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Simple Summary: Breast cancer is a heterogeneous disease characterized by different risks of
relapse, which makes it challenging to predict progression and select the most appropriate follow-up
strategies. With the ever-growing adoption of Electronic Health Records, there are great opportunities
to leverage the amount of data collected routinely in electronic format for secondary purposes.
Machine Learning algorithms offer the ability to analyze large amounts of data and reveal insights
that might otherwise go undetected. In this study, we have applied several algorithms to predict
5-year breast cancer recurrence from health data. We compared whether taking advantage of both
structured and unstructured data from health records yields better prediction results than using any
of the sources separately. These algorithms are valuable tools to help clinicians effectively integrate
large amounts of data into their decision-making and are key to improving risk stratification and
providing personalized assistance to patients.

Abstract: Recurrence is a critical aspect of breast cancer (BC) that is inexorably tied to mortality. Reuse
of healthcare data through Machine Learning (ML) algorithms offers great opportunities to improve
the stratification of patients at risk of cancer recurrence. We hypothesized that combining features
from structured and unstructured sources would provide better prediction results for 5-year cancer
recurrence than either source alone. We collected and preprocessed clinical data from a cohort of BC
patients, resulting in 823 valid subjects for analysis. We derived three sets of features: structured
information, features from free text, and a combination of both. We evaluated the performance of
five ML algorithms to predict 5-year cancer recurrence and selected the best-performing to test our
hypothesis. The XGB (eXtreme Gradient Boosting) model yielded the best performance among the
five evaluated algorithms, with precision = 0.900, recall = 0.907, F1-score = 0.897, and area under the
receiver operating characteristic AUROC = 0.807. The best prediction results were achieved with
the structured dataset, followed by the unstructured dataset, while the combined dataset achieved
the poorest performance. ML algorithms for BC recurrence prediction are valuable tools to improve
patient risk stratification, help with post-cancer monitoring, and plan more effective follow-up.
Structured data provides the best results when fed to ML algorithms. However, an approach based on
natural language processing offers comparable results while potentially requiring less mapping effort.
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1. Introduction

Breast cancer (BC) is the most frequently diagnosed cancer in women worldwide (over
2 million new cases in 2018) and ranks second among causes of cancer-related death in
women [1]. In Europe, 404,920 new cases were diagnosed and 98,755 deaths were recorded
in 2018. The current trend towards individualized screening based on individual risk
assessment (European study My PeBS, American study WISDOM) [2,3] has enabled early
diagnosis in around 80% of cases. Although the stage at diagnosis may be the most powerful
factor in determining survival and recurrence outcomes [4], BC is a complex disease, and
there are many prognostic and predictive biomarkers that need to be considered to support
the most appropriate targeted intervention (e.g., neoadjuvant vs. adjuvant) or combination
of treatments (e.g., chemotherapy and/or hormone therapy with or without radiotherapy)
in addition to surgery.

BC subtypes are highly heterogeneous and are characterized by different risks of
relapse. The Luminal A subtype is associated with an excellent prognosis, with a 10-year
local recurrence and distant metastases of 3.7% and 10%, respectively [5–8]. Luminal B
HER2- has a higher 10-year local recurrence (5%) and distant metastases (12–20%). Local
recurrence (7.5%) and distant metastases (25.6%) occurred most often in HER2+ [5,7]. Triple-
negative (10 to 20% of all BC) is the most heterogeneous and aggressive subtype. It is highly
metastatic within 10 years [9,10], and metastases are observed in more than 25% of these
patients [5,9]. Moreover, most triple-negative recurrences occur within five years after the
diagnosis [9].

BC heterogeneity makes it difficult to predict disease progression and patient outcomes,
and its management will become increasingly complex in the future, owing to all the
promising research in novel biomarkers and new insights that are being produced in this
field. New technologies and increased scientific knowledge would enable refining patient
stratifications, which would open the doors to individualizing and personalizing treatment
for each patient.

The wide adoption of Electronic Health Records (EHRs) in recent years has made
available a large amount of healthcare data that is collected routinely during clinical practice.
These data, traditionally used for organizational and financial management, are a highly
valuable source of information that could be exploited for clinical or research purposes.
Machine Learning (ML) algorithms are an efficient tool for data analysis that have the
potential to harness this vast amount of data to generate new insights and provide clinicians
with recommendations based on real evidence, thus helping to improve care and increase
patients’ quality of life.

A growing number of ML studies have been used in the analysis of healthcare data,
leading to promising performance in various applications, such as cardiac arrhythmia
detection [11], prediction of diabetes mellitus [12], prediction of unplanned hospital read-
mission [13], medical image segmentation [14], and prediction of infectious disease [15,16].

In oncology, ML-based models are gaining adoption over the conventional statistical
methods used by clinicians, as they allow researchers to unveil hidden patterns in the data
by providing a greater capability to account for non-linear relationships and interaction
effects that are frequent in cancer data [17].

ML has been generally applied in the diagnosis and detection of cancer, for example,
to identify, categorize, or distinguish tumors [18–20]. More recently, a growing number of
ML studies have also been applied toward cancer prediction and prognosis, such as cancer
risk [21], survival [22], and recurrence [23,24].

Several studies have been conducted that apply ML algorithms to predict breast
cancer recurrence. For example, Lou et al. [25] compared the performance of various
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ML algorithms to predict recurrence within ten years after breast cancer surgery. They
analyzed several predictors, including demographic characteristics, clinical characteristics,
quality of care, and preoperative quality of life, and found that Artificial Neural Networks
(ANN) were superior to the other forecasting models, scoring an AUROC of 97.62%. Boeri
et al. [26] used two types of models, ANN and Support Vector Machines (SVM), to predict
breast cancer recurrence and survival within 32 months after surgery. SVM had the best
performance for loco-regional and systemic recurrence prediction, with an accuracy rate of
95.64–96.86%; however, the sensitivity was low (0.41–0.56) due to the infrequent number
of positive cases in the dataset. Yang et al. [27] proposed an approach based on ensemble
methods and cost-sensitive learning to manage data imbalances. By combining both
methods, they achieved high sensitivity (0.947) at the cost of a significant reduction in
accuracy (0.468).

Although various predictors of breast cancer recurrence risk and several types of ML
algorithms have been analyzed and evaluated, this is still an open field of research. ML
algorithms are highly sensitive to input data, and predictors and risk factors may vary
based on different locations, lifestyles, and available data.

Generally, most of the studies using ML for cancer prognosis are limited to the analysis
of structured data from the EHR. It is commonly known that curation and preprocessing of
structured data are resource-heavy requirements before ML algorithms can be applied [28].
However, clinical narratives are an underexploited data source that could provide valuable
complementary information for predicting clinical outcomes. For example, clinical data
such as disease severity, signs and symptoms, or family history are often just recorded in
the form of free text in the EHR. Some efforts have been made to integrate heterogeneous
data from both structured and unstructured sources for risk prediction [29,30], leading to
improved performance prediction and a reduction of errors. In relation to cancer disease,
several studies have developed NLP techniques to extract cancer-related information from
clinical notes [31–33]. However, only in a few scenarios has the information extracted been
used for prognostic prediction and compared with prediction models based on structured
information alone [34,35].

In this study, we compare the performance of ML algorithms to predict five-year
breast cancer recurrence based on three different sets of features: (1) semi-structured data
registered in the EHR; (2) features extracted from unstructured clinical reports; and (3) a
combination of both. We hypothesize that by combining structured data and concepts
derived from free text, we will obtain better prediction results than if we used either of the
sources separately. To evaluate this, we have used data from the EHR of a cohort of breast
cancer patients from the Centre Hospitalier Universitaire de Liège (CHU de Liège).

2. Materials and Methods
2.1. Experiment Design

Our approach encompasses three steps. We first performed data preprocessing and
built the three datasets used to train the models, which are described in Section 3.2, Data
collection and preprocessing. Second, we trained and optimized five different classification
algorithms (detailed in Section 2.4 Predictive models) for each of the datasets to identify
the best-performing model across the three sets of data. In the third step, we used the
best-performing model to test our hypothesis that the combined dataset performs better
than structured and unstructured data alone.

2.2. Data Collection and Preprocessing

The EHR data used in this study were extracted from the CHU de Liège in Bel-
gium. Unstructured EHR data were de-identified using 3M™ 360 Encompass™ System
anonymization tool. This means that patient names, healthcare professional names, ad-
dresses, identifiers, and phone numbers were replaced by randomly generated entities.
Dates older than 20 years were also replaced with randomly generated dates in order to
hide the birthdate. More recent dates were kept in order to preserve the chronology of
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events during the disease and follow-up periods. The health records from the hospital were
mapped to the CASIDE [36] data model, based on the healthcare standard Fast Healthcare
Interoperability Resources (FHIR). The initial cohort contains a total of 3839 patients who
were diagnosed with breast cancer between 2010 and 2020. The number of samples was
finally reduced to 823 after removing duplicates and applying some criteria to retain valid
patients: the EHR contains data on the TNM staging (clinical and/or pathological), type of
treatment (surgery or/and chemotherapy or/and radiotherapy), and confirmed survival of
at least 5 years after diagnosis or recurrence within this period. Finally, the data appear to
be highly imbalanced, with only 13% of patients showing recurrence.

We have composed three datasets: the STR dataset, based on structured and semi-
structured data from EHR; the UNS dataset, based on features extracted from unstructured
clinical reports; and the COMB dataset, which is a combination of the previous two.

The STR dataset was built on relevant variables for breast cancer recurrence based on
a literature review and their availability in our dataset. We can see the variables used for
recurrence prediction in Table 1. Then we applied several preprocessing steps, namely:

1. Data cleaning: features with more than 20% of missing values were excluded. For
those accounting for less than 20% of missing values, we applied data imputation
techniques such as the use of the mode (ECOG), imputation based on similar values
of other variables (cTNM, pTNM), and the use of linear regression using subsets of
variables as predictors (weight, height, Ki67, ER, PR, HER2).

2. Feature transformation: different transformations were applied to the extracted data
for their subsequent processing by ML algorithms. Nominal features were trans-
formed into binary class data. Dates were transformed into numerical (age and age
at diagnosis) and binary (recurrence). Some features were aggregated to derive one
integrated feature, for example, in the case of BMI (Body Mass Index). A more detailed
process was applied to extract comorbidities. Using all extracted diagnosis codes may
present challenges when training ML algorithms due to the high number of different
codes and the low representativeness of each of them in our dataset. This has been
solved by mapping all the diagnoses found in the list of 31 categories used in the
Elixhauser Comorbidity Index [37] and counting the number of different diagnoses
per category for each patient. Finally, we retained only the categories that contained
50+ instances in the dataset.

3. Scaling: we normalized all the variables to the range 0–1 prior to modeling to help
with the learning process and avoid large weight values.

Table 1. Summary of variables used for breast cancer recurrence prediction in the STR dataset.

Feature Possible Values Description

Sex nominal: male, female Male or female
Age at diagnosis numerical Age of the patient at the time of diagnosis

BMI numerical A patient’s weight in kilograms divided by the
square of his/her height in meters

ECOG ordinal: 1, 2, 3, 4

Eastern Cooperative Oncology Group (ECOG)
performance status score. Patients’ level of

functioning in terms of their ability to care for
themselves, daily activity, and physical ability

Comorbidities (Elixhauser
categories) nominal: Elixhauser categories Medical condition existing simultaneously but

independently with another condition in a patient
Tumor site nominal: C501, C502, C503, [...] Tumor body location

Grade ordinal: 1, 2, 3, 4 The degree of differentiation of the cancer cells
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Table 1. Cont.

Feature Possible Values Description

TNM staging (clinical and
pathological) categorical: T1, T2, T3, T4, TX, [...]

TNM system describes the amount and spread of
cancer in a patient’s body.

T: tumor size
N: lymph node involvement

M: presence or absence of metastases

Estrogen Receptor numerical Percentage of cancer cells expressing estrogen
receptors in the tumor tissue sample.

Progesterone Receptor numerical Percentage of cancer cells expressing progesterone
receptors in the tumor tissue sample.

HER2 ordinal Human Epidermal growth factor Receptor
Ki67 numerical Antigen KI67

No. surgeries numerical tumorectomy, mastectomy
No. chemotherapies numerical Treatment of cancer by cytotoxic and/or other drugs.
No. radiotherapies numerical Treatment of the tumor using X-rays.

For the UNS dataset, we applied Symptoma’s proprietary algorithm (see Section 3.3)
to extract medical concepts from narrative reports. A total of 3364 different concepts were
extracted for our cohort, including diseases, symptoms, treatments, procedures, and risk
factors. For each patient, the number of times each of the concepts was extracted was
counted. Afterward, we applied Chi-square for feature selection and retained the 100 most
relevant features for recurrence prediction. Table 2 shows the count of the selected features
by concept type (the same feature can be categorized into several types). Finally, scaling
was applied as in the STR dataset.

Table 2. Number of selected features according to concept type.

Concept Type Number of Features

Disease 35
Symptom 53
Medicine 16
Procedure 8
Risk factor 6

The COMB dataset contains a joint combination of the STR and the UNS dataset.

2.3. Automatic Information Retrieval from Unstructured Data

The extraction of concepts from the free text included in the UNS dataset has been
carried out using Symptoma’s information retrieval tool, which is developed based upon
Symptoma’s core technology.

Symptoma’s AI-based information retrieval algorithms ingest free text reports from
EHRs and output them as collections of relevant medical features. These features are
presented as standardized concepts that enable the harnessing of previously unavailable
information. For the current study, due to data access constraints related to the European
General Data Protection Regulation (GDPR), the data had to be stored and processed cen-
trally on a platform with limited computational resources. Because of these computational
restraints, we have chosen the bag-of-words approach, which we combined with Symp-
toma’s disease ontology for keyword extraction. The relationships between symptoms,
signs, risk factors, and diseases that are mapped in the ontology were exploited to define
the final set of features.

Across the unstructured data contained in the 3839 patients at CHU, these algorithms
extracted over two million additional features, which consisted of 3364 unique concepts.
On average, for each patient, an additional 528 features were extracted.
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The algorithms derived these features from various unstructured inputs, including
pathological studies of breast biopsy, radiotherapy treatment plans, senology outpatient
visits, nuclear medicine studies, and counciliary oncological meetings. All text was supplied
in French. It should be noted that no refinement training on the data set at hand has been
performed to account for local idiosyncrasies (e.g., abbreviations, documentation style) or
optimization for the prediction task.

2.4. Predictive Models

In this study, we compared the performance of five state-of-the-art classifiers in accu-
rately predicting the probability of recurrence [38].

2.4.1. Logistic Regression (LR)

Logistic Regression is a supervised learning classification algorithm used to predict the
probability of a target variable. It uses a logistic function to model the dependent variable,
which should be dichotomous, i.e., there could be only two possible classes. It is a common
technique used when output data are binary.

2.4.2. Decision Tree (DT)

Decision Tree is a Machine Learning technique that uses a set of rules to make deci-
sions. It is used for both classification and regression, but is mostly preferred for solving
classification problems. The intuition behind Decision Trees is the use of the dataset features
to create yes/no questions and continually split the dataset until all data points belonging
to each class are isolated.

2.4.3. Gradient Boosting (GB)

Gradient Boosting is a Machine Learning technique that aggregates an ensemble of
weak individual models to create a strong predictive model. Decision Trees are usually
used when doing Gradient Boosting. The objective of Gradient Boosting classifiers is to
minimize the loss, or the difference between the actual class value of the training example
and the predicted class value. Gradient Boosting models are one of the most widely used
Machine Learning algorithms today because of their effectiveness at classifying complex
datasets.

2.4.4. eXtreme Gradient Boosting (XGB)

XGB [39] is an optimized implementation of the GB method that provides a more
regularized form of Gradient Boosting. XGB delivers high performance as compared with
GB and improves model generalization capabilities by using the strengths of the second-
order derivative of the loss function, L1 and L2 regularization, and parallel computing.
XGB is increasingly used by the scientific community for obtaining good prediction results
with relatively little effort that are comparable to or better than those provided by other
more computationally expensive models.

2.4.5. Deep Neural Network (DNN)

DNNs are computational learning systems inspired by the human brain and the
way neurons function together to understand inputs from the human senses. DNNs are
comprised of node layers, including an input layer, one or more hidden layers, and an
output layer. Each node, or artificial neuron, connects to another and has an associated
weight and threshold. If the output of any individual neuron is above the specified
threshold, that node is activated, and data are sent to the next layer of the network. The
present study used a Multi-Layer Perceptron (MLP), which is a fully connected type of
feedforward DNN that is trained using the back-propagation algorithm. MLPs are able to
approximate any continuous function and are one of the most widely used neural network
structures, particularly the 2-layer configuration in which the input units and the output
layer are interconnected with only one hidden layer.
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2.5. Model Building and Statistical Analysis

The methodology used to build the models from each of the three datasets is the same.
In order to build and evaluate the performance of the models, we first split the datasets into
two randomly exclusive sets (90% for training and 10% for testing). Then, we performed
hyper-parameter optimization for each algorithm and each set of data. The grid-search
strategy was applied using three rounds of stratified k-fold cross-validation with k = 6
(which means that 75% and 15% of the whole dataset were used for train and validation in
each pass, respectively) to optimize the models and select the best set of hyper-parameters
for each algorithm and dataset. In each pass of cross-validation, the set of data used to
build the model was oversampled using the Synthetic Minority Over-sampling Technique
(SMOTE) [40] in order to alleviate the problem of imbalanced data. Unlike conventional
oversampling techniques, which merely replicate the minority class or remove samples
from the majority class, SMOTE uses the nearest neighbor algorithm to generate fresh,
synthetic data to augment the minority class from the existing examples. Specifically, the
minority class was resampled to equalize the number of samples in the majority class, and
k = 5 was used to generate the synthetic samples.

Once the best hyper-parameters were tuned, we refitted each model using the entire
training partition, to which SMOTE was again applied. We evaluated the performance of
the optimized models on the 10% test holdout by comparing the models’ performance with
data that had never been seen during training or optimization phases. The performance of
the classifiers was assessed in terms of four metrics, which are defined as follows (where
TP = True Positives, FP = False Positives, TN = True Negatives, FN = False Negatives):

• Precision: proportion of predicted positives that are actual positive cases.

PR = (TP)/(TP + FP)

• Recall: proportion of actual positives that are correctly classified.

RE = (TP)/(TP + FN)

• F1-score: harmonic mean of precision and recall.

F1 = 2 × (PR × RE)/(PR + RE)

• Area Under the Receiver Operating Characteristic (AUROC): shows how well the
probabilities from the positive classes are separated from the negative ones, i.e., how
adequately predictions are ranked.

In the first analysis, we averaged the scores obtained for each algorithm (LR, DT,
GB, XGB, DNN) throughout the three datasets to select the best-performing one. In our
second analysis, we used the best-performing ML algorithm to validate our hypothesis
of whether COMB dataset provides more discriminative power than STR and UNS alone.
The statistical significance of differences in performance scores between COMB and STR
datasets and between COMB and UNS datasets was calculated by applying the Wilcoxon
signed-rank test, since this nonparametric version of the paired Student’s t-test does not
require a normal distribution. Metrics used for performance comparisons included AUROC
as primary outcome and F1, recall, and precision as secondary outcomes. All statistical
tests were two-sided, and a p-value less than 0.05 was considered statistically significant.

ML algorithms and statistical analyses were implemented using Python software and
Scikit-Learn [41] and Scipy [42] libraries.

3. Results
3.1. Study Characteristics

After applying the above preprocessing, a total of 823 patients were included in
the final dataset, of whom 105 presented recurrence within five years after the cancer
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diagnosis. Descriptive statistics of the features in the STR dataset are provided in Table 3.
Continuous variables are reported with the mean and standard deviation, while categorical
variables are described with absolute values and percentages. In addition, the percentage
of completeness of the original data (i.e., before imputation) is also displayed.

Table 3. Patient characteristics in the STR dataset.

Feature Total (n = 823) Non-Recurrence (n = 718) Recurrence (n = 105) Completeness

Sex 100%
male 5 (0.6%) 4 (0.6%) 1 (1.0%)

female 818 (99.4%) 714 (99.4%) 104 (99.0%)

Age at diagnosis 60.39 ± 12.71 60.58 ± 12.70 59.13 ± 12.71 100%

BMI 25.77 ± 4.83 25.70 ± 4.90 26.28 ± 4.28 86.15%

ECOG 99.88%
ECOG 0 745 (91.0%) 657 (91.5%) 88 (83.8%)
ECOG 1 65 (7.9%) 51 (7.1%) 14 (13.3%)
ECOG 2 9 (1.1%) 7 (1.0%) 2 (1.9%)
ECOG 3 3 (0.4%) 2 (0.3%) 1 (1.0%)
ECOG 4 1 (0.1%) 1 (0.1%) 0 (0%)

Comorbidities 100%
hypertension uncomplicated 1.01 ± 2.81 0.99 ± 2.65 1.16 ± 3.73
chronic pulmonary disease 0.24 ± 0.94 0.22 ± 0.90 0.34 ± 1.26

diabetes uncomplicated 0.31 ± 1.86 0.31 ± 1.84 0.41 ± 2.04
hypothyroidism 0.49 ± 1.92 0.45 ± 1.72 0.76 ± 2.91

metastasic cancer 3.32 ± 10.53 2.44 ± 7.27 9.36 ± 21.67
solid tumor without metastsis 7.60 ± 9.54 6.84 ± 8.53 12.84 ± 13.63

obesity 0.24 ± 0.83 0.22 ± 0.60 0.37 ± 1.73
alcohol abuse 0.19 ± 1.43 0.21 ± 1.52 0.09 ± 0.37

Tumor site 100%
C500 1 (0.1%) 1 (0.1%) 0 (0%)
C501 71 (8.6%) 63 (8.8%) 8 (7.6%)
C502 83 (10.1%) 66 (9.2%) 17 (16.2%)
C503 48 (5.8%) 45 (6.3%) 3 (2.9%)
C504 259 (31.5%) 231 (32.2%) 28 (26.7%)
C505 63 (7.7%) 57 (7.9%) 6 (5.7%)
C506 11 (1.3%) 8 (1.1%) 3 (2.9%)
C508 267 (32.4%) 230 (%32.2) 37 (35.2%)
C509 20 (2.4%) 17 (2.4%) 3 (2.9%)

Grade 89.79%
G1 78 (9.5%) 74 (10.3%) 4 (3.8%)
G2 133 (16.2%) 118 (16.4%) 15 (14.3%)
G3 611 (74.2%) 525 (73.1%) 86 (81.9%)
G4 1 (0.1%) 1 (0.1%) 0 (0%)

clinical TNM 87.61%
T
T1 400 (48.6%) 369 (51.4%) 31 (29.5%)
T2 260 (31.6%) 210 (29.2%) 50 (47.6%)
T3 30 (3.6%) 24 (3.3%) 6 (5.7%)
T4 28 (3.4%) 16 (2.2%) 12 (11.4%)
TX 105 (12.6%) 99 (13.8%) 6 (5.7%)
N
N0 552 (67.1%) 503 (70.1%) 49 (46.7%)
N1 113 (13.7%) 78 (10.9%) 35 (33.3%)
N2 11 (1.3%) 7 (1.0%) 4 (3.8%)
N3 10 (1.2%) 6 (0.8%) 4 (3.8%)
NX 137 (16.6%) 124 (17.3%) 13 (12.4%)
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Table 3. Cont.

Feature Total (n = 823) Non-Recurrence (n = 718) Recurrence (n = 105) Completeness

M
M0 444 (53.9%) 371 (51.7%) 73 (69.5%)
M1 20 (2.4%) 12 (1.7%) 8 (7.6%)
MX 359 (43.6%) 335 (46.7%) 24 (22.9%)

pathological TNM 97.33%
T
T0 24 (2.9%) 19 (2.6%) 5 (4.8%)
T1 417 (50.7%) 380 (52.9%) 37 (35.2%)
T2 232 (28.2%) 190 (26.5%) 42 (40.0%)
T3 35 (4.3%) 22 (3.1%) 13 (12.4%)
T4 15 (1.8%) 12 (1.7%) 3 (2.9%)
TX 100 (12.2%) 95 (12.2%) 5 (4.8%)
N
N0 544 (66.1%) 494 (68.8%) 50 (47.6%)
N1 153 (18.6%) 127 (17.7%) 26 (24.8%)
N2 48 (5.8%) 32 (4.5%) 16 (15.2%)
N3 18 (2.2%) 9 (1.3%) 9 (8.6%)
NX 60 (7.3%) 56 (7.8%) 4 (3.8%)
M
M0 11 (1.3%) 9 (1.3%) 2 (1.9%)
M1 13 (1.6%) 7 (1.0%) 6 (5.7%)
MX 799 (97.1%) 702 (97.8%) 97 (92.4%)

ER 79.63 ± 34.92 82.34 ± 32.51 61.13 ± 44.28 87.85%

PR 53.48 ± 38.53 56.46 ± 37.78 33.13 ± 37.59 87.85%

HER2 87.97%
0 152 (18.5%) 133 (18.5%) 19 (18.1%)

1+ 475 (57.7%) 429 (59.8%) 46 (43.8%)
2+ 128 (15.6%) 107 (14.9%) 21 (20.0)
3+ 68 (8.3%) 49 (6.8%) 19 (18.1%)

Ki67 18.07 ± 19.56 16.35 ± 17.86 29.8 ± 25.8 87.97%

No. surgeries 1.44 ± 0.81 1.44 ± 0.79 1.45 ± 0.93 100%

No. chemotherapies 10.88 ± 22.51 8.42 ± 16.41 27.70 ± 42.67 100%

No. radiotherapies 4.24 ± 3.43 4.15 ± 3.41 4.87 ± 3.49 100%

The majority of patients (99.4%) are women, and the mean age at the time of cancer
diagnosis is 60.39 years. Most of the tumor sites correspond to the upper-outer quadrant of
the breast (31.5%) and overlapping sites of the breast (32.4%), and the largest proportion
was in grade 3 (74.2%).

Patients with 5-year recurrence have higher Ki67 values and HER2 scores and lower
PR and ER levels than those without recurrence. This is in line with published material.
Ki67 is a well-known marker of cell proliferation, while HER2-positive breast cancer is
characterized as aggressive and has a less favorable prognosis. In addition, their number
of chemotherapies entries in the STR dataset is also significantly higher (a mean of 27.70
versus 8.42), and in general, their cTNM and pTNM stages are worse.

The top five ranked features in the UNS dataset are shown in Table 4. For each concept,
the mean and standard deviation of the number of times the concept was extracted for each
patient are reported. The term ‘chemotherapy’ appears as one of the most relevant risk
factors for prediction, as also suggested by the STR dataset. In the UNS dataset, however, it
is possible to find valuable new information that is not present in the structured STR, such
as symptoms. The top five ranked symptoms in the UNS dataset are shown in Table 5.
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Table 4. Top five selected features in the UNS dataset.

Concept Concept Type Total Non-Recurrence Recurrence

Chemotherapy M 6.65 ± 9.13 5.95 ± 8.92 11.47 ± 9.2
Axillary Lymphadenopathy S 1.08 ± 3.82 0.87 ± 3.52 2.5 ± 5.22

Antineoplastic Agent M 3.16 ± 4.91 2.82 ± 4.8 5.45 ± 5.1
Carcinoma D 8.21 ± 6.75 7.67 ± 6.61 11.87 ± 6.59

Biopsy P 2.44 ± 4.17 2.19 ± 3.94 4.17 ± 5.21

D = Disease, S = Symptom, M = Medicine, P = Procedure, R = Risk factor.

Table 5. Top five selected symptoms in the UNS dataset.

Concept Total Non-Recurrence Recurrence

Axillary Lymphadenopathy 1.08 ± 3.82 0.87 ± 3.52 2.5 ± 5.22
Ulcer of Nipple 0.02 ± 0.56 0 ± 0 0.15 ± 1.56

Breast Mass 0.77 ± 3.36 0.66 ± 3.22 1.58 ± 4.11
Colon Polyp 0.04 ± 0.68 0.01 ± 0.14 0.22 ± 1.87

Lymphangitis 0.08 ± 0.88 0.05 ± 0.56 0.33 ± 1.98

3.2. ML Algorithm Selection

Once the datasets are prepared, we proceed to identify the algorithm that, in general
terms, offers the best classification results, which we will use in later stages to validate our
hypothesis. In order to identify the best-performing ML algorithm to accurately predict
the probability of five-year breast cancer recurrence, the performances obtained for each
algorithm developed with the three datasets were averaged.

The averaged precision, recall, F1, and AUROC values across all three datasets are
summarized in Table 6 (individual results can be seen in Table A1 in Appendix A). The re-
sults show that of the five ML algorithms evaluated, XGB achieves the best average results,
outperforming the others for all the evaluation metrics (precision = 0.900, recall = 0.907,
F1 = 0.897, AUROC = 0.807). It is followed by GB (precision = 0.883, recall = 0.860,
F1 = 0.870, and AUROC = 0.777) and DNN (precision = 0.883, recall = 0.897, F1 = 0.887, and
AUROC = 0.713). DT (precision = 0.853, recall = 0.850, F1 = 0.847, AUROC = 0.643) and LR
(precision = 0.850, recall = 0.813, F1 = 0.827, AUROC = 0.640) achieve more modest results,
the latter being the lowest in all metrics.

Table 6. Performance of ML algorithms averaged across the three datasets (STR, UNS, COMB).

Algorithm Precision Recall F1 AUROC

LR 0.850 0.813 0.827 0.640
DT 0.853 0.850 0.847 0.643
GB 0.883 0.860 0.870 0.777

XGB 0.900 0.907 0.897 0.807
DNN 0.883 0.897 0.887 0.713

As we can see in the table, the differences of XGB with respect to the other algorithms
are notable, especially in terms of AUROC, indicating that it is able to better separate
between both classes. In light of these results, we can say that the XGB classifier is the best
alternative for building a model for predicting the five-year recurrence of patients with
breast cancer.

3.3. Comparison of Datasets

We used the XGB algorithm selected in the previous stage to compare the discrimina-
tive power of three sets of features to predict breast cancer recurrence within five years:
(1) structured data from the EHR (STR dataset), (2) concepts extracted from clinical notes
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in the EHR (UNS dataset), and (3) the combination of the previous two (COMB dataset).
Prediction results obtained for each dataset are presented in Table 7.

Table 7. Classification results of XGB algorithm in predicting five-year breast cancer recurrence using
different sets of features.

Feature Set Precision (CI 95%) Recall (CI 95%) F1 (CI 95%) AUROC (CI 95%)

STR 0.926 (0.924–0.928) 0.928 (0.927–0.930) 0.919 (0.917–0.921) 0.847 (0.843–0.852)
UNS 0.894 (0.892–0.897) 0.903 (0.901–0.905) 0.882 (0.880–0.885) 0.793 (0.787–0.799)

COMB 0.891 (0.888–0.893) *† 0.891 (0.889–0.893) *† 0.889 (0.886–0.891) *† 0.778 (0.771–0.783) *†

* Statistically significantly lower than STR; † Statistically significantly lower than UNS.

The results show that the model built from the STR dataset performs significantly better
in terms of AUROC with 0.847 (95% CI 0.843–0.852) compared with the other forecasting
models. Notably, the AUROC from the COMB model is the lowest of the three, with 0.778
(95% CI 0.771–0.783).

The results are similar for the other metrics (precision, recall, and F1), in which the
model based on STR once again yields notably higher performance across all three measures,
with 0.926 (CI 95% 0.924–0.928), 0.928 (CI 95% 0.927–0.930), and 0.919 (CI 95% 0.917–0.921),
respectively. The COMB dataset again yielded the lowest performance, only surpassing
UNS in F1. All differences were statistically significant.

4. Discussion

The occurrence of a relapse after breast cancer treatment is devastating news for
patients. It is essential to optimize therapy for this group of patients to try to prevent
recurrence or prolong the time until its appearance for as long as possible, but this is only
feasible if it is possible to accurately identify patients who are at high risk of recurrence.
Tools for relapse prediction, such as those proposed in this study, are essential to help-
ing clinicians better tailor strategies for monitoring cancer recurrence, make personalized
treatment decisions, and carry out more effective follow-up. The present study compared
the predictive power of ML models trained on three different sets of features to predict a
five-year recurrence. Based on our analysis, we reject the hypothesis that the combination
of features from structured and unstructured data improves prediction using the individual
datasets. Conversely, the results suggest that structured, tabular data gives the best predic-
tive performance when available. Nevertheless, good performance can also be achieved
with unstructured (i.e., free text) data when structured data are not available. However,
combining both sets of features does not provide any advantage in predicting five-year
recurrence in patients with breast cancer.

With each passing day, the amount of healthcare data available is greater and greater,
and it is unreasonable to expect the physician to integrate and assimilate all of it into his
decision-making effectively. The ability of ML to analyze large and diverse datasets makes
it an invaluable tool when making decisions about the care of their patients, since it allows
healthcare professionals to consider more evidence than they could otherwise process and
remember on their own [28,43]. In this study, we hypothesized that it is possible to reuse
routinely generated healthcare data using ML models to predict cancer outcomes, which
could facilitate the implementation of timely pre-emptive interventions.

Among the 5 ML algorithms evaluated in this study, XGB was found to be the one
that achieved the best performance on all averaged metrics across all datasets, followed
by GB and DNN. As we can see, more complex algorithms such as ensembles or neural
networks yield better performance. This is possibly because of their ability to better model
the non-linearities of the data. It is not surprising that GB achieves similar results to XGB
since they are essentially the same algorithm. However, XGB implements DART [44], a
more regularized model formalization to control overfitting, which can explain its better
performance. In the literature, DNN algorithms have increased in popularity in recent years
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and have been the algorithm of choice for many prediction tasks in healthcare lately [45–47],
primarily due to the performance they achieve with non-traditional, non-tabular data.
However, our results are consistent with Schwartz et al. [48], who compared recent works
on deep learning models to XGB on a variety of tabular datasets. The study showed that
for most of the datasets, XGB outperformed deep learning models and, moreover, required
less tuning.

We have applied the XGB algorithm to compare the discriminative power of three
sets of features, and the results have shown that the model trained with the COMB dataset
yielded the lowest performance. Thus, this indicates that the combination of structured
and unstructured data sources does not provide any gain in the prediction of breast cancer
recurrence in our cohort. One possible explanation for this unexpected result might be
that the model could have been given too many features for the limited size of our dataset.
Therefore, the amount of data would not be enough to train the model while ensuring its
generalization; that is, there could be a problem of high variance.

For the other two datasets, the model trained on STR outperformed the UNS model.
This may indicate that the features extracted from the free text did not provide, at the bottom
line, any additional signal for the prediction of recurrence in the breast cancer cohort on
top of the data already available in a structured format in the EHR. However, it should be
noted that the CHU de Liège EHR contains a large amount of relevant information in a
semi-structured format that could be curated and incorporated into the STR dataset, which
may have contributed to improved performance in the STR model. Unfortunately, this is
not the case in many hospitals, whose records are not yet very well structured and may not
even contain the features that have been used in this study. Additionally, extracting and
mapping data into a common format is a costly process that requires manual effort and
complicates the use of models based on this type of data. Thus, the NLP-based approach
could be an affordable alternative since it does not require such an expensive mapping
process as the STR dataset might require, while the recurrence prediction performance is
comparable to the model based on structured data. In addition, the NLP-based approach
also has the advantage of being potentially easier to extend for use in predicting outcomes
in other types of cancer since it does not require manual adjustment, while the dataset based
on structured data entails prior identification and mapping of specific tumor biomarkers
for each type of cancer.

One limitation of our analysis is the large proportion of patients that had to be dis-
carded from the original dataset, which has resulted in a significant reduction in the data
available to evaluate the algorithms. In addition to the obvious drawback of having fewer
data to train the models, this may also have introduced some degree of selection bias, which
could have limited the validity of the predictions. Another limitation in this study has been
the constraint on computational resources, which has prevented us from applying more
advanced NLP techniques. In future studies, we would like to explore techniques such as
Named Entity Recognition, Relation Extraction, and Word Embeddings, which work best
with deep learning models such as Bi-LSTM [49] and Transformers such as BERT [50]. With
that additional syntactic and semantic information, relevant features could be extracted in
a much more sophisticated way, potentially leading to improved effectiveness of the UNS
dataset. Finally, the models have been trained with data from the CHU de Liège hospital
only, which is not representative of a wider population. It would be of great interest to
extend this study to a variety of centers and compare the performance of the models trained
using data extracted from those settings. Furthermore, there are nowadays promising
biomarkers that have been proposed by the scientific community, such as neutrophil-to-
lymphocyte ratio (NLR) [51] or relative eosinophil count (REC) [52,53], that could provide
rich information to predict the outcome of cancer patients. It would be highly interesting
to incorporate these biomarkers into our predictive models in the future, once they are
validated by international clinical trials.
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5. Conclusions

This study explores the secondary use of routinely recorded EHR data to predict 5-year
recurrence in breast cancer patients using ML techniques. We have derived three datasets
(structured data in patient records, features extracted from clinical notes, and a combination
of the previous two) from a cohort of patients from CHU de Liège to test whether providing
ML models with features from structured and unstructured sources could achieve better
prediction results than either source alone. We have chosen the XGB algorithm to test our
hypothesis based on a comparison made between five ML algorithms.

Contrary to what we had hypothesized, the model trained on the combined dataset
yielded the lowest prediction performance. The STR dataset achieved the highest per-
formance overall, suggesting that in the data at hand, features extracted from clinical
reports do not improve the predictive capacity of the data that is stored in a structured
format. However, due to the low standardization of EHRs and the high cost of mapping
the data used to train the ML algorithms, the NLP-based approach could be a useful and
easier-to-implement alternative with fairly good performance.

ML tools such as those built in this study hold great potential to stratify patients at
risk and to help professionals in decision-making and personalization of treatment, which
could lead to an increase in patient survival rates. However, future research evaluating
these algorithms in larger cohorts that involve multiple centers is needed to implement
them in routine research and patient care.
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Appendix A

Table A1. Individual and average results for ML algorithms trained on the three datasets (STR, UNS,
COMB).

Algorithm Dataset Precision Recall F1 AUROC

LR

STR 0.86 0.8 0.82 0.72
UNS 0.87 0.86 0.86 0.65

COMB 0.82 0.78 0.8 0.55
Average 0.850 0.813 0.827 0.640

DT

STR 0.87 0.86 0.86 0.70
UNS 0.86 0.83 0.84 0.69

COMB 0.83 0.86 0.84 0.54
Average 0.853 0.850 0.847 0.643

GB

STR 0.91 0.90 0.91 0.80
UNS 0.86 0.82 0.83 0.73

COMB 0.88 0.86 0.87 0.8
Average 0.883 0.860 0.870 0.777

XGB

STR 0.92 0.93 0.92 0.84
UNS 0.89 0.90 0.88 0.80

COMB 0.89 0.89 0.89 0.78
Average 0.900 0.907 0.897 0.807

DNN

STR 0.91 0.92 0.91 0.75
UNS 0.89 0.90 0.89 0.82

COMB 0.85 0.87 0.86 0.57
Average 0.883 0.897 0.887 0.713
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