1.101)

Here, we have also absorbed the term with the azimuthal angle mφ into ϕℓmn, as the initial
phases are unknown in our analyses and would be degenerate with the measurement of φ. We
will occasionally use the meaning of Aℓmn as the wave’s amplitude at the detector. For example,
in Chapter 2, we assume a more general waveform model of damped sinusoids but do not relate
them to a black hole at a specific mass and distance.
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1.6.1 No-hair theorem

We expect that astrophysical black holes are characterised entirely by two intrinsic parameters,
their massM and angular momentum χ. Here, we consider the position, linear momentum, and
orientation of the angular momentum to be extrinsic parameters which we control by choice of
the reference coordinate system. The third intrinsic parameter, the electric charge Q, is expected
to be negligible for astrophysical black holes [8, 133]. Several theorems show that under certain
conditions, solutions of the Einstein field equations that contain black holes are restricted to
a few unique cases. A static vacuum solution must be the Reissner-Nordström solution and a
stationary and axisymmetric vacuum solution must be the Kerr-Newman solution if a black hole
is present. In the uncharged case, the Schwarzschild and Kerr solutions are then the only ones
possible [8, 142–148].

The Kerr solution can then be considered to approximate an isolated astrophysical black hole.
While the above restrictions are not precisely satisfied, the astrophysical case is expected to be
sufficiently similar to allow this description. A black hole that is far from other objects for a
long time will approach the required symmetries, and sparse matter in the vicinity will have
negligible effects [133]. Thus, we use the Kerr solution to approximate an isolated black hole
of negligible charge, which is then described by two intrinsic parameters. This has led to the
commonly used name for the no-hair theorems in that further characteristics for black holes,
such as metaphorical hair, are absent.

The frequencies and damping times of the quasi-normal mode spectrum are functions of only
these two parameters. Furthermore, the mapping of the mass and spin of the black hole to the
QNM frequencies and damping times is invertible and unique [149, 150]. Measuring these two
parameters for one mode with known numbers ℓmn therefore allows to determine the mass and
spin of the black hole, and in turn calculation of the entire remaining QNM spectrum.

Measuring at least one additional third parameter then allows to test for consistency between
the measured values. We can use two QNM parameters to calculate M , χ, and from this the
value expected for the third parameter, to compare with its measured value. By quantifying the
agreement between the measured mode parameters, we can test the prediction of the no-hair
theorem. As it states that only two independent parameters describe the black hole, all measured
mode parameters must thus be compatible with the same M and χ. Equivalently, all measured
QNM parameters must agree with the prediction from any pair of such parameters. While this
is often referred to as a test of the no-hair theorem, it is the validity of its assumptions that is
truly tested. This includes the approximation of the spacetime surrounding the astrophysical
black hole by the Kerr metric, the applicability of the perturbative approach, non-degeneracy of
the event horizon and more technical requirements of the theorems, as detailed in [142–148], and
even the fundamental description through general relativity. Indeed, generalising the theorems
to less restrictive conditions is an active area of theoretical research [151, 152].

Knowledge of the numbers ℓmn of a measured mode is necessary to perform these tests. The
signal for each mode has the form of a damped sinusoid, differing only in the four parameters
of frequency, damping time, amplitude and phase. Measurement of a mode’s frequency and
damping time alone would then allow it to be mapped to different masses and spins depending
on the choice of ℓmn. The assignment of these numbers can be guided by expectations for the
different excitation of individual modes and the effect of the factor from the spheroidal harmonic
decomposition. These affect the amplitude of the signal in the detector, where typically the late
ringdown is dominated by the ℓmn = 220 mode [140]. Furthermore, information from an analysis
of the complete inspiral-merger-ringdown signal may be used to constrain the expected mass
and spin of the final black hole and the mass ratio of the original binary. This in turn constrains
the expected QNM frequencies and damping times, and the relative excitation amplitudes of
the modes, which depend on the mass ratio [132].
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1.7 Echoes

Alternative models for compact objects as gravitational wave sources have been proposed, which
can result in detectable modifications of the emitted signals. One class of models leads to an
additional gravitational wave emission following the initial burst from the merger. As this sig-
nal appears after a time delay and can take the form of repeated pulses, it is referred to as
gravitational wave echoes. The relevant models broadly fall into two categories of either ex-
changing the black hole with an alternative object or modifying the description of the black hole
from that of standard general relativity. Motivations for these models include considerations of
quantum-gravitational effects and attempts to address the black hole information paradox [153–
155].

If the signal for the inspiral, merger, and ringdown in these models is similar to that of
GR, existing searches will be able to detect them. We can then focus on the already available
detections instead of searching for new events in the data independently. As the signals detected
to date agree well with the predictions of GR, modifications to the signal must be sufficiently
small or restricted to features not covered in the employed waveform models. We can then
directly search for signals obeying these restrictions in the data of detected events.

Here, we consider models that agree with the Kerr geometry up to a small distance above
its outer event horizon, with deviations only appearing below this distance. Such alternative
objects are then comparable in compactness to black holes and are sometimes called exotic
compact objects. Examples of these are thin-shell wormholes and boson stars. Models with
modifications from standard GR include those of a material firewall near the horizon, and
gravastars with a thin shell of matter, inspired by near-horizon quantum effects. These models
have in common that they possess a photon sphere but either no horizon or some additional
structure above it. Infalling gravitational waves therefore do not encounter a surface acting as
a perfect absorber, as presented by the event horizon, and need not be completely lost to the
outside observer. Instead, a part of the radiation may pass through the object or be reflected
at its surface.

For our analyses, we assume that the entire inspiral-merger-ringdown (IMR) signal is not
significantly modified from that of a binary black hole merger. While finding the inspiral and
merger waveform for a binary containing an exotic compact object is more complicated, they
are expected to be similar to that of a black hole binary [122, 153]. The ringdown remains
unmodified due to the travel time of gravitational waves between the photon sphere and the
location of deviations from the Kerr geometry. We can consider the ringdown radiation to
originate at the photon sphere of the object, the region where lightlike orbits are possible, with
an ingoing and outgoing component. For a black hole, the ingoing part is lost through the
horizon, while the outgoing part results in the measurable ringdown signal. We assume the
deviations from the Kerr metric to occur close to the horizon, not affecting the far-away photon
sphere. The outgoing radiation is therefore left unchanged, while the ingoing part must traverse
the distance to the interior region that deviates from the Kerr geometry. Any waves returning
from the interior then traverse this distance again, reaching the photon sphere after a time delay
corresponding to the round-trip travel time. They then arrive at the photon sphere too late to
interfere significantly with the initial outgoing ringdown radiation. Therefore we consider the
condition satisfied that the IMR signal is well matched by that of a black hole binary and focus
on additional signals directly following detected events.

The proposed models can be described by placing an at least partially reflective surface close
above the horizon. Two physical scenarios are captured by this description, actual reflection at a
surface and transmission through the interior. In the first case, the modelled surface represents
a physical boundary where actual reflection occurs for ingoing radiation. The same model can
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approximate the behaviour of an object with weak interior interaction with gravitational waves,
while no physical reflection occurs. Assuming regularity in the interior, an ingoing wave could
enter the central object and pass through its centre, re-emerging after travelling through the
object. We can then approximate the object’s emission by modelling this process using the
reflective surface. Here, the centre acts effectively reflective, so an additional initial time-delay
or phase-shift is added to account for the travel through the interior. Introducing the reflective
surface changes the boundary conditions for gravitational waves from purely ingoing at the
horizon of a black hole to (partial) reflection at the proposed surface above the horizon.

We consider two phenomenologically distinct signals that arise from this modification. First,
the change in boundary conditions leads to a different quasi-normal mode spectrum of the
object than found for a black hole as described in Section 1.6. While the initial ringdown signal
is unchanged, it does not represent the QNMs of the modified object. The partially reflecting
boundary conditions instead of the perfect absorption for the black hole case lead to a long-
lived, sinusoidal signal when solving the Teukolsky equation [156]. It can be seen as the result of
the cavity formed by the inner reflective surface and the effective potential barrier, the peak of
the effective potential at the photon sphere, which also acts partially reflective. Low-frequency
components of an initial wave pulse become trapped in this cavity, but slowly leak out through
the potential barrier [122, 153]. Alternative physical interpretations are proposed, describing
an excitation of quantum states of the interior object, with the excitation being radiated as the
long-lived modes and passing the potential barrier [157]. The resulting signal has the form of a
weakly damped, long-lived sinusoid, and thus a very narrow, almost monochromatic frequency
spectrum.

A second distinct signal are pulsed gravitational wave echoes. These result from the same
cavity formed by the interior reflective surface and the effective potential barrier that leads to
the long-lived sinusoidal modes. However, as the ingoing ringdown pulse contains a broader
spectrum of frequencies, a part of the signal is not trapped as effectively as the low-frequency
component [153]. The original ingoing pulse is reflected outwards at the interior surface, en-
countering again the potential barrier located at the photon sphere. A significant portion of
the high-frequency part of the signal passes the potential barrier, while the rest is reflected
back inwards, and the process repeats. This results in a series of pulses following the ringdown,
separated by the round-trip travel time through the cavity, as illustrated in Figure 1.10. The
pulses’ amplitude decreases as energy is lost at each encounter with the potential barrier, and
the frequency content changes with each pulse. The damping of the echo pulses is stronger than
that of the quasi-normal modes, and at late times the signal consists only of the previously
described, long-lived quasi-normal mode [122, 153].

In a simplified model for the resulting signal, the late part of the IMR waveform is repeated
with a time delay. A constant damping factor is applied to each echo compared to the previous,
and a phase-inversion between subsequent echoes is introduced to account for the reflection at
the interior surface [3, 158]. The resulting waveform is illustrated in Figure 1.11.

By evaluating the support for these alternative models in the data, we can help concentrate
modelling efforts on the most promising candidates. We achieve this by ruling out or constraining
in supported parameter space the signals deviating from the GR expectation, and thus also the
corresponding models. Here we focus on the analysis of the data given proposed signals, treating
the details of the mechanisms producing them more superficially. Some additional discussion
regarding these mechanisms and waveform models is found in Chapters 5 and 6 for the pulsed
echoes and in Chapter 7 for the long-lived modes.
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Figure 1.10: Schematic of the occurrence of repeated pulses or echoes when a reflective surface
exists outside of the horizon. The axes show the tortoise coordinate r∗ and time
coordinate t. The initial ringdown emission originates at the photon sphere with an
outgoing and ingoing part. While the outgoing part can be detected as the ringdown
signal as expected for a black hole described by general relativity, the ingoing part
encounters a surface where it is reflected back outwards. Encountering the potential
barrier at the photon sphere, the pulse of radiation is partially transmitted, leading
to a signal following the ringdown after a time delay. The remainder of the pulse
is reflected inwards again, repeating the process and leading to a signal consisting
of a sequence of damped pulses following the ringdown.
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Figure 1.11: A time-domain inspiral-merger-ringdown waveform with appended echoes as result-
ing from a simplified model. Dimensionless strain with arbitrary scaling is shown
as a function of time. The late part of the inspiral-merger-ringdown waveform is
repeated with a delay based on the travel time of the pulse through the cavity. The
amplitude of each echo pulse is reduced by the same factor compared to the previ-
ous echo, and subsequent echoes are phase-inverted to account for the reflection at
the interior surface.
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1.8 Results in context

This section provides a short overview of the presented results in the context of existing research.

General relativity is the current standard theory of gravity, and Einstein presented his field
equations in 1915 [159]. Gravitational waves were found as an approximate solution in 1916 [160],
and the exact solution describing a non-rotating black hole was published in the same year [15].
Although initially debated, both existence of gravitational waves and transmission of energy
through these were established over the following decades. The physically more realistic scenario
of a rotating black hole was described in 1963 [16]. The first observations recognised as compact
objects occurred soon thereafter, with the discovery of pulsars in 1967 and of the first x-ray source
thought to be a black hole in 1964 [161–163]. Observations of the first binary pulsar in 1974
provided indirect evidence of gravitational waves through measurement of the orbital period,
which changed in agreement with the energy loss of gravitational wave emission [164, 165]. Over
the following decades, interferometric detectors for direct measurement of gravitational waves
were developed and constructed, undergoing repeated upgrades to improve their sensitivity.

These instruments made the first direct observation of a gravitational wave in 2015 when
they detected the signal GW150914 from the merger of a black hole binary [33]. Many further
detections have since been made, including the signal GW170817 from a binary neutron star
collision, providing multi-messenger data through coincident electromagnetic observations [34,
166–170]. The gravitational-wave signals are extracted from the noise-dominated detector data
through matched-filtering searches on large computer clusters, using banks of pre-calculated
signal templates [55]. Accurate templates are constructed through a variety of approaches,
including post-Newtonian calculations and the effective one-body formalism [43, 44]. Advance-
ments in numerical relativity have made simulations of binary black holes possible, allowing in
particular to describe the merger phase, and to approximate the numerical results in efficient
phenomenological or interpolated waveform models [46, 50]. Perturbation theory is used to de-
scribe the emission from the single perturbed remnant object of the merger [53]. Waveforms for
the entire emission may be constructed incorporating these different descriptions for individual
stages in the binary evolution.

The perturbed remnant of the merger presents a particularly clean case to study the compact
object. Its ringdown emission can probe directly the remnant’s properties, and is accessible to
theoretical modelling. The late ringdown of black holes consists of a superposition of damped
sinusoids, as first found in numerical studies of gravitational waves scattering off black holes [52].
Later, equations describing perturbations in the Kerr geometry were studied analytically and
reduced to an eigenvalue problem, which in turn is solved to yield the characteristic frequencies
of the ringdown spectrum [53, 121, 131]. The frequency and damping time of each mode in
the ringdown spectrum depend only on the mass and angular momentum of the black hole,
allowing to directly measure these properties. This knowledge can be used to evaluate the
consistency between the binary inspiral phase and the ringdown of the single remnant, and to
test predictions of general relativity, such as the black hole area-increase law [70, 146, 171].
Furthermore, measuring multiple modes of the ringdown allows to test consistency also between
the individual modes. Astrophysical black holes of general relativity are described by only
two parameters, their mass and angular momentum, according to the no-hair theorem. This
prediction can thus be tested by measuring and comparing multiple modes, as all must agree with
the same mass and angular momentum. However, detection of all but the dominant quadrupolar
mode is difficult, as the subdominant modes’ amplitudes are typically suppressed [132].

We therefore study the prospects of measuring multiple modes in Chapters 2 and 3. Bayesian
parameter estimation is performed on a large number of simulated ringdown signals. Both the
analysis and the population of signals emulate the study of real detections, as the full param-
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eter estimation is carried out, and the signals are constructed based on current observational
population models. We find that the confident detection of subdominant ringdown modes is un-
likely using current instruments, but can be achieved with near-future upgrades to the detectors.
Similarly, events suitable to place stringent bounds on deviations from the no-hair theorem can
be expected to occur during a few years of collected data at these improved sensitivities. By
combining data from several detections, we find improved prospects for no-hair tests, while also
uncovering systematic biases in this type of analysis and finding strategies to prevent these. We
find that deviations from the no-hair prediction can likely be constrained to about ±10%, using
a few years of data at the target sensitivity of the next observation run.

Searches for subdominant ringdown modes have been conducted on the available detections,
but little evidence was found so far [71, 72]. Studies of the fundamental mode’s overtones suggest
that these can be used to extend the quasi-normal mode description up to the merger, allowing
to access larger signal amplitudes [128]. Similar hierarchical analyses have been performed
comparing the fundamental mode and its first overtone for no-hair tests, as have other ringdown-
based studies profiting from the increased signal-to-noise ratio [71, 72, 172–174]. While details
of this approach are still being investigated, overtones appear to be a useful tool to describe the
waveform near the merger [129].

In Chapter 4, we analyse the ringdown signal of GW190521, where the high mass of the
remnant places the ringdown in a sensitive frequency-band of the detector. A new method is
applied, focusing the analysis on the ringdown part of the signal. It prevents contamination
from the inspiral and merger portions while retaining the signal inside the analysis window
without loss. The ringdown signal is modelled through different combinations of modes, also
incorporating one overtone. We find strong evidence for the presence of one subdominant mode
in addition to the dominant one. A no-hair test with these modes produces unexpectedly tight
bounds on deviations from the prediction.

Compact objects as alternatives to the black holes of vacuum general relativity are a focus
of recent research. A number of modifications to black holes and alternative objects have been
proposed, often inspired by considerations of quantum effects [122]. Such effects may lead to
material structure near the horizon of a black hole, or a horizonless object may take its place.
Several such models have in common that they can be described by introducing a surface which
reflects infalling radiation, in particular gravitational waves. Instead of being fully absorbed
by the black hole horizon, radiation may then re-appear, making the objects observationally
distinguishable. Changing the interior boundary condition to allow reflection has been found to
lead to a different quasi-normal mode spectrum of the object, consisting of a long-lived sinusoidal
signal [156, 175]. More recently, it has been argued that the initial signal from a collision of such
objects would be practically indistinguishable from that of black holes [153, 176]. This initial
signal would be followed by emission characteristic for the object, which therefore may be found
in the data following already detected signals attributed to binary black holes. The modification
to the signal takes the form of repeated damped pulses after the merger, gravitational wave
echoes, and at late times consists of the long-lived quasi-normal modes of the object.

An initial search for the echo signal, using a simplified waveform model, was reported to find
evidence of echoes in the data of the first gravitational wave detections [158]. In Chapter 5, we
reproduce the results of this first analysis and characterise in detail the applied methods. We find
that these are limited to the detection of very loud echo signals and contain systematic biases,
while the estimation of noise statistics suffers from correlated samples. Improving and extending
the statistical methods, we find the statistical significance for echoes to be low, while at the same
time the presence of echo signals can not be ruled out through these methods. Therefore, we
perform a Bayesian parameter estimation analysis using the same waveform model in Chapter 6.
This shows the data for the individual events to be either consistent with the noise hypothesis
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or to prefer the absence of echoes. We produce upper bounds on the amplitudes of this type of
echo signals ruled out by the data.
Further searches with this and generalised waveform models have been conducted, reporting

no evidence for echoes [71, 72, 177, 178]. As the matched-filtering approach is dependent on
sufficiently accurate modelling of the signal, only those signals very similar to the specific wave-
form used in the search can be ruled out confidently. Theoretical models of alternative compact
objects are being improved, and more accurate waveform models are under development [179].
Chapter 7 presents a search focusing on the long-lived quasi-normal modes of these alternative

objects in the data of GW150914. Using new methods adapted to the long duration of the signal,
we can place bounds on the position of the reflective surface and thus on the deviations from the
Kerr geometry. For a broad class of models, we show such deviations to occur at most extremely
close to the horizon.
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2 Prospects for black hole spectroscopy in
the next decade

Gravitational wave observations of the ringdown of the remnant black hole in a binary black hole
coalescence provide a unique opportunity of confronting the black hole no-hair theorem in general
relativity with observational data. The most robust tests are possible if multiple ringdown
modes can be observed. In this paper, using state-of-the-art Bayesian inference methods and
the most up-to-date knowledge of binary black hole population parameters and ringdown mode
amplitudes, we evaluate the prospects for black hole spectroscopy with current and future ground
based gravitational wave detectors over the next 10 years. For different population models,
we estimate the likely number of events for which the subdominant mode can be detected and
distinguished from the dominant mode. We show that black hole spectroscopy could significantly
test general relativity for events seen by the proposed LIGO Voyager detectors.1

2.1 Introduction

The remnant black hole (BH) formed after the coalescence of two compact objects emits grav-
itational radiation while settling down to a Kerr BH. This stage is known as the ringdown.
Perturbation theory predicts that, at late enough times, the ringdown consists of a superpo-
sition of exponentially damped sinusoids called quasinormal modes (QNM) [52, 180] (see also
[54, 181]). The QNMs are characterised by a set of complex frequencies Ωℓmn labeled by three
integers; ℓ,m are angular quantum numbers while n = 0, 1, 2 . . . is the overtone index. Accord-
ing to the no-hair theorem in standard general relativity (GR), Ωℓmn is uniquely defined by
the BH mass and spin. The measurement of multiple QNMs in a BH ringdown, known as BH
spectroscopy, is crucial for robust observational tests of the no-hair theorem with gravitational
waves (GW) based only on the ringdown signal [133, 141].

The excitation of different QNMs depends on the nature of the perturbation, i.e. on the
properties of the binary progenitor [126, 132, 182–184]. Thus, for aligned spin systems, the
amplitudes of the different modes are determined by the spins of the initial compact objects and
the mass ratio q = m1/m2 ≥ 1, with m1,2 the mass of each object. The ringdown signature is
dominated by the fundamental (ℓ,m) = (2, 2) mode [140]. For non-spinning binaries with equal
masses (q = 1), odd ℓ modes vanish and the loudest subdominant mode is the (ℓ,m) = (4, 4)
mode. As the mass ratio increases, the (ℓ,m) = (3, 3) mode becomes the loudest subdominant
mode, with amplitudes larger than 30% of the dominant amplitude (A330/A220 > 0.3) [126, 132].
Hence, coalescences of two unequal-mass BHs or neutron-star black-hole binaries (NSBH) are
the most promising sources for measurability of subdominant modes in the ringdown. For still
higher mass ratios, the relative amplitude of the modes can also tell us about the alignment of
the orbit relative to the BH spin during the inspiral phase [182–184].

Two main conditions are necessary to test the no-hair theorem: (i) the detectability of at least
two modes, and (ii) the resolvability of the frequencies and/or damping times of each mode.
Theoretical estimates of the necessary ringdown signal-to-noise ratio (SNR) for each of these

1This chapter is an adaptation of the work published as [1] as described in Section 1.2, with the copyright for
the published article [1] held by the American Physical Society (2020).
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conditions can be found in the literature [139, 141]. These studies have predicted that Advanced
LIGO should observe several ringdown events at design sensitivity, but will not be able to detect
subdominant modes from the coalescence of stellar-mass BBH for BH spectroscopy [185, 186]. In
this paper we revisit the prospects for accurate BH spectroscopy with the next decade of LIGO
detectors. In general, asymmetric binaries are more likely to produce higher amplitudes for the
subdominant ringdown modes. However, based on the gravitational-wave observations to date,
more asymmetric systems are also likely to be much fewer in number [63] (although recent public
alerts from the third observing run of Advanced LIGO and Virgo suggest possible detections of
NSBH [187, 188]). In addition, the orientation of a source relative to the detectors also has an
important effect on the observed amplitudes. Systems where the angular momentum is aligned
with the line-of-sight to the source are more luminous, but these orientations are not favourable
for observing the subdominant modes. Taking all these effects into account, along with the most
up-to-date estimates of the ringdown mode amplitudes [132] and state-of-the-art gravitational
wave parameter estimation techniques [99, 189], we show that black hole spectroscopy can
provide non-trivial limits on general relativity with the LIGO Voyager detector.

At least 10 binary black-hole (BBH) coalescences have been observed in the first two observing
runs of Advanced LIGO and Virgo [166, 190–194]. The loudest BBH event is still the first
detection, GW150914 [33], with a ringdown signal-to-noise ratio (SNR) ρ ≃ 8.5 [69] at 3 ms
after merger. This event has not provided significant evidence for the presence of measurable
subdominant modes with ℓ ̸= 2 [195]. However, recent work suggests that the inclusion of higher
overtones of the dominant ℓ = 2 mode allows for the modelling of the ringdown immediately
after the merger, hence obtaining higher SNR in ringdown signatures [128]. The analysis of
the GW150914 ringdown using the fundamental mode and its first overtone provides the first
constraints to date of deviations of the no-hair theorem using two QNMs [172]. Here we use
the Bayesian inference and model selection frameworks [119] on simulated BBH populations
to establish the measurability and accurate resolvability of two ringdown QNMs over the next
decade, providing rate estimates for constraining the no-hair theorem to within ±20% at the
90% credible level. We restrict ourselves to the resolvability of subdominant QNMs (ℓ ̸= 2)
for two reasons: (1) the excitation amplitudes of overtones on the general parameter space of
the binary’s properties are not yet well-understood and we lack predictions to model ringdown
signatures that include overtones for a large population of BBH mergers, and (2) the frequencies
of the overtones are very similar to each other, hence accurate resolvability of an overtone is
more challenging than of a subdominant mode.

This manuscript is organised as follows. Section 2.2 introduces the Bayesian inference and
model selection frameworks, as well as the ringdown model used. Section 2.3 describes the
details on the BBH population considered. In Section 2.4 we report the rates on measurable
subdominant modes and prospects for resolvability of the necessary parameters to perform tests
of the no-hair theorem. Finally, we conclude our findings in Sec. 2.5.

2.2 Bayesian framework

We use Bayesian methods to infer the properties of the remnant BH from our data, d(t), and to
determine the presence of a measurable subdominant mode in the ringdown signature. Given a
model hypothesis of the ringdown signal, H, parameterised by the source properties, ϑ⃗, Bayes’
theorem defines the posterior probability distribution:

p(ϑ⃗|d,H) = p(ϑ⃗|H)
p(d|ϑ⃗,H)

p(d|H)
, (2.1)
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where p(ϑ⃗|H) is the prior knowledge based on astrophysical populations or theoretical models,
the likelihood p(d|ϑ⃗,H) is the conditional probability of observing the data d(t) given the model
H with parameters ϑ⃗, and the evidence p(d|H) is a normalisation constant that only depends on
the data and the chosen model. Calculating the evidence requires marginalisation over the entire
parameter space, which can become computationally challenging. While this computation can
be avoided for Bayesian parameter estimation, model selection between two competing models
requires accurate estimates of the evidence.

In Bayesian model selection, the Bayes factor weighs the evidence provided by the data in
support of one model versus another [119, 196]:

BAB =
p(d|HA)

p(d|HB)
. (2.2)

In this manuscript we follow the nomenclature of [119]: a Bayes factor BAB > 3.2 indicates
“substantial” support for HA over HB, BAB > 10 indicates “strong” support, while BAB > 100
is “decisive”.

2.2.1 The likelihood function

For a GW detector network with uncorrelated stationary Gaussian noise, the likelihood is given
by

p(d|ϑ⃗,H) ∝ exp

[
−1

2

N∑

a=1

⟨da − ha(ϑ⃗), da − ha(ϑ⃗)⟩
]
, (2.3)

where N is the number of detectors, da is the data for each detector, and ha(ϑ⃗) is the waveform
model evaluated for a set of parameters ϑ⃗ as observed by detector a. The noise-weighted inner
product is defined as

⟨x, y⟩ = 4R

∫ ∞

0

x̃∗(f)ỹ(f)
Sn(f)

df , (2.4)

with Sn(f) being the one-sided power spectral density (PSD) of the detector’s noise, x̃(f) the
Fourier transform of x(t), and ∗ indicating the complex conjugate.

In this paper we use the PyCBC Inference [99, 189] toolkit to compute the likelihood func-
tion and estimate posterior probability distributions. Accurate marginalisation for evidence
estimation is achieved using the nested sampling algorithm cpnest [115].

2.2.2 The ringdown model

The strain h(t) produced by a gravitational wave at the detector is given by

h(t) = F+(α, δ,Ψ)h+(t) + F×(α, δ,Ψ)h×(t) , (2.5)

where F+,× are the antenna pattern functions determined by the relative orientation between
the detector frame and the wave frame [80], i.e. the sky location of the source (right ascension α
and declination δ in a geocentric coordinate system) and the polarisation angle Ψ that defines
the relative orientation of the wave frame with the geocentric coordinate system. For short
transient signals, these orientation angles (and hence F+,×) are assumed to be time independent.
For future generations of observatories with improved low frequency sensitivity, it might become
necessary to account for the time dependence of F+,×. However, the ringdown itself will be short
enough that for our purposes we do not need to consider this effect here.
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The ringdown signal of a Kerr BH consists of a sum of exponentially damped sinusoids:

h+ + ih× =
M

DL

∑

ℓ,m,n

−2Sℓmn(ι, φ)Aℓmne
i(Ωℓmnt+ϕℓmn) , (2.6)

where M is the mass of the BH in the detector frame and DL is the luminosity distance to the
source. The functions −2Sℓmn(ι, φ) are the spin-weighted spheroidal harmonics, which depend on
the inclination angle ι between the BH spin and the line-of-sight from the source to the observer,
and the azimuth angle φ between the BH and the observer. The complex QNM frequencies Ωℓmn,
determined from the Teukolsky equation [53, 131], define the frequency and damping time of the
damped sinusoid, Ωℓmn = ωℓmn + i/τℓmn. The amplitudes Aℓmn and ϕℓmn depend on the initial
perturbation and take different values for different (ℓ,m, n) modes. Henceforth, we restrict
ourselves to the n = 0 overtone and drop the overtone index n for simplicity.
Assuming that the ringdown begins at t = 0, the two gravitational-wave polarisations are

given by

h+(t) =
M

DL

∑

ℓ,m

−2Y
+
ℓm(ι)Aℓme

−t/τℓm cos(ωℓmt+ ϕℓm) ,

h×(t) =
M

DL

∑

ℓ,m

−2Y
×
ℓm(ι)Aℓme

−t/τℓm sin(ωℓmt+ ϕℓm) . (2.7)

Here we have approximated the spheroidal harmonics −2Sℓmn by spin-weighted spherical har-
monics −2Yℓm [138, 139], which introduces an error of ∼ 1% or less, defining [138]:

−2Y
+
ℓm(ι) = −2Yℓm(ι, 0) + (−1)ℓ−2Yℓ−m(ι, 0) ,

−2Y
×
ℓm(ι) = −2Yℓm(ι, 0)− (−1)ℓ−2Yℓ−m(ι, 0) . (2.8)

The azimuthal angle φ appears in the spherical harmonics as −2Yℓm(ι, φ) = eimφ−2Yℓm(ι, 0). As
we will consider the modes’ phases ϕℓm free parameters, they are degenerate with φ, which we
absorb into the ϕℓm.
The ringdown analysis in this paper follows the methods developed in [70, 197]. We use two

different waveform models, (i) a Kerr model where we assume the remnant object to be a Kerr
BH, hence the ringdown QNM frequencies Ωℓmn are uniquely determined by the mass M and
the spin χ of the BH, and (ii) an agnostic model where we assume the nature of the remnant
object to be unknown, hence the ringdown is parameterised by each individual QNM frequency
Ωℓmn and we drop the factor M/DL in Eq. (2.7). The Kerr model (i) is our starting point for
determining the measurability of a subdominant mode. Resolvability of the subdominant mode
for testing the no-hair theorem is determined using the agnostic model (ii).

2.3 Populations

We construct populations of candidate BBH ringdown signals based on the observational pop-
ulation model B of [63] (we ignore NSBH mergers here because population models including
NSBH are largely uncertain). The component-mass and mass-ratio distributions follow power
laws with exponents −α and βq, respectively (see Eq. (2) in [63]). For the component-mass
distribution, we use the measured median value α = 1.6, with masses in the range [5.4, 57)M⊙
(we use the lowest mmin and the largest mmax values, to account for uncertainties in the mass
bounds of BHs). For the mass-ratio distribution we use two different exponent values: the
measured median value βq = 6.7, and a uniform distribution βq = 0 (which is used in model
A of [63]). Mass ratios are restricted to be within the range [1, 8). We assume the individual
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BHs to be non-spinning prior to the merger, which is consistent with the population of BBHs
observed by LIGO/Virgo thus far. Sources are distributed uniformly in co-moving volume; we

choose a maximum luminosity distance, D
(max)
L , dependent on the considered detector network.

The inclination angle ι is distributed uniformly in cos ι ∈ [−1, 1), and the polarisation angle Ψ
uniformly in Ψ ∈ [0, 2π).

The mass and spin of the remnant Kerr BH determine the ringdown frequencies Ωℓm [141]. We
obtain an estimate of the remnant’s source frame mass M (src) and dimensionless spin χ using
the fitting formulae to numerical relativity [198, 199] implemented in the LALSuite software
package [200]. The detector frame massM is given byM = (1+z)M (src), where z is the redshift
calculated from the luminosity distance, DL, assuming a standard ΛCDM cosmology [201]. The
excitation amplitudes Aℓm, which depend on the mass ratio q of the binary, are determined
using the fitting formulae in [132] at t = 10M after the merger. The phases ϕℓm of the modes
are distributed uniformly in ϕℓm ∈ [0, 2π), in contrast to previous work in the literature where
both phases were fixed for simplicity [134, 139, 202].

The BBH parameters for each candidate are drawn randomly from their respective distribu-
tions to generate two-mode ringdown signals with the dominant (ℓ,m) = (2, 2) mode and either
the (ℓ,m) = (3, 3) or the (ℓ,m) = (4, 4) subdominant mode. We consider a three-detector LIGO
network consisting of the observatories in Hanford (H1), Livingston (L1) and India (I1). We use
three different sensitivities for these detectors [203]: Advanced LIGO design sensitivity (Adv.
LIGO), A+ and Voyager. We do not consider here the complete third generation detectors,
which include the Einstein Telescope [95, 204, 205] and Cosmic Explorer [93], or the space based
LISA mission [206], since this would take us beyond the 10-year timeframe.

For each candidate, we calculate the optimal SNR of the subdominant mode in each detector,
ρdet =

√
⟨h, h⟩, where h is the ringdown signal of the subdominant mode projected into the

detector (see Eqs. (2.5) and (2.7)). To avoid a large number of sources with no measurable

subdominant mode, we reject candidates with combined optimal SNR ρc =
√∑

det ρ
2
det < 2.5

in the subdominant mode. For the same reason, the maximum DL considered is limited to

different values for different sensitivities, namely D
(max)
L = {1, 3, 5} Gpc for Adv. LIGO, A+

and Voyager, respectively. The number of draws required to find a sample population of 100
signals with ρc ≥ 2.5 in the subdominant mode yields the fraction of interesting candidates
out of all BBH signals. Figure 2.1 shows the resulting populations for each detector network
considered.

2.4 Analysis and results

2.4.1 Rates of measurable subdominant modes

We add the population of accepted candidate ringdown signals (shown in Fig. 2.1) into different
Gaussian noise realisations coloured with the PSD of the desired detector. To determine the
measurability of the subdominant mode, we use the Kerr BH ringdown model and perform two
separate Bayesian parameter estimation analyses, using: (HA) templates with the fundamental
(2, 2) mode plus the corresponding (ℓ,m) subdominant mode, and (HB) templates with only the
fundamental (2, 2) mode. The Bayes factor BAB is then calculated as the ratio of the evidences
for model HA versus model HB. Those sources with BAB > 3.2 are further analysed in the next
section to determine the resolvability of the subdominant mode.

The parameters (M , χ, Aℓm, ϕℓm, ι, Ψ) are estimated from the data, which represents a set of 8
parameters in the two-mode ringdown model HA, and 6 parameters in the single-mode ringdown
model HB. The priors used in the parameter estimation analysis are uniform in all parameters:
BH mass M ∈ [10, 200)M⊙, BH spin χ ∈ [−0.99, 0.99), log-amplitude of the fundamental mode
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Figure 2.1: Source frame mass, M (src), and spin, χ, of the BHs with optimal SNR ρc ≥ 2.5 in
the subdominant mode (either the (3, 3) or the (4, 4) mode), obtained using the ob-
servational population models of [63]. The colours represent the luminosity distance

of the source, where the maximum allowed distance was D
(max)
L = {1, 3, 5} Gpc for

Adv. LIGO, A+ and Voyager, respectively.
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βq = 0 βq = 6.7

BAB > 3.2 BAB > 10 BAB > 100 BAB > 3.2 BAB > 10 BAB > 100

Adv. LIGO 0.036+0.039
−0.019 0.028+0.031

−0.015 0.011+0.012
−0.006 0.008+0.009

−0.004 0.006+0.007
−0.003 0.003+0.003

−0.001

A+ 0.46+0.51
−0.25 0.28+0.31

−0.15 0.14+0.15
−0.07 0.08+0.09

−0.04 0.06+0.06
−0.03 0.03+0.03

−0.02

Voyager 2.63+2.89
−1.42 1.83+2.01

−0.99 0.89+0.97
−0.48 0.30+0.33

−0.16 0.21+0.24
−0.12 0.11+0.12

−0.06

Table 2.1: Rates of BBH ringdown signals per year (yr−1) with a detectable subdominant (3, 3)
or (4, 4) mode for a population with uniform mass-ratio distribution (βq = 0) and
for a population with a power-law mass-ratio distribution with exponent βq = 6.7.
The Bayes factors in each column indicate substantial support (BAB > 3.2), strong
support (BAB > 10), and decisive support (BAB > 100) for the presence of a second
mode.

log10(A22) ∈ [−4, 4), relative subdominant mode amplitude Âℓm = Aℓm/A22 ∈ [0, 0.5), ringdown
phases ϕℓm ∈ [0, 2π), polarisation angle Ψ ∈ [0, 2π), and inclination angle cos ι ∈ [−1, 1). We
fix the start time of the ringdown, the (ℓ,m) of the subdominant mode, the sky location, and
the distance to the source to the injected values. While the start time of the ringdown is not
uniquely defined in the literature, we do not explore the issue in this paper and assume that
this can be determined by other means [70, 195, 207]. Further, we can safely assume that we
have some knowledge from the inspiral part of the signal regarding the mass ratio of the binary
to determine which is the loudest subdominant mode to look for. Since we are using a network
of three detectors, the sky location should be relatively well known from the analysis of the full
gravitational-wave signal. Finally, while the distance might not be accurately measured, fixing
this parameter to a wrong value will only affect the measurement of the fundamental amplitude
A22 and not affect our conclusions.
We calculate the rate of ringdown events with detectable subdominant mode in each detector

network based on the BBH merger rate density given in [63] (R = 53.2+58.5
−28.8 Gpc−3 yr−1) and

the co-moving volume up to D
(max)
L for each detector network. Table 2.1 lists the rate of events

per year with substantial (BAB > 3.2), strong (BAB > 10), and decisive (BAB > 100) support for
the presence of a subdominant mode. These rates are the combination of both the (3, 3) and the
(4, 4) modes. While we have made the simplifying assumption that only one subdominant mode
will be measurable, some of the considered BBH systems might have two subdominant modes
with SNR ρc ≥ 2.5. However, studying the performance of a three-mode ringdown Bayesian
analysis is beyond the scope of this paper.

2.4.2 Resolvable subdominant modes for testing GR

In the presence of two measurable ringdown modes, resolvability of the Ωℓm frequencies allows
for BH spectroscopy tests. However, QNMs of rotating BHs in modified theories of gravity have
not been calculated [208], and Kerr-like exotic compact objects can have the same or a similar
QNM spectrum as Kerr BHs [122]. While it might be challenging to disprove all BH alternatives,
accurate measurements of the QNM spectrum will be crucial to constrain deviations from GR
(see however [209] for possible ways of parameterising frequencies and damping times accounting
for deviations from GR). It has been shown for non-rotating alternative BH models that GR
deviations are more significant in the QNM frequencies than in the damping times [210]. Hence,
we focus here on constraining deviations from the subdominant mode’s frequency.
We consider those ringdown events with BAB > 3.2 in the previous section and perform
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the same parameter estimation analysis, now using the agnostic model defined in Sec. 2.2.2 to
estimate the ringdown frequencies Ωℓm of the two QNMs. Hence, 10 parameters (ωℓm, τℓm,
Aℓm, ϕℓm, ι, Ψ) are now estimated from the data. The priors are uniform in the frequencies
fℓm = ωℓm/2π ∈ [50, 1024) Hz and damping times τℓmn ∈ [0.45, 30) ms, excluding parameters
that yield masses and spins outside of the ranges used in the previous section with the Kerr
model. The amplitudes of the (ℓ,m) modes have different orders of magnitude, because of the
missing factor M/DL when dropping the Kerr assumption. Hence, the prior in log-amplitude of
the fundamental mode is now log10(A22) ∈ [−25,−17). The priors in the remaining parameters
are the same as in the previous section. Finally, we apply an additional set of constraints on
the subdominant frequency and damping time to be within ±25% of the GR expectation.

Using the fitting formulae in [141], we can compare the mass and spin measurement obtained
from the (2, 2) parameters and from the subdominant (ℓ,m) parameters. Furthermore, based
on the measurement of the (2, 2) mode, we can infer the measured deviation for the frequency
of the subdominant (ℓ,m) mode, δfℓm. Table 2.2 lists the rates of BBH ringdown signals per
year that constrain deviations from GR to within δfℓm ± 20% at the 90% credible level. The
results are summarised in Fig. 2.2.

Network δfℓm ≤ ±20%

Adv. LIGO 0.026+0.028
−0.014

A+ 0.27+0.30
−0.15

Voyager 1.34+1.47
−0.73

Table 2.2: Rates of BBH ringdown signals per year (yr−1) with strong support for the presence
of a second mode (BAB > 3.2) where deviations of the frequencies from the GR
prediction are constrained to within δfℓm ≤ ±20% at the 90% credible level. We only
show the rates for the population with uniform mass-ratio distribution (βq = 0), since
we know from the previous section that rates for a population with βq = 6.7 will be
lower.

2.5 Conclusions

In this paper we have applied for the first time the full Bayesian inference framework to a
population of BH ringdowns derived from the observational population models published by the
LIGO Scientific and Virgo Collaborations. Furthermore, we have allowed for completely variable
ringdown phases, inclination angles, polarisation angles and sky locations, contrary to previous
works that have fixed one or more of these parameters for simplicity [134, 139, 202].

Within the Bayesian model selection framework, future generations of LIGO detectors will
likely deliver measurable subdominant QNM modes from BBH mergers over the next decade.
However, resolvability of the subdominant frequencies is technically challenging, and accurate
tests of the no-hair theorem might only be possible in very few cases. These results are in
agreement with previously published works [185, 186], where the ringdown SNR was used to
determine the measurability and resolvability of QNMs.

Merger population models from gravitational-wave observations are still largely uncertain.
The third observing run of Advanced LIGO and Virgo might be uncovering a new population
of NSBH and other previously unobserved types of mergers, which could boost the rates of
measurable and resolvable subdominant modes. Hence, the rates obtained in this work might
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Figure 2.2: Expected rates of BBH mergers for which two ringdown modes can be observed and
resolved. We consider two population models corresponding to βq = {0, 6.7}. Shown
are the rate of events that have “substantial”, “strong”, and “decisive” Bayesian evi-
dence (using the nomenclature of Ref. [119]) for a two-mode Kerr hypothesis relative
to a single-mode hypothesis (filled circles, diamonds, and squares, respectively). For
the events that have substantial evidence, we perform a followup analysis in which
the frequency and damping time of the subdominant mode is allowed to deviate
from the expected GR value. The rate of events for which the deviation from GR of
the subdominant frequency |δfℓm| is constrained to be ≤ 20% is given by the open
circles.
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turn out to be pessimistic as more gravitational-wave detections are made available.
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2.6 Appendix

Results for the injection with the largest Bayes factor in the (3, 3) population using the Voyager
sensitivity are shown in Figure 2.3 for the Kerr model and in Figure 2.4 for the agnostic model.
This BBH is located at a distance DL ≃ 250 Mpc.

Figure 2.3: Posterior distributions from the analysis with a Kerr ringdown. The parameters
of interest are the BH mass M , BH spin χ, amplitude of the (2, 2) mode, A22, and
amplitude ratio of the (3, 3) mode, A33/A22. The red crosses indicate the injected
parameters, and the dashed lines in the histograms correspond to the median value
and the 90% credible level.

60



2.6 Appendix

Figure 2.4: Posterior distributions from the analysis with an agnostic ringdown. The parameters
of interest are the ringdown frequencies, fℓm, and damping times, τℓm, the amplitude
of the (2, 2) mode, A22, and the amplitude ratio of the (3, 3) mode, A33/A22. A22 has
a different order of magnitude compared to the Kerr model because of the missing
M/DL factor in the approximant. The red crosses indicate the injected parameters,
and the dashed lines in the histograms correspond to the median value and the 90%
credible level.
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3.1 Introduction

Gravitational wave detections that allow for precise measurement of multiple ringdown modes
are expected to be rare for current and near-future detector sensitivities. By measuring precisely
and comparing the parameters of multiple modes in a single event, we can place constraints on
potential deviations from the predictions of general relativity. However, in Chapter 2 we have
predicted that an event suitable to place appreciable constraints will occur less than once per
decade of collected data at the Advanced LIGO design sensitivity, based on recent models of
the population of binary black hole systems.

Introducing an additional assumption allows us to combine data from multiple detections and
improve the prospects of constraining such deviations in the near future. Assuming that all
sources deviate from the prediction of the no-hair theorem in the same manner, we can perform
a hierarchical analysis where the results from one event inform the analysis of the next. With
each analysed event, our knowledge about the deviations is increased, represented by a change
in the probability distribution for the deviation parameters. The posterior distribution of the
first event’s analysis is used as the new prior distribution for the analysis of the second, and this
process is repeated for all detections.

We construct a population of simulated events by drawing each event’s parameters from their
respective distributions, which are based on observational population models. The number of
events we draw corresponds to one year of collected data, only including events that are likely
detectable according to a minimal signal-to-noise ratio (SNR) threshold for the complete inspiral-
merger-ringdown signal. To limit computational cost, we then only perform the full parameter
estimation for the 50 candidates that are most promising in terms of the subdominant ringdown
mode’s SNR.

To reduce the overall time required to analyse the entire population, it is desirable to analyse
the events in parallel instead of sequentially. Instead of using one event’s posterior distribution
as the prior for the next analysis, we can equivalently analyse all events individually and combine
their individual posterior distributions when ensuring compatibility of the individual priors. If
the same prior distributions are used for the parameter estimation of all events, the combined
posterior can conveniently be found as a simple product of the individual posterior distributions.

We expect it to be unlikely to find an event in one year of data suitable to individually
yield stringent constraints on deviations. However, the combination of many quieter events may
suffice to find such constraints. This allows us to lower the threshold for the minimum gain of
information imposed on the individual events, compared to the criteria from Chapter 2.

Therefore, this approach contrasts that of Chapter 2. Instead of drawing events until a
suitable candidate is found and estimating the required observation time from this, here we fix
the observation time and estimate the bounds that may be placed given this amount of data.
While the constraints for each individual event are a by-product of this analysis, we change the
question from “How long to collect data to constrain deviations to a given magnitude?” to “How
tightly can a given duration of collected data constrain the deviations?”.
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3.2 Analysis

3.2.1 Combining posteriors

Even with the detection of many gravitational wave signals, we expect events with precisely
measurable quasi-normal mode (QNM) spectra to be rare. Each individual event may, however,
contain a small amount of information through weak preferences in the posterior distribution of
the QNM parameters. A parameter common to different events allows to combine these small
changes in the individual posteriors into a single posterior based on the data for multiple events.

As we are interested in measuring deviations from the predicted frequency and damping time
of individual modes, we consider as an example a parameter δf . We assume that the true value
of δf is the same for two events with the two sets of data d1, d2, and prior information X. From
this, we want to find a single posterior distribution incorporating information from both d1 and
d2. Updating the original prior, p(δf | X), using all available data means, applying Bayes’
theorem,

p(δf | d1, d2, X) =
p(d1, d2 | δf,X) p(δf | X)

p(d1, d2 | X)
. (3.1)

Signal parameters that are independent between events result in an increasing total number
of parameters in the analysis when many events are included. The high-dimensional parameter
space can then impede parameter estimation methods. It is therefore desirable to analyse the
events individually and combine the results after the separate analyses. This also prevents us
from having to repeat the analysis of the same data when adding data from newly detected events
to be included in the combined posterior distribution. Starting from the above expression, we
find

p(δf | d1, d2, X) =
p(d1, d2 | δf,X) p(δf | X)

p(d1, d2 | X)
(3.2)

=
p(d2 | d1, δf,X)

p(d2 | d1, X)

p(d1 | δf,X) p(δf | X)

p(d1 | X)
(3.3)

=
p(d2 | d1, δf,X) p(δf | d1, X)

p(d2 | d1, X)
, (3.4)

where we used the product rule in the first and Bayes’ theorem in the second step. We can in-
terpret this expression as simply adding the data d1 to the prior information X when analysing
the data d2. We also notice that the last line includes the posterior resulting from the anal-
ysis of the first event, p(δf | d1, X). If the likelihood does not depend on the previous data,
p(d2 | d1, δf,X) = p(d2 | δf,X), we can re-interpret the last line as follows. Up to normalisa-
tion, it is the expression for the posterior distribution p(δf | d2, X), with the prior replaced by
p(δf | X) → p(δf | d1, X). So we may find the posterior distribution based on multiple sets of
data through a hierarchical analysis. For this, we combine the information from multiple events
by analysing the first event given our initial prior X, finding the posterior p(δf | d1, X). The
second event is then analysed using as prior the posterior distribution of the first analysis, and
so forth for subsequent events.

We assume the likelihood of observing some data to be independent of previously observed
data. This is encoded in our description of the likelihood as that of stationary Gaussian noise,
which remains unchanged when adding data collected at sufficiently separated times to the prior
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information. This means that the data d1 and d2 are conditionally independent given δf,X,

p(d1, d2 | δf,X) = p(d1 | δf,X)p(d2 | δf,X) (3.5)

⇔ p(d2 | d1, δf,X)p(d1 | δf,X) = p(d1 | δf,X)p(d2 | δf,X) (3.6)

⇔ p(d2 | d1, δf,X) = p(d2 | δf,X). (3.7)

We can consider both the first and last line as the definition of conditional independence. The
last line gives the expression we use here to combine the results from multiple events.
Using the hierarchical procedure allows us to find the combined posterior from analysing in-

dividual events. However, the events must still be analysed sequentially, as one event’s posterior
is required as the prior for the analysis of the next. We can instead analyse each event using the
same prior distribution and then combine the results, allowing for parallel analysis of all events.
Assuming conditional independence, we can write

p(δf | d1, d2, X) =
p(d1, d2 | δf,X) p(δf | X)

p(d1, d2 | X)
(3.8)

=
p(d1 | δf,X) p(d2 | δf,X) p(δf | X)

p(d1, d2 | X)
(3.9)

=
p(δf | d1, X) p(d1 | X)

p(δf | X)

p(δf | d2, X) p(d2 | X)

p(δf | X)

p(δf | X)

p(d1, d2 | X)
(3.10)

=
p(d1 | X) p(d2 | X)

p(d1, d2 | X)︸ ︷︷ ︸
c

p(δf | d2, X)

p(δf | X)

p(δf | d1, X)

p(δf | X)
p(δf | X), (3.11)

using Bayes’ theorem in the third step, and considering c as a normalisation factor depending
only on the data. The last line shows a convenient way to calculate the combined posterior
distribution from the individual events’ posteriors. Ignoring the data-dependent normalisation
factor c, the last line is a product of the posterior distributions of the individual events, each
divided by the prior p(δf | X). This product is then multiplied once by the prior. Our parameter
estimation analysis for one event yields as result the posterior distribution, while the prior
distribution is known. We can then find the combined posterior by analysing individually N
events using the same prior for each, then calculating the product of the individual posteriors,
divided by N − 1 times the prior, and normalising the result. This is the procedure we use in
our analysis, performing the individual events’ parameter estimation in parallel.

We note that this represents a special case of the more general approach of reweighting pos-
terior distributions to replace the prior. Assume we are given a posterior distribution for a
parameter and the corresponding prior under which the posterior was found, with prior infor-
mation X. We want to find from this the posterior resulting from a set of prior information X ′,
which only differs from X in the prior distribution for the parameter, i.e. p(δf | X). Then we
can write

p(δf | d,X)
p(δf | X ′)
p(δf | X)

=
p(d | δf,X) p(δf | X)

p(d | X)

p(δf | X ′)
p(δf | X)

(3.12)

=
p(d | δf,X) p(δf | X ′)

p(d | X)
(3.13)

= p(δf | d,X ′), (3.14)

where the last line holds as we assumed the difference in prior information to lie only in the
expected distribution for δf , leaving the likelihood and evidence unchanged. As an additional
condition, we require that the new prior distribution covers a subset of the original prior. Oth-
erwise, regions included in the new distribution have not been sampled when calculating the
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posterior distribution which we want to reweight with the new prior. The available posterior
distribution and the corresponding likelihood samples then contain no information for these
regions and cannot be reweighted to represent the posterior for the new prior distribution. We
can now for example interpret Eq. (3.11) as reweighting the posterior from d2 by dividing by its
prior and multiplying by the new prior, the posterior based on d1.

3.2.2 Populations and analysis framework

The Bayesian analysis framework and the model for the ringdown signal are identical to those
presented in Chapter 2. We assume stationary Gaussian noise in the likelihood model, and
find the posterior probability distributions for the desired parameters by applying Bayes’ the-
orem. Calculations are performed with PyCBC Inference, using the different nested sampling
algorithm dynesty to sample parameter space and calculate evidences [116]. The ringdown
waveform consists of damped sinusoids with frequencies and damping times determined from
the mass and spin of the final black hole through the Teukolsky equation for each quasi-normal
mode. As before, we approximate spheroidal harmonics through spherical harmonics.

The binary black hole merger population is again constructed based on the observational
population model B in [63], where we do not include binary neutron star or neutron star-black
hole events. In contrast to Chapter 2, we now only consider the uniform distribution for the mass
ratio, with the parameter βq = 0 appearing in the exponent of the power-law distribution. This
seems reasonable as subsequent high mass-ratio detections have lent increased support to smaller
values of βq (e.g. [211]). However, we defer replacing the population parameter distributions
with more recent observational models to future work [64, 212].

The full inspiral-merger-ringdown (IMR) waveform is used to determine the thresholds for
inclusion of a simulated event in the analysis. We consider a network of the two Advanced
LIGO detectors and the Virgo detector and use their design-sensitivity noise curves [203] to
calculate the optimal SNR ρdet =

√
⟨h, h⟩ of the IMR signal in each detector. We require an

optimal SNR ρdet > 4.5 in each detector, as well as optimal ρdet > 6 in at least one detector to
consider the event to be likely detectable. We limit the luminosity distance to DL ≤ 2Gpc to
limit the number of drawn candidates, assuming more distant events unlikely to have a detectable
quasi-normal mode spectrum. We then draw parameters for as many events as are expected
to occur during one year in the corresponding comoving volume according to the optimistic
rate estimate from [63]. Restricting the timespan of collected data limits the necessary draws
to a manageable number, independent of the signal SNR. This allows us to increase the range
compared to Chapter 2, where we drew events until reaching a given number of loud signals and
used DL ≤ 1Gpc for this detector sensitivity. There, the larger range would have led to many
quiet candidates being drawn and rejected, increasing the computational cost for producing
the desired population sample. We find a rate of 1139 events occurring in the given comoving
volume per year. About 32% of the events are likely detectable by the network of the two
Advanced LIGO and the Virgo detectors at their design sensitivities, according to our chosen
SNR threshold.

To produce a more robust statistic of simulated events, we repeat this process and collect
candidate events for 4 years of data. We then restrict the parameter estimation to the 200
candidates with the highest SNR in the subdominant mode. When quoting results for one year
of collected data, we base these on choosing 50 events at random from the 200. This choice is not
equivalent to selecting the 50 events with the loudest subdominant modes from one year, and
will over-represent events with higher subdominant mode SNRs. However, most events will have
very quiet subdominant modes, with negligible contributions to a combined posterior. Based
on the results of Chapter 2, we assume that fewer than 50 events per year will contribute to
constraining the deviation parameters of interest. We therefore expect that we can approximate
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the contributing events for one year by drawing 50 out of the 200 candidates, without relevant
influence from overestimating the SNRs in the non-contributing subset.

We produce simulated gravitational wave data for each of the 200 candidate events in the
population, consisting of the sum of noise realisations and signals. The noise is Gaussian,
coloured with the power spectral density of the respective detector noise curve. The signals
consist of the ringdown QNMs, excluding the inspiral and merger portions of a real signal. We
generate only the ℓ = m = 2 mode and the ℓ = m = 3 subdominant mode, which is expected to
typically be excited more strongly than the ℓ = m = 4 mode [132]. We do not consider overtones
in this work, always setting n = 0 and omitting the corresponding index. The parameters of
the ringdown are calculated from the BBH parameters of the candidate events. We follow the
same procedure as in Chapter 2 to find the remnant black hole’s mass M and spin χ. Assuming
the component black holes to be non-spinning, the remnant’s properties are calculated from
the component masses and spins through fitting formulae to numerical relativity. The remnant
mass and spin in turn directly determine the frequencies and damping times of the QNMs. The
modes’ initial phases are drawn randomly from a uniform distribution ϕℓm ∈ [0, 2π), and the
excitation amplitudes are calculated using the fitting formulae from [132] at the time t = 10M
after the merger. The injected signal then consists of two quasi-normal modes starting at this
time.

We now perform Bayesian parameter estimation on these data. The signal model is the
same as for the injection, consisting of the ℓ = m = 2 and ℓ = m = 3 QNMs at t = 10M
after the merger. However, we allow the subdominant mode’s frequency and damping time to
deviate from the values predicted in GR from the dominant mode measurement. In contrast to
Chapter 2, we do not restrict the analysis to events where we find evidence for the subdominant
mode assuming the Kerr relation between the modes’ parameters. Instead, we directly apply
the analysis testing for deviations from this relation to all candidate events. The combination of
small preferences in the posteriors of many events may then yield constraints on these deviations,
even if the two-mode model is not strongly preferred over a single mode for any individual event.
Nevertheless, we still perform the additional analysis using only the dominant ℓ = m = 2 mode.
This allows to quantify the support for the two-mode model relative to the single-mode model,
and to correlate this support with the measurability of the parameters.

In our parameter estimation, we adopt a set of 6 parameters for the waveform model with only
the dominant mode, with 4 additional parameters when including two modes. The 4 parameters
shared between the modes are (M , χ, ι, Ψ), the same as those in Chapter 2. For each mode,
we add the amplitude and phase parameter, Aℓm, ϕℓm, resulting in 6 parameters in total for
the single mode model. For the dominant (ℓ,m) = (2, 2) mode template, the frequency fℓm
and damping time τℓm are the values calculated for the given M , χ from solving the Teukolsky
equation. Adding the second mode introduces the corresponding Aℓm and ϕℓm, while deviations
from the no-hair assumption are encoded by two additional parameters, (δf33, δτ33). These
describe the frequency and damping time of the subdominant (ℓ,m) = (3, 3) mode through
f33 = (1 + δf33)f

GR
33 and τ33 = (1 + δτ33)τ

GR
33 , where fGR

33 and τGR
33 are the values expected

in GR for the given M , χ. All injections obey the GR prediction, so the correct values are
δf33 = δτ33 = 0. As we only consider deviations for the subdominant mode parameters, we drop
the subscript in the following, writing only δf and δτ .

Note that no information from the inspiral and merger parts is used to measure the QNMs,
other than considering events’ start time, distance, and sky-location known. The values expected
for the subdominant mode are determined entirely through the measurement of the dominant
mode.

The waveform templates are the same damped sinusoids as in the deviation analysis in Chap-
ter 2, described by the same four parameters (fℓm, τℓm, Aℓm, ϕℓm). We only change the sampled
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parameters from (fℓm, τℓm) to (M , χ, δf , δτ). Mapping the latter to the damped sinusoid
parameters results in identical waveforms for appropriate values in both sets of parameters.

The chosen priors for the QNM’s frequency and damping time differ between the analyses
using each set of parameters. We use uniform priors for the deviation parameters in the range
δfℓm, δτℓm ∈ [−0.6, 0.6], meaning a deviation of ±60% from the values expected in GR. For
the remaining parameters, we choose the same uniform priors as in Chapter 2: BH final mass
M ∈ [10, 200)M⊙, BH final spin χ ∈ [−0.99, 0.99), log-amplitude of the fundamental mode
log10(A22) ∈ [−4, 4), relative subdominant mode amplitude Âℓm = Aℓm/A220 ∈ [0, 0.5), ring-
down phases ϕℓm ∈ [0, 2π), polarisation angle Ψ ∈ [0, 2π), and inclination angle cos(ι) ∈ [−1, 1).
Figure 3.1 shows a comparison of the resulting priors for (fℓm, τℓm) in this analysis and the one
used in Chapter 2. The f220, f330 prior is chosen as an example.

Figure 3.1: The prior probability density function used in the current analysis is shown in the
left panel, and that from Chapter 2 in the right panel. The axes show the domi-
nant and subdominant mode frequencies. A heat map shows the density function,
with light colours representing high values. The 50% and 90% credible regions are
marked by dotted and dashed white contours, respectively. The smaller top and
right panels show the 1-dimensional marginalised distributions, with dashed lines
marking the 90% credible interval and the median value, which are noted next to
the corresponding plot.

Due to their construction, the priors on frequency and damping time of the subdominant mode
are less restrictive than those in Chapter 2. Through the deviation parameters, f33 and τ33 may
lie outside the ranges allowed by the M,χ-prior under the Kerr assumption. We removed such
values in the previous analysis, but allow them here.

Our initial studies have considered both the Advanced LIGO design and the LIGO A+ detector
sensitivities. These initial results for the Advanced LIGO design sensitivity yielded few events
with appreciable constraints on the deviation parameters. Therefore we focus on the results
obtained with the target sensitivities of LIGO A+ and Virgo for the O5 observation run [213].
Our predictions then apply once the detectors reach this target sensitivity when data is next
collected. Note that we keep the population of candidate events unchanged, which is based on
the Advanced LIGO and Virgo design sensitivities. The data are sampled at 8 kHz, instead of
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2 kHz as used in the previous analysis.

We use kernel density estimation to compute the combination of multiple posterior distri-
butions. The parameter estimation analysis produces a set of discrete samples, representing
random draws from the posterior distribution. To compute the product of the distributions, we
require knowledge of the probability density at a given point in parameter space. An approxi-
mate probability density function is calculated with the gaussian kde function provided in the
scipy software package [214], which uses Gaussian kernels to estimate the probability density
function from the set of discrete samples. This estimate can then be evaluated at the desired
points in parameter space. To find the product of the given distributions, we evaluate their
estimates in a grid in parameter space and multiply the values of the different distributions at
each grid point.

Here, we are interested in the combined posterior distribution for δf and δτ , so we first
marginalise the recovered posterior distribution over the remaining parameters. We then per-
form the 2-dimensional kernel density estimation and compute the product of the resulting ap-
proximate distributions, sampled in a 2-dimensional grid. Finally, we also find the 1-dimensional
posterior distributions for δf and δτ by marginalising the 2-dimensional posterior over the op-
posite of the two parameters, respectively.

We verified the results of the kernel density estimate by a simple 2-dimensional binning of
the original posterior samples. For each bin, we count the number of samples found for each
distribution and then multiply these numbers. We find that the results from the binning agree
with those based on the kernel density estimates.

3.3 Results

Results are quoted for the combination of events occurring during one year of data. For this,
we randomly draw 50 events from the 200 candidates produced for 4 years of data. We provide
a simple estimate for the frequency of occurrence for these results by averaging over many such
random draws. This estimate is inaccurate as the repeated draws are made from the same 200
events, so the exact same posterior distributions will be considered when the same event appears
in different draws. We therefore only use it as a simple guideline, which does not require us to
extend the computationally expensive parameter estimation to larger numbers of injections.

In Figure 3.2, we show the result of combining all candidate events for one year of collected
data. They represent the 50 events with the highest subdominant mode SNR expected to be
detected in one year of data. The resulting posterior is centred around negative δf and δτ ,
with the 1-dimensional 90%-credible intervals excluding the injected values of δf = δτ = 0.
Averaging over many draws of 50 events from the total of 200, we find that the injected value
is excluded by the 90% credible interval on δf in about 60% of the cases. The posterior in
Figure 3.2 is a typical example for the distributions found for different draws of events, and in
almost all draws the median value for δf is negative.

We find that combining all events from one year of data leads to a biased result. A systematic
bias appears in the recovery of both δf and δτ , preferring negative values. A possible explanation
for this bias in δf is the overlap of the prior for the subdominant mode with the frequency of
the injected dominant mode. The dominant mode signal is present in the data and has a lower
frequency than the subdominant mode. If the dominant mode is not matched perfectly by the
corresponding part of the template, then a residual of the dominant mode signal remains in the
data. This can then be matched by the subdominant mode template, preferring a negative δf
to better fit the lower frequency content of the dominant mode signal.

We will study this bias and methods to counteract it through several additional analysis runs.
The general setup of the analysis remains unchanged, but in each of the following tests we
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Figure 3.2: The centre plot shows the posterior distribution for the combination of all candidate
events from one year of simulated data. These are the 50 events which have the
highest subdominant mode SNRs, where the data consist of ringdown signal injec-
tions into Gaussian noise. The axes are the fractional deviation of the measured
subdominant mode parameters from the values expected in GR based on the mea-
surement of the dominant mode. The posterior is shown as a heat map, with light
colours representing high values, and the 90% and 50% credible regions are marked
by dashed and dotted contours, respectively. As all injections obey GR, the correct
value is δf = δτ = 0. The distribution shows a bias towards negative δf and δτ , cor-
responding to smaller f33 and τ33 than expected. The top and right panels show the
one-dimensional marginalised distributions for δf and δτ , respectively. Dashed lines
denote the median value and 90% credible interval of the marginalised distribution.
The injected value is excluded by the 90% credible interval for both parameters.
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Figure 3.3: The same as Figure 3.3, but removing the simulated Gaussian noise, such that the
data consist only of the injected signals. The observed bias persists, suggesting it is
not due to unfavourable noise realisations. Instead, the bias prefers even lower values
for the subdominant mode frequency, deviating further from the injected value.
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modify the considered parameter space or the simulated data.

First, we perform the same analysis as before, but remove the simulated Gaussian noise,
replacing it by zero strain amplitude. The data then consist only of the signal, while the
likelihood calculation still uses the power spectral density of the noise curve for the considered
detector. As shown in Figure 3.3, we find the same bias preferring negative δf and small damping
times as in the previous analysis, implying it is not due to unfavourable realisations of the noise.
Indeed, the bias is stronger in that even smaller frequencies are preferred and the true value is
excluded by the 90% credible interval in about 85% of the trials representing one year of data. In
Figure 3.4, the same combined posteriors are shown as in Figures 3.2 and 3.3, but we additionally
mark the maximum likelihood values and maximum posterior density values found for each event
included in the combination. In the presence of Gaussian noise, both the maximum likelihood
and maximum posterior density values are distributed over the entire allowed parameter range
for δf and δτ . When removing the Gaussian noise, the maximum likelihood values found in
the parameter estimation converge upon the correct value for δf , without a clear preference
in δτ . The maximum posterior density values instead cluster around the combined posterior’s
biased value for δf , while for δτ they again are distributed more broadly over the parameter
range. This suggests that the bias appears more pronounced in the absence of noise due to being
present in each individual event’s posterior.

For all further tests, we again use injections into Gaussian noise. In our next test, we remove
the subdominant mode from the injected signal, such that it consists only of the dominant mode.
In this case, the bias is present, resulting in posterior distributions very similar to those already
shown in 3.3. The bias is observed more frequently, with all one-year trials preferring negative
values for δf and the 90% credible interval excluding δf = 0 in all cases. The median values
for δf found in the different trials are clustered around δf = −0.33. This is close to the value
of δf corresponding to the frequency of the dominant mode f22, which is δf ∼ −0.37 for all
injections, such that f22 ≈ (1 + δf)f33. This relation is based on the values for frequencies
and damping times as predicted by GR for the injected mass and spin parameters. We see
that the frequency recovered for the subdominant mode approaches that of the dominant mode
when only the dominant mode is injected, suggesting that the subdominant template partially
matches to the dominant mode signal. This also seems a plausible cause for the bias observed
when injecting both modes, as the bias in the posteriors is similar for single- and two-mode
injections. The result matches our expectations, as the subdominant mode signal is quiet for
many injections, and the signal is therefore similar to injection of only the dominant mode.
Injecting no subdominant mode thus approximates many signals well, but emphasises the effect
of low subdominant mode content in the signal.

These observations agree with the behaviour of the recovered waveforms compared to the in-
jected signal. We consider again our initial analysis, with both injection and templates consisting
of two modes. In Figure 3.5, we show the strain amplitude as a function of frequency for each
mode of the injection and for a signal recovered in the analysis. The recovered signal is chosen
from the highest density region of the posterior distribution. The dominant mode template is
close to the injected dominant mode signal. The subdominant mode template however is shifted
towards the dominant mode signal in both frequency and amplitude. This suggests that indeed
the subdominant mode template partially matches to the dominant instead of the subdominant
mode signal.

We can now test the performance of the analysis when artificially removing the identified
cause of the bias. Compared to the initial analysis, we modify the template and injected signal
to include only the subdominant mode. In the parameter estimation, we then fix the parameters
of the dominant mode to those of the injection. While the dominant mode signal is neither part
of the template nor injected into the data, its frequency and damping time are still required as
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Figure 3.4: The left panel shows the same as Figure 3.2, the combined result for injections into
Gaussian noise. The right is the same as Figure 3.3, simulated signals without noise.
Additionally, the maximum likelihood value found in the analysis is marked for each
event included in the combined posterior as a white cross. The maximum posterior
density values for all included events are marked as empty green circles, and the same
value for the combined posterior is shown by a filled green circle. When Gaussian
noise is present, both the maximum likelihood and maximum posterior density values
are scattered across the entire parameter ranges for δf and δτ . When removing the
Gaussian noise, the maximum likelihood values are clustered around the injected
value for δf , while showing no clear preference for δτ . The maximum posterior
density values also show no preference in δτ , but for δf are clustered around the
biased result found in the combined posterior. This bias is more pronounced when
no noise is present, both in terms of the position of the combined posterior, and
in terms of the number of individual event’s posteriors that show a systematically
biased peak.
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Figure 3.5: The strain amplitude of the injected and recovered signal waveforms are shown as a
function of frequency for one example event. The recovered waveform is chosen from
the highest density region of the posterior distribution. The two individual modes
of each signal are shown, with the dominant mode marked by dark blue and the
subdominant mode by light green lines. Dashed lines are used for the injected signal
and unbroken lines for the recovered signal. A grey line shows the amplitude spectral
density of the detector noise. We see that the dominant mode signal is approached
by the dominant mode of the recovered template. The subdominant mode template,
however, also approaches the dominant injected mode in frequency and amplitude
compared to the injected subdominant mode signal. This suggests that as the dom-
inant mode signal is not perfectly recovered, a residual of this signal remains in the
data. This residual is then matched by the subdominant mode template instead of
the injected subdominant mode signal.
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Figure 3.6: The combined posterior distribution found when injecting only the subdominant
mode into Gaussian noise and varying only the corresponding parameters. Again, the
combined posterior for the 50 candidate events with the loudest subdominant modes
in one year of data is shown, with the one-dimensional marginalised distributions in
the top and right panels. While there is a bias towards shorter signals, the frequency
deviation is well constrained to less than ±10%, with the distribution centred on the
correct value. An improved result is not surprising due to the reduced number of
free parameters. However, we have also removed the suspected source of the bias,
which likely contributes to the improvement.
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a reference for the deviation parameters δf and δτ that are being varied for the subdominant
mode. We thus fix the mass and spin to the values of the injection, with the free parameters
now being δf , δτ , A33, ϕ33, ι and Ψ. An example for the combined posterior distributions
resulting from this analysis is shown in Figure 3.6. The posterior for δf is now centred on the
correct value and well constrained, with the 1-dimensional 90% credible interval encompassing
less than ±10% deviation. For δτ , we still find a biased result preferring more strongly damped,
shorter signals. This preference for short signals may be explained through the late part of
the signal being sufficiently quiet to be indistinguishable from the noise background, with the
template matching the first cycles of the sinusoid. For the frequency deviation, however, we
find that the injected value is within the 90% credible interval in about 93% of the draws for
the combined posterior, and the credible interval constrains δf to less than ±20% in about 89%
of the draws. The reduced number of free parameters is expected to improve the performance
of the analysis, so these results are likely overestimating the bounds that can be placed in a
realistic case. Nevertheless, this suggests that the demonstrated bias is a main obstacle for the
analysis.

We test a weaker restriction by injecting both modes of the signal, but fixing the dominant
mode parameters to the injected values in the parameter estimation analysis. This means that
the mass and spin are set to the values of the injected signal, as are the amplitude and phase
of the dominant mode. The parameters of the subdominant mode as well as the polarisation
and inclination angle are being varied. This restriction proves ineffective in removing the bias.
Inaccurate measurement of the inclination angle and polarisation may leave a sufficient residual
of the signal in the data to then be matched by the subdominant mode template.

Similarly, the bias is not effectively removed by modifying the prior in δf to exclude the region
corresponding to the dominant mode frequency. We repeat the initial analysis with only this
modification to the δf -prior. During sampling of the parameter space, we calculate the expected
frequency of the dominant mode for the current sample point in mass and spin. We then remove
an interval from the δf -prior which corresponds to frequencies of ±10Hz around the dominant
mode frequency. While the individual events’ posteriors show a clear bias less frequently, they
now often prefer the values closest to the interval removed from the prior and thus seem to still
be matching the dominant mode frequency as closely as allowed by the prior. The correct value
for δf is now included by the 90% credible interval in about 63% of the draws of 50 events from
the total 200 analysed.

We find an effective strategy to counteract the bias by limiting the analysis to a subset of
detected events. We expect the bias to be stronger when the subdominant mode signal is not
recovered. A natural choice then is to include only those events where the data actually favour
the presence of two modes over that of only the dominant mode according to our analysis. We
can calculate the Bayes factor comparing the evidence for the two-mode and single-mode models
by performing two separate analyses assuming each of the models. Here, we use no information
from the injections, but only the results of the data analysis, as would be the case for real
detections with unknown properties. We now repeat the initial analysis, using once the single-
mode and once the two-mode model. Only events that favour the presence of two modes over
one with a Bayes factor B > 1 are included in the combined posterior, and an example is shown
in Figure 3.7. The distribution is centred close to the correct value in δf , with the 90% credible
interval covering about ±10% or less compared to the correct value. Through random draws of
one-year populations from the analysed events, we find that the correct value is within the 90%
credible interval in 92% of the draws. The interval constrains δf to ±20% in 84% of the draws
and to ±10% in 53% of the draws. The distribution for δτ is preferring negative values and
covers a large portion of the prior interval, however, this is not unexpected as the damping time
is typically measured with lower precision than the frequency. Concentrating on the frequency
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Figure 3.7: The same as Figure 3.2, but including only those results in the combined posterior
where the Bayes factor is larger than 1 in favour of the presence of two modes over
only the dominant mode. We find that the distribution in δf is centred close to the
correct value, with the one-dimensional 90% credible interval lying within the range
of about ±10%. The distribution in δτ still shows a bias toward shorter signals and
covers a large part of the prior range.
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measurements, the prospects to place 10%-level constraints on the deviation seem promising.
This is achieved through the combination of posterior distributions from events selected for their
evidence of a multimode ringdown spectrum.

3.4 Conclusions

We have found that stringent constraints on deviations from the no-hair theorem can be obtained
by combining data from multiple gravitational wave detections, but care must be taken to avoid
biased results. We discovered a bias in the recovery of the frequency deviation, which occurs
when the data from many events with quiet subdominant modes are included in the combined
posterior. This bias can be attributed to the overlap between the sets of waveforms that describe
the dominant mode and the subdominant mode with a deviation to lower frequencies. As the
frequency deviation prior allows the subdominant mode template to have frequencies close to
that of the dominant mode, the subdominant mode template can match to the dominant mode
signal. If the dominant mode is not perfectly recovered, a residual remains in the data that can
be found by the subdominant mode template. We show that simply combining the data from
all available events will then likely lead to a biased result.

However, the performance of the analysis can be significantly improved through a second step,
which restricts the combination to suitable events. By performing the same analysis with a signal
model containing only the dominant mode, we can calculate the Bayes factor to compare the
evidence for the single- and the two-mode models. Including only events where the Bayes factor
is larger than 1 in favour of the presence of two modes, we find that the analysis performs well
for the LIGO A+ sensitivity. The correct value for δf is included by the 90% credible interval
as expected, and a simple estimate suggests that bounds on the deviation can likely be placed
to ±20% for a year of collected data, and to ±10% for a few years of data. For the level of
precision of our results, our restriction sufficiently mitigates the bias. At higher precision, a bias
may still be present, and a method to remove it desirable.

Note that our estimates are optimistic, as they are based on the optimistic merger rate
from [63]. New estimates place the merger rate in the optimistic scenario at about half of
that considered here, suggesting the required time of collected data to achieve these bounds
to be larger by a factor of a few [212]. However, we defer detailed evaluation of the effects of
updated population models, as well as inclusion of other types of binary systems, to future work.

We consider several venues for extension of this work promising, given the importance of multi-
mode ringdown measurements for a number of applications. A first step would be extending
our analysis to larger numbers of events to improve the robustness of the simple statistics
we employed. More recent observational population models can be incorporated to find a more
accurate relation between the duration of collected data and the obtainable constraints [64, 212].
Similarly, the evolution of detector sensitivities and the expected amount of data produced for
each can be taken into account. In addition to injected signals obeying the relation expected in
GR, injections with known deviations can be used to characterise the analysis.

Using methods presented in [2], we can consider a more realistic treatment of the signal before
the start of our ringdown template. These methods allow to remove undesired times from the
data without introducing artefacts into the likelihood calculation. Through this, we can use
injection signals covering the entire ringdown or IMR phases, instead of abruptly starting at
the time of the analysis. As our signal and template models are identical, we expect only minor
influences from the abrupt start. However, characterising the more realistic case and comparing
it to our results will help applying our predictions to analyses on real detector data. Finally,
incorporating overtones into the analysis could yield a valuable comparison to its performance
using angular modes as studied here. In particular, a similar hierarchical analysis has been
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applied to detected events using overtones in [71, 72]. While this offers the advantage of extend-
ing the QNM description to times closer to the merger, where higher SNRs can be accessed,
details of the applicability are under debate [128, 129]. As different overtones are very close in
frequency, a similar bias may not be distinguishable from unbiased results at the sensitivity used
in those analyses. Overtones are separated in their damping times, yet these are not well mea-
sured and the tests for deviations rely on frequency measurements. It would thus be interesting
to characterise the effect of a potential bias also for an overtones-based analysis.
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When two black holes merge, the late stage of gravitational wave emission is a superposition
of exponentially damped sinusoids. According to the black hole no-hair theorem, this ring-
down spectrum depends only on the mass and angular momentum of the final black hole. An
observation of more than one ringdown mode can test this fundamental prediction of general
relativity. Here we provide strong observational evidence for a multimode black hole ringdown
spectrum using the gravitational wave event GW190521, with a Bayes factor of ∼ 40 preferring
two fundamental modes over one. The dominant mode is the ℓ = m = 2 harmonic, and the
sub-dominant mode corresponds to the ℓ = m = 3 harmonic. We estimate the redshifted mass
and dimensionless spin of the final black hole as 330+30

−40M⊙ and 0.87+0.05
−0.10, respectively. The

detection of the two modes disfavours a binary progenitor with equal masses; the mass ratio is
constrained to 0.4+0.2

−0.3. We find that the final black hole is consistent with the no hair theo-
rem and constrain the fractional deviation from general relativity of the sub-dominant mode’s
frequency to be −0.01+0.07

−0.11.
1

4.1 Introduction

A perturbed black hole approaches equilibrium by emitting a spectrum of damped sinusoidal
gravitational-wave signals [69, 180, 215]. Unlike other astrophysical objects, the ringdown spec-
trum of a black hole is remarkably simple. General relativity predicts that the frequencies and
damping times of the entire spectrum of damped sinusoids, or “quasi-normal modes”, are fully
determined by just two numbers: the black hole massM and angular momentum J , as described
by the Kerr solution [16]. This prediction, a consequence of the black hole “no-hair theorem”,
does not hold in many alternate theories [122]. If astrophysical black holes are observed to
violate this property, it indicates new physics beyond standard general relativity.

In order to observationally test this prediction using binary black hole mergers, an important
observational challenge must be met: at least two ringdown modes must be observed [133]. The
higher the binary mass ratio asymmetry, the more likely it is that sub-dominant ringdown modes
are observable. However, more asymmetric binary systems are less likely to be formed, and also
lead to weaker signals. Population studies suggested that such multimode ringdown modes
were unlikely to be observed until the next generation of gravitational-wave observatories [1,
185], since black-hole population models did not anticipate observations of massive, asymmetric
binaries.

Here we confound this expectation with the gravitational-wave event GW190521, detected by
the two LIGO detectors and Virgo at 03:02:29 UTC on May 21st, 2019 [216, 217]. This is the
heaviest black-hole merger event observed to date [167, 169]. The signal is consistent with the
merger of two high mass black holes which merge at a low frequency relative to the detector
sensitivity band. As such, it has a barely observable inspiral and the signal is dominated by the
merger and ringdown phase.

GW190521 was initially reported as the merger of two comparable mass black holes [216,
217], in which case one would not expect to detect sub-dominant ringdown modes. Subsequent
re-analysis of the data suggested the possibility that the progenitor could be an intermediate

1This chapter is an adaptation of the work in the pre-print [2] as described in Section 1.2.
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mass-ratio binary [218], suggesting the possibility of detectable sub-dominant modes. Here we
find strong evidence for multimode damped sinusoids in the ringdown phase of the gravitational
wave event GW190521.

4.2 Multimode agnostic search

A quasi-normal mode description of the gravitational wave from a binary black hole is not
expected to be valid until after the binary has merged to form a perturbed black hole. On
the flip side, the damping time of an O(100M⊙) black hole is O(10ms), leaving a window of
only a few tens of milliseconds after merger in which the ringdown is detectable above noise.
Accurate identification of the merger time is therefore crucial to extract quasi-normal modes
from the data. To account for uncertainty in the merger time of GW190521 due to modelling
systematics, we perform a series of analyses in short time increments starting at a geocentric
GPS reference time tref = 1242442967.445. This time is taken from the maximum likelihood
merger time obtained via the analysis in Nitz & Capano [218]. We also fix the sky location to
the maximum likelihood values from the same analysis.

The ringdown spectrum of a Kerr black hole consists of an infinite set of frequencies fℓmn
and damping times τℓmn labeled by three integers (ℓ,m, n). Here ℓ and m are the usual angular
harmonic numbers. The third index n ≥ 0 denotes overtones, with n = 0 being the fundamental
mode. The most agnostic way to search for quasi-normal modes from a perturbed black hole is
to search for them individually, without assuming any relation between them. Such a search is
complicated by the nature of quasi-normal modes: they are not orthogonal, meaning that modes
that overlap in time must be sufficiently separated in frequency or damping time in order to
be distinguishable. Simulations of binary black hole mergers have shown that the fundamental
ℓ = m = 2 mode is typically significantly louder than other modes. In order to extract sub-
dominant modes from noisy data in an agnostic search it is useful to separate the dominant
mode in frequency from the others.

A visual inspection of the time- and frequency-domain data taken at the reference time re-
vealed significant power in the two LIGO detectors between 60-70Hz (see Supplemental Fig. 4.5).
In order to isolate this and search for sub-dominant modes we constructed three frequency ranges:
“range A” between 50−80Hz, “range B” between 80−256Hz, and “range C” between 15−50Hz.
We search for one quasi-normal mode in each range using Bayesian inference. We use uniform
priors on the relative amplitudes of the modes in range B and C between 0 and 0.9 times the
mode in range A. No other relation is assumed between the modes.

We repeat this analysis at time steps of tref + 0, 6, 12, 18, and 24ms. As expected from the
visual inspection of the data, we find a significant mode in range A at all grid points, which
decreases in amplitude at later times. A clear second mode is found in range B. This mode
is most visible at tref + 6ms, the result of which is shown in Fig. 4.1 (results at other times
are shown in Supplemental Fig. 4.6). The frequency of the secondary mode at this time is
∼ 98Hz with a damping time of ∼ 30ms, while the primary mode has frequency of ∼ 63Hz and
damping time ∼ 26ms. The signal-to-noise ratio of the primary and secondary modes of the
maximum likelihood waveform is 12.2 and 4.1, respectively. Results from range C (not shown)
are consistent with noise.

The dominant mode found at ∼ 63Hz is expected to be the quadrupolar ℓ = m = 2, n = 0
fundamental mode. Measurement of f220 and τ220 provides an estimate of the mass and angular
momentum of the remnant black hole [141]. This in turn predicts the entire ringdown spectrum
of subdominant modes. Figure 4.1 shows that the subdominant mode at ∼ 98Hz is consistent
with the ℓ = m = 3, n = 0 mode. This is also in agreement with expectations from numerical
simulations of binary black hole mergers [126, 132].
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4.2 Multimode agnostic search

Figure 4.1: Marginal posterior probability distributions on frequency and damping time from
an agnostic quasi-normal mode analysis of GW190521 at 6ms after tref . A single
mode is searched for in each of the shown frequency ranges, range from A 50 to
80Hz and range B from 80 to 256Hz. Top panels show the marginal posterior on the
mode frequencies, with priors indicated by dotted lines; the gray region in the top
left panel shows the highest 90th percentile density interval of the dominant mode.
White dotted (dashed) contours in the bottom panels show the 50th (90th) credible
regions. Assuming the dominant mode in range A corresponds to the (220) mode of
a Kerr black hole, we estimate what the frequency and damping times would be of
the (330), (440), and (550) modes (blue, green, and red regions, respectively). The
mode in range B is clearly consistent with the expected frequency and damping time
of the (330) mode. Here we do not see the (440) and (550) modes, indicating they
are weaker than the (330) mode. This is consistent with an asymmetric binary black
hole merger.
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4.3 Consistency with the Kerr solution

The search for damped sinusoids in section 4.2 assumed no particular relation between different
modes, with a corresponding large prior parameter volume. In this section, we assume that the
frequency and damping times of the damped sinusoids are related as in the ringdown of a Kerr
black hole. This reduces the prior parameter volume and focuses in on particular modes. The
amplitudes and phases of the modes are left as free parameters, since they depend on the specific
initial state of the remnant black hole immediately after the merger.

For this analysis, we model the ringdown signal based on the final Kerr black hole mass, Mf ,
and dimensionless spin, χf = Jf/M

2
f . We expect only a subset of the entire spectrum of quasi-

normal modes to be visible above noise. Including all possible modes in our signal model can
lead to overfitting the data. For this reason we perform several analyses which include different
combinations of the (330), (440), (210), and (550) modes, in addition to the dominant (220)
mode. Numerical simulations of binary black hole mergers have generally shown these modes
to be the strongest [132]. Giesler et al. [128] found that overtones of the dominant harmonic
are significant close to the merger time, and that including them allows a quasi-normal mode
description of the signal to be used at earlier times. We therefore also perform analyses in which
we include the first overtone of the dominant harmonic (ℓmn) = (221).

We repeat these analyses in 1ms intervals between tref +[−9ms, 24ms]. We use Bayes factors
to determine which model is most favoured at each time step. For the model that includes
the fundamental dominant harmonic (220) and its overtone (221), the Bayes factor is evaluated
against the model with only the (220) mode. For models that include the (330) (or other sub-
dominant modes), the Bayes factor is evaluated against the stronger of the (220) or (220)+(221)
models.

The Bayes factors for the various multimode Kerr models are shown in Fig. 4.2. Consistent
with the agnostic results, we find strong evidence for the presence of the (330) mode around
6ms, with the Bayes factor for the (220)+(330) model peaking at 44+6

−5 one millisecond later, at
tref+7ms. The maximum likelihood ringdown waveforms at this time are shown in Supplemental
Fig. 4.7. Only moderate evidence is found for other fundamental modes, although at 19ms after
tref the most favoured model contains the (220), (330), (440) and (210) modes. Extending the
analysis to earlier times, we find increasing support for the presence of the (221) overtone (see
Supplemental Fig. 4.8), with the Bayes factor reaching a maximum at tref − 5ms. This would
be consistent with the merger happening prior to tref , in agreement with a recent reanalysis of
GW190521 [219].

Figure 4.3 shows the redshifted mass and the dimensionless spin of the final black hole,
measured with the (220) + (330) Kerr model at 7ms after tref . We find that the remnant
black hole has a redshifted mass (1+ z)Mf = 330+30

−40M⊙ and dimensionless spin χf = 0.87+0.05
−0.10.

If a quasi-normal model without overtones is used too close to merger, the resulting final mass
estimate can be biased toward larger values [69, 128]. Supplemental Fig. 4.8 shows the stability
of the final mass estimate between 6 and 12ms using the (220)+(330) model, and its agreement
with the mass estimate at earlier times using the (221) overtone. This indicates that by this
time the black hole has reached a regime of constant ringdown frequency, a requirement for the
validity of linear-regime, quasi-normal modes.

Given the strong evidence for the presence of the (330) mode at tref+7ms, we can perform the
classic no-hair theorem test [133]. We keep the dependence of f220 and τ220 on (Mf , χf ) as in the
Kerr solution but introduce fractional deviations δf330 and δτ330 of f330 and τ330, respectively.
Figure 4.3 shows the Kerr black hole massMf and dimensionless spin χf associated to the (330)
mode frequency f330(1 + δf330) and damping time τ330(1 + δτ330) measured at 7ms after tref .
Posterior distributions on the fractional deviations are shown in Supplemental Fig. 4.9. We
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4.3 Consistency with the Kerr solution

Figure 4.2: Bayes factor of models with the indicated modes compared to the stronger of the
(220) or the (220) + (221) modes model. The Bayes factor for the (220) + (221)
model is calculated against the (220)-only model. The hexagon marks where no-hair
tests are performed in section 4.3.

85



4 Black hole spectroscopy with GW190521

Figure 4.3: Posterior distribution of final redshifted mass (1 + z)Mf and dimensionless spin χf
measured at 7ms after tref assuming the identified modes are the (220) and (330)
modes of a Kerr black hole. Dashed lines indicate the 90% credible interval. For
the Kerr with δ(330) results, we use fitting formulae [141] to convert the frequency
f330(1 + δf330) and damping time τ330(1 + δτ330) into mass and spin.
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4.4 Discussion and conclusions

Figure 4.4: Posterior distribution for (top) the amplitude ratio of the (330) mode, A330/A220,
and (bottom) the mass ratio of the binary, m2/m1 < 1, obtained using numerical fits
between the (330) amplitude and mass ratio [132]. Vertical dashed lines indicate the
90% credible interval. In the bottom panel we assume a prior uniform in mass ratio
between 1/25 – 1. For comparison, we also show the mass ratio obtained from the
full signal using NR Surrogate [218] and PhenomXPHM models [169] assuming the
same prior.

constrain the fractional deviation from Kerr to δf330 = −0.01+0.07
−0.11. The damping time is only

weakly constrained, with δτ330 = 0.6+2.0
−1.1.

4.4 Discussion and conclusions

The detection of a (330) mode indicates that the progenitor black holes in GW190521 had asym-
metric masses, since equal-mass binaries are not expected to excite the (330) mode. Numerical
fits [132] provide the relation between the amplitude of the (330) mode and the ratio of the initial
black hole masses m1 and m2 for quasi-circular, aligned spin binaries. We find m2/m1 = 0.4+0.2

−0.3

from the (330) amplitude measured by the (220)+(330) Kerr model at 7ms after tref . Figure 4.4
shows the posterior distribution on the amplitude of the (330) mode and on the corresponding
mass ratio.

The redshifted final mass of GW190521 measured by the LVC [167] using a (220) ringdown
fit is (1+ z)Mf = 282.2+50.0

−61.9M⊙, or 259.2
+36.6
−29.0M⊙ when analysing the full signal. The low-mass-

ratio part of the posterior of Nitz and Capano [218] found (1 + z)Mf ∼ 260M⊙ using the full
signal [220, 221]. These results are somewhat in tension with the final mass and spin inferred
from the ringdown modes found here.
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However, the complete waveform models used in the above analyses may not include all
relevant physical effects. This, coupled with the fact that GW190521 has a very short inspiral
signal, can lead to systematic errors for parameter estimation. For example, the waveform
models used in the LVC analysis and Nitz & Capano assume quasi-circular orbits, but several
studies have indicated that the binary may have been eccentric at merger [222–224]. These
studies have also found slightly larger estimates for the binary’s total mass, making them more
consistent with our estimate for the final mass. The ringdown waveforms used in this paper are
simpler and more robust than full inspiral-merger-ringdown models for signals like GW190521,
provided they are applied sufficiently late in the post-merger regime. This argument would tend
to favour the estimates derived in this paper for the total mass. Nevertheless, a full resolution
of this tension is beyond the scope of this work.

Evidence for overtones of the (220) mode very close to merger were previously found for the
events GW150914 [172] and GW190521 074359 [71] (not to be confused with GW190521). Black
hole spectroscopy tests showed consistency with the Kerr hypothesis for these events [71, 172].
However, the resulting constraints were weaker than what we find with the (330) mode here.
Furthermore, while there is strong numerical evidence for the presence of ringdown overtones
close to the merger [128], a number of theoretical questions remain as to the validity of a quasi-
normal description of the black hole close to merger [225–229].

Given the evidence we find for the (221) model at tref−5ms, we also perform a no-hair theorem
test on the (221) overtone at this time. The results are shown in Supplemental Fig. 4.10. We find
poor constraints, with δf221 = −0.11+0.33

−0.04 and δτ221 = 0.45+0.31
−0.66. This highlights the benefits of

black hole spectroscopy using the fundamental modes.

The true nature of the gravitational wave event GW190521 has been the subject of much
speculation [230–232]. The interpretation of GW190521 as a head-on collision of two highly
spinning Proca stars [232] predicts the presence of a (200) mode [233]. We do not find evidence
for such a mode. Additionally, the high-mass, multiple-mode ringdown signal observed here does
not agree with the scenario of a very massive star collapsing to a black hole of mass ∼ 50M⊙
and an unstable massive disk [234].

Expectations based on population models were that black hole ringdown signals with multiple
modes were unlikely to be observed with the Advanced LIGO and Virgo detectors [1, 185]
(although those population models did not include massive binaries). Our results here show that,
remarkably, GW190521 displays a distinct subdominant mode and that this mode is consistent
with the ringdown of a Kerr black hole.
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4.5 Supplemental

4.6 Materials and Methods

4.6.1 The ringdown signal model

In the quasi-normal mode (QNM) spectrum of a perturbed Kerr black hole, the allowed fre-
quencies fℓmn = ωℓmn/(2π) and damping times τℓmn are labeled by three integers ℓ = 2, 3, . . . ,
−ℓ ≤ m ≤ ℓ, and n = 0, 1, 2, . . .. These can be combined together in a complex frequency
Ωℓmn = ωℓmn + i/τℓmn such that the ringdown signal of a perturbed Kerr black hole can be
expressed as a sum of damped sinusoids:

h+ + ih× =
Mf

DL

∑

ℓmn

−2Sℓmn(ι, φ)Aℓmne
i(Ωℓmnt+ϕℓmn) , (4.1)

where h+ and h× are the plus and cross polarisations of the gravitational wave, Mf is the
mass of the black hole in the detector frame and DL is the luminosity distance to the source.
The functions −2Sℓmn(ι, φ) are the spin-weighted spheroidal harmonics of spin weight −2, which
depend on the inclination angle ι between the black hole spin and the line-of-sight from the
source to the observer, and the azimuth angle φ between the black hole and the observer.

The complex QNM frequencies Ωℓmn can be determined from the Teukolsky equation [53,
131]. According to the no-hair theorem, the frequencies and damping times are determined by
the mass Mf and spin χf of the black hole, with χf ∈ (−1, 1). Positive (negative) spin means
the perturbation is co(counter)-rotating with respect to the black hole. The amplitudes Aℓmn
and phases ϕℓmn depend on the initial perturbation and take different values for different ℓmn
modes.
For a given ℓ and n, the +m and −m modes are related to each other by ωℓ−mn = −ωℓmn

and τℓ−mn = τℓmn [141]. Furthermore, if the initial perturbation is symmetric under reflection
at the equatorial plane, the amplitude and phase of the ±m modes are related to each other
by Aℓ−mneiϕℓ−mn = (−1)ℓAℓmne

−iϕℓmn . Such a symmetry may be expected in the case of non-
precessing binaries [130, 137]. To simultaneously sum over the ±m modes for a given ℓn, we
parameterise the waveform as

hℓ|m|n = A0
ℓ|m|ne

−t/τℓ|m|n×
[−2Sℓmn(ι, φ)A

(+)
ℓ|m|ne

i(ωℓ|m|nt+ϕℓ|m|n)

+ −2Sℓ−mn(ι, φ)A
(−)
ℓ|m|ne

−i(ωℓ|m|nt+ϕℓ|m|n)],

where A0
ℓ|m|n is the intrinsic amplitude of the (ℓmn) mode and

A
(+)
l|m|n =

√
2 cos

(
π/4 + ∆βl|m|n

)
(4.2)

A
(−)
l|m|n =

√
2 sin

(
π/4 + ∆βl|m|n

)
ei(lπ+∆ϕl|m|n). (4.3)

If the parameters ∆βℓmn and ∆ϕℓmn are both zero, the waveform reduces to the case of reflection
symmetry.
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4 Black hole spectroscopy with GW190521

When using the Kerr model, we do two analyses at several times, one in which ∆βℓmn and
∆ϕℓmn are both set to zero, enforcing the symmetry, and one in which a common ∆β and ∆ϕ
for all modes are allowed to vary uniformly between [−π/4, π/4) and [−π, π), respectively. In
all cases we find that the reflection symmetric analysis is favoured over the analysis without
the symmetry; we therefore only report results from the former here. In all analyses we fix the
azimuthal angle φ = 0, as it is degenerate with the modes’ initial phases. To obtain the frequency
and damping times for a given mass and spin we use tabulated values from Berti et al. [141],
which we interpolate using a cubic spline. For the spheroidal harmonics we use tabulated values
of the angular separation constants (also from Berti et al. [141]) and solve the recursion formula
given in Leaver [131]. Our code for doing this is publicly available on GitHub [123].

For the agnostic analysis, we do not assume any mode corresponds to any particular ℓmn.
We therefore use arbitrary complex numbers Xℓ±mn = eiψℓ±mn in place of the −2Sℓ±mn. Here,
the ψℓ±mn are allowed to vary uniformly in [0, 2π). We vary a common ∆β parameter, but fix
the ∆ϕ parameter to zero, as it is degenerate with the Xℓmn.

4.6.2 Computational analysis methods

Standard parameter estimation with gravitational waves begins with Bayes’ theorem. Given
some data s and a signal model h that depends on some set of parameters λ, we wish to know
the posterior probability density function p(λ|s, h). Applying Bayes’ theorem we have

p(λ|s, h) = 1

Z
p(s|λ, h)p(λ|h),

where p(s|λ, h) is the likelihood function, p(λ|h) is the prior, and Z is a normalisation constant
known as the evidence. Estimates on a single parameter are obtained by marginalising the
posterior over all other parameters; marginalising over all parameters yields the evidence. Taking
the ratio of evidences ZA/ZB for two different signal models yields the “Bayes factor”. If our
prior belief for the validity of the two models is the same, the Bayes factor gives the odds that
model A is favoured over model B. Using a scale by Kass and Raftery [119], a Bayes factor
greater than 3.2 is considered “substantial” evidence in favour of model A; greater than 10 is
“strong” evidence; greater than 100 is “decisive”.

Evaluating the posterior requires a likelihood function p(s|λ, h). Consider a gravitational-wave
detector, which we sample every ∆t seconds over a time T to obtain N = ⌈T/∆t⌉ time-ordered
samples s = {s0, . . . , sN−1}. A network of K detectors sampled in this way will produce a set
of samples snet = {s1, . . . , sK}. To obtain a likelihood function we first consider the hypothesis
that the set of samples only contains noise p(snet|n) = p(nnet).

In gravitational-wave astronomy it is common to assume that, in the absence of a signal,
the detectors output stochastic Gaussian noise that has zero mean and is independent across
detectors. Under this assumption the probability density function describing the network of time-
ordered noise samples nnet is a product of K N−dimensional multivariate normal distributions,

p(nnet) =
exp

[
−1

2

∑K
d=1 n

⊤
d C

−1
d nd

]

√
(2π)NK

∏K
d=1 detCd

. (4.4)

Here, Cd is the covariance matrix of the noise in detector d. In order to evaluate this function
it is necessary to know what the inverse of the covariance matrix is.

If we assume that a detector’s noise is wide-sense stationary and ergodic, then its covariance
C is a symmetric Toeplitz matrix with elements given by the autocorrelation function of the
data. If the autocorrelation function goes to zero in some finite amount of time that is less than
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T/2 (for the LIGO and Virgo detectors, this typically happens within a few seconds), then the
eigenvectors of the covariance matrix can be well-approximated by that of a circulant matrix.
All circulant matrices have the same eigenvectors, e−2πikp/N/

√
N [111], where k = 0, . . . , N − 1

enumerates the eigenvectors and p = 0, . . . , N − 1 the eigenvectors’ components. Solving for
the eigenvalues yields an analytic expression for C−1: the j, k-th element is the discrete inverse
Fourier transform of 1/Sn evaluated at the k − j time step,

C−1[j, k] ≈ 2∆t2F−1(S−1
n )[k − j], (4.5)

where Sn is the power spectral density of the detector’s noise. Substituting this back into
Eq. (4.4), yields a canonical likelihood function for the noise [100],

p(snet|n) ∝ exp

[
−1

2

K∑

d=1

⟨nd|nd⟩
]
. (4.6)

Here, the inner product ⟨·|·⟩ is defined as

⟨ud|vd⟩ ≡ 4R





1

T

⌊(N−1)/2⌋∑

p=1

ũ∗d[p]ṽd[p]

S
(d)
n [p]



 , (4.7)

where ũ is the discrete Fourier transform of the time series u and ∗ means complex conjugation2.
The signal hypothesis is that the data consists of the signal plus the noise. The likelihood

function p(s|λ, h) is therefore Eq. (4.6) with the nd replaced by the residuals sd − hd. However,
this assumes that h is an accurate model of the signal across the entire observation time T . As
stated above, quasi-normal modes only model the gravitational wave from a binary black hole
after the merger, when the two component black holes have formed a single, perturbed black
hole. Performing Bayesian inference using quasi-normal modes as the signal model therefore
requires excising times from the data when the ringdown prescription is not valid. In other
words, instead of considering the full set of time samples s = {s0, . . . , sN−1}, we wish to only
evaluate the truncated set str = {s0, . . . , sa, sa+M , . . . , sN−1}, with M > 1. The data between
the time steps [a, a+M) is said to be “gated”.

The probability density function of the truncated noise is still a multivariate normal distribu-
tion (excising dimensions from a multivariate normal is equivalent to marginalising over those
dimensions), and so Eq. (4.4) still applies. The challenge is that the covariance matrix of the
truncated noise Ctr is no longer Toeplitz. Its eigenvectors can no longer be approximated by
that of a circulant matrix, and so the expression for the likelihood Eq. (4.6) is no longer valid.
The inverse of the covariance matrix needs to be found by other means. One possibility is to
numerically invert the covariance matrix. However, this is numerically unstable due to the large
dynamic range of the matrix’s elements, and computationally impractical for observation times
of more than about one second. Instead, we use “gating and in-painting” to find the likelihood
of the truncated time series. This was applied to the problem of matched filtering in Zackay et
al. [235]. Here we apply it to parameter estimation.
Define n′ = ng + x, where ng is the noise with the gated times t ∈ (a, a+M)∆t zeroed out,

and x is a vector that is zero everywhere except in the gated times. If the non-zero elements of
x are such that (C−1n′)[k] = 0 for all k ∈ (a, a +M), then n′TC−1n′ will be the same as the
truncated version nT

trC
−1
tr ntr. Our aim is to solve the equation C−1(ng + x) = 0 in the gated

region. Since x is zero outside of the gated region, C−1x only involves the (a, a+M) rows and

2As noted in Section 1.5.1, this definition excludes the DC-component p = 0 for odd N , and both DC-component
and Nyquist-frequency component p = N/2 for even N , which can be treated separately or may be negligi-
ble [106].
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columns of C−1, which form an M ×M Toeplitz matrix [cf. Eq. (4.5)]. We therefore solve for
x such that

C−1 x = −C−1ng, (4.8)

where the overbar indicates the (a, a+M) rows (and columns) of the given vector (matrix). This
can be solved numerically using a Toeplitz solver [214, 236]. Adding x to the gated noise (“in-
painting”) will then yield the same result as if we had truncated the noise and the covariance
matrix.
Note that if the gate spans the entire beginning of the data segment, the truncated covariance

matrix Ctr is Toeplitz, and so could be inverted numerically using a Toeplitz solver. This is the
method used by Isi et al. [172]. The advantage of using in-painting is that it involves solving
for an M ×M matrix rather than an (N −M)× (N −M) matrix. Gating and in-painting also
have other applications beyond what we use it for here, such as excising glitches from data when
doing parameter estimation.
To evaluate the likelihood for a signal, we use ng = sg − hg (i.e., the residual with the gated

region zeroed out) in Eq. (4.8) and solve for x. We can then use x + sg − hg in the standard
likelihood, Eq. (4.6). We do not attempt to normalise the likelihood, which would involve finding
the determinant of the truncated covariance matrix. For this reason, we calculate and report
Bayes factors by comparing models that start at the same time offset from tref , for which the
determinant cancels.
We use the open source PyCBC Inference library for performing Bayesian inference [99, 108],

to which we have added the gated likelihood described above. For all analyses we use a gate of
two seconds, ending at the start time of the ringdown. For sampling the parameter space we use
the dynesty nested sampler [116]. We use data for the event GW190521 made publicly available
by the Gravitational Wave Open Science Center [86]. We fix the sky location to the values
given by the maximum likelihood result of Nitz & Capano [218], although we have obtained
similar results using the LVC’s maximum likelihood sky location [217]. We use a geocentric
GPS reference time of tref = 1242442967.445 [218]. With the sky location used in our analyses,
this corresponds to the detector GPS reference times 1242442967 + 0.4259 at LIGO Hanford,
+0.4243 at LIGO Livingston and +0.4361 at Virgo. Credible intervals in the text are quoted to
90%.

Data availability

Posterior data samples and data necessary to reproduce the figures are available at https://
github.com/gwastro/BH-Spectroscopy-GW190521. The gravitational-wave data used in this
work were obtained from the Gravitational Wave Open Science Center (GWOSC) at https:

//www.gw-openscience.org.

Code availability

All software used in this analysis is open source. Bayesian inference was performed with the Py-
CBC library, available at https://github.com/gwastro/pycbc. Configuration files used to per-
form all analyses can be found at https://github.com/gwastro/BH-Spectroscopy-GW190521.
Spheroidal harmonics, Kerr frequencies, and Kerr damping times were generated using pykerr,
available at https://github.com/cdcapano/pykerr.
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Figure 4.5: Top: Whitened data in each detector. Dark traces show the data gated at the
reference time tref in each detector, which is indicated by the gray vertical lines.
Bottom: Frequency domain representation of the Hanford and Livingston data shown
in the top panel. Also shown is the frequency domain representation at an off-source
time, one second later. The signal is clearly visible in the LIGO time-domain data,
and is seen as a spike in the frequency domain data between ∼ 60 − 70Hz. The
primary frequency bin (“A”) boundaries were set to isolate this spike. Frequencies
below (region “C”) and above (region “B”) were searched for additional QNMs in
the agnostic analysis.
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10/14

Figure 4.6: Spectra plots at 0, 6, 12, and 18ms showing marginal posterior distributions from
frequency range A and B in the agnostic analysis. Also shown are the expected
regions for the (330) (blue), (440) (green), and (550) (red) modes, assuming the
peak in region A is the (220) mode.
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Figure 4.7: Whitened data in each detector, with a gate applied at 7ms (gray lines) after the
detector reference time tref (gray dotted lines). Semi-transparent traces show the
whitened data without the gate. Plotted are the maximum likelihood waveforms
using just the (220) mode (black) and the (220) plus (330) mode (orange).
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4 Black hole spectroscopy with GW190521

Figure 4.8: Bayes factors as shown in Fig. 4.2 for an extended range of times. (Top) Bayes factor
of models with the indicated modes compared to the stronger of the (220) or the (220)
+ (221) modes model. The Bayes factor for the (220) + (221) model is calculated
against the (220)-only model. (Centre) Median values for the frequency of the (220)
mode for the model with the indicated modes. The shading shows the 90% credible
interval. (Bottom) Median values and 90% credible intervals for the redshifted final
mass. Hexagons mark where no-hair tests are performed in section 4.3 for the (220)
+ (330) model and in section 4.4 for the (220) + (221) model. All values are shown
for start times of the analysis relative to the reference time tref .
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4.6 Materials and Methods

Figure 4.9: Posterior on the deviation from Kerr of the (330) frequency δf330 and damping time
δτ330, as well as the resulting modified (330) frequency, using a model in which we
include the (220)+(330) modes at tref + 7ms. Quoted values are the median and
90% credible interval, and the latter is indicated by the dashed vertical lines. The
fractional deviations are expected to be zero for a Kerr black hole (indicated by
the green lines). We use a prior (black dotted lines) that is uniform over δf330 ∈
[−0.3, 0.3), with the constraint that f330(1 + δf330) > 75Hz. This constraint is
necessary to avoid label switching with the (220) mode; even with the constraint
we clearly measure a lower bound on δf330. For the damping time we use a prior
that is uniform over δτ330 ∈ [−0.9, 3), and find that the damping time is only weakly
constrained.
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Figure 4.10: Posterior on the deviation from Kerr of the (221) frequency δf221 and damping
time δτ221, as well as the resulting modified (221) frequency, using a model in
which we include the (220)+(221) modes at tref − 5ms. Quoted values are the
median and 90% credible interval, and the latter is indicated by the dashed vertical
lines. The fractional deviations are expected to be zero for a Kerr black hole
(indicated by the green lines). We use a prior (black dotted lines) that is uniform
over δf221 ∈ [−0.16, 0.3), with the constraint that f221(1 + δf221) > 55Hz. This
constraint is used to try to exclude additional noise that is present in the Hanford
and Virgo detectors at ∼50Hz. For the damping time we use a prior that is uniform
over δτ221 ∈ [−0.8, 0.8). Despite the tighter prior constraints than that used for the
(330) mode, we obtain a larger 90% credible interval on both δf221 and δτ221. The
posterior also peaks toward the prior boundaries. This may be due to the noise at
low frequency, or may indicate that the signal is not fully captured by a sum of
quasi-normal modes at this time.
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5 Statistical significance of evidence for
gravitational wave echoes

Recent detections of merging black holes allow observational tests of the nature of these objects.
In some proposed models, non-trivial structure at or near the black hole horizon could lead to
echo signals in gravitational wave data. Recently, Abedi et al. claimed tentative evidence for
repeating damped echo signals following the gravitational-wave signals of the binary black hole
merger events recorded in the first observational period of the Advanced LIGO interferometers.
We reanalyse the same data, addressing some of the shortcomings of their method using more
background data and a modified procedure. We find a reduced statistical significance for the
claims of evidence for echoes, calculating increased p-values for the null hypothesis of echo-
free noise. The reduced significance is entirely consistent with noise, and so we conclude that
the analysis of Abedi et al. does not provide any observational evidence for the existence of
Planck-scale structure at black hole horizons.1

5.1 Introduction

The detections of gravitational wave (GW) signals allow for new tests of the nature of black holes
[33, 69, 237–242]. Black holes are characterised by their horizons. In vacuum general relativity
these horizons are devoid of material structure. The possibility that additional structure may
form at or near the horizon location has been widely discussed in the literature, motivated by a
number of different models and theoretical considerations [155, 243]. The Advanced LIGO [73,
244] and Virgo [74] detectors have detected gravitational wave signals from several binary black
hole mergers [33, 237–241]. These detections now make those ideas testable in the observational
regime.

A generic set of models called Ultra Compact Objects (UCOs) [153, 176, 245–247] can mimic
black holes in terms of their gravitational wave emission at early stages of binary inspirals.
These models are designed to match the properties of standard black holes at sufficiently large
distances, but differ in the near-horizon regime. The gravitational wave signal from the inspiral
of two UCOs is expected to be almost identical to that of standard black holes (for possible tidal
modifications see [248]). However, the merger and ringdown signals may differ sufficiently to be
detectable. Near-horizon material structures motivated by semi-classical and quantum gravity
theories could, at least partially, reflect incoming waves which in standard vacuum general
relativity would be fully absorbed by the black hole.

Recent works by Abedi, Dykaar and Afshordi (ADA) [158, 249, 250] have claimed to find
tentative evidence of near-horizon Planck-scale structure using data [251, 252] from the three
Advanced LIGO events GW150914, LVT151012 and GW151226. In the simplified analysis of
[158, 249], this near-horizon structure gives rise to so-called echoes [153, 176, 253, 254].

The data used by ADA is from the LIGO Open Science Center (LOSC) [251, 252], which
contains a total of 4096 seconds of strain data from both Advanced LIGO detectors around each
of the three events. Out of these data ADA used only 32 seconds centred around each event for

1This chapter is an adaptation of the work published as [3] as described in Section 1.2, with the copyright for
the published article [3] held by the American Physical Society (2018).

99



5 Statistical significance of evidence for gravitational wave echoes

their analysis. The authors claimed in [249] to find evidence for such echoes in data following
the three events with a p-value 3.7 × 10−3, corresponding to a combined significance of 2.9σ
(with the one-sided significance convention used in [33, 237, 238, 255], this value corresponds
to 2.7σ). This was subsequently updated to a p-value of ∼ 1% and interpreted as 2.5σ-level
tentative evidence in [158]. Nonetheless if such a signal were shown to be present in the data,
it would force a major re-evaluation of the standard picture of black holes in vacuum Einstein
gravity.

Here we investigate concerns about the methods in [249] and ADA’s updated works [158, 250],
and give a different significance estimate for the findings. Our initial caveats concerning [249]
appeared as [256]. We do not examine the theoretical motivations for the existence of such near-
horizon Planck-scale structure, nor the model templates for which ADA have chosen to search.
Rather, we focus on the data analysis methods as reported and on the significance estimates
assigned to the results. We identify a number of shortcomings in the analysis and perform an
improved analysis, which corrects for several of these problems. We evaluate the echo findings
in the gravitational wave data [251, 252], estimate their significance with updated p-values (for
a general critique of p-values, see [257]) and conclude that there is as of yet no evidence for the
existence of black hole echoes in these data.

5.2 ADA’s Model and search procedure

Figure 5.1: A coalescence template extended to include echoes. The five parameters of the echo
waveform model are illustrated, and the phase-inversion between echoes is visible.

The analysis of ADA [158, 249, 250] consists of three parts: a simple waveform model, a search
procedure, and a significance estimation method. In this section we briefly review these.

With a partially reflective surface outside the horizon, echo signals may be found as wave
solutions in a cavity formed by the near-horizon membrane barrier and the angular momentum
barrier (“photon sphere”) that exists further out [153, 176]. In the geometric wave picture, at
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each barrier the wave is partially reflected and partially transmitted. Each partially transmitted
wave from the outer angular momentum barrier would be detected by distant observers as an
echo. The delay time between subsequent echoes results from the travel time between the two
barriers. This time may be different for the first echo due to non-linear effects during the merger,
as may further parameters of the echo signal such as the damping between successive echoes.
For a description of the echoes as poles of the propagators see [246].
An example of such an echo template is shown in Fig. 5.1 and several parameters define its

features:

1. ∆techo: The delay time between subsequent echoes, resulting from the travel time between
the barriers. ∆techo, theory is the expected value found in [158, 249], based on the inferred
final mass and spin parameters for each event [33, 237–239, 258]. In the search, the
parameter ∆techo is allowed to vary around the theoretical value ∆techo, theory to account
for uncertainties.

2. techo: The time of the first echo. This is expected to be tmerger + ∆techo, where tmerger

is the time of the merger. It is allowed to deviate from this expectation in the search to
account for non-linear effects close to the merger [249].

3. A: The amplitude of the first echo relative to the original signal amplitude.

4. γ: The relative amplitude between subsequent echoes.

5. t0: Only the last part of the original waveform is used to produce the echo waveform; this
parameter describes how far before tmerger the original waveform is tapered down to 0,
using the tapering function given in [249].

In addition, the phase is inverted between subsequent echoes. Likewise, the phase-difference
between the original signal and the first echo is fixed to ∆ϕ = π. We use an abbreviated notation
for the combination of parameters x := (techo − tmerger)/∆techo, with an expected value for the
first echo of x = 1.
The ADA-search procedure used in [158, 249] consists of the following steps:

1. Produce a pure echo template for given echo-parameters. The original event is removed
from the template.

2. Produce a bank of these templates, with an evenly spaced grid in the parameters listed
above.

3. Perform matched filtering with the echo templates. The original event is removed from
the data prior to this.

4. Maximise squared signal-to-noise ratio, SNR2, over all parameters for each value of x.

The maximisation uses either each single event or combinations of events. The combination
assumes some parameters to be different between events, namely A and ∆techo. The parameters
x, t0/∆techo, theory and γ are kept identical for each event. For combinations of events, the sum
of the individual SNR2s is maximised.

The ADA-estimation uses the following method to estimate the significance of their findings
[249]:

1. Find the maximum SNR2 value in the range x ∈ (0.99, 1.01) after the event.

2. Calculate and maximise SNR2 over the time range 9 ≤ techo−tmerger

∆techo, theory
≤ 38. The maximisation

is slightly adapted for this step.
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3. Divide this last range into 1450 segments, each of duration 2% of
techo−tmerger

∆techo, theory
.

4. A p-value is found as the number of segments with higher peak SNR2 than after the event
in step 1, divided by the total number of segments.

5.3 General remarks

A first immediate problem arises regarding how strong the relative signal should be for the
three events. The two binary black hole events GW150914 and GW151226 were detected by
the Advanced LIGO detectors with significance levels > 5.3σ and signal-to-noise ratios of 23.7
and 13.0 respectively [238]. The other event, LVT151012, had a reported significance of only
1.7σ and a signal-to-noise ratio of 9.7 combined between the two Advanced LIGO detectors.
However, in Table II of [158] we see that the signal-to-noise ratio of the claimed echo signal is
actually largest for LVT151012.

The higher SNR of LVT151012 cannot be due to the different projected number of echoes
between the events. The different ∆techo leads to differing numbers of echoes in a given duration:
the 32 seconds of data used would contain ∼ 180 for LVT151012 and ∼ 110 for GW150914.
Although the number of echoes is larger for LVT151012, late echoes are strongly damped. They
decrease by a factor of 10 over ∼22 echoes for the claimed relative amplitude γ ∼ 0.9. Thus in
order for the echoes of LVT151012 to have a higher SNR than the echoes of GW150914, their
amplitude must be very high. In fact, to account for the reported SNRs, the initial amplitude
for the first echo of LVT151012 would have to be about 10% higher than that of GW150914
[256], while the original event’s peak is about 2-3 times lower for LVT151012 in comparison to
GW150914’s. This would require their parameter A to be about 2-3 times larger for LVT151012
than for GW150914. This seems to be confirmed by the best fit search results in Table II of the
updated work [158], which gives AGW150914 = 0.091 and ALVT151012 = 0.34.

We assume that far in the wave zone the gravitational wave signal of the echoes decays similarly
to the signal of the event itself, i.e. linearly with the distance from the source. This explicit
astrophysical assumption, in addition to those in [158, 249, 250], is the basis for the above
concern. The lower significance of LVT151012 is rooted in its distance: its mean estimated
distance being more than twice as large as that of GW150914 and GW151226, we expect weaker
echo signals. While particular combinations of system parameters and signal morphologies may
have significant effects on the generation of echoes and their relative amplitudes, changing their
relative significance, there is yet no extensive model to justify abandoning this concern here.

The inferred amplitude parameters suggest that a large amount of gravitational wave energy
was emitted in the echoes: a very rough calculation implies that the amount of energy emitted
in the echoes was approximately 0.1 solar masses (for GW150914) and 0.2 solar masses (for
LVT151012). This should be compared to the total estimated energy emitted by the original
signal of 3 solar masses (for GW150914) and 1.5 solar masses (for LVT151012).

We also note an inconsistency in the above procedure, resulting from the use of a fixed wave-
form for each event as the basis for all echo templates, obtained from the LOSC [251]. The
parameters of the echo templates, in particular ∆techo, depend on the mass and spin parame-
ters of the final black hole. Instead of using only one initial waveform and generating all echo
templates with this, one should use an initial waveform that corresponds to each set of echo
parameters to be varied over. Using the single LOSC waveform is a simplification, restrict-
ing to only one choice of final mass and spin parameters for the echoed original event, while
simultaneously varying over the final mass and spin values through ∆techo.
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5.4 Validation of the matched-filter analysis
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Figure 5.2: The matched filtering technique is able to recover signals with a variety of amplitudes.
As shown here, the SNR depends on the amplitude of the signal. The amplitude
found by ADA (A = 0.1) is close to the level that is found in pure Gaussian noise
without a signal. An amplitude twice as large as this would be clearly identifiable
in the data.

We wrote a separate implementation of the ADA-search procedure, that we refer to as
ADAAEI-search. No changes were made to the algorithm as described before, while the imple-
mentation itself is independent. The SNR2-results obtained with our implementation are similar
to those shown in [249].

As a first check, we verify that the ADAAEI-search procedure can distinguish between pure
noise and simulated echo-signals. For this, a known signal is injected into simulated noise by
calculating the sum of the noise and signal strain at each sample time. We simulate Gaussian
noise with a power spectral density (PSD) similar to that found for the detector data around each
event (calculated from the LOSC data). The ADAAEI-search is then applied to simulated data
consisting of either pure noise or the same noise with added injections of different amplitudes. In
this test, we only use echo waveforms with parameters similar to the best-fit results of [158, 249].
Fig. 5.2 shows the dependence of the SNR2 peak on the injection amplitude Ainj, demonstrating
how the effectiveness of the method in finding a signal depends on Ainj. We perform this test
for different realisations of the simulated noise. The minimum Ainj required to find a peak rising
above the noise background also depends on the noise instantiation. We find that Ainj ∼ 0.1
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can yield a visible peak. This is the best-fit value of A reported for GW150914 in [249]. In one
out of the five trials conducted in this first test, however, a higher amplitude was necessary to
distinguish the signal from noise, as shown in Fig. 5.2, where the noise and the quietest injection
have almost identical SNR2 results. This prompted us to perform more detailed statistical and
injection-recovery analyses, as described below.

5.5 Prior ranges and template spacing

The estimation of the echo parameters is based on maximising the SNR over a fixed grid in
parameter space. The boundaries of the parameter grid are determined by a prior range, where
the ranges chosen by ADA are displayed in Table I of [249]. Each template in the bank is
produced for a specific value of each parameter. The matched filtering method finds a higher
SNR for data similar to the template, but each template can recover signals with a range of
parameter values. The recovered signal parameters are defined as the values corresponding to
the template in the bank that yields the highest SNR. The SNR maximisation is performed over
all templates in the bank and thus over all values in the parameter grid used to create the bank.
This determines the parameters γ, ∆techo, t0, and techo. When combining multiple events, the
sum of their SNR2s is maximised and only ∆techo is varied independently for each event. The
same γ is assumed for all events, while techo and t0 are related between events by requiring all
events to have the same x = (techo − tmerger)/∆techo and t0/∆techo, theory.

The values for γ and t0 resulting from this maximisation are found to lie very close to the
boundary of their prior range, 0.9 and −0.1 respectively [256]. This suggests that there may be
support for values of these parameters that lie outside of this range. If these values reflect the
priors rather than the data, then they cannot be reliably considered as evidence for a detection
claim. Furthermore, a value greater than unity for γ means that each successive echo has an
amplitude greater than the previous echo. Such a result would require the echoes to be extracting
energy from the black hole spacetime.

We tested whether the preference for these parameter values is an artefact of the method,
again using known signals injected into simulated noise. We constructed Gaussian noise with a
PSD estimated from the 4096 seconds of LOSC data around GW150914. The injected signals
consist of echoes based on the LOSC GW150914-template for various echo parameters. The
range of γ is widened to γ ∈ (0.1, 2.0) both in the prior of the search and the injections. The
range of t0 is widened to t0 ∈ (−0.2, 0)∆techo, theory in the search. It is not widened for the
injections in this test, as the dependency of the maximised SNR on the wider range in t0 was
found to be much weaker than for γ. The relative amplitude of the injections A = Ainj ranges
from ADA’s recovered value 0.1 to about 50 times this amplitude. We then compare the best-fit
value of γ from the search with the value of the injection. This comparison is shown in Fig. 5.3.

The ADA-search method is biased towards finding γ-values close to 1. Ideally, the recovered
parameter value would be closest in the grid to the value of the injection. In Fig. 5.3, this would
mean lying as close as possible to the plotted diagonal. In this figure, the recovered values are
close to the injected ones for higher injection amplitudes. Thus for very high echo amplitudes,
the recovery method could in principle be effective. For lower injection amplitudes, there is a
preference for recovered values of γ close to 1, independently of the γ value of the injection.
Therefore, finding γ ∼ 1 as the best-fit value in the search does not necessarily mean that this
is indeed the correct value for an existing signal. The method is biased to find these values for
γ in almost all cases. In particular this is also true for relatively low echo amplitudes as found
by ADA, and even significantly higher signal amplitudes. We interpret the recovery of γ ∼ 1
as a generic property of the method and finding such a value cannot be considered evidence for
the presence of a signal.
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The bias is introduced through the spacing between templates in the bank, as can be found
through an analysis on white Gaussian noise and calculating the overlap between the templates.
We use white Gaussian noise with a constant PSD in this test to preclude any influence from
the specific PSD of the detector noise. An analysis in this noise using the same parameter
range as ADA also shows a strong preference for γ = 0.9. Further extending the range to
γ ∈ (0.1, 2.0) displays preference for γ = 1 in white noise. The distribution of recovered γ
values in this test is shown in Fig. 5.4. The reason for this is revealed by calculating the overlap
between neighbouring templates in the parameter grid for different γ, while keeping the other
parameters fixed. Here, the overlap between two waveforms is calculated as the SNR when
using one waveform as the template and the other as the data. As can be seen in Fig. 5.4,
the overlap between neighbouring templates shows the same γ-dependence as the distribution
exhibiting the preference for recovering γ = 1. Templates with γ close to 1 lie further apart
in this noise-weighted match-metric than other templates. Each template near γ = 1 therefore
covers a larger region of the signal space than other templates, and thus, more noise realisations
are best matched by the (morphology-wise) more scarcely placed templates close to γ = 1.
We similarly test how the method recovers the echo signal’s amplitude through injections into

Gaussian noise2. For the results in Fig. 5.5, we chose to show the absolute peak amplitude of the
echo signal instead of the parameter A, which gives the echo amplitude relative to the original
event amplitude. This allows us to find the minimum echo amplitude to be recovered correctly,
independently of that of the event. Fig. 5.5 shows that the recovered values deviate from the
injected ones strongly below strain amplitudes of about 10−22. For lower injection amplitudes,
values around 10−22 are found instead of the injected ones. This suggests that finding such low
amplitude values might be expected in pure noise as well. The absolute value is close to those
found in [249]: the relative amplitudes of 0.1 for GW150914 and 0.3 for LVT151012, multiplied
by the respective events’ peak amplitudes, are shown as horizontal lines in Fig. 5.5, and seem
consistent with incorrect recovery of the method for lower injection amplitudes.
Extending the template bank to a wider range in γ and t0 and performing the same analysis

as before leads to a modified SNR structure in x, where additional and higher peaks appear
further away from the predicted value for the echoes in GW150914. As we will see below,
applying a wider parameter range also for the background estimation results in a further factor
∼ 3.5 increase in the p-value for the combination of GW150914, LVT151012, and GW151226
(using the 32-second dataset estimation). The modified p-values for the wider priors of different
combinations are shown in Table 5.1, where the widened prior entries refer again to the ranges
γ ∈ (0.1, 2.0) and t0 ∈ (−0.2, 0)∆techo, theory.

5.6 Extending the background estimation

To calculate a significance for the match found in the templated search, we must assess the noise
background. Since an analytical noise model is not known, real data away from the possible
signal are used to estimate this background. This relies on an assumption that the data at these
times are similar to that during the time of interest. The noise background is calculated by
counting how often an equal or larger SNR value is obtained in the off-source data. ADA chose
to do this in a short period of time of approximately 16 seconds of data after each event. To
obtain sufficient background statistics this period of time was used intensively: they consider 16
second stretches of data as independent when shifted by only 0.1 seconds.
This background estimation is problematic [256] for two reasons: potential contamination

of the background samples by existing echo signals, and the lack of independence between
background samples. The estimation uses a range of techo values that is only O(10) echo periods

2We thank N. Afshordi for suggesting this additional test [259].
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away from the merger. If there is indeed an echo signal in the data then this region will not be
entirely free of the signal being searched for. At the beginning of the region the amplitude of the
echoes would only have dropped by a factor 0.99 ∼ 0.4. One therefore expects a contaminated
background estimation. Even in the absence of echoes, a random feature mistaken for echoes
in one segment may well extend to neighbouring segments, and they cannot be treated as
independent (see discussion of template auto-correlations below for the problem of insufficient
independence of samples).

Each of the data sets released at the LOSC [251] consists of 4096 seconds of data. Both
GW150914 and LVT151012 are located 2048 seconds into these data, equivalent to O(103) echo
periods, thus for large stretches of the data, such contamination through the presence of a
damped echo signal would be negligibly small.

We have performed a different background estimation as an independent test, which uses the
full period of 4096 seconds of LOSC data available around each event. A schematic comparison
of the different choices of data used for background estimation is shown in Fig. 5.6.

The obtained p-value and background estimate are only meaningful if the data in the back-
ground are comparable to those at the time of the event. A plot of the noise variations over
the full 4096 seconds of data released for each event is shown in Fig. 5.7 and for GW150914
specifically in Fig. 5.8. The variations are seen to be small and we conclude that for the four
events considered our background estimate is indeed characteristic of the noise just after the
event. For the graph showing the properties of noise in the Hanford detector around the time
of LVT151012 in Fig. 5.7, a reduced amount of data was used. This choice is made due to three
loud short transient noise features, which we discuss further below. The noise features strongly
influence the Rayleigh statistic calculation, while occupying less than 0.1 % of the data. Using
data excluding these noise features, the variation as shown in Fig. 5.7 is found. Properties of
the data at and around LVT151012 are discussed in [110].

In our case, the 4096 seconds of data for each event are divided into 128 independent, 32-
seconds long segments. For each, the echoes analysis is performed as it was on the 32-second
segment containing the event. The resulting peak SNR in x ∈ (0.99, 1.01) is found for each
segment. Simply counting the number of segments containing a higher peak SNR in this interval
yields an estimate for the p-value. For the combined first three events, GW150914, LVT151012
and GW151226, our resulting p-value of 0.032 is about a factor 3 larger than the value of 0.011
found in [158], where less data and overlapping intervals were used.

An estimate of the p-value significance in this way is susceptible to small number statistics
(accounting for the Poisson error as suggested in [259], the p-value can be 0.032 ± 0.016, still
larger than in [158, 249]). The original LOSC templates, before introducing echoes, contain an
approximately 16 seconds long waveform followed by 16 seconds of a flat zero-strain template.
Echoes were introduced only into this flat region when producing the echo templates. After
removing the original event, we are left with a 32-second template with 16 seconds of no signal,
followed by the produced echoes. So we can double the number of background samples with-
out losing independence between samples, by dividing the available data into 256 independent
segments of 16 seconds length.

The exact number of available data segments varies slightly for each of the events. This is
due to the positions of the original signals, and the influence of one of the three mentioned
short transient noise features (inconsistent with the echo morphology) in one segment of the
LVT151012 data, which was discarded. This short noise feature was found by noticing a very
high SNR outlier for one data segment, shown in Figure 5.9. The feature can be seen in the
whitened time-domain data, appearing close to the beginning of the data segment. The search
procedure always aligns one of the first and thus loudest echoes with the noise feature, yielding
the high SNR, shown in Figure 5.10. The effect of not discarding the high SNR noise dataset
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5 Statistical significance of evidence for gravitational wave echoes

Figure 5.6: Schematic comparison of the data segments used to estimate the background between
ADA [158, 249] and this work (AEI). Compared to ADA’s 16 seconds, we extend
the amount of data used for background estimation to the full 4096 seconds for each
event available from the LOSC [109].
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Figure 5.7: Rayleigh plot of the noise variation, showing the ratio of the standard deviation to
the mean as a function of frequency for PSD samples from different times. The
PSD is estimated for 16-second segments of the 4096-second data stretch for both
detectors and each event. For each frequency, the corresponding values of the PSD
from all segments are collected and their mean and standard deviation are calculated.
The ratio of standard deviation and mean is then shown in the plot as a function
of frequency, where values smaller/larger than 1 correspond to coherent/incoherent
variation, respectively, and the value 1 to Gaussian behaviour. The gwpy software
was used in generating this plot [260, 261].
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Figure 5.8: Variation of the noise spectrum during the 4096 s around GW150914, calculated
using 16-second data segments. The shaded regions cover the 1-st to 99-th percentile
variations, the central curves show the mean. In this sense, the data are sufficiently
stationary for our background estimation to be reliable during the full 4096-second
data stretch. The gwpy software was again used in generating this plot [260, 261]

always is an increase of p-value due to the very high SNR, but the effect on the resulting p-values
is minimal (∼ 1/256). Only the estimation with 16-second-long segments is influenced by this
noise feature. The total number of estimates when combining events is thus 125 to 126 for the
32-second segments, and 250 to 251 for the 16-second segments.

The other two short noise features appear late in the respective data segments. For these, the
search does not consistently align one of the later and more strongly damped echoes with the
noise feature, as the increase in SNR is outweighed by the placement of the first loud echoes in
the data. Thus the search is not influenced by these features significantly and we do not exclude
the data segments from the estimation.

The results of this alternative approach for the significance estimation, both using 32- and
16-second-long segments, are shown in Table 5.1. Different combinations of the events are
considered, denoted chronologically as (GW150914, LVT151012, GW151226) → (1, 2, 3). In
addition, for comparison and as the first detection after the claims of [249], we also consider the
first event in the second observing run, GW170104 [239], denoted (4) in Table 5.1.

For the combination (1, 2, 3), a p-value of 0.011 was found in [249]. Our method finds four
out of 125 trials with a maximised combined SNR larger than in the data immediately following
the events. So the p-value is 4/125 = 0.032 ∼ 3% for the combined SNR value found after the
events. Using 250 samples of 16-seconds length each, we find 5/250 ∼ 2% for the p-value.

To highlight the role of LVT151012 in obtaining low p-values, we have chosen to make a com-
parison with a combination of three events excluding LVT151012. When selecting the available
events to be combined in the analysis, a reasonable choice seems to be using those of sufficiently
high significance. Here, this means GW150914, GW151226 and GW170104, the combination
(1, 3, 4), for which we find 9/125 ∼ 7% and 50/251 ∼ 20% respectively. These values are much
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5 Statistical significance of evidence for gravitational wave echoes

Figure 5.9: 4096 seconds of LOSC data around LVT151012 are divided into ∼ 256 sequential
segments of 16 seconds, excluding the segment containing the GW event. For each
segment, we perform the same analysis as in the segment directly following the event.
The maximised SNR2 is marked by a red circle for each segment, and by a black
horizontal line for the data immediately after the GW event, where echoes might be
found. A clear outlier in the SNR2 is visible.
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5.6 Extending the background estimation

Figure 5.10: The whitened strain data is shown as a function of time for the dataset correspond-
ing to the outlier in maximum SNR visible in Figure 5.9 by the red curve. The
black curve shows the whitened best-fit waveform. The lower panel shows the same
as the top panel, but restricts the range in time for better visibility of the overlay.
A transient noise feature is visible in the data, which is partially matched by one of
the echo signals in the template. The morphology of the noise feature differs from
that of a single echo pulse, but the similarity is sufficient for the echo template to
prefer templates aligning one pulse with it. Only a single such feature is present,
thus the data do not match the model of repeated echo pulses.
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Event [158] Original 16s (32s) Widened priors 16s (32s)

GW150914 0.11 0.199 (0.238) 0.705 (0.365)
LVT151012 - 0.056 (0.063) 0.124
GW151226 - 0.414 (0.476) 0.837
GW170104 - 0.725 0.757

(1,2) - 0.004 0.36
(1,3) - 0.159 0.801
(1,2,3) 0.011 0.020 (0.032) 0.18 (0.144)
(1,3,4) - 0.199 (0.072) 0.9 (0.32)
(1,2,3,4) - 0.044 (0.032) 0.368 (0.112)

Table 5.1: p-values obtained by using 4096 seconds of LOSC data divided into segments of 16
or 32 seconds length. Results are given for the priors in t0 and γ chosen in the
original analysis and for widened priors, for the 3 O1 events and the first O2 event
individually and for various combinations of events. In combinations, the events
are denoted chronologically, with (GW150914, LVT151012, GW151226, GW170104)
→ (1, 2, 3, 4). For the combinations directly comparable to [158], with the original
priors, we also record the Poisson errors (as suggested in [259]): for GW150914 our
p-values are 0.199 ± 0.028 (0.238 ± 0.043), and for (1,2,3) our p-values are 0.02 ±
0.009 (0.032 ± 0.016). The Poisson errors for the full combination (1,2,3,4) with
original priors, are 0.044 ± 0.013 (0.032 ± 0.016). With widened priors, all p-values
are significantly larger, and the Poisson error relatively insignificant. Combinations
that include LVT151012 have the lowest p-values. The addition of GW170104 to the
three O1 events increases the combined p-value and is thus more compatible with
pure noise. The lowest p-value out of all 11 combinations using up to four events is
found for the combination (1,2). Note however that considering more combinations of
events using the same data also leads to a higher effective trials factor to be accounted
for.

higher than for combinations including LVT151012 and are fully consistent with the pure noise
null-hypothesis.

The combined background is shown in Fig. 5.11 which shows the peak value of SNR2 found in
each segment for both the real detector data and Gaussian noise. For each event, the Gaussian
noise was created with the same PSD as estimated from the data of this event. There is no
significant difference between the distribution of peaks for detector data and for Gaussian noise.
Here we note that there is no obvious trend in the peak SNR over time. By this measure, there
is no indication of the noise being unstable and preventing its use for background estimation.
These two properties are shared by all single events and the alternate combination (1, 2, 3): all
show the similarity of the peak distribution for Gaussian noise and detector data, and lack a
trend in time.

A second concern about the background estimation used in [158, 249, 250] arises from the very
small shift in time between samples that are considered independent. In this, the quasi-periodic
nature of the echo signal has to be considered, leading to potentially long templates with quasi-
periodic autocorrelation in time. This property affects the significance estimation as performed
in [158, 249]. The estimation is problematic because the template is significantly longer than
the shift in time between background sample intervals. If the autocorrelation between templates
used in different background samples does not vanish, the results from these samples cannot be
considered truly independent: a feature of the data at one point in time then influences the SNR
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Figure 5.11: 4096 seconds of LOSC data for GW150914, GW151226, and GW170104 are divided
into ∼ 256 segments of 16 seconds. The segments containing the GW events are
excluded. For comparison, we generated 4096 seconds of Gaussian noise with the
same PSD as estimated from the LOSC data for each event and divided it into
segments in the same way. For each segment, the same echo search as immediately
after the events was performed, combining the data of the selected events and
maximising the sum of the SNRs2. The resulting maximum SNR2 is shown by
circles for the detector noise and by triangles for Gaussian noise. The distribution
of peak SNRs in the detector data is similar to that in Gaussian noise. A black
line marks the combined SNR value found for the data immediately after the GW
events. The p-value is calculated from the number of points for detector data lying
above this line. There is no obvious trend in the peak SNR over time.
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Figure 5.12: Autocorrelation of the pure echo template depending on shift in time. The peaks
demonstrate that there is significant correlation between background samples for
small shifts.

found for several background samples. The total number of effectively independent samples is
thus much lower in this method.

The autocorrelation of the echo templates is shown in Fig. 5.12. We see that the echo signal
model leads to a series of peaks in the overlap of the original and the time-shifted wavefunction,
depending on the parameters γ, ∆techo and t0. A value of overlap to be considered sufficiently
independent could be e.g. 1%. To achieve this value, there are two ways to place templates with
respect to the original position in time. For γ < 1, i.e. a damped echo signal, applying a shift in
time by a sufficiently large multiple of ∆techo leads to a reduction of the correlation. Using the
GW150914 template and γ = 0.5 shows that at least 7 times ∆techo is necessary. In Fig. 5.12,
this corresponds to the very small peak close to 2.1 seconds of time-shift.

Alternatively, the templates can be interlaced, such that the echoes of one template are
placed within the time between echoes of the other. This corresponds to the small overlap
values between the peaks in Fig. 5.12. Here we again use the GW150914 template and the most
favourable values in the prior range, i.e. the shortest echoes (t0 = −0.001∆techo, theory) and the
longest delay (∆techo = 0.30166 s). Then about 7 echoes can be placed between those of the
original template. For these parameters we now consider shifts in time of the echo template up
to 29∆techo, which is the maximum shift used in ADA’s significance estimation. We find about
4 independent samples through sufficient timeshift and a factor 8 through interlacing, giving
∼ 32 independent samples.

As the maximisation is performed over a range of parameters, exactly determining the total
number of independent samples would require a more detailed calculation. The parameters
chosen for this estimate, however, are favourable, as smaller damping or smaller time delay
would further lower the total number. For the maximisation combining the different events,
∆techo may vary independently between events, obstructing a clear estimate on the number of
samples; the same principles, however, still apply. These considerations suggest the method of
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[158] contains only a small number of independent background samples, on the order of a few
tens of samples.

The method we employed to estimate the background precludes this effect by only applying
the matched filtering procedure to separate sets of data. The template thus is always placed in
only one of the background samples and the resulting SNR cannot be influenced by data features
in the remaining samples.

The nature of the echo templates leads to a further potential problem: low frequency compo-
nents may be introduced in the template, resulting from the delay between echoes. Due to the
delay times of about 0.1 to 0.3 seconds, these frequencies are expected to be in the range below
20Hz, down to a few Hz. However, the data as supplied by the LOSC, [251], is not calibrated
below 10Hz, as mentioned in the corresponding notes on data usage. The results of the analysis
may thus be influenced by the uncalibrated data. We have repeated the analysis after applying
a high-pass filter to the data and the original waveform, removing the data below 30Hz for the
final SNR calculations. The results of this analysis are almost identical to those before applying
the high-pass filter in terms of SNR. The resulting p-values similarly show only minor changes
compared to the values given in Table 5.1. The combination of introduced low frequency com-
ponents in the templates and the uncalibrated data thus seems to have no significant effect on
the results of the analysis.

The ADA-search procedure does not distinguish between inversion and non-inversion of the
first echo’s phase. The waveform templates used here are based on the simple model presented
in [158, 249]. Within this model, the phase-change of the gravitational wave between the original
signal and the first echo is described as a simple phase-flip. However, as only the square of the
SNR from the matched filter analysis is considered for the maximisation, the result is insensitive
to this phase inversion. Repeating the analysis for GW150914 and enforcing the phase inversion
as required by this model, we find that the prominent peak in SNR at x = 1 vanishes. This
is shown in Fig. 5.13. More sophisticated models would be needed to determine whether this
phase flip is truly required or not. Nevertheless, it is worth noting that the peak that forms the
basis of evidence for echoes in [158, 249] does not contain this phase inversion as required by
the simple model, but actually the opposite phase.

5.7 Conclusions

A full analysis of the data at a level necessary to confidently detect echo signals is outside the
scope of this work. However, we have analysed the data using a simple templated search similar
to [249]. Using an extended background estimated from the full 4096 seconds of data released
publicly by the LIGO collaboration for each event in the first observing run, we find a p-value for
the null noise-only hypothesis of 0.02 to 0.032, higher than that of 0.011 reported in [249] using
the restricted background. We have demonstrated the importance of LVT151012, the weakest
LIGO candidate event [110], in obtaining this p-value. A combined analysis of the three events
GW150914, GW151226 and GW170104, excluding LVT151012, yields an even larger p-value
of 0.199, fully consistent with noise. We have also identified a number of weaknesses in the
analysis method of [249] including the role of the prior boundaries and the density of templates.
In particular we have examined the role of the γ-parameter and found that the clustering of
γ-values near γ = 1 is entirely consistent with noise. The signal manifold is such that in pure
Gaussian noise, one would expect many more triggers with values of γ ∼ 1. This perhaps
would not be expected for true echo signals, although a more detailed model of echoes would be
needed to make a quantitative prediction. A similar bias in recovered parameters concerns the
peak amplitude, which for both GW150914 and LVT151012 was found by [158, 249] just on the
boundary of credible signal recovery.

117



5 Statistical significance of evidence for gravitational wave echoes

0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04 1.05

x =
techo−tmerger

∆techo

4

6

8

10

12

14

16

B
es

t
fit

S
N

R
2

Phase dependency for GW150914

∆φ = 0 ∨ π
∆φ = π

Figure 5.13: The maximised SNR for GW150914 is shown with two different choices for the
change in phase ∆ϕ between event and first echo. The original analysis allows for
∆ϕ = 0 ∨ π for each x and then finds a prominent peak near x = 1 (dashed line).
However, the model presented in [158] requires ∆ϕ = π. When we enforce this
value in the analysis, the peak vanishes (solid line).
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5.7 Conclusions

In conclusion, we find that the tentative evidence as presented in [158, 249, 250] is lacking
in several key aspects with respect to template placement, background estimation and imple-
mentation. Our analysis of these shortcomings shows that the method of Abedi et al. cannot
provide observational evidence for or against the existence of near-horizon Planck-scale struc-
ture in black holes. This stresses the importance of developing both new theoretical models
and analysis methods for gravitational wave echoes from such structures. We hope some of the
concerns explored here may be useful to vet other searches for echoes, such as [262], and help
in the development of methods which would place black hole near-horizon physics within the
realm of gravitational wave observations.
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6 Bayesian parameter estimation for
gravitational wave echoes

Searching for black hole echo signals with gravitational waves provides a means of probing the
near-horizon regime of these objects. We demonstrate a pipeline to efficiently search for these
signals in gravitational wave data and calculate model selection probabilities between signal and
no-signal hypotheses. As an example of its use we calculate Bayes factors for the Abedi-Dykaar-
Afshordi (ADA) model on events in LIGO’s first observing run and compare to existing results
in the literature. We discuss the benefits of using a full likelihood exploration over existing
search methods that used template banks and calculated p-values. We use the waveforms of
ADA, although the method is easily extendable to other waveforms. With these waveforms we
are able to demonstrate a range of echo amplitudes that is already is ruled out by the data.1

6.1 Introduction

Black holes are defined by their horizons [263]. Although a large amount of astrophysical data
is compatible with the existence of black holes [264], a number of theoretical models still predict
dark compact objects without horizons or for which the horizon structure is significantly modified
from classical vacuum general relativity [153, 176, 245, 248, 254, 265]. These models are typically
motivated by quantum effects or attempts to address issues related to black hole information and
evaporation [266]. One possible observational signature of such structure is that infalling waves
would not be entirely absorbed by the horizon as is generally expected in general relativity, but
instead some amount of the infalling wave would be reflected [176]. Similar signals have been
studied for stars for a long time [267, 268].

Recent observations of gravitational waves from coalescences of binary black holes [33, 237–
241] by the LIGO [73] and Virgo [74] detectors have allowed for a number of new tests of the
near horizon structure of black holes [69, 70, 269]. One such test involves searching for echo
signals that could potentially be caused by reflective structure forming at or near the location
of the black-hole horizon. A number of groups have searched for such signals in gravitational
wave data with contrasting conclusions [3, 158, 262], ranging from “tentative evidence” in [158]
to “low significance” in [3].

Here we propose a new method to search for these echo signals that provides an explicit
probability for the compatibility of the data with the echoes model relative to a noise hypothesis.
We demonstrate this method on the binary black hole events detected during the first observing
run of the Advanced LIGO detectors; these events are the same events that were the subject of
previous studies [3, 158, 262].

The general physical picture of echoes is that infalling radiation is reflected due to some
mechanism near the putative horizon location. This radiation is then partially trapped between
the near-horizon structure and the angular momentum light-ring barrier [176]. Some of the
energy is transmitted away from the system by successive bounces, thereby forming a series
of echoes. Generic parameters in the physical models are the amount of wave reflected by the

1This chapter is an adaptation of the work published as [4] as described in Section 1.2, with the copyright for
the published article [4] held by the American Physical Society (2019).
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boundary and the effective location where this reflection occurs. These in turn are related to the
amplitude of the reflected echo signals and the time separation between the successive echoes.
Bounds on the amplitude and time separation of echo signals derived from the data can thus be
translated into bounds on the reflectivity and location of the near-horizon structure.

For illustrative purposes here, we focus on the explicit model of Abedi-Dykaar-Afshordi (ADA)
[158], which has been the subject of discussion in the literature [3, 250, 256, 259]. However, we
note that our methodology can just as well be applied to other, more detailed models with explicit
waveforms, including those recently proposed in the literature [246, 270]. Efforts to search for
echo templates using Bayesian model selection have been developed with LALInference [271] in
parallel to our own work, and published concurrently with our own [272]. Other, model-agnostic
searches [273], have also been ongoing, along with different techniques to constrain horizonless
objects through their impact on the stochastic background [274].
The primary result of [158] is a p-value, calculated as the probability of observing a signal-to-

noise ratio (SNR) in noise (assumed to be free of signal) at least as significant as that observed
in the on-source data that potentially contains the signal. This by itself does not indicate the
probability that the on-source data contains a signal.
A probability that the data contains a signal can however be obtained using Bayes’ theorem:

P(signal|data) = P(data|signal)P(signal)
P(data)

. (6.1)

It is most convenient to compare this probability to an alternative hypothesis, for example that
the data contains pure noise:

P(signal|data)
P(noise|data) =

P(data|signal)
P(data|noise)

P(signal)

P(noise)
. (6.2)

In the above, the first factor on the right-hand side is the likelihood ratio, or Bayes factor, and
the second factor is the prior odds. Evaluating the prior odds is difficult without prior data
(and in the case of a signal model that violates standard physics, might well be a very small
factor). The likelihood ratio, on the other hand, can be calculated by exploring the likelihood
function over the model parameters using a stochastic sampling algorithm, such as a Markov
chain Monte Carlo (MCMC). In addition to the prior probability of hypotheses, a hypothesis
itself may have a number of free parameters, each of which will have its own prior probability
distribution. The first term on the right-hand side of Equation (6.2) then is the likelihood ratio
for a specific choice of signal parameters. To obtain the Bayes factor from this term, the model
parameters must be marginalised over using their respective prior distributions.
The data of gravitational wave detectors is known to be non-Gaussian [110], so a comparison

with a Gaussian noise hypothesis does not exhaust the list of possible explanations for the data.
However, for sufficiently short periods of time (of the order a few seconds) around the events
discussed here, the noise can be well approximated as Gaussian and any signal hypothesis that
is disfavoured relative to Gaussian noise is unlikely to be favoured relative to a more accurate
noise hypothesis. If the signal hypothesis is favoured over Gaussian noise, then further analysis
would be warranted.
To establish that our method can correctly identify echo signals in the data, we test it on

simulated echo signals with a variety of different amplitudes. These simulations are added to
real detector data, which is made available by the Gravitational Wave Open Science Center
(GWOSC) [251, 252]. We choose to inject simulated signals 100 seconds after GW150914.
This 100-second delay makes it unlikely that the data at that time is contaminated by a real
astrophysical signal [275]. These injections allow us to estimate the sensitivity of our method
and establish a signal amplitude that would be unambiguously identified by our method.
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6.2 Methodology and analysis pipeline

Echo param. Prior Range GW150914 range Injected value

∆techo inferred 0.2825 to 0.3025 s 0.2925 s
techo ∆techo ± 1% 0.2795 to 0.3055 s 0.2925 s

t0 trunc. (−0.1 to 0)∆techo -0.02925 to 0 s -0.02457 s
γ 0.1 to 0.9 0.1 to 0.9 0.8
A unconstrained 0.00001 to 0.9 varying

Table 6.1: Table of prior ranges for echoes’ parameters along with the values used here for
injection studies. The ranges are adopted from [158]. The injection values are chosen
to lie close to the parameter values found in that work, except for γ and t0 trunc.
which are chosen to lie within the prior range rather than at the boundary.

We then apply our method directly to the three binary black hole events in O1: GW150914,
GW151012 and GW151226. We find that the data for GW150914 favours Gaussian noise over
the echoes hypothesis. The other two events show a marginal preference for echoes, but this is
again consistent with noise. Finally, we discuss how our results can be used to place bounds on
the reflectivity of structure that has formed a given distance from the location of the would-be
horizon. Although our conservative bounds cannot conclusively exclude the signal amplitudes
claimed in [158], we show that they are consistent with being noise, having amplitudes below the
level that can be reliably estimated and Bayes factors not uncommon in off-source times. Future
runs with more sensitive detectors and louder events are likely to lower the level of amplitudes
that can be reliably estimated and rule definitively on the generic claims of [158].

6.2 Methodology and analysis pipeline

The example signal hypothesis we consider here is based on that of ADA [158]; we refer the reader
to that work for more detail on the model and the meaning of the various model parameters.
The most important of these parameters are the overall amplitude of the echoes relative to
the original signal’s peak A, the relative amplitude between successive echoes γ, and the time
separation between successive echoes ∆techo; these and the other parameters techo and t0 trunc.
are explained more fully in [158]. Table 6.2 gives the prior ranges employed here for the relevant
parameters. These are adapted for our purposes from the template bank search performed in
[158].

In the ADA model the range for ∆techo is inferred from the published parameters of GW150914
[238], using 50% ranges, and assuming Gaussian distributions for the error. The Kerr metric
formula is used for the light travel time between the light ring and a perfectly reflecting surface.
This surface is assumed to be at a proper distance one Planck length along Boyer-Lindquist time
slices from the Kerr metric event horizon. The parameter γ was chosen to reflect the physical
expectation that the amplitude of successive echoes should decrease due to energy loss through
one or both of the boundaries. We allow the parameter techo to vary independently from ∆techo
within 1% of its maximum values, and choose an explicit prior for the relative amplitude.

Since the value of the amplitude will have a direct influence on the signal strength, and hence
the signal likelihood, its prior range is of central importance to our results. In the template
bank search of [158] a prior for the amplitude is not explicitly given. Instead, it is maximised
over the template bank. To replicate as closely as possible the method of [158] we choose a flat
amplitude prior from 10−5 to 0.9. This ensures we are sensitive to relatively quiet amplitude
signals, although not arbitrarily quiet, and implements the reasonable assumption that the first
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echo should not be louder than the main signal.

For simplicity we choose to fix the number of echoes to 30. In principle this could be allowed
to vary, but for values of γ less than 0.9, 30 echoes capture the main part of the signal that
influences the SNR. In testing, we found that varying this number did not change the results
substantially.

The pipeline we use is based on PyCBC Inference [99]. It employs a parallel-tempered
MCMC algorithm, emcee pt [114, 117], to sample the likelihood function for a hypothesis based
on the existence of a signal in the data. The likelihood function is chosen to be compatible
with the assumption that the underlying noise is Gaussian with a given power spectral density.
Once the likelihood has been mapped, the marginalisation over the model parameters is per-
formed using thermodynamic integration to obtain a probability for the hypothesis given the
data. Although it is known that LIGO data is not Gaussian over long periods of time, over
shorter periods it is approximately Gaussian [110, 275]. To account for the non-Gaussianities
without a model hypothesis for them, it is possible to sample the Gaussian Bayes factor over
many realisations of the true detector noise.

In the results presented here we used 100 Markov chains to sample the likelihood. We require
that each chain run for at least five auto-correlation lengths (ACL) beyond 1000 iterations of
the sampler. The ACL is measured by averaging parameter samples over all chains, then taking
the maximum ACL over all parameters. For the thermodynamic integration of the likelihood
function, care has to be taken that it is sufficiently sampled both near its peak, but also at lower
values of the likelihood. In tests we found that using 16 different temperatures, each placed
by inspection, was sufficient to guarantee a consistent value of the Bayes factor. Convergence
of this result was checked by running with double the number of temperatures and ensuring
that the results were consistent. The posterior distributions are constructed from the coldest
temperature chain.

6.3 Injections based on GW150914

To test our method we choose to examine simulated echo signals based on GW150914. This
is, to date, the loudest binary black hole signal that has been observed via gravitational waves,
and should play a central role in constraints derived from the data. While we focus here on
GW150914, we expect similar results will apply to echo signals of other events when suitably
scaled in amplitude.

Following ADA for simplicity, we choose to fix the base inspiral-merger-ringdown (IMR) wave-
form to be echoed for both injections and for the search templates. The parameters for these
base IMR waveforms are given in the appendix and are obtained from the maximum likelihood
results of [99]. The waveforms are constructed using the phenomenological IMR waveform fam-
ily IMRPhenomPv2 [276, 277] which is freely available as part of LALSuite [200]. These IMR
signals are then used to produce echo signals with echo parameters given in Table 6.2. The
simulated echo injections are added linearly at varying amplitudes to real detector noise (chosen
to be 100 seconds after GW150914, far enough away to be uncontaminated by echo signals or
any pre-merger signal). We then attempt to recover them with our analysis pipeline. Example
results are shown in Figs 6.1 and 6.2.

Figure 6.1 shows a very loud injection with a relative amplitude of 0.4 and a maximum
likelihood SNR of ∼ 17.7. The log Bayes factor for this injection is 140.57, showing a strong
preference for the echoes hypothesis over the pure Gaussian noise hypothesis. In this case
the echo parameters are well recovered, with the injected values lying within the 90% credible
intervals of the marginalised one-dimensional posterior distributions.

Figure 6.2 shows a much quieter injection with a relative amplitude of 0.0125 and a maximum
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6.3 Injections based on GW150914

Figure 6.1: Posterior on the echo parameters for a loud (SNR ∼ 18) simulated signal. The signal
has GW150914-like parameters at a fiducial distance of 400Mpc. An amplitude
factor of 0.4 is used for the echoes. Off-diagonal plots show 2D marginal posteriors;
the white contours show the 50% and 90% credible regions. Each point represents a
random draw from the posterior, coloured by the SNR (ρ) at those parameters. The
diagonal plots show the 1D marginal posteriors, with the median and 90% credible
intervals indicated by the dashed lines. The reported values are the median of the
1D marginal posterior plus/minus the 5th/95th percentiles. The injected parameter
values, shown by the red lines, are all within the 90% credible intervals. The log
Bayes factor for this signal is 140.57.
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6 Bayesian parameter estimation for gravitational wave echoes

Figure 6.2: Posterior on the echo parameters for a quiet (SNR ∼ 4) simulated signal. The signal
has GW150914-like parameters at a fiducial distance of 400Mpc. An amplitude
factor of 0.0125 is used for the echoes. Again, the injected values are shown by the
red lines, while points are coloured by the SNR at that point in the parameter space.
The log Bayes factor for this injection is -1.55, indicating what to expect when the
signal is indistinguishable from noise. The prior ranges are largely saturated and
lines appear in the 1D marginal posterior for techo.
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6.3 Injections based on GW150914

Figure 6.3: The 90% credible regions of the 2D marginal posteriors of ∆techo and γ for
GW150914-like simulated signals. Shown are a range of echo amplitudes (relative to
the peak amplitude of the original signal) A. The injected values are given by the
horizontal and vertical red lines. For small values of A, the 90% contour covers most
of the prior range, whereas for larger amplitudes the contours narrow down onto the
injected values.
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6 Bayesian parameter estimation for gravitational wave echoes

Figure 6.4: Values of the maximum likelihood SNR and log Bayes factors for GW150914-based
injections with amplitudes from 0.025 to 0.4 at a distance of 400Mpc. A linear fit is
possible through the SNR points down to an amplitude around 0.1. The log Bayes
factor is negative for amplitude values below ∼ 0.07 (indicating formal preference
for Gaussian noise over the echoes hypothesis).

likelihood SNR of only 3.8. The log Bayes factor for this injection is −1.55 showing a preference
for the pure Gaussian noise hypothesis. In this case most echo parameters are not well recovered
and their posterior distributions are close to the original prior distributions.

Figure 6.3 shows the recovery of γ and ∆techo for a range of different injection amplitudes. As
the amplitude is increased, the recovered value is increasingly constrained to the injected value.

The log Bayes factor and likelihood SNR for injected signals with different amplitudes is shown
in Fig. 6.4. Here we find that below an injected amplitude of ∼ 0.1 the recovered maximum
likelihood SNR no longer falls off linearly, and flattens out to an approximately constant value
of ∼ 4, independently of the signal injected. At amplitudes below ∼ 0.07 the log Bayes factor
becomes negative.

A plot of the recovered amplitudes versus injected amplitudes is shown in Fig. 6.5. This figure
can be compared with Fig. 4 of [3], which also shows recovered amplitudes relative to injected
amplitudes for a template bank search. In that work it was found that below a certain injection
strength, the recovered echo amplitude was no longer reliable using the template bank method.
Our results here are consistent with that finding. This gives a clear sense of the amplitude of
signals which it is possible to reliably recover, relative to the detector noise level. Signals below
this level, such as the one claimed in [158], cannot be clearly distinguished from noise.
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6.3 Injections based on GW150914

Figure 6.5: Injected versus recovered amplitudes expressed in terms of strain values for
GW150914-based injections. At lower injected amplitude values the recovered am-
plitude and hence the recovered SNR, saturate around an amplitude value of 10−22.
Median posterior values are given by the green stars with 90% credible intervals
given by the green bars. The amplitudes of the maximum likelihood waveforms are
given by the red boxes. The red dashed line is the approximate amplitude of the
signal claimed in [158].
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6.4 Events in the first observing run

The developed pipeline can be run directly on data immediately after the observed GW events
(without injections). We show results for the three events of the first LIGO observing run in
Table 6.2. This shows that Gaussian noise is favoured over the echoes hypothesis for GW150914
with a log Bayes factor of ∼ −1.81. GW150914 is the loudest binary black hole merger yet
detected. A corner plot of the posterior distributions for the echo parameters for GW150914 is
shown in Fig. 6.6. The 90% credible interval for the marginalised posterior of the parameter γ
is almost as wide as the prior range. The posterior of the amplitude, A, prefers lower values of
the amplitude. The posterior for techo shows distinct lines at certain values of time. These lines
are unlikely to be associated with an astrophysical signal and are also seen in tests on simulated
Gaussian noise with the same pipeline.

As seen in Table 6.2, both GW151226 and GW151012 prefer the echoes hypothesis over
Gaussian noise, but only marginally. The log Bayes factor for GW151012 is ∼ 1.25, indicating
that the echoes hypothesis is ∼ 3.5 times more likely than the Gaussian noise hypothesis. As
mentioned earlier, the detector noise is known not to be truly Gaussian for the LIGO detectors
[110]. To estimate how likely the GW151012 Bayes factor is in true detector noise, we performed
20 background tests on off-source data that lies before or after the time of GW151012 at intervals
of 50 seconds. Each of these tests is sufficiently separated in time from the others that it will not
be contaminated by a common signal. In these background tests, two examples were found with
a Bayes factor larger than the result for GW151012 shown in Table 6.2. A total of four intervals
returned Bayes factors that favoured the echo hypothesis over Gaussian noise. Backgrounds for
similar (but not identical) echoes hypotheses were also studied in [272] which found evidence
for significant tails in the distribution of Bayes factors in real detector noise versus simulated
Gaussian noise.

While it is interesting to speculate whether a signal model could be developed that postdicts
echo signals for certain events, such as GW151012, but not for others, such as GW150914, we
do not pursue that here. The argument that GW151012 should be accepted as a genuine binary
black hole merger was given recently in [191], however we do not feel that the echoes data for
GW151012 is sufficiently strong to seriously entertain a model where GW151012-like events
display echoes, but GW150914-like events do not.

The SNR values found for the maximum likelihood templates in Table 6.2 are comparable,
although not identical to those found in [158] and [3]. The finite template spacing in the template
banks of [158] and [3] causes a minor difference in recovered SNR values. The main differences
are the different base IMR waveform employed and the different power spectral density (PSD)
used to calculate the matches. Here we have used a PSD computed using standard pycbc [55,
278] routines based on Welch’s method. We estimate the PSD by taking the median value
over 64 8 second-long segments (each overlapped by 4 seconds), centred on the main event. A
different routine was used in [158] and [3] based on examples provided at [251].

With the simplistic hypothesis that all three binary black hole events should show evidence
for echo signals in the range of parameters assumed, we can simply add the log Bayes factor
together to obtain an overall log Bayes factor for this model relative to Gaussian noise of −1.81+
1.25 + 0.42 = −0.14. This is negative, indicating a preference for Gaussian noise, but not by
much. It is worth noting that this simplistic combination assumes that the values for the echo
parameters can lie anywhere in their prior ranges for any of the three events. This is slightly
different from the hypothesis of [158] that assumes certain echo parameters should have the same
value in all three events. With a hypothesis that fixes the values of certain echo parameters
to be the same in all cases, it is possible that the overall Bayes factor would be different from
our result. But this issue also raises the question of how these common parameters should be
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6.4 Events in the first observing run

Figure 6.6: Corner plot for ADA echoes templates in data just after the merger of GW150914.
The log Bayes factor for this data is −1.81, indicating a preference for the Gaussian
noise hypothesis over the Echoes hypothesis. Lines are visible in the t echo subplots,
but the SNR associated with these is still not high. These lines are also seen in quiet
injections into noise Fig. 6.2 and even tests of the pipeline on simulated Gaussian
noise (not shown).

131
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Event Log Bayes factor Max. SNR

GW150914 -1.8056 2.86
GW151012 1.2499 5.57
GW151226 0.4186 4.07

Table 6.2: Table of Bayes factor results. Negative values indicate that the Gaussian noise hy-
pothesis is preferred. Positive values indicate that the echoes hypothesis is preferred
after marginalisation over parameters. For an approximate indication of scale, log
Bayes values with magnitude < 1 are “not worth more than a bare mention” in the
nomenclature of [119].

fixed; a simple maximisation of the sum of the squares of the template SNRs as in [158], or as
a maximisation or marginalisation of the likelihood function introduced here. The two events,
GW151012 and GW151226, have lower amplitudes for the main signal than for GW150914 and
thus echoes signals with the same relative amplitude would have a lower absolute amplitude
relative to the ambient noise [3]. We defer investigation of these subtle issues to future work.

6.5 Discussion and conclusions

With knowledge of how sensitive our pipeline is from the injection test runs of Sec. 6.3 we can
determine the amplitude of echoes that would have been detectable had they been present in
the data. This allows us to place a bound on the amplitude of echoes emitted from the events
considered here. We remind the reader that bounds from our search only relate to the family of
echo waveforms considered here. These are based on the waveform model assumed in [158] and
adopting the prior ranges of Table 6.2.

As shown in Fig. 6.6, the posterior amplitude recovery for GW150914 has a 90% confidence
interval from 0.0051 to 0.1789. For this realisation of the noise, amplitudes above 0.1789 are
ruled out at 90% confidence. This is consistent with the injection studies depicted in Fig. 6.4
which show that (for noise at a different time, 100 seconds after the main event) echo signals
with amplitudes ≳ 0.15 would have been unambiguously identified in the data.

Echo signals of amplitude 0.1 relative to GW150914 would correspond to approximately 0.1
solar masses of energy being reflected from near the black hole horizon [256]. Although this
value of the amplitude is not conclusively ruled out with the current data, an amplitude as high
as 0.2 is conclusively ruled out by our results.

For numerical simulations of systems similar to GW150914 within general relativity, it is
conservatively estimated that ∼ 2 solar masses of gravitational energy flows across the horizon
[127]. Our constraints here on the amplitude of echoes within the model of [158] suggest that at
most 20% of this energy is being reflected by near-horizon structure and re-emitted as echoes. In
the context of this specific model, it implies that a significant amount of energy is still being lost
into the black hole. Our results in this context are qualitatively similar to those in [279], although
an exact quantitative comparison is not possible because of the different models assumed.

We have seen that Gaussian noise is preferred over ADA echo-like signals in the data of
GW150914. Although there is some evidence of echoes in GW151012 and GW151226, as both
show positive log Bayes factors, this evidence is not very strong. Sampling the true detector
noise by running over off-source times, shows that the log Bayes factor found for GW151012 is
not unusual, and contrarily to [158], cannot be reliably distinguished from pure noise. A number
of improved echo waveform models have been proposed; we defer running with these on further
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events to future work.
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6.6 Appendix

6.6.1 Fiducial IMR waveform parameters

We list here the parameters of the base IMR waveforms used to construct the echo templates
both for injections and for the searches. These values are obtained from the maximum likelihood
values of [99].

Parameter GW150914 GW151012 GW151226

mass1 39.03 22.87 18.80
mass2 32.06 18.67 6.92
spin1x -0.87 0.12 0.44
spin1y -0.43 0.19 0.59
spin1z -0.06 -0.20 0.33
spin2x -0.11 0.018 0.00
spin2y -0.03 -0.019 -0.017
spin2z -0.15 0.062 0.0033
distance 477 751 315

ra 1.57 0.65 2.23
dec -1.27 0.069 0.98
tc 1126259462.42 1128678900.46 1135136350.66

polarisation 5.99 5.64 1.43
inclination 2.91 2.32 0.68
coa phase 0.69 4.44 1.64
phase shift -0.92 -0.91 1.86

133





7 Constraining the Kerr-geometry of
GW150914 with horizonless modes

We obtain stringent constraints on near-horizon deviations of a black hole from the Kerr geome-
try by performing a long-duration Bayesian analysis of the gravitational-wave data immediately
following GW150914. GW150914 was caused by a binary system that merged to form a final
compact object. We parameterise deviations of this object from a Kerr black hole by modifying
its boundary conditions from full absorption to full reflection, thereby modelling it as a horizon-
less ultracompact object. Such modifications result in the emission of long-lived monochromatic
quasinormal modes after the merger. These modes would extract energy on the order of a few
solar masses from the final object, making them observable by LIGO. By putting bounds on the
existence of these modes, we show that the Kerr geometry is not modified in this way down to
distances as small as 5.8 × 10−19 meters away from the horizon. Our results indicate that the
post-merger object of GW150914 is well described as a black hole of the Kerr geometry.1

7.1 Introduction

General relativity (GR) predicts the existence of black holes which possess a horizon, a surface
that acts as a perfect absorber. The exterior vacuum geometry of stationary rotating black holes
in GR is that of the Kerr geometry [16].

A binary black hole merger results in a rotating, perturbed black hole which then relaxes to
equilibrium by emitting gravitational waves (GWs) at specific frequencies, the frequencies of
its ringdown or quasinormal modes (QNMs). In GR, the spectrum of the QNMs is completely
determined by the black hole mass and spin. Previous QNM analyses of the GW ringdown
from binary black hole mergers have yielded broad consistency with the remnant being a Kerr
black hole [2, 69, 71, 72, 172]. The first overtone of the dominant QNM was found in LIGO’s
GW150914 event by Ref. [172] (and in other events in Ref. [71, 72]). In Ref. [2], a subdominant
fundamental mode was found in GW190521. In all cases, the recovered modes were consistent
with GR.

Here we present a method for testing the validity of the Kerr geometry down to microscopic
distances away from the horizon, in the region where gravity becomes strong, and apply it to
the LIGO GW150914 data. In contrast to a black hole, a horizonless object is not a perfect
absorber of GWs, and could be distinguished from a black hole by its post-merger GW emission.
As the interaction of the GWs with the interior matter of the object is expected to be weak,
the infalling waves could propagate into the object and re-emerge after some time delay [280].
Thus, to model a horizonless object, we modify the boundary conditions to allow GW reflection
at a surface that is a relative distance ϵ ≪ 1 away from the would be horizon (see Eq. (7.3)).
This description is equivalent to the wave passing through the interior and leads to the same
functional dependence [156].

Imposing boundary conditions in the Kerr geometry that allow reflection near the horizon
leads to the appearance of additional modes, the QNMs of the horizonless object. The initial
ringdown modes are very similar to those of a Kerr black hole, as they result from excitations of

1This chapter is an adaptation of the work in the pre-print [5] as described in Section 1.2.
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7 Constraining the Kerr-geometry of GW150914 with horizonless modes

the photon sphere. The additional modes are long-lived, nearly monochromatic GWs, expected
to appear after a time delay and dominate the emission at times long after the merger (see for
example Fig. 3 of [281]). Their frequency is proportional to the rotational frequency of the
black hole, while their lifetime is τ ∼ M | ln ϵ|2, where M is the black hole mass (ln = loge)
[156, 175, 282]. For GW150914, the frequency of such modes would be ∼ 210Hz — well within
LIGO’s sensitive band — with lifetimes in the range 30 s ≲ τ ≲ 8000 s (assuming mass and spin
estimates from [190], and allowing ϵ ∈ [10−45, 10−5]).

The amplitude of the additional modes is determined by the total energy falling in through
the initially formed trapped surface [127, 246]. Since about the same amount of energy falls
into the trapped surface as is emitted during the merger, [127, 246], we expect that the same
amount will be channeled to the additional QNMs. In GW150914, we estimate that the total
amount of extracted energy is ∼ 3M⊙ [see Eq. (7.10)] and therefore should be detectable with
high signal-to-noise ratio (SNR). The additional signal is weak but extremely long lived. By
using a long integration time we can place stringent constraints on ϵ.

In this work, we directly constrain ϵ by performing a long-duration Bayesian analysis of the
GW150914 post-merger data. We develop new parameter estimation methods to overcome the
challenges posed by the long duration of the signal and analysed data. Through these, we
can probe the near-horizon region of a rotating black hole with unprecedented accuracy, and
constrain its geometry down to microscopic distances away from the horizon.

The additional ringdown modes are related to the so-called black hole echoes [153, 176], as
both are associated with reflection from the black hole and produce a long-duration post-merger
GW signal. Indeed, the additional modes can be seen as the superposition of many echoes’
low-frequency components at very late times. However, the additional modes differ in some
significant aspects from models for echoes previously considered. In these echoes models, the
initial merger signal repeats itself at regular intervals, with a decay rate that is treated as a free
parameter. The model has five free parameters in total. In our model, the resulting GW signal
is a damped sinusoid which resembles in form the standard black hole ringdown modes. The
frequency, decay time, and amplitude are all determined by the modified boundary conditions
at the reflecting surface, and the mass and angular momentum of the black hole.

Several echoes searches were performed in [3, 4, 71, 158, 177, 256, 262]. While some of the
searches reported evidence for near-horizon structure [158, 262], others [3, 4, 177, 256] found
low statistical evidence for echoes. An extended search that uses the model proposed in [71] was
done using the LIGO-Virgo gravitational-waves transient-catalog-2 (GWTC-2) for 31 black hole
events. That search reported no statistically significant evidence for echoes in the data. Some
implicit constraints on ϵ can be deduced from the null results of these searches [3, 4, 122, 256].
However, these constraints depend on several uncertain modelling assumptions.

Previous efforts to constrain ϵ using electromagnetic emission from black holes were based on
the idea that if the horizon of a black hole is replaced by a hard surface at a fractional distance
ϵ away from the horizon, the electromagnetic emission from such a surface can be observed and
could be used to place limits on the luminosity of black holes [283]. Several analyses [284–286]
eventually led to impressive nominal results ϵ ≲ 10−16 [283, 287] (corresponding to a distance
of ∼ 10−6m). However, obtaining concrete limits using this method requires making many
assumptions [283], including about the surrounding matter. For additional discussions of the
caveats and limitations of this method, see [283, 288].

Fortunately, assuming that the Einstein equivalence principle holds, the dynamics of GWs
are only sensitive to the geometry, and the interaction between GWs and matter is extremely
weak, and therefore independent of specific environmental models. This allows us to obtain
extremely strong constraints: we find ϵ < 3.3×10−24 (90%-credible interval), which corresponds
to a distance between the reflective surface and the Kerr horizon of no more than 5.8× 10−19m
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in the Boyer-Lindquist coordinate distance.

7.2 Theoretical framework

The invariant line-element of a Kerr black hole in Boyer-Lindquist coordinates is

ds2 = −
(
1− 2Mr

Σ

)
dt2 − 4Mr

Σ
a sin2 θdϕdt+

Σ

∆
dr2+

Σdθ2 +

(
(r2 + a2) sin2 θ +

2Mr

Σ
a2 sin4 θ

)
dϕ2 .

(7.1)

Here a is the spin parameter, Σ = r2 + a2 cos2 θ, and ∆ = r2 + a2 − 2Mr = (r − r+)(r − r−),
with r± = M ±

√
M2 − a2. The angular velocity of the horizon, Ω, is related to a through

Ω = (a/M)/2r+ = χ/2r+, with the dimensionless spin parameter χ = a/M .
Gravitational perturbations in the exterior vacuum Kerr geometry obey the Teukolsky equa-

tions [53, 120], which reduce to an eigenvalue problem when regularity of the solution is imposed.
The resulting radial equation can be simplified by changing variables [121] and using tortoise
coordinates dr∗/dr = (r2 + a2)/∆, taking the final form

d2sΨℓm

dr2∗
− V (r, ω)sΨℓm = 0 . (7.2)

For gravitational perturbations, the spin is s = ±2. In tortoise coordinates, the spatial co-
ordinates are Euclidean and hence Eq. (7.2) describes potential scattering in flat space. The
expression for the effective potential V (r, ω) can be found in [121].
We find the spectrum of the additional QNMs by imposing boundary conditions at infinity

and at the near-horizon surface rNH , which is at a relative distance ϵ above r+,

ϵ =
rNH − r+

r+
. (7.3)

The solutions of Eq. (7.2) behave approximately as follows,

Ψ ∼ eiωr∗ , r∗ → ∞, (7.4)

Ψ ∼ e−iωr∗ +Reiωr∗ , r∗ → r∗(rNH), (7.5)

where R is the reflection coefficient of the surface, and the complex frequency ω = ωR + iωI
has to satisfy Eq. (7.2). The real and imaginary part of ω are related to the frequency f and
damping time τ of the QNM by ωR = 2πf and ω−1

I = τ . An additional unknown phase accounts
for the propagation through the interior and is absorbed into the phase ϕ in the waveform of
Eq. (7.8), while we marginalise over the phase of the signal in the numerical analysis.
For a Kerr black hole, the reflection coefficient is zero at the horizon. We modify the boundary

conditions at r = rNH such that R is non-vanishing. In general, R may depend on the frequency.
However, for the range in ϵ that we consider here, the possible signal frequencies are limited to
a small range near mΩ, with M |ωR −mΩ| ≪ 1. Therefore, we take R to be a constant.
We choose a perfectly reflecting boundary condition, R = 1. This choice is justified on

grounds that if the Einstein equivalence principle holds for the interaction of GWs with the black
hole, then the object’s surface can only either be fully absorbing (R ≪ 1), or fully reflecting
(1−R ≪ 1). Partial absorption (0 < R < 1) would require the object to contain a membrane
or other viscous fluid capable of dissipating GWs [243, 289]. However, such models only yield
non-negligible absorption when unknown exotic matter is considered [289, 290]. Heuristically, if
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7 Constraining the Kerr-geometry of GW150914 with horizonless modes

the matter is not exotic, then the absorption through the object’s surface scales as 1/τ . This
means that the deviation from total reflection should scale as r+/τ ≪ 1, which means that
1 − R ≪ 1. Conversely, firewall and fuzzball models yield almost full absorption due to the
large density of black hole microstates and the small energy gaps between them [291, 292]. This
makes them functionally indistinguishable from classical GR black holes. We therefore focus on
the pure reflection case and fix R = 1. A more detailed argument is found in the Appendix.

For perfect reflection and s = −2, the solution for the dominant contribution ℓ = 2 can be
found analytically [156, 175] (also see [282]), yielding

ωR ≃ mΩ± π

2|r0∗|
(ν + 1) , (7.6)

ωI ≃
2M (ωR −mΩ) r+
225|r0∗| (r+ − r−)

[ωR(r+ − r−)]
5 . (7.7)

Here, |r0∗| ∼
∫
dr
√
grr ∼ M

(
1 + (1− χ2)−1/2

)
| ln ϵ|; we choose the dominant overtone number

ν = 1 (not to be confused with the BH QNM-overtone number n). The amount of energy stored
in the higher overtones ν ≥ 2 is expected to be much lower than that stored in the dominant
mode. For very small ϵ, the remaining modes approach the ν = 1 mode in frequency.

The solutions contain two types of signals, damped or superradiant for a positive or negative
sign of ωR(ωR −mΩ), respectively [156, 175]. Only two absolute values of ωR appear for each
value of |m|, as changing the sign of bothm and the second term in Eq.(7.6) in turn only changes
the sign of ωR.

Alternatively, the damping properties of the modes can be explained from an interior perspec-
tive where, similar to [157], the scattering cross-section of the outgoing waves is positive and
leads to a damped rather than amplified waveform, see [175] and Appendix for further details.
As noted in [157, 280], a heuristic description is that the would-be BH is effectively in an excited
state and it decays to equilibrium with a lifetime τ .

We focus on the case ϵ ≪ 1 such that | ln ϵ| ≫ 1. Then Eq. (7.6) is mostly governed by the
angular frequency of the object ωR ≈ χ/r+ and Eq. (7.7) corresponds to a large damping time
τ ∼ r+| ln ϵ|2. The large damping time allows us to constrain ϵ by analysing a long duration of
post-merger data.

7.3 Signal model

Our signal model reflects the damped oscillatory properties of the modes, and relies on the
knowledge of the initial merger phases from which we can extract all other parameters of the
black hole. We then assume a smooth transition between the early to late time phases [293,
294].

We use a quasi-normal mode to model the late-time post merger signal,

(h+ + ih×)(t) = −2Sℓm(ι, φ)Ae
−t/τei(2πft+ϕ)Θ(t− t0) , (7.8)

which is parameterised by five intrinsic parameters. These are the amplitude A, frequency
f = ωR/2π, damping time τ = ω−1

I and initial phase ϕ of the damped sinusoid, and a start
time t0 of the signal. If the prompt ringdown emission occurs at t = 0, then t0 describes
the time delay between this and the start of the additional QNM signal. The spin-weighted
spheroidal harmonics −2Sℓm depend on the inclination ι and azimuthal angle φ. Here, we
consider the dominant l = m = 2 mode and approximate the spheroidal harmonics by spin-
weighted spherical harmonics [138, 139]. For ϵ ≪ 1, the frequency ωR in Eq. (7.6) is governed
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Figure 7.1: An example of the proposed waveform with parameters corresponding to the maxi-
mum likelihood values for the inspiral-merger-ringdown analysis of GW150914, with
ϵ = 10−25. The upper panels show the waveform in the frequency domain, while
the lower panels show the same waveform in the time domain. In the right panels,
the same waveform is shown as on the left, with a restricted range in frequency and
time, respectively, to improve visibility of the waveform features.

by the object’s angular velocity,

MωR =
χ(

1 +
√
1− χ2

) +
π
√

1− χ2

|ln ϵ|
(
1 +

√
1− χ2

) . (7.9)

For a set of example parameters compatible with GW150914, M ≈ 62M⊙, χ ≈ 0.67, and for
ϵ = 10−25, we would find MωR ≈ 0.4 and f ≈ 211Hz. An example of the waveform is shown in
Figure 7.1. This range of parameters guarantees the validity of Eq. (7.7), since as pointed out
in [175], the derivation relies on the assumption that MωR < 1, aωR < 1 and M(ωR −mΩ) ∼

1
| ln ϵ| ≪ 1.

The amplitude A is determined by the total energy (and angular momentum) that is carried
away by the GWs to infinity (see [280]). The total emitted energy is determined at the merger
[127], we label it by ∆E = Einit + Erot. Here, Einit is the energy of the infalling gravitational
radiation from the merger, while Erot is the rotational energy extracted as this infalling radiation
is forced to rotate through frame-dragging. Then, by using the non-relativistic approximation,
such that Erot =

1
2EinitΩ

2r2+, we find

∆E = Einit

(
1 +

χ2

8

)
. (7.10)

For the same example parameters, rotational effects lead to a correction of the emitted energy
by an increase of ∼ 5% compared to the non-spinning case, yielding ∆E ≈ 3.2M⊙. In the
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superradiant case in contrast, most of the rotational energy is extracted by the emitted GW,
such that Erot ∼MΩ2r2+ ∼ 5M⊙.

To calculate the amplitude, we evaluate the emitted energy ∆E by using the leading order
GW flux formula,

ĖGW =
D2
L

32π

∫
⟨ḣµν ḣµν⟩dΩ . (7.11)

Here the dot denotes a time derivative, DL is the luminosity distance, hµν is the waveform in
the transverse–traceless gauge, dΩ is an element of solid angle, and angular brackets denote
averaging over short wavelengths. We approximate the integral in Eq. (7.11) by noticing that
the emitted GWs are approximately monochromatic with ωR ≃ 2Ω, yielding ĖGW ≈ 1

4D
2
L⟨|ḣ|2⟩.

Then, by taking h(t) from Eq. (7.8) and for ϵ ≪ 1 such that ωRτ ≫ 1, the final expression for
the amplitude becomes

A =
4

ωRDL

(
∆E

τ

)1/2

. (7.12)

In Eq. (7.12) the parameters ωR, τ and ∆E are given in Eqs. (7.6), (7.7), and (7.10), respectively.
The explicit form of ωR is given in Eq. (7.9), while for τ it is

τ =
225M

32π

(
1 +

√
1− χ2

√
1− χ2

)6
| ln ϵ|7

(
χ| ln ϵ|+ π

√
1− χ2

)5 (7.13)

We fix the parameter t0 to an arbitrary value some time after the merger. To prevent con-
tamination of the analysis from the standard ringdown modes, we choose a time that is large
compared to the lifetime of these modes, but short compared to the lifetime of the additional
signal, t0 = 32 s. Because the amount of energy emitted during this relatively short time is small
and because the SNR is determined by the total collected energy, we do not lose much diagnostic
power by this choice. As the damping time increases for smaller ϵ, this approximation is more
accurate for the expected small values of ϵ.

In addition to ϵ, the parameters varied in the analysis are right ascension α, declination δ,
polarisation Ψ, inclination ι, luminosity distance DL, final mass M , final spin χ, and energy
radiated in the primary GW emission, ∆E. Equations (7.9), (7.10), (7.12) and (7.13) then deter-
mine the parameters of the damped sinusoid template. The phase ϕ of the signal is marginalised
over analytically. We use as priors for the source parameters the posteriors found in [190], calcu-
latingM , χ and ∆E from the component parameters via fitting formulae to numerical relativity
[198–200]. For the only additional parameter of our model, ϵ, we use a log-uniform prior in the
interval −45 ≤ log10 ϵ ≤ −5.
We use Bayesian methods to estimate the signal parameters from the data. The toolkit PyCBC

Inference [99, 108] is used to compute the likelihood and estimate the posterior probability
distributions. The parameter space is sampled using the parallel-tempered Markov-chain Monte
Carlo sampler emcee pt [114, 117].

We modify the standard parameter estimation analysis to prevent influences from boundary
effects. The expected signal persists for a longer time than the currently manageable duration
of the analysis. We therefore need to restrict the time series data to a shorter time window,
which introduces a discontinuity from the sharp cut-off at the window edges. This leads to
artefacts in the time-domain response function of the whitening filter. To avoid this, we remove
the times containing these artefacts, and we employ a heterodyning procedure to reduce the
computational cost of generating long template waveforms (see Appendix).
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7.4 Results

Applying our analysis to 128 s of data starting 32 s after GW150914 yields the posterior on ϵ
shown in Fig. 7.2. The results are consistent with the absence of the searched signal, as the
posterior peaks toward the lower boundary. Our upper bound on the 90%-credible interval is
log10 ϵ = −23.5. For the post-merger black hole of GW150914, this bound corresponds to a
distance between the reflective surface and the Kerr event horizon of no more than 5.8×10−19m
in the Boyer-Lindquist coordinate distance. The corresponding proper distance is 2.8× 10−7m.
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Figure 7.2: The histogram shows the marginal posterior for the fractional deviation from the
Kerr geometry, ϵ, measured for the proposed signal for GW150914. The prior for
log10 ϵ is flat, as shown in the shaded region. The dashed lines mark the one-sided
50th and 90th percentile upper bound. On the top axis the coordinate distance
between reflective surface and horizon corresponding to ϵ is shown for the post-
merger black hole in GW150914, and hatching indicates distances below the Planck
length. As the distance posterior is virtually identical to the posterior for log10 ϵ, we
only show the latter and use the maximum likelihood values for mass and spin from
[190] to convert from log10 ϵ to the distance scale.

To validate this result, we repeat the analysis on data before GW150914, when no signal is
expected, as well as on Gaussian noise. We also inject a simulated signal with log10 ϵ = −21
into detector noise to verify that the analysis can detect a louder signal when present. We find
that the posterior on ϵ does peak toward the injected value in the latter case, whereas in noise
the posterior and limits are similar to what we obtain for the GW150914 post-merger data (see
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Figure 7.3: The 90% bounds placed on ϵ for the analysis of different durations of data are shown

as blue dots. A curve of the form T (| ln ϵ|) ∼ c| ln(ϵ)|2 ln
(
1− (a− b/| ln(ϵ)|)2

)
, with

constants a, b, c, is fitted to the retrieved bounds (see Appendix). The fit asymptot-
ically approaches log10 ϵ ≈ −23.7. For longer segments of data, the bound increases
again (empty circle), as the posterior begins to be dominated by lines in the power
spectral density of the noise.
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Appendix).
To investigate the effect of the amount of time analysed on the bound on ϵ, we repeat the

analysis using time segments 16 s, 32 s, 64 s, and 256 s. The results are shown in Fig. 7.3. As
expected, the upper bound on ϵ increases as we analyse shorter time segments than the 128 s we
use above. This suggests that analysing longer times would yield even better limits. However,
in the 256 s analysis the bound is worse than what we obtain with 128 s. This is because the
posterior on ϵ begins to be dominated by lines in the power spectral density of the noise as the
analysis time increases, leading to weaker constraints. Overcoming this would require removing
lines from the data, which is outside the scope of this work.

Using the 16 s to 128 s results (for which lines are not an issue) we estimate the best limit
that could theoretically be obtained with GW150914. Fitting the expected relationship between
observation time and ϵ, we find that the best 90%-constraint using arbitrary lengths of data
would be log10 ϵ ≈ −23.7. This limit arises due to a combination of the SNR of GW150914, the
energy available in this system that could be converted to the long duration QNMs, and the
transfer function of the analysis. Since the potential signal is a damped sinusoid, the recoverable
SNR asymptotes to a fixed value for infinite observation time. This in turn puts a limitation on
the smallest ϵ that can be measured. While the transfer function is unknown in detail, we can
use the relation of SNR and analysis duration as the basis for a fit to the measured bounds (see
Appendix). As can be seen in Fig. 7.3, we are close to the resulting empirical limit with the
128 s analysis time.

7.5 Conclusion and outlook

We performed the first long-duration QNM analysis of the post-merger data of GW150914, and
ruled out the existence of long-lived additional QNMs for a broad class of alternative compact
objects. For this class of models, we put a bound on the validity of the Kerr geometry down
to fractional distances from the horizon as small as ϵ < 3.3× 10−24, which is equivalent to a
coordinate distance < 5.8× 10−19m. Our result improves existing bounds by many orders of
magnitude and indicates that the GW150914 post-merger object is a black hole that is well
described by the Kerr geometry.
Based on the fit in Fig. 7.3, we conclude that to significantly improve our bounds will require

a black hole merger with larger SNR than GW150914.
By combining results over multiple events, and with improving sensitivity of future detectors,

it should be possible to eventually probe spacetime geometry down to Planck scales above the
horizon. This could provide confirmation of the Kerr nature of astrophysical black holes all the
way to their horizons.
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7.6 Appendix

7.6.1 Justifying the assumption of full reflection

Here we elaborate on the arguments given in the main text and provide further explanations for
justifying full reflection.

One can understand, heuristically, the scaling of ωR and τ , the frequency and decay time
of the additional modes. Here, we consider the interpretation of gravitational waves entering
the compact object and re-emerging after passing through its centre, equivalent to reflection at
the surface. In tortoise coordinates, the near horizon geometry looks flat and Eq. (7.2) can be
viewed in terms of a wave propagating in a cavity of length r+| ln ϵ|. The scaling of the decay
time τ can be understood in terms of ideas that were introduced in [157] and elaborated on in
[280]. We briefly review them here and refer the reader to the original articles for further details.

First recall from Eq. (7.6) that the “proper” angular frequency of the additional modes is
ωR ∼ 1

r+| ln ϵ| . This means that a co-rotating GR external observer would view them as having

a wavelength λ ∼ r+| ln ϵ| . The source of the GWs is the ultracompact object which has an
area of about A ∼Mr+. The transmission cross-section for such long wavelength modes for an
area A is proportional to the ratio A/λ2, which scales as Mr+/λ

2 ∼ 1
| ln ϵ|2 . The decay time

is inversely proportional to the transmission rate, so scales as τ ∼ | ln ϵ|2 . In the GR-limit,
ϵ→ 0, and so the transmission through the object vanishes. The scaling A/λ2 results from the
assumption that gravity acts equally on all forms of matter according to the Einstein equivalence
principle.

The heuristic argument that we have just reviewed can also be applied to the case of imperfect
reflection at the surface rNH = r+(1 + ϵ). Such scenarios require exotic matter which in some
cases may violate fundamental principles [290] and are therefore disfavoured. If the reflection
is not parametrically small, which corresponds to nearly full absorption and so, effectively, to
a horizon, the mode’s decay time would scale as it does for the case of total reflection. The
key point is that partial absorption occurs at the surface rNH . Then, the absorption through
this surface would scale as A/λ2 ∼ 1

| ln ϵ|2 . When the angular momentum of the GW is taken

into account, one finds that the absorption through the object’s outer surface scales precisely as
1/τ . This means that the deviation from total reflection should scale similarly. Consequently,
1−R ≪ 1 since r+/τ ≪ 1.

In the majority of echo models, the reflection coefficient is an arbitrary constant that is put by
hand; see [295] and reference therein. None of the reviewed models elaborate on the underlying
mechanism that provides the absorption properties of the would-be black hole. Many of them
refer to the fundamental papers that motivate horizon scale corrections, such as the firewall
and fuzzballs proposals. However, a closer look reveals that a partial absorption of GWs that
is comparable to black hole absorption is an unrealistic situation that is not compatible with
fundamental physical properties.
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For example, in the firewall-inspired models and the fuzzball proposal [291, 292], due to the
large entropy and density of states and the small energy gap between the black-hole microstates,
an infalling quantum is almost fully absorbed. Fuzzball absorption is therefore almost identical
to the black hole absorption (see [296] for specific examples). In [297] it was argued that (Eq. 3),
for ω ≪ TH , with the Hawking temperature TH ,

R = exp(−ω/TH)(γω)−ω/TH . (7.14)

This means that R = 1 to exponential accuracy, or

R = 1− ω/TH . (7.15)

The Hawking temperature TH in natural units is 1/r+, so the intrinsic frequencies that we
discuss obey this condition. Similarly in [298], they argue that R is close to one, except for
special frequencies that correspond to the intrinsic frequencies of the quantum black hole, which
are of order 1/RS , where RS = 2M is the Schwarzschild radius.
If one wishes to model the object’s absorption by an alternative dissipation mechanism as

in the membrane paradigm, one needs to assume the existence of an exotic matter. To show
this, it is possible to model the object’s intrinsic dissipation in terms of its effective viscosity
as in the membrane paradigm [243]. In [290] it is shown that the absorption coefficient γabs
scales as γabs ∼ η/ηBH , where ηBH is the BH viscosity. The absorption is negligible for all
known matter forms. For example, a highly viscous cold neutron star has γabs ∼ 10−8, while
non-rotating strongly magnetised neutron stars and fictitious highly viscous bosonic matter have
γabs ∼ 10−4. Obviously, for these extreme examples the reflection coefficients R2 = 1− γabs ≃ 1.
The conclusion is that physical matter cannot mimic the effect of full absorption as the BH
membrane does, and is almost completely transparent to GWs.
The orthogonal case is represented by models with approximately full absorption, which are

indistinguishable from GR BHs. Since the latter is irrelevant for the post-merger measurements
we will focus on the former case, where no absorption is present, and therefore fix the reflection
coefficient to one.
We stress that ultracompact objects without a horizon and that obey the equivalence principle

are plausible. Examples include anisotropic stars, gravastars, and possibly other compact ob-
jects [122, 299–301]. These objects, under some unique circumstances, allow for such reflection
properties.
To summarise, the above arguments indicate that having a partially absorbing surface is not

a realistic scenario. Therefore, the absorption properties are binary: either full reflection, or
complete absorption.

7.6.2 Lower bound for ϵ

To derive the lower bound on epsilon shown in Fig. 7.3 we first recall the formula for the optimal
SNR of the signal,

ρ2 = 4

∫ ∞

0

|h̃(f)|2
Sn(f)

df , (7.16)

where h̃(f) is the Fourier transform of Eq. (7.8) and Sn(f) is LIGO’s strain sensitivity. Since
the signal is approximately monochromatic, Eq. (7.9), the strain sensitivity is constant, Sn(f) =
Sn(fR), where fR is the signal’s frequency. This allows us to use the Plancherel (Parseval’s)
theorem

∫
|h̃(f)|2df =

∫
|h(t)|2dt such that the SNR becomes

ρ2 =
4

Sn(fR)

∫ ∞

0
|h(t)|2dt . (7.17)
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Next, we take the time domain waveform Eq. (7.8) and replace the integral upper bound by
some arbitrary time T , which corresponds to the analysis integration time. Integration over
time leads to

ρ2 ≈ τA2

2Sn(fR)

(
1− e−2T/τ

)
. (7.18)

We use the amplitude from Eq. (7.12) and assume τ2ω2
R ≫ 1, finding

ρ2 ≈ 8∆E

ω2
RD

2
LSn(fR)

(
1− e−2T/τ

)
. (7.19)

Finally, we extract the analysis time T ,

T (| ln ϵ|) ∼ c| ln(ϵ)|2 ln
(
1−

(
a+

b

| ln(ϵ)|

)2
)
, (7.20)

where the constants a, b, c are to be determined by the numerical fit to the data points of the 90%
credible interval of log10 ϵ, see Fig. 7.3. In general, these constants are functions of the mass,
spin, strain, SNR and additional unknown systematic errors. We quantify our lack of knowledge
regarding the additional errors by the constants that are determined by the fit. Providing an
exact analytical expression for the constant in terms of the physical parameters requires a transfer
function that includes the additional errors, nevertheless the fit to data is mostly governed by
the logarithmic asymptotic behaviour which is insensitive to these changes. Further details
regarding the external effects are provided in the main text. Eventually, the numerical fit for
the data is found to be bounded from below by log10 ϵ = −23.7. The interpretation is that, given
sufficiently long analysis time, the lowest possible bound that can be measured is ϵ = 10−23.7.

7.6.3 Data analysis details

To analyse data spanning times [t0, t1], we first consider a slightly longer stretch of data corre-
sponding to [t0 −∆t, t1 +∆t]. The template is generated with duration (t1 − t2) + 2∆t, starting
at t0 −∆t. Both data and template are Fourier-transformed to the frequency domain and the
whitening filter is applied to both. We then transform both back to the time domain and remove
the times previously added, [t0 −∆t, t0) and (t1, t1 +∆t], from each timeseries. We choose ∆t
such that the effects of the discontinuity at the boundaries are restricted to the times we remove.
The resulting timeseries’ are Fourier-transformed back to the frequency domain to calculate the
likelihood from the inner product of the whitened data and template. For the damped sinusoid
signal, the earlier start time is compensated in the template by increasing the initial amplitude
by a factor exp[∆t/τ ].

We use heterodyning to minimise the computational cost of generating signal templates. The
frequency-domain representation of the signal is restricted to a very narrow range around its
central frequency. This allows us to generate the time-domain signal at a low sampling frequency
with lower computational cost, and then shift the frequency-representation of this signal to the
desired frequency, equivalent to generating the signal directly at a higher sampling frequency.
We first generate a time-domain damped sinusoid signal, with the desired damping time τ ,
but at frequency f = 8Hz. The sampling rate is chosen to be 32Hz to accommodate signal
components up to Nyquist-frequency of 16Hz, which encompasses the narrow frequency band of
relevant signal content. This signal is then Fourier-transformed to the frequency domain, using
the natural frequency sampling-rate for the full duration of the signal, (t1 − t0) + 2∆t. Finally,
we shift the signal to the desired frequency f , by placing the content of the frequency series from
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range [0Hz, 16Hz] into the range [f − 8Hz, f + 8Hz]. The resulting frequency domain waveform
is then used for the likelihood calculation.

While a damped sinusoid can be Fourier-transformed analytically, we can not use this to
generate the template less expensively directly in the frequency domain. For our analysis,
the required time-domain template is a damped sinusoid that ends at the analysis window
boundaries. The time-domain representation of the template generated in the frequency domain
instead extends to times outside the window. Due to the periodicity assumption of the discrete
Fourier transform, the late-time signal from earlier repetitions of the window would appear in
the analysis window and overlap with the desired signal. Therefore, we generate the signal in
the time domain following the described procedure.

For long analysis durations, the Doppler shift due to the orbital motion of the Earth becomes
time-dependent. However, we find this to be negligible for the durations of less than ∼ 1000 s
used in this analysis, and consider only a static Doppler shift.

7.6.4 Validation with noise and simulated signals

To validate our results we repeat our analysis on off-source detector noise (before GW150914)
and on simulated Gaussian noise. These serve to determine the analysis’ diagnostic power when
no signal is present in the noise. We also add simulated signals to the off-source data to verify
the effectiveness of the analysis in detecting known signals.

In each case we analyse 128 seconds of data for the presence of a signal and use 512 seconds of
data before the analysis window to estimate the power spectral density (PSD). For the Gaussian
noise case, the noise is coloured to agree with the PSD estimated from off-source data at times
before GW150914.

For the off-source analysis on real detector noise, we find that the source-parameter posteriors
are unchanged from their priors. The posteriors for log10 ϵ, τ and A are consistent with the
expectation for noise without a signal. Smaller ϵ corresponds to smaller signal amplitudes and
longer damping times, as the same total energy is radiated away over increasingly long times.
We find that the posteriors prefer large τ and small A and ϵ, with the latter peaking at the
lower prior boundary. The one-sided 90%-credible-interval bound for log10 ϵ is −23.7. This is
compatible with the 90%-result of log10 ϵ ≤ −23.5 for the data following GW150914 within the
observed fluctuations from different realisations of noise.

The frequency posterior shows narrow peaks for specific frequencies, often associated with
increased SNRs. These peaks appear only for long analysis durations and become more dominant
with increasing duration. We can attribute the most prominent peaks to lines in the power
spectral density of the noise, such as the 180Hz harmonic of the 60Hz line resulting from the
AC power grid frequency. Figure 7.5 shows an example of the off-source PSD and marks several
frequencies where posterior peaks have been found in the analyses for some starting times and
window lengths. The simulated Gaussian noise analysis yields similar results as the off-source
detector noise case, with the source-parameter posteriors unchanged from their priors. Large
τ and small A and ϵ are preferred, with ϵ peaking at the lower prior boundary, and the 90%
bound being log10 ϵ = −22.9.

Both cases show the narrow peaks in the frequency posterior described before. The peaks are
more pronounced for real detector noise than for simulated Gaussian noise. Prominent peaks
often coincide with visible lines of excess power in the PSD for the detector noise, but not
for simulated Gaussian noise coloured with the same PSD. This suggests the presence of non-
Gaussian noise features in the real noise that are partially matched by the sinusoidal templates.

Slow variations of the PSD in the detector noise may amplify this effect. For the analysis, the
PSD has to be estimated from off-source data, such that slow variations in the line parameters
cannot be corrected for in long-duration analyses.
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We perform several analyses with simulated signals added to the off-source noise, for example
with log10 ϵ = −18 or log10 ϵ = −21. For each simulation, the injected value lies within the 90%
credible interval of the ϵ-posterior, and the posterior peaks away from the lower prior boundary
and near the correct value. Figure 7.4 shows this for the log10 ϵ = −21 injection. For all
injections, the frequency posterior is concentrated in a narrow peak around the injected signal
frequency, limited by the frequency-resolution of the data. The one-sided 90% bounds for these
injections into detector noise are log10 ϵ = −13.3 and log10 ϵ = −14.3, respectively, larger than
those found for noise without a signal. As we are expecting a signal in the injection case, we
also use the two-sided credible interval as shown in Figure 7.4. The range recovered then is
log10 ϵ = −18.3+6.3

−10.0 for the injection with log10 ϵ = −18 and log10 ϵ = 19.5+6.4
−10.4 for the injection

with log10 ϵ = −21.
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Figure 7.4: Same as Fig. 7.2 with a simulated signal injected into detector noise. The histogram
shows the marginalised posterior for ϵ, the shaded region is the prior. The red line
marks the value for log10 ϵ of the simulated signal. The dashed lines indicate the
(two-sided) 90% credible interval and the median value, respectively. The posterior
clearly prefers non-zero values of ϵ in the presence of the simulated signal, and the
recovered value for log10 ϵ is within the 90% credible interval.
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Figure 7.5: The blue curve shows the power spectral density of the LIGO Hanford detector data
as estimated in the analysis from 512 seconds of data before GW150914. Several line-
like features are visible at specific frequencies, indicating excess power. Dashed lines
mark several of the frequencies where the posterior for f , the central frequency of the
damped sinusoidal waveform template, peaks narrowly for some analyses, depending
on start time and window duration. These coincide with the lines in the PSD,
suggesting that noise features corresponding to the lines are matched by templates
in the analysis. These noise features are thus likely non-Gaussian in nature, or vary
sufficiently over the duration of the analysis that they cannot be removed entirely
through the estimate of the PSD from the data before the analysis window.
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Gravitational-wave observations have quickly proven to be a valuable tool in diverse areas,
ranging from astronomy and astrophysics to nuclear physics [34, 64, 212, 302–306]. In particular,
they provide a new window to study fundamental physics in the strong-gravity regime. The work
presented in this thesis contributes several such studies, and extensions are now being pursued.

The ringdown modes of a perturbed compact object are closely tied to its nature, and offer a
direct probe of its properties. Compared to the full evolution of a binary system and the merger
phase, the individual perturbed object provides a case more accessible to theoretical study.

For black holes, measurement of the ringdown spectrum allows to directly infer the mass and
angular momentum. Predictions such as the black hole area-increase law can be tested using the
measurement of at least a single mode from this spectrum. Measuring multiple ringdown modes
allows to test their consistency with the no-hair theorem. The measurement of the ringdown
modes is therefore desirable, but challenging due to their short-lived nature and typically quiet
signal. In addition, all modes but the dominant quadrupolar one are suppressed in amplitude,
making multi-mode studies even more difficult to achieve.

We study the prospects for multi-mode tests through Bayesian parameter estimation on large
populations of simulated events based on observational population models. We estimate the rate
of detections where multiple modes are found, and the rate of those suitable to perform no-hair
tests. For current detector sensitivities, these are unlikely to occur for reasonable amounts of
observation time. Planned near-future sensitivities, however, are estimated to lead to a limited
number of multi-mode detections in a few years of collected data, some constraining deviations
from general relativity to within ±20% at the 90%-credible level.

We show that combining information from multiple detections significantly improves the
prospects of no-hair tests. Assuming that a possible deviation is the same for all events, we
perform a hierarchical analysis using the target sensitivity for the next observation run of cur-
rent instruments. Again, realistic populations of simulated events are analysed, showing that
constraints on deviations of about ±10% can likely be placed using a few years of data with this
sensitivity. However, this requires to account for systematic biases we discovered in this type of
analysis.

Similar hierarchical analyses are now being performed using available detections, but little
evidence for subdominant modes has been found [71, 72]. In addition, studies focusing instead
on the overtones of the fundamental mode are conducted, allowing to extend the waveform
templates to the merger time and access increased signal amplitudes [128]. These can be used
for the same type of no-hair and general ringdown-based tests [172–174]. While details in the
interpretation of these findings are still being investigated, including overtones seems a promising
approach to improve the ringdown modelling near the merger [129].

Our analysis of the ringdown spectrum of GW190521 shows strong evidence for a subdominant
angular mode. While this seems surprising in light of our injection studies, the population models
used there did not cover this binary’s component masses. We introduce a new method to restrict
the parameter estimation to the ringdown data. It prevents contamination from data outside
the desired range, introducing no windowing artefacts and no loss of signal. We include one
overtone to model the signal near the merger, but focus on the angular mode supported by the
data. With this mode, we perform a no-hair test, yielding unexpectedly tight bounds on the
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deviation of the subdominant mode.
A large injection study with simulated signals similar to GW190521 has been conducted to

solidify the statistical evidence, and the corresponding publication is in preparation. Addition-
ally, our methods are now being applied to the population of detections, further characterising
the behaviour of both angular mode- and overtone-based analyses in this population.

The study of modified or alternative compact objects is a very active area of research. Here,
again, the individual object under certain perturbations is more accessible to theoretical mod-
elling than the full merger scenario. The ringdown signal of such a perturbed object allows to
test these models observationally, constraining both the models and their parameters through
their support in the data.
The most direct approach is the search for the specific signal resulting from a given model. This

approach was followed for a simplified waveform model in a previous first search for gravitational
wave echo signals from alternative compact objects. Our analysis of this first study demonstrates
the methodological challenges met in the search for echoes. Only very loud echo signals could
possibly be detected through these methods, while the recovery of signal parameters suffers from
systematic biases. Extending and improving the estimation methods, we find the statistical
significance of the results to be low. However, the presence of the proposed signal is not ruled
out by our results.
We apply a Bayesian parameter estimation analysis to the same data with the same signal

model. This allows us to measure the support for echoes confidently, finding the data to be
consistent with or preferring the noise hypothesis. However, we also place upper bounds on the
amplitudes of echoes that are compatible with our results. Further searches have been carried
out using this model and methodology, reporting no evidence for these specific echo signals [71,
177].
In these approaches, our results apply only to the specific echo waveform model used in the

analysis, and to a limited degree to very similar waveforms. Sufficiently accurate theoretical
modelling of the waveform is therefore necessary to confidently constrain the proposed models,
and such improved models are under development [179]. Nevertheless, uncertainties remain
about many details regarding the nature of alternative objects, and a number of different models
have been proposed. The correspondingly large space of waveform morphologies and parameters
thus currently makes the targeted searches difficult. Relaxing the restrictions on the waveforms
and using more generic echo templates allows to search for more diverse classes of signals, albeit
at the cost of reduced sensitivity compared to an accurate waveform [72, 178, 273].
Alternatively, we can focus on signals that are common to a broad class of models for hori-

zonless objects, and can thus place constraints on this class. We follow this approach for their
long-lived quasi-normal modes, with new methods developed to accommodate the duration of
the signal. Applying these to GW150914 allows us to place a tight bound on deviations from
the Kerr geometry for this class of models. Immediate extensions are the application of these
methods to further detections and to similar signals proposed for a second type of emission
mechanism [307]. For a common deviation parameter, the application to multiple events would
allow us to construct a combined posterior as in the study on black hole ringdown populations.
The existing gravitational wave detectors are currently undergoing work to improve their sen-

sitivity for the next observation run. Construction and development of the next generation of
instruments and of new space-based observatories are underway. With a growing number of de-
tections and increased sensitivity, the presented approaches are likely to yield improving bounds
for deviations from general relativity. Similarly, growing opportunities arise to confidently as-
sess the presence of signatures from alternative compact objects, stressing the need for improved
theoretical models. As such, there is a promising future for gravitational-wave observations of
black holes to illuminate fundamental physics.
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Krümmung des Raumes’. In: Zeitschrift für Physik 21 (1924), pp. 326–332. doi: 10.
1007/BF01328280.

[19] Georges Lemâıtre. ‘A Homogeneous Universe of Constant Mass and Growing Radius Ac-
counting for the Radial Velocity of Extragalactic Nebulae’. In: Annales Soc. Sci. Bruxelles
A 47 (1927), pp. 49–59. doi: 10.1007/s10714-013-1548-3.

[20] H. P. Robertson. ‘Kinematics and World-Structure’. In: Astrophys. J. 82 (1935), pp. 284–
301. doi: 10.1086/143681.

[21] H. P. Robertson. ‘Kinematics and World-Structure. 2’. In: Astrophys. J. 83 (1935),
pp. 187–201. doi: 10.1086/143716.

[22] H. P. Robertson. ‘Kinematics and World-Structure. 3’. In: Astrophys. J. 83 (1936),
pp. 257–271. doi: 10.1086/143726.

[23] A. G. Walker. ‘On Milne’s Theory of World-Structure’. In: Proceedings of the London
Mathematical Society s2-42.1 (1937), pp. 90–127. doi: 10.1112/plms/s2-42.1.90.
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[287] Anna Zulianello, Raúl Carballo-Rubio, Stefano Liberati and Stefano Ansoldi. ‘Electro-
magnetic tests of horizonless rotating black hole mimickers’. In: Phys. Rev. D 103.6
(2021), p. 064071. doi: 10.1103/PhysRevD.103.064071. arXiv: 2005.01837 [gr-qc].
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