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A B S T R A C T

Marine renewable energies can play a key role by reducing the dependency on fossil fuels and, therefore, 
mitigating climate change. Among them, it is expected that wave energy will experience rapid growth in the 
upcoming decades. Thus, it is important to know how wave climate will change and how suitable the wave 
energy converters (WECs) will be to the new wave conditions. This paper aims to evaluate the capability of four 
different WECs—a WaveRoller type device (WRTD), Atargis, AquaBuoy and RM5—to extract wave energy on the 
Northwest coast of Spain (NWCS). The analysis was performed using the high-resolution wave data obtained 
from the Simulating Waves Nearshore (SWAN) model over the near future winters (2026–2045). The energy 
output (PE), the power load factor (ε), the normalized capture width (NCw) and the operational time (OT) were 
analyzed. According to these parameters, among the devices that work for intermediate-deep waters, Atargis 
would be the best option (PE=1400 ± 56 kW, ε =55.4 ± 2.2%, NCw=35.5 ± 4.1% and OT =84.5 ± 3.3%). The 
WRTD would also be a good option for shallow nearshore areas with PE=427 ± 248 kW, ε =12.8 ± 7.4%, NCw =

48.9 ± 9.6% and OT = 88.7 ± 18.9%. A combination of Atargis and WRTDs is proposed to make up the future 
wave energy farms on the NWCS.   

1. Introduction

Wave energy is one of the most abundant and constant renewable
energy sources since waves are able to propagate thousands of miles 
with minimal energy loss, even if the wind is not blowing [1]. The global 
energy potential of waves is estimated to be between 29,500 and 32,000 
TW h/year [2], so it is interesting to consider harnessing this energy 
source to achieve the energy targets of the United Nations 2030 Agenda 
for sustainable development. Wave energy converters (WECs) are still in 
the development stages, so the wave energy resource is not yet being 
commercially exploited. Therefore, it is necessary to increase the effi-
ciency and reduce the costs of these technologies to gain industry 
recognition as an alternative energy source. Due to the goal of 
carbon-free energy worldwide and a need to diversify the mix of 
renewable energies, wave energy extraction can become an appropriate 
complement to existing and more mature renewable energy technolo-
gies such as offshore wind farms in the coming decades [2]. In order to 
make good planning of the renewable energy mix, it is necessary to 
study the impact of climate change on wave power in the near future. 

Few studies analyze the future wave energy resource compared with 
other renewable resources such as wind. Most studies just analyze future 
wave climate (see, for example [3–16]) rather than analyzing the wave 
power itself because wave energy resource depends on the wave sig-
nificant height and period. Thus, for example [13], analyzed the varia-
tion of the wave power in the North Atlantic basin and the 
Mediterranean Sea under three different Representative Concentration 
Pathway (RCP) greenhouse concentration scenarios (RCP2.6, RCP4.5 
and RECP8.5) for three periods (2010–2039, 2040–2069 and 
2070–2099). They found a clear decrease in wave energy, except for the 
Norwegian coast. Rusu et al. [17,18] investigated the impact of climate 
change on wave energy in the Black Sea and found a high seasonal 
variability of wave energy under future conditions (for 2021–2050 and 
2071–2100, respectively) under the RCP4.5 and RCP8.5 scenarios. Ali-
zadeh et al. [19] did not find a significant change in annual wave energy 
in the Caspian Sea at the end of the century (2081–2100) under the 
SSP2-4.5 and SSP5-8.5 scenarios, but a slightly decreasing trend in 
autumn and winter. Goharnejad et al. [20] also found no clear trend in 
wave power in the Persian Gulf in 2070–2099 under the RCP4.5 and 
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RCP8.5 scenarios, because it did not show a seasonal trend. However, 
they found a descending trend in winter. Ribeiro et al. [21] observed a 
decrease in mean wave energy and an increase in its seasonal variability 
in the west of the Atlantic Arc in the far future (2081–2100) under the 
RCP8.5 scenario. 

Few studies evaluated the WECs performance in obtaining energy 
from waves in the future decades. Reeve et al. [22] found that the impact 
of climate change would negatively affect energy generation by Pelamis 
(attenuator type of WEC) in the southwest UK because the energy output 
that could be obtained would decrease by 2–3% at the end of the century 
(2061–2100) under the A1B and B1 scenarios. Sierra et al. [23] analyzed 
the amount of electric energy delivered by two types of WECs (Pelamis, 
and Wave Dragon — overtopping type) under future conditions 
(2081–2100, RCP4.5 and RCP8.5) in a context of climate change around 
the island of Menorca (NW Mediterranean Sea), as well as its annual and 
seasonal variability. In that study, they found that the wave energy 
output shows future reductions between 0 and 5%. In this regard, 
Ribeiro et al. [1] also found a decrease in the future energy output that 
could be obtained with Pelamis and AquaBuoy (point absorber type of 
WEC) along the west coast of the Iberian Peninsula under the RCP8.5 
and 2081–2100. Note that while Reeve et al. [22] and Sierra et al. [23] 
focused only on studying the energy yield, Ribeiro et al. [1] also 
addressed the WECs efficiency using two additional parameters: the 
power load factor and the capture width. The lack of research on how 
climate change will affect the energy production and efficiency of WECs 
may be because their Technology Readiness Level (TRL) is still low 
compared to, for example, wind turbines. Furthermore, there is no WEC 
technology that is clearly more efficient than the rest of WECs. There-
fore, taking into account that each WEC has its characteristics (geome-
try, size, power take-off system), more research is required on the 
performance of different WECs under future wave climatic conditions. 

The Galician coast (NW Spain) is strongly influenced by low-pressure 
systems in the mid-Atlantic Ocean and the periodic passage of storms 
which may intensify the sea states. The Northwest Coast of Galicia is the 
region with the highest wave energy in Spain —and one of the highest in 
Europe—[24–26], with a mean annual power between 40 and 45 
kWm−1 [27]. This feature is due to its privileged location and northwest 

orientation, which benefits from the westerly winds and a swell 
component most of the year (more than 78%) [28]. Generally, the 
highest wave heights are obtained during the winter months [29], when 
the average power of the waves in Galicia is estimated at 75 kWm−1 

[30]. 
Previous research ([31]), highlights that combining different types of 

energy is a way of stabilizing the energy mix. During winter, photo-
voltaic solar energy is at its minimum value and must be compensated 
with other renewable energies (mainly wind and wave energy). That is 
why it is relevant to know the capacity of different WECs to extract 
energy during that period of the year. 

This paper aims to assess how different WECs can fit near future 
(2026–2045) wave conditions and their efficiency to extract energy. The 
study will be carried out on the Northwest Coast of Spain in winter 
conditions because it is when the sea states are more energetic. The 
RCP8.5 scenario was chosen because it is helpful for assessing climate 
risk from a short-to medium-term perspective, as noted by Ref. [32]. The 
energy output, the time during which WECs remain in operation 
(operational time), the power load factor and the normalized capture 
width of every device will be analyzed under near future wave 
conditions. 

2. Data, wave models and methodology 

2.1. Study region, data and wave models 

The study has focused on the area with the greatest wave energy 
potential in Spain, the Northwest Coast of Galicia [24]. Fig. 1 depicts the 
region under study. Fig. 1a shows an amplification of the study area, 
where the North Atlantic Arc is shown. Fig. 1b represents the study area 
itself. 

A series of steps were followed to obtain high-resolution wave 
climate data off the Northwest coast of Spain that would allow us to 
analyze the suitability of WECs for energy extraction in the near future 
(Fig. 2). Thus, the identification of the best GCM to describe the wave 
climate during winters was performed by determining the RMSE and 
Bias to the 8 GCMs [21,33] available at the Commonwealth Scientific 

Fig. 1. Atlantic Arc area (a) and study area (b).  
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and Industrial Research Organisation (CSIRO) database (http://data-c 
br.csiro.au/thredds/catalog/catch_all/CMAR_CAWCR-Wave_archive 
/Global_wave_projections/catalog.html [34]), taking into account the 
significant wave height (Hs) and wave peak period (Tp), which is 
observed during the winter months (December, January and February) 
for the period between 1979 and 2005. Ribeiro et al. [33] analyzed the 
RMSE and Bias indicators of the 8 GCMs, which showed that the 
BCC-CSM1.1 GCM represents the best GCM to reproduce the study area’s 
winter wave climate. 

The BCC-CSM1.1 GCM has a temporal and spatial resolution of 6 h 
and 1◦ × 1◦, respectively. This coarse resolution is not suitable for 

performing a WEC assessment, which is requiring to perform dynamic 
downscaling. Thus, the third-generation spectral wave model Simu-
lating Waves Nearshore (SWAN), integrated into the Delft3D-WAVE 
module [35], was used by applying a similar approach to Refs. [21, 
33]. A nested model implementation was adopted, covering the Galician 
coast and increasing resolution towards the study area on the Northwest 
coast of Spain (Fig. 3), using the identified GCM as an open ocean 
boundary (D0, Fig. 3a). Table 1 summarizes the characteristics of each 
domain. The bathymetry was generated from the General Bathymetry 
Chart of the Oceans [36]. The ocean forcing was introduced at each grid 
node intersection between domains D0 and D1. The atmospheric vari-
ables were also considered by using the BCC-CSM1-1-m GCM (https:// 
data.ceda.ac.uk/badc/cmip5/data/cmip5/output1/BCC/bcc-csm1 
-1-m/rcp85/3hr/atmos/3hr/r1i1p1/v20130411) [37]). Two variables 
have been chosen as atmospheric data: eastward near-surface wind 
speed and northward near-surface wind speed. The temporal and spatial 
resolutions are 3-h and 1.125◦ × 1.1215◦, respectively. As previously 
mentioned in the introduction section, on the Northwest coast of Galicia, 
the swell component is predominant most of the year [28] with a 
dominant wave direction from the northwest. For this reason, most 
waves are derived from swell and can be reasonably simulated using 
low-resolution wind data, as Santos et al. showed in Ref. [38] by 
obtaining overlap function values greater than 70% when compared 
GCMs with coastal buoys and inland locations. The future period 
selected was 2026–2045. As simulations were carried out during the 
winter months (December, January and February), November was used 
as a model spin-up for each winter. 

The recommendations for a stage 1 (reconnaissance) model of the 
technical specification IEC-TS 62600-101 have been followed. Physical 
parameters such as triads, bottom friction, depth-induced breaking and 
quadruplets were included. The spatial and temporal resolution of the 
wave results in the area under scope (D4 domain, Fig. 3b) is 450 m ×
450 m and 1 h, respectively. The wave spectrum consists of 25 

Fig. 2. Procedure sketch to obtain high resolution data of wave climate.  

Fig. 3. Numerical domains and bathymetry used in the SWAN downscaling of the BCC-CSM1.1 m GCM (a, b) and the study region (b). Only the boundaries of domain 
D3 have been plotted to ensure proper visualization. 

Table 1 
Characteristics of the numerical domains applied in the downscaling.  

Domain Extension Spatial resolution 

D0 13.54 ◦W, 34.54 ◦N − 0.45 ◦E, 50.54 ◦N 1◦ × 1◦

D1 12.54 ◦W, 35.54 ◦N − 0.55 ◦W, 49.54 ◦N 1/3◦ × 1/3◦

D2 10.89 ◦W, 36.54 ◦N − 0.55 ◦W, 47.88 ◦N 1/9◦ × 1/9◦

D3 Portuguese, Spanish and French Atlantic Coast 
38.80 ◦N − 47.87 ◦N 

1/27◦ × 1/27◦

D4 Northwest Coast of Galicia, 
8.84 ◦W, 43.06 ◦N − 8.18 ◦W, 43.76 ◦N 

450 m × 450 m  
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frequencies (from 0.04 Hz to 1 Hz) and 36 directional bands. 

2.2. Wave power resource 

The wave power resource (WP) is defined as the amount of energy 
flux per unit length of the wavefront transmitted in the direction of the 
wave propagation [39]. In that way, the most energetic waves are linked 

to high values of WP. The WP is expressed in kWm−1, and it is mathe-
matically defined by equation (1): 

WP = α ρg2

64π H2
s Tp (1)  

where ρ is the density of seawater (considered as 1025 kgm−3), g is the 
gravitational acceleration, Hs is the significant wave height, Tp is the 

Fig. 4. Monthly-averaged wave power resource (WP, kWm−1) for the period 2014–2021, considering the same data as in Ref. [27].  
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wave peak period, and α is a factor related to the shape of the wave 
spectrum. A conservative value of α = 0.9 was assumed in the present 
work similar to previous studies [40,41], which is equivalent to 
assuming a standard JONSWAP spectrum with a peak enhancement of γ 
= 3.3 [1]. See Ref. [42] for more details. 

For the area under study, the winter months (December, January and 
February) have shown to be the most energetic, with a WP exceeding 
90−100 kWm−1 for the period 2014–2021, being February the most 
energetic month (Fig. 4). Thus, the winter season was selected as 
representative of the most energetic period to study the WECs’ behavior. 

2.3. WEC devices and wave climate characterization 

Four WECs were considered in this study: a WaveRoller type device 
(see Fig. 3 in Ref. [43]), Atargis (see Fig. 1 in Ref. [44]), AquaBuoy (see 
Fig. 8 in Ref. [43]) and RM5 (see Fig. 1 in Ref. [45]). WaveRoller is a 
bottom-fixed Oscillating Wave Surge Converter (OWSC) suitable for 
shallow water depths (8−20 m) [45–47]. For reasons of the manufac-
turer’s confidentiality, a similar device was considered in the present 
work (WRTD from now on). Atargis is a Cycloidal Wave Energy Con-
verter (CycWEC) designed to operate at intermediate water depths (+40 
m) [44]. The point absorber type device AquaBuoy and the Floating 
Oscillating Wave Surge Converter (FOWSC) RM5 are offshore devices 
suitable for working in deep waters (+50 m) [48] (see Table 2). Each 
WEC is designed to operate not only in a specific depth range but also in 
specific Hs and Tp. The manufacturer provides information about the 
optimum operating intervals for Hs and Tp, represented on their power 
matrix. The power matrix shows the electric power produced by the 
device according to the sea state (Hs, Tp), i.e. each WEC obtains more 
energy with some sea states than with others. The power matrices for the 
four WECs considered are shown in the Appendix. There, it can be seen 
that the WRTD (Table A1) operates at a wide range of Hs (1 m−7 m) and 
Tp (4 s−16 s). It produces more energy for sea states with Hs values from 
6 to 7 m and Tp values from 8 to 12 s. This means that the WRTD device is 
suitable for areas with high waves with intermediate periods. Atargis 
(Table A2) has a more limitant Hs and Tp ranges of operation (~0.7 m ≤
Hs ≤ ~4.5 m, 4.5 s ≤ Tp ≤ 15.5). It is able to produce its maximum 
energy at lower Hs and Tp values (3.0 m ≤ Hs ≤ 4.5 m, 6.5 s ≤ Tp ≤ 13.5), 
being suitable for lower waves. AquaBuoy (Table A3) also shows a more 
restricted Hs range (1 m ≤ Hs ≤ 5.5 m) and a wider Tp range (6 s ≤ Tp ≤

17 s). It is more suitable for areas with higher waves than Atargis (where 
Hs varies from 4.5 m to 5.5 m) and the same period range to the WRTD 
(8 s ≤ Tp ≤ 12 s). Finally, RM5 (Table A4) also has a limited Hs range 
(0.75 m ≤ Hs ≤ 5.75 m) but a vast Tp range (5.2 s ≤ Tp ≤ 20.3 s). It 
produces its maximum energy in those areas where Hs varies from 4.5 m 
to 6 m and Tp from 5 s to 15 s. 

Power matrices are related to the power take-off (PTO) system of the 
WEC. For example, as pointed by Ahamed et al. in Ref. [43], WECs with 
an hydraulic motor PTO system like the WRTD or RM5 are able to 
generate a big amount of energy from the low frequency waves (large 
periods). Regarding the amount of power generated, it can be seen that 
Atargis is able to produce ten times more power than AquaBuoy. In spite 
of being both based on hydro turbine PTO system, Atargis is also ten 

time larger than AquaBuoy, and this can be the reason why Atargis can 
extract more energy than AquaBuoy. More information about these 
WECs can be found in Ref. [49], [56–58], [55]. 

The probability of occurrence of each sea state has been calculated to 
characterize the wave climate. This probability (pij expressed in per-
centage) is addressed by separating the range of simulated values of Hs 
and Tp in bins, and then by counting the number of sea states (Nij) that 
correspond to each bin (i, j), considering the whole data series for the 
near future period (2026–2045) and the study area. Later, Nij is divided 
by the total number of sea states (N) and multiplied by 100. 

pij(%) = 100⋅
Nij

N
(2) 

Finally, the probability of occurrence of the sea states and the power 
matrix are compared graphically to visualize how well a WEC suits the 
winter wave climate. 

2.4. Electric power output 

The total electric power output that a particular WEC can extract 
depends on the WP resource available and the performance of the WEC 
in extracting the energy. The performance of every WEC is related to the 
power matrix, which depends on the WEC’s geometric shape, size, and 
PTO system parameters. The expected average electric power (PE, in 
kW) that can be extracted with a particular WEC at a certain point 
(pixel) of the study area is expressed by equation (3): 

PE =
1

100
∑nT

i=1

∑nH

j=1
pijPij (3)  

where Pij is the electric power obtained from an element (i, j) of the 
power matrix of a particular WEC, pij is the probability of occurrence of a 
given sea state for every pixel in percentage, and nT and nH are the 
numbers of wave peak period and significant wave height bins consid-
ered, respectively. 

2.5. Suitability parameters 

2.5.1. Power load factor and normalized capture width 
The power load factor (ε) is defined as the relation between PE and 

the maximum power (Pmax) that the device can produce, computed as 
the maximum value of the power matrix (see equation (4)). If the device 
is well-fitted to the wave climate, PE will be close to Pmax, obtaining a 
high ε. 

ε (%) = 100⋅
PE

Pmax
(4) 

The normalized capture width (NCw) is the power generated by the 
WEC (PE) per unit of length (L) with respect to the available wave power 
resource (WP), estimating the efficiency of the WEC in converting the 
wave energy resource into electricity. This variable is defined in equa-
tion (5), being L a value shown in Table 2. 

Table 2 
Characteristics of WECs, including: structure, type, wave energy mode, power take off system (PTO), maximum electric power, depth range for the WECs installation 
and WEC length opposite to the wave. A picture of these WECs can be found in the referenced literature.  

Name Structure Classification Energy mode PTO Pmax 

(kW) 
Depth 
(m) 

L 
(m) 

References 

WRTD Semi-submerged two-body structure Oscillating Wave Surge Converter 
(OWSC) 

Surge Hydraulic 
motor 

3332 8–20 26 [43,46,49] 

Atargis Completely submerged twin 
hydrofoil-based structure 

Cycloidal Wave Energy Converter 
(CycWEC) 

Heave and 
Surge 

Hydro turbine 2530 40–100 60 [43,44,50, 
51] 

AquaBuoy Two-body floating system Point absorber Heave Hydro turbine 250 50–100 6 [43,52–54] 
RM5 Semi-submerged two-body structure 

with moorings 
Floating Oscillating Wave Surge 
Converter (FOWSC) 

Surge Hydraulic 
motor 

360 50–100 25 [55]  
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NCw (%) = 100⋅
PE

WP⋅L
(5)  

2.5.2. Operational time 
The operational time for a specific device is defined as the percentage 

of time at which a WEC can operate. The concepts of operational time 
and downtime are opposites as described in previous research [22,59]. 
In particular [22], only considered the Hs influence in determining the 
time range in which the device is not working. In the present study, the 
Tp is also taken into account. Thus, the operational time (OT, in per-
centage, from now on) is computed as the sum of the probability of 
occurrence of each sea state in a certain pixel, considering exclusively 
the Hs and Tp bins for which the power matrix has non-zero values (see 
equation (6)). 

OT (%) =
∑nT

i=1

∑nH

j=1
pij, ∀i, j

⃒
⃒
⃒
⃒
⃒

Pij ∕= 0 (6) 

Note that all these three suitability parameters depend on the power 
matrix of the different devices, in such way that to attain efficient de-
vices, the very energetic sea states observed in winter should match the 
characteristics of the WECs. 

2.6. Statistical errors 

The average value of each suitability parameter previously defined 
will be calculated accompanied by its standard deviation, computed 
using equation (7). 

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
M − 1

∑M

m=1
(xm − x)

2

√
√
√
√ (7)  

where M is the total number of pixels, xm is the value of the suitability 
parameter in the pixel m and x is the average value of the suitability 
parameter. 

3. Results 

3.1. WEC suitability under future wave climate 

The probability of occurrence of every winter sea state for different 
depths of the study area from 2026 to 2045 and the WECs power matrix 
for each water depth range have been plotted together in a bivariate 
diagram (Fig. 5). Red (blue) color indicates the most (least) probable sea 
states. 

Regarding the probabilities of occurrence of sea states in shallow 
waters (Fig. 5a), the most likely waves (probability ~1.6−2%) show a Hs 
of around 1−2 m and a Tp of 10–12 s. For intermediate and deep waters 
(Fig. 5b–d), the most likely waves will have a Hs between 2 and 4 m and 
Tp of 9–13 s. 

Considering the power matrices, the WRTD (Fig. 5a) can produce a 
maximum energy power (3332 kW) for waves with Hs between 6 and 
7.5 m, which will not occur in the shallow waters in the region . 
Therefore, a low overlap between the WRTD’s power matrix and the 
shallow waters sea states can be observed. The device can only generate 
a maximum power of around 100−240 kW for the most frequent sea 
states observed in shallow waters. 

Atargis is a device well suited for the future wave climate of the 

Fig. 5. Bivariate distributions of winter sea state probability of occurrence (%, colors) for different depths of the study area for the period 2026–2045 and the power 
matrix of the suitable WEC (numbers, in kW) for its optimum operational water depth range. The red dot that accompanies the element of the power matrix indicates 
the center of the interval of each sea state to which each element of the power matrix refers. 
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region. The most likely sea states show powers of 1200–1900 kW 
compared to the maximum 2530 kW obtained for Hs of 3–4.5 m and Tp of 
6.5–13.5 s (Fig. 5b). A moderate overlap between the power matrix and 
the sea states can be also observed for AquaBuoy (Fig. 5c), with a 
maximum energy power of around 50−90 kW for the most likely sea 
states compared to the maximum 250 kW that it would produce from Hs 
of 4.5–6 m and Tp of 8–13 s. Finally, higher overlap is obtained for RM5 
(Fig. 5d), where the most likely sea states show powers of 100–180 kW 
compared to the maximum 360 kW. 

3.2. WEC performance 

In general, the future PE obtained during winter is characterized by 
higher values offshore than near shore (Fig. 6). The WRTD shows PE 
~800−900 kW in the areas most exposed to waves and 100−400 kW in 
the innermost areas. Atargis is the device that will generate the greatest 
electrical power (~1400−1500 kW) in the entire domain. The lowest 
energy values will be obtained with AquaBuoy (~75 kW in the inner-
most areas and ~100 kW in the exposed ones). RM5 will generate 
around 200 kW in the western and outermost part of the study area and 
~150 kW in the innermost areas. Apart from the higher or lower suit-
ability of the devices to the different sea state ranges in which they 
operate, the differences among them (PE=427 ± 248 kW, PE=1400 ±
56 kW, PE=89 ± 9 kW and PE = 182 ± 13 kW, respectively) are mainly 
due to their different sizes (see Table 2). To prevent any dependence on 
the physical dimensions of the devices, an analysis in terms of dimen-
sionless variables (power load factor, normalized capture width and 

operational time) was carried out. 
Overall, the power load factor ε (Fig. 7) is higher for exposed areas 

than inner areas. The WRTD (Fig. 7a) shows low ε values, that range 
from around 5% for the inner areas to between 25 and 30% for the outer 
areas. Atargis (Fig. 7b) exhibits high ε values (around 50−60%) that can 
also be observed for RM5 (40−55%, Fig. 7d). AquaBuoy (Fig. 7c) shows 
intermediate ε values (25−40%). These results are similar to those 
previously described in Fig. 5, since ε depends on the ratio PE/Pmax, 
which, in turn, depends on the overlap between the power matrix and 
the frequency of the diferent sea states. 

As for the NCw, high values will be obtained with the WRTD (Fig. 8a), 
ranging from ~55 to 60% for the rias to ~45−50% for the outer areas. 
Moderate values (~30−50%) can be observed for Atargis (Fig. 8b) and 
for AquaBuoy (Fig. 8c), with NCw values ranging from 20% to 25%. 
Finally, RM5 (Fig. 8d) will not be an efficient device in terms of NCw 
(NCw ~10%). 

In terms of operational time, the WRTD (Fig. 9a), AquaBuoy (Fig. 9c) 
and RM5 (Fig. 9d) present long operational times. The WRTD (Fig. 9a) 
can be in working conditions ~90% of the time, although it will have a 
shorter operational time in the inner areas of the rias, where low waves 
are more frequent. Atargis (Fig. 9b) will have an operational time 
ranging from ~80% for external areas to ~90% when approaching the 
coast. AquaBuoy (Fig. 9c) will show an OT of ~95%. RM5 (Fig. 9d) can 
be in operation almost 100% of the time. 

Fig. 6. Electric power output (PE, in kW) for winter months (period between 2026 and 2045). Note the different scales.  
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Fig. 7. Power load factor (ε, in %) for winter months (period between 2026 and 2045).  
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Fig. 8. Normalized capture width (NCw, in %) for winter months (period between 2026 and 2045).  
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4. Discussion 

The present study targets to determine how the existent devices fit 
near future wave conditions. As three of the devices under study 
(Atargis, AquaBouy and RM5) can be deployed in approximately the 
same depths (Table 2), an intercomparison among them can help to 
decide which device is the best suited for the area under study. Table 3 
summarizes the suitability conditions for those devices. 

It can be seen that Atargis outperforms AquaBuoy and RM5 in terms 
of power load factor and normalized capture width, although its oper-
ational time is lower. The high OT provided by RM5 and AquaBuoy is 
due to the fact that their power matrices cover practically all the future 
sea states of the study area. Note that all the sea states match the RM5’s 
power matrix and that only the smallest Hs and Tp are outside the range 
of AquaBuoy’s. The high ε and OT values of RM5 make this device quite 
attractive for installation on the Northwest Coast of Galicia. Atargis 
outperforms RM5 in terms of NCw because RM5’s power matrix values 
are lower than Atargis’, which leads to lower PE. These values could be 
increased by increasing the size of RM5. However, that would lead to 
decrease the normalized capture width. On the other hand, AquaBuoy 
has an acceptable profitability size ratio and can operate most of the 
time, but its main drawback is its low energy conversion. 

Overall, results suggest that future wave energy farms on the 
Northwest coast of Galicia could be made up of Atargis due to its high 
energy production and great suitability under near future wave climate 
conditions. In addition, it presents acceptable production-size profit-
ability and operational time. This WEC operates in intermediate waters, 
so it could harvest wave energy at offshore locations to capture energetic 

waves and be close enough to reduce installation and maintenance costs. 
Additionally, it is a quite submerged WEC, reducing visual impact. 

AquaBuoy had been previously analized for the west coast of the 
Iberian Peninsula by Ribeiro et al. [1]. They obtained PE and charac-
terized the efficiency of this WEC by means of ε and the Cw parameters, 
for the same future period but considering the whole year. They ob-
tained PE and ε values 1.5 times lower than in the present study, where 
only winters, the most energetic season of the year, were considered. 
Table 4 summarizes the comparison between the present study and [1]. 
Note that [1] calculated Cw instead of NCw, so, a size normalization was 

Fig. 9. Operational time (%) for winter months (period between 2026 and 2045).  

Table 3 
Suitability of intermediate water devices for the study area. The higher the 
values, the more suitable the device. The error intervals represent the standard 
deviation calculated as described in section 2.6.   

ε (%) NCw(%) OT (%) 

Atargis 55.4 ± 2.2 35.5 ± 4.1 84.5 ± 3.3 
AquaBuoy 35.7 ± 3.4 22.0 ± 0.9 95.1 ± 1.2 
RM5 50.6 ± 3.59 10.8 ± 0.66 97.2 ± 0.9  

Table 4 
AquaBuoy performance comparison between the present study and [1].  

WEC Parameter This study Ribeiro et al. [1] 

AquaBuoy PE (kW) 75–100 40–60 
ε (%) 25–40 15–22 
NCw (%) 25 22  
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carried out for comparison in Table 4. The capture width for AquaBuoy 
was also analyzed by Ref. [60] in wintertime. It was found a Cw between 
1.1 m and 1.4 m in nearby areas, which is equivalent to a NCw between 
18% and 23%, also consistent with our results. 

As for the WRTD, this device is suited for near shore shallow waters 
were waves are less energetic. The device can be installed in these areas for 
different purposes as providing energy for aquaculture facilities and pro-
tecting them against incoming waves. Despite the device has a low power 
load factor (12.8 ± 7.4%), this is partially balanced by a high normalized 
capture width (48.9 ± 9.6%) and operational time (88.7 ± 18.9%). That 
means that even if the device is usually working much below its maximum 
performance, its efficiency in converting the available wave energy 
resource into electricity is high and it can work practically uninterrupted 
under winter conditions for some areas. However, this operational time 
decreases significantly in the shallowest regions because the device cannot 
exploit wave energy in areas where Hs is lower than 1 m. The low power 
load factor is due to the fact that the WRTD operates most of the time far 
from the Hs and Tp values corresponding to the peak of energy. As it can 
also be observed for Atargis, the sea states with the highest and lowest 
values of Hs and Tp will be excluded from the power matrix. The normal-
ized capture width of a similar WEC (Oyster) was analyzed for the 20th 
century winters by Ulazia et al. in [61]. They found lower values of NCw 
(between 30 and 40%) in the 20th century in Cabo Silleiro (West Coast of 
Galicia). Their result differs slightly from ours probably because of 
studying different geographic locations and sea states. 

The combined use of Atargis for intermediate waters and WRTDs for 
shallow waters seems to be the best choice for the region under scope. 
The use of WRTDs is an optimal option in inner areas near harbors, 
where they can take advantage of the existent infrastructure to reduce 
impact and costs. For example, near the Outer Port of A Coruña 
(~43◦20′N, 8◦30′W, Fig. 1). 

5. Conclusions and future outlook 

This study characterized the wave climate for NW Spain during 
winter from 2026 to 2045 under the RCP8.5 scenario and analyzed the 
suitability to harness wave energy resource with four WECs. Wintertime 
was chosen because it is the season when the sea states are more ener-
getic. The suitability to harness the wave energy resource was analyzed 
for three WECs that operate at intemerdiate/deep waters (Atargis, 
AquaBuoy and RM5) and for another one designed for shallow waters (a 
WaveRoller type device, WRTD). To achieve this goal, high-resolution 
(450 m × 450 m) significant wave height and peak period data were 
obtained from simulations of the third-generation SWAN model forced 
with the BCC-CSM1.1 m GCM wind data and outputs from the Wave-
WatchIII ocean model. The suitability conditions of the WECs were 
analyzed by means of three different parameters: power load factor, 
normalized capture width and operational time. These parameters take 
on special meaning in winter months because the energy production and 
WEC’s efficiency will depend on how well fitted will be the power 
matrices to the future sea states, more energetic in wintertime. 

According to the three suitability parameters and attending to the 
WECs designed to work in intermediate/deep waters, Atargis is the most 
suitable device to set up the future wave energy farms in the North-
western Spain. For shallow waters, it was observed that the WRTD en-
sures high operability and efficiency. For these reasons, a combination 
of Atargis and WRTDs is proposed to make up the future wave energy 
farms on the Northwestern Spain coast. 

The analysis was carried out for four devices as an example of the 
protocol to be followed. However, other devices, study areas, periods, 
seasons and climate scenarios can be chosen. The protocol we propose here 
consists of determining the near-future sea states to be faced by the devices 
and using different metrics like the power load factor, the normalized 
capture width and the operational time to determine the suitability of the 
devices for the prevalent sea states in the area. This, in turn, can help de-
velopers to adapt their devices to particular sea conditions. This protocol is 

applicable to any device and region worldwide. 
Moreover, future studies could develop a risk assessment of a wave 

energy farm in the area under study, within the frame of an extreme 
wave analysis in the upcoming decades. It will also be interesting the use 
of CMIP6 data for further investigation. 

Finally, it is worth mentioning that environmental, political and 
economic issues outside this study’s scope must also be considered to 
choose the best location for the installation of future wave farms, as well 
as a seasonal varibility analysis. 
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Costoya, M. deCastro, A.S. Ribeiro and M. Gómez-Gesteira; resources, M. 
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Appendix 

Tables below show the power matrices for each WEC considered.  

Table A1 
Power matrix (in kW) for the wave energy converter WRTD, obtained from Ref. [49]. 

Table A2 
Power matrix (in kW) for the wave energy converter Atargis, obtained from Ref. [44]. 
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Table A3 
Power matrix (in kW) for the wave energy converterAquaBuoy, obtained from Ref. [52]. 

Table A4 
Power matrix (in kW) for the wave energy converter RM5, obtained from Ref. [55]. 
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