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Up-to-date knowledge about changes in forest resources and their spatial distribution is essential for sustainable
forest management. Therefore, monitoring of forest evolution is increasingly demanded by national and
international agencies to design forestry policies and to track their progress. Annually updated land cover maps
based on open access satellite imagery may serve as a primary tool for monitoring forest surface evolution
over time. Spatially detailed information about forest change might be obtained by comparing land cover maps
over time. This study aims to better understand the processes underlying pixels whose land cover changes from
1 year’s map to the next and to understand why errors occur. In this study, two annual land cover maps were
produced using Sentinel-2 images and afterwards theywere compared. The comparisonwas performed in terms
of total surface occupied in eachmap by each of the classes (net comparison) and in terms of spatial agreement,
comparing the results pixel to pixel. The study was performed for the entire region of Galicia (in the Northwest
of Spain) for the years 2019 and 2020. Land cover maps obtained had overall accuracies of 82 and 85 per cent.
Differences in the total surface of change were encountered when performing the net comparison and spatial
agreement comparison. The detailed analysis performed in this study helps to better understand the processes
underlying the maps’ discrepancies revealing the processes leading to wrongly identified forest changes. Future
studies could aim to integrate this knowledge into the monitoring system to improve the ultimate usability of
land cover maps to retrieve information about forest changes.

Introduction
An increasing interest in developing adequate policies for sus-
tainable forest management is arising given the current context
of climate change, and due to the essential role that forests
play in its mitigation (Pan, 2011). The efficiency of sustainable
forestmanagement policies depends greatly on having adetailed
understanding of the distribution of forest resources and their
evolution (FAO, 2020). Updated land use maps depicting the
forest area of a region constitute useful tools for forest managers
when it comes to policy design, planning and implementation
and for efficiency evaluation. Along these lines, one of the main
pillars of the FAO’s REDD++ program (Food and Agriculture Orga-
nization of the United Nations, Reducing Emissions from Defor-
estation and forest Degradation, plus the sustainable manage-
ment of forests, and the conservation and enhancement of forest
carbon stocks) to encourage developing countries to contribute
to climate changemitigation, is providing forest monitoring tools
(FAO, 2021). Reliable and updated information is also needed to
design any policies aimed at achieving the forest-related goals

included in the United Nations 2030 Agenda (United Nations,
2021) and in the Paris Agreement (European Commission, 2021),
as well as to monitor and report different countries’ progress
towards achieving these goals. Therefore, there is an increasing
demand from national and international agencies for informa-
tion about forests’ distribution and changes.
Open-access satellite data are one of the most important

sources of information for monitoring the evolution of forest area
at a large scale (Wulder et al., 2018; World Resources Institute,
2022). In fact, one of the strategies followed bymultiple national
and international agencies to track forest evolution is the auto-
matic production of land cover maps which can be frequently
updated using satellite data and which are oriented towards
specific information needs (Inglada et al., 2017; Mundialis, 2019;
UKCEH, 2020; Junta de Castilla y León, 2021; S2GLC, 2021). Once
land cover maps are obtained for regular intervals of time, com-
paring them can be useful for studying the evolution over time
of specific land cover classes of interest, for example forest area.
Forest change estimations can also be derived from these maps
(Wickham et al., 2014; Gilani et al., 2020; Ji et al., 2021).
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However, several concerns exist when performing compar-
isons ofmaps fromconsecutive years. A simple direct comparison
may lead to an inconsistent change report (Congalton et al.,
2014; Palahí et al., 2021). First, it is essential to ensure that
all the maps compared were created using the same method-
ology (Congalton et al., 2014; Kang et al., 2020; Palahí et al.,
2021). Second, the comparison of maps from consecutive years
must consider that eachmapmay have class-specific errors with
the potential to blur the conclusions related to changes. This is
because pixels that are assigned to a different land cover in an
updatedmapwith respect to the earliermapmight not necessar-
ily correspond unequivocally to true areas of change. Therefore,
quantifying the area of forest change cannot be accomplished
simply by quantifying the pixels that have changed; rather, the
area of uncertainty must be quantified as well (Olofsson et al.,
2013). Another important concern is the regular presence of spu-
rious changes, i.e. changes that cannot possibly have occurred
within the study period. For example, a pixel may be classified
as a certain tree cover (i.e. Conifers) in one land cover map,
and as a contradicting tree cover (i.e. Broadleaves) in the land
cover map from the next year. Depending on the scale and on
the particularities of the study area, the strategy for dealing
with spurious changes may differ and hence this topic must be
studied in detail (Abercrombie and Friedl, 2015; Zhu et al., 2020).
In addition, if the focus is on studying the evolution of forests
over time, it is important to find a way to deal with harvested
areas. They may be assigned to non-tree-cover classes at the
time directly following the harvest, but may still be considered
forest areas according to official definitions of forest areas. Multi-
temporal analysismayhence be required to correctly label stands
that were logged during forest area estimations (FAO, 2018;
Wulder et al., 2020).
Given the considerations involved in the comparison of

consecutive-year land cover maps, it is essential to analyze them
in detail in every region of interest (Jin et al., 2017). Producing
consecutive-year land cover maps with the aim of monitoring
forested areas can be especially challenging in areas with a
high level of stand fragmentation and a high harvesting rate.
In such regions, harvesting areas may be small and difficult to
identifywhen comparing the land covermaps before and after an
intervention. A great number of edge pixels with mixed spectral
signaturesmay also potentially be labeled as change pixels when
performing the map comparison. These edge effects generate
noise that complicates the identification of real changes (Kussul
et al., 2016).
This study analyses the implications and challenges of com-

paring annual land cover maps produced by supervised classifi-
cation of Sentinel-2 images. The geographic focus of the study
is Galicia, a region in the Northwest of Spain characterized by
a high level of forest stand fragmentation and a high rate of
harvesting. Two land cover maps were produced in consecutive
years and compared to detect forest cover changes. They were
compared in terms of total surface occupied in each map by
each of the classes. In addition, a detailed spatial comparison
using a pixel to pixel analysis was performed. These analyses aim
to understand the underlying processes behind the pixels’ land
cover changes from one map to the next as well as to identify
which factors can lead to the misidentification of change. This
can help to improve the monitoring of forests using consecutive

land cover classifications, especially in areas with a highly active
forest sector or where there is a dominance of species with short
rotation periods, and/or high stand fragmentation.

Study area
The study area corresponds to the whole region of Galicia (North-
west of Spain) (see Figure 1). It comprises a total of 29.575
km2. Forty-eight per cent of its surface area is covered by for-
est (canopy cover ≥10 per cent) (de Galicia, 2016). The main
Galician forests are: productive forests of mainly Eucalyptus spp.,
Pinus pinaster, Pinus radiata and Pinus sylvestris, broadleaf mixed
forests (Quercus spp., Castanea sativa, etc.) and riparian forests
(de Galicia, 2016). Galicia has both Atlantic and Mediterranean
climates (Meteogalicia, 2021). The climate variability and the
tree species diversity of Galicia translate into diverse starting and
ending points of the phenological period depending on the tree
location and species (Sánchez et al., 2013).
Galicia has an extremely active forestry sector (Levers et al.,

2014; MITERD, 2018), 50 per cent of the volume of timber annu-
ally harvested in Spain is harvested in Galicia. The official har-
vesting records for the last 6 years (2015–2020) report a mean
value of 88 140 administrative harvesting requests per year (de
Galicia, 2021). In addition, Eucalyptus plantations may represent
a challenge in terms of monitoring due to their short rotation
cycles (between 12 and 15 years) (Tolosana et al., 2017; Arenas
et al., 2019). In addition, the forest stands in Galicia are highly
fragmented, mainly due to the great degree of land fragmenta-
tion attributed to the great number of land owners that possess
small forest parcels, some of which have had agricultural uses in
earlier times. It is estimated that ∼40 per cent of the productive
forest area corresponds to parcels smaller than 0.5 ha (Spanish
government, 2011).

Materials
Satellite images
A set of Sentinel-2 images was used in this study. The Sentinel-2
constellation was launched as a part of the European Copernicus
program to monitor the Earth’s land surface and, in particular,
its vegetation (ESA, 2015a). The Sentinel-2 constellation (ESA,
2015b) has two satellites equipped with a medium-resolution
multispectral instrument (MSI-12 bits) with 13 spectral bands.
The bands’ spatial resolutions range from 10 to 60 m. A detailed
description of the Sentinel-2 bands is presented in Table 1.
The constellation allows for a revisit time of 5 days or less. The

Sentinel-2 product used in this study was the Level 2A product,
which has undergone geometric, radiometric and atmospheric
corrections. For each of the seven Sentinel-2 tiles corresponding
to Galicia, a time series of images corresponding to the 2 study
years 2019 and 2020was downloaded from the Copernicus Open
Access Hub (ESA, 2021). Each set is a compound of 12 Sentinel-
2 images, with one image per month to account for all of the
phenological stages of the vegetation. Images were selected
using the criteria described in Alonso et al. (2021). For each
month, the image with the least cloud cover was selected, with
the maximum threshold being 50 per cent. In cases where no
image with < 50 per cent cloud cover was available for a specific
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Figure 1 Study area (Galicia, Northwest of Spain).

Table 1 Specifications of spectral bands provided by Sentinel-2 (ESA,
2015b).

Band Central
wavelength
(nm)

Bandwidth
(nm)

Spatial
resolution (m)

Band 1 – Coastal aerosol 443 20 60
Band 2 – Blue 490 65 10
Band 3 – Green 560 35 10
Band 4 – Red 665 30 10
Band 5 – Near Infrared
(NIR)

705 15 20

Band 6 – NIR 740 15 20
Band 7 – NIR 783 20 20
Band 8 – NIR 842 115 10
Band 8A – NIR narrow 865 20 20
Band 9 – Water vapor 945 20 60
Band 10 – Shortwave
Infrared (SWIR) (cirrus)

1375 30 60

Band 11 – SWIR 1610 90 20
Band 12 – SWIR 2190 180 20

month, an image from the end of the previousmonth or from the
beginning of the following month was selected.

Reference images
Aerial orthorectified images from the Spanish National Plan of
Aerial Orthophotography, PNOA by its Spanish acronym (MTMAU,
2021), were used to obtain training and verification datasets.
The PNOA images were acquired from the Spanish National

Cartographic Institute (IGN) (MTMAU and IGN, 2021). Two sets
of open-access images are available: images corresponding
to photogrammetric flights performed between the 30th of
May and the 1st of September 2017 (PNOA 2017) and images
corresponding to photogrammetric flights performed between
the 30th of May and the 1st of September 2020 (PNOA 2020).
The imagery includes three bands covering the visible spectrum
(VIS) (red, green, blue) and a near infrared band (NIR). The
Images from 2017 have a spatial resolution of 0.25 m and a
georeferencing mean square error of ≤0.5 m (MTMAU, 2021).
The Images from 2020 have a spatial resolution of 0.15 m and a
georeferencing mean square error of ≤ 0.20 m (MTMAU, 2021).
Google street view (Google Street view, 2021) was also used
wherever possible as a complement to the PNOA images.

Methods
From the data presented before, 2 consecutive-year land cover
maps were produced and later compared in detail. With this, we
aimed to better understand the processes leading to changes
from one map to the next with a particular focus on forest
changes. The general workflow is presented in Figure 2.

Annual land cover mapping
Two consecutive-year land cover maps were obtained in this
study, onemap for 2019 (MAP19) and onemap for 2020 (MAP20).
They were derived following the methodology described by
Alonso et al. (2021). This method is based on a supervised
classification of a set of Sentinel-2 images from a given year
and the subsequent aggregation of the classification maps from
each satellite image using a set of decision criteria. As a result, a
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Figure 2 General workflow.

Figure 3 Annual land cover mapping workflow. Source Alonso et al. (2021).

single map is obtained that describes the land cover for a given
year (Lewinski et al., 2017). Figure 3 presents a diagram of the
workflow followed (Alonso et al., 2021).

The first step in obtaining the annual land cover classifications
is the definition of the land cover target classes as presented in
Table 2. The same classes were used for both maps.
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Table 2 Description of target land cover classes for creating the forest-
oriented land cover map of Galicia.

Class Description

Eucalyptus spp. Land covered by Eucalyptus spp. tress.
Conifers Land covered by coniferous trees.
Broadleaves Land covered by broadleaf trees other than

Eucalyptus spp.
Shrubs Land covered by non-tree woody vegetation.
Crops and pastures Land covered by non-woody vegetation.
Bare soil Land covered by rocks or non-anthropogenic

non-vegetated areas.
Anthropogenic
areas

Buildings or built-up areas or areas modified by
humans, such as mines.

Water Bodies of water.

A total of 84 images per year, one image per month and
seven Sentinel-2 tile covering Galicia, served as input. Once the
images were selected and downloaded, the cloudy pixels from
each image weremasked out of all of the images using the cloud
mask provided by the Sentinel-2 Level-2A product.
Training areas were obtained mainly through the photoint-

erpretation of PNOA images 2017, as well as of the occasional
use of Google Street view images. A set of polygons for each
target classwasmanually delineated over thewhole study region
(ROI19). PNOA images from 2020 and Sentinel-2 images dat-
ing from 2019 were used as supporting information. They were
mostly used to verify that the class in the training area did
not change between the years, i.e. an area identified as conif-
erous forest in the 2017 PNOA image, is also coniferous forest
observed in the PNOA 2020 image, whereas no change observed
in Sentinel-2 during the whole 2020. This training dataset was
used to build the land cover map for 2019 (MAP19).
The training dataset used to create the land cover map for

2020 (MAP20) was obtained by re-inspecting the previous train-
ing areas. The 2020 PNOA images (MTMAU, 2021) and Sentinel-2
images dating from 2020 were used; all areas that underwent a
change (i.e. forest harvesting) were dropped. They were replaced
by a polygon from an area nearby with the same land cover to
maintain the number of training polygons per class.
The training areas were distributed throughout the land-area

of Galicia. The number of polygons used in the training datasets
for each land use class is presented in Table 3, as well as their
total area and the minimum size of the defined polygons.
Once the training areas were collected, single-date super-

vised classifications were conducted for each of the 12 images
downloaded for each year, and for each of the seven Sentinel-2
tiles that correspond to Galicia. All supervised classifications were
performed using the random forest algorithm (Breiman, 2001)
implemented in R using the random Forest package (Liaw and
Wiener, 2002). The configuration parameters were set to default
(Number of trees: 500). Each random forest model was trained
using the training areas from all the tiles that comprise the study
area. The predictive bands were all of the Sentinel-2 bands with
10 and 20 m pixel sizes (B02, B03, B04, B05, B06, B07, B08, B8A,
B11 and B12). The classification was conducted at a pixel size of

20 m. The 10-m bands of Sentinel-2 were resampled to 20 m
using nearest neighborhood interpolation.
Once single date classifications for a year were obtained, they

were aggregated following a plurality voting decision criteria
(Lewinski et al., 2017; Alonso et al., 2021). Plurality voting consists
of assigning as the ultimate class to each pixel themost common
class fromamongall of the classes identified throughout the time
series (Lewinski et al., 2017). By doing this, areas that did not
have pixel values in a given month (i.e. masked clouds) would
be classified according to the most common classification for
that pixel in the rest of the months processed. At the end of this
process, MAP19 and MAP20 were obtained.
Finally, the maps obtained were cross verified. To perform the

cross verification, an independent set of 1674 randompoints was
distributed over the study area. The same set of points was used
to verify both years. However, in some cases, the ground truth
of some of these points may have changed due to changes pro-
duced in the land cover over the course of the 2 years. The ground
truth of each point was obtained through photointerpretation of
PNOA17 and PNOA20 images (as described in detail in the meth-
ods section). Some verification points were discarded as they fell
on pixels permanently covered by clouds. This included 18 points
for the MAP19 verification and 19 points for MAP20. In addition,
334 verification points were discarded due to the impossibility of
obtaining a reliable ground truth through photointerpretation, for
example, because the corresponding Sentinel-2 pixel was located
in an area with a clearly mixed land-cover. A confusion matrix
was built based on the successfully interpreted reference points,
and the following metrics were obtained to assess the accuracy
of both land cover maps: Overall Accuracy (OA), User’s Accuracy
(UA), Producer’s Accuracy (PA), F-1 Score and Kappa Index. An
explanation of each of the accuracy metrics is given in Table 4.

Comparison of annual classifications
Once the results of the consecutive-year classifications were
obtained, they were compared to identify changes. This step is
in fact the key-contribution of this study as it sought to under-
standing in detail which changes can be detected reliably, which
changes are difficult to identify and the implications for an oper-
ational monitoring system. The comparison was performed first
in terms of net surface area and secondl in terms of spatial
agreement.
The net surface area comparison can be used to provide a

general idea of the degree of total land cover change between
classifications for the whole study area. The total surface area
covered by each class on each year’s map was computed. For
each class, the total surface area from MAP19 was subtracted
from the total surface area fromMAP20. It was deemed a positive
development of a class in cases where an increment in surface
area of a given target class was seen in 2020 and a negative
development when the target class’s surface area declined in
2020 with respect to its area in 2019.
The spatial agreement comparison aims to locate areas of

discrepancy between years and understand the reasons why
these discrepancies occur. For this purpose, themaps MAP19 and
MAP20 were combined: MAP19 wasmultiplied by 100 and added
to MAP20. This combination was performed using the raster cal-
culator in Qgis (QGIS.org, 2022). Details of this step are presented
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Table 3 Summary of training data.

Class Number of polygons Total surface 2019
(ha)

Min size of polygons
2019 (m2)

Total surface 2020
(ha)

Min size of polygons
2020 (m2)

Eucalyptus spp. 204 667 672 626 672
Conifers 301 981 202 912 202
Broadleaves 199 1292 158 1194 158
Crops and pastures 129 1079 613 1078 613
Shrubs 270 1147 338 1159 338
Bare soils 234 516 76 516 76
Anthropogenic
areas

84 698 2686 698 2686

Water 76 2276 364 2276 364

Table 4 Detailed description of accuracy metrics. Source Alonso et al. (2021).

Accuracy metric Definition

Overall Accuracy (OA) Calculated by summing the number of correctly classified sites (the diagonal of the confusion matrix) and dividing
by the number of reference sites. This value indicates the proportion of the reference sites that was correctly
classified

Producer’s Accuracy (PA) The result of dividing the number of correctly classified reference points in each category by the total number of
reference points for that category. It corresponds to the map accuracy from the point of view of the map maker. It
represents how often real features on the ground are correctly shown on the classified map or the probability that a
certain land cover of an area on the ground is properly classified.

User’s Accuracy (UA) Computed by dividing the number of correctly classified pixels in each category by the total number of pixels that
were classified for that category. This value represents the reliability of the map or the probability that a pixel
classified into a given category actually represents that category on the ground.

F-1 Score Weighted average of the Producer’s and User’s accuracy.
Kappa Index Compares the accuracy obtained in the classification to the accuracy that would be obtained randomly. It is

calculated as the total accuracy (OA) minus the accuracy that would be obtained by a random classification all
divided by one minus the accuracy that would be obtained by a random classification.

in Figure 4. As a result of the process, a new raster was obtained
where the digital values included the corresponding 2019 and
2020 classes: the first digit of the new codes corresponded to the
2019 class and third digit to the 2020 class. Wherever the land
use for a pixel in MAP19 and MAP20 agreed, the first digit and
the third digit of the new raster were the same. However, if the
land cover changed from 1 year to the next (for example in cases
of harvesting), the first and the third digit were different. From
that point on, pixels where the first and the third digit of the new
raster did not agree were considered a discrepancy category. In
this way, it was possible to know not only the spatial agreement
or discrepancy between the two maps but also the direction of
these discrepancies.
Once the discrepancy raster was obtained, the percentage of

the surface area where annual classifications agree (percentage
of agreement) was calculated as well as the percentage of sur-
face area where the classifications disagree. Discrepancies were
grouped as follows: (1) tree cover to tree cover, (2) tree cover to
non-tree covers, (3) non-tree covers to tree covers and (4) other
discrepancies. In this study, the discrepancies that included tree-
related classes were then analyzed in detail.
For this, we visually interpreted and analyzed the discrepancy

areas to understand the proportion of the discrepancies that

was related to any forest disturbance or land cover change
and the proportion that was related to classification errors. A
total of 30 random points for each discrepancy category was
randomly distributed over pixel clumps (pixels that share a side
or an edge) of at least six pixels from the same class. This was
necessary to simplify the photointerpretation. Each point was
inspected in detail to detect whether, from one classification to
the next, a real change had occurred (correct discrepancy) or if
no real change had occurred (incorrect discrepancy). A change
was understood to be any change in the land cover including a
decrease in vegetation (i.e. due to timber logging or forest fire)
or vegetation recuperation (i.e. reforestation). In areas where a
change had in fact occurred, the correctness of the direction of
the change was also verified (if the class assigned to that pixel on
the MAP20 corresponded to the land cover of that pixel in 2020).
The inspection was again based on photointerpretation of PNOA
images from 2017 to 2020 and Sentinel-2 images. Subsequently,
the following metrics were obtained:

• Percentage of change points: the percentage of the 30 sam-
pled points for each category where any real change had
occurred between 2019 and 2020, the percentage of correct
discrepancies per discrepancy class.
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Figure 4 Diagram presenting the combination of MAP19 and MAP20 to obtain the spatial agreement raster which allows for the identification of
discrepancy areas and for the detailed study of the direction of these discrepancies.

Table 5 Confusion matrix obtained for MAP19.

Reference/Classified 1 2 3 4 5 6 7 8 T UA (%)

1 104 11 0 0 0 0 0 0 115 90
2 10 167 5 1 7 0 0 1 191 87
3 8 2 257 9 30 0 0 0 306 84
4 5 1 13 371 21 1 7 0 419 89
5 5 8 2 4 164 0 2 0 185 89
6 0 0 0 2 11 29 13 0 55 53
7 0 0 0 2 2 4 32 0 40 80
8 0 0 0 0 0 0 0 11 11 100
T 132 189 277 389 235 34 54 12 1322 OA (%)
PA (%) 79 88 93 95 70 85 59 92 OA (%) 86
F-1 Score 0.84 0.88 0.88 0.92 0.78 0.65 0.68 0.96 KI 0.82

Classes: Eucalyptus spp. (1), Conifers (2), Broadleaves (3), Crops and pastures (4), Shrubs (5), Bare soil (6), Anthropogenic areas (7) and Water (8).
Metrics: User’s Accuracy (UA), Producer’s Accuracy (PA), Overall Accuracy (OA), T: Total, KI: Kappa Index.

• Percentage of correctness of change direction: the percentage
of change points (of correct discrepancies) for each category
in which the class assigned in MAP20 corresponds to the true
land cover of that pixel in 2020.

Results
Annual land cover mapping
The results of the cross verification of MAP19 can be seen in
Table 5. A high OA was obtained (86 per cent). UAs and PAs
for forestry-related classes were high as well, with most values
above 85 per cent. Lower accuracy metrics were obtained for
the Bare soil and Anthropogenic classes. As shown in Table 5,
these two classes are commonly confused with one another
in the classification. MAP20 portrays accurate results as well,
as demonstrated in Table 6. The OA was 88 per cent and the
forestry-related classes’ metrics were all higher than 83 per cent.

Comparison of annual classifications
Once the results of the consecutive-year classifications were
obtained, they were compared first with respect to net surface

area and second in terms of spatial agreement. We observed a
net surface area change of a total of 80 127 ha between the 2019
land cover map and the 2020 land cover map, corresponding to
2.7 per cent of the total land area of Galicia. In Figure 5, the net
change between years is shown, categorized by target classes.
According to this type of comparison, the class that experienced
the greatest net change was Conifers, which occupied 22944 ha
more on MAP20 than on MAP19. Crops and Pastures, as well as
Broadleaves, showed large net changes but in the opposite direc-
tion. In particular, Broadleaves had a net decrease of 15343 ha.
However, the results of the spatial agreement comparison

show a very different balance of changes when compared with
the net comparison. Results are presented in Figure 6, where the
following categories are presented:

• Agreement: percentage of the surface area where MAP19 and
MAP20 agree.

• Tree–Tree discrepancies: percentage of the surface area where
there is a discrepancy between MAP19 and MAP20 but both
maps indicate that there is a tree cover.

• Tree-Other/Other-Tree discrepancies: percentage of the sur-
face area where there is a discrepancy between maps MAP19
and MAP20 such that one of the maps indicates that there is
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Table 6 Confusion matrix obtained for MAP20.

Reference/ Classified 1 2 3 4 5 6 7 8 T UA (%)

1 110 9 0 0 0 0 0 0 119 92
2 8 170 2 0 12 0 0 0 192 89
3 6 1 261 3 21 0 1 1 294 89
4 0 2 13 378 22 0 5 0 420 90
5 8 6 1 2 168 0 1 0 186 90
6 0 1 0 4 11 31 17 0 64 48
7 0 0 0 2 1 3 31 0 37 84
8 0 0 0 0 0 0 0 11 11 100
T 132 189 277 389 235 34 55 12 1323 OA (%)
PA (%) 83 90 94 97 71 91 56 92 OA (%) 88
F-1 Score 0.88 0.89 0.91 0.93 0.80 0.63 0.67 0.96 KI 0.85

Classes: Eucalyptus spp. (1), Conifers (2), Broadleaves (3), Crops and pastures (4), Shrubs (5), Bare soil (6), Anthropogenic areas (7) and Water (8).
Metrics: User’s Accuracy (UA), Producer’s Accuracy (PA), Overall Accuracy (OA), T: Total, KI: Kappa Index.

Figure 5 Net surface of change between 2019 and 2020 classifications.
The NA category represents surfaces permanently covered by clouds.

a tree-related land cover (Eucalyptus, Conifers or Broadleaves)
and the other indicates that there is a non-tree-related land
cover.

• Other discrepancies: percentage of the surface area where
there is a discrepancy between MAP19 and MAP20 and neither
land-cover class indicates a tree-related cover.

• NA: points permanently covered by clouds in either one or both
of the maps.

About 20 per cent of the Galician surface area was assigned
to a different class in MAP19 than in MAP20. Of these 20 per cent,
roughly 6 per cent were related to non-tree classes (for example
a discrepancy between Shrubs and Bare soil), whereas the other
14 per cent suggested a tree-related change with 10 per cent
corresponding to afforestation or a reduction in vegetation (i.e.
an Eucalyptus spp. pixel changing to Bare soil as the result of a
timber cut or a forest fire). The remaining 4 per cent is attributed
to spurious changes between tree covers (i.e. a pixel that was
erroneously classified in one of the years).
The detailed results concerning the discrepancy areas are

presented in Table 7. They reveal that most pixels in the category

Figure 6 Pie chart presenting the percentage of discrepancies resulting
from the spatial agreement analysis of maps MAP19 and MAP20.

‘Tree cover to tree cover discrepancies’ represent spurious
changes. However, a visual inspection indicated that many of
these cases cannot be considered strictly classification errors
since they frequently correspond to edge pixels with mixed
spectral signatures. In addition, some tree cover to tree cover
change pixels corresponded to real changes: logged areas are
often assigned to Broadleaveswhen vegetation such as Pteridium
spp. or annual grasses appears within the logging year. For
example, 50 per cent of the pixels with ‘Eucalyptus spp. to
Broadleaves’ changes corresponded to harvested Eucalyptus
plantations. Furthermore, young Eucalyptus spp. plantations
that are wrongly classified as Broadleaves (because of recent
harvesting) can rapidly change to the Eucalyptus spp. class if
the crown cover grows dense enough from 1 year to the next.
Respective examples can be seen in Figures 7 and 8.
The ‘tree cover to non-tree cover discrepancies’ category

includes changes that implied a reduction in vegetation: any tree-
related class in MAP19 that became Shrubs, Crop or pastures,
Bare soil or Anthropogenic areas in MAP20. In this case, a
great correspondence with real changes was observed. This
was especially true when the tree cover was Eucalyptus spp.
or Conifers: true positives were 97 and 100 per cent, respectively.
In general, the metrics were lower when the tree cover was
Broadleaves. Only the category ‘Broadleaves to Anthropogenic
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Table 7 Verification of discrepancies between MAP19 and MAP20.

Discrepancy type Discrepancy category Change points (%) Correctness of change direction
(%)

Tree-tree discrepancies Eucalyptus spp. to Conifers 0 -
Eucalyptus spp. to Broadleaves 50 0
Conifers to Eucalyptus spp. 3 0
Conifers to Broadleaves 33 0
Broadleaves to Eucalyptus spp. 93 0
Broadleaves to Conifers 50 0

Tree-Other discrepancies Eucalyptus spp. to Crops or
pastures

100 100

Eucalyptus spp. to Shrubs 33 70
Eucalyptus spp. to Bare soil 100 100
Eucalyptus spp. to Anthropogenic
areas

100 9

Conifers to Crops and pastures 100 100
Conifers to Shrubs 27 88
Conifers to Bare soil 100 90
Conifers to Anthropogenic areas 97 0
Broadleaves to Crops and
pastures

40 0

Broadleaves to Shrubs 3 100
Broadleaves to Bare soil 37 82
Broadleaves to Anthropogenic
areas

90 11

Other-tree discrepancies Crops and pastures to
Broadleaves

33 10

Shrubs to Eucalyptus spp. 60 94
Shrubs to Conifers 37 100
Shrubs to Broadleaves 13 0

Discrepancy category: MAP19 class to MAP20 class. Change points: percentage of the 30 sampled points for each category that exhibited a change
from MAP19 to MAP20. Correctness of change direction: percentage of change points for each category in which the class assigned in MAP20 was
correct.

areas’ corresponded closely, in 90 per cent of cases, with true
positives. Finally, a lower correspondence with real changes was
found in cases where any of the tree classes changed to Shrubs.
The visual inspection of this category revealed that these kinds
of discrepancies are often due to thinning. The reduction of the
trees’ density cover can lead to a situation in which either the
spectral signal is indeed dominated by understory shrubs or the
sparser tree canopy resembles the spectral signature of shrubs.
An example is presented in Figure 9.
Regarding the degree of correctness of the change direction, it

is worth noting that it is especially high when Eucalyptus spp. and
Conifers change to Crops and pastures (100 per cent). However,
correctness is quite low, around 10 per cent, in the case of tree
cover pixels from2019 thatwere then classified asAnthropogenic
areas in the 2020 map. It was noticed that these misinterpreta-
tionsweremainly related to burned areas; an example is provided
in Figure 10. After-fire spectral signatures may bemore similar to
the spectral signature of an impervious surface than to that of
another class, such as Bare soil for example, which might have
been expected.
Finally, the ‘non-tree cover to tree cover category’ was found

tomostly correspond with tree vegetation recoveries (from shrub

to a tree-related category). Plantations at early stages do not
have a sufficiently dense canopy cover to be detected as a tree
category in the maps and therefore the map only recognizes the
spectral answer of the underlying shrubs. But as the plantation
species grow a denser canopy cover, they are detected and
mapped correctly. An example is shown in Figure 11. However,
the rate of true positives was modest in this category: <40 per
cent for both Shrubs to Broadleaves and Shrubs to Conifers.
A slightly higher correspondence was observed for Shrubs to
Eucalyptus spp.: 60 per cent.With regard to the correctness of the
direction of change, it is worth mentioning that the discrepancy
categories implying the recovery of either Eucalyptus spp. or
Conifers exhibited a high level of correctness: 94 and100per cent,
respectively.

Discussion
The methodology described in Alonso et al. (2021) enabled the
creation of annual land covermaps using Sentinel-2 images. High
OAmetrics and high tree-class-specific and shrubs class accuracy
metrics were obtained. These results are in line with the ones
reported by Alonso et al. (2021) for different dates. The stability of
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Figure 7 Example of an area erroneously classified as Broadleaves after a Eucalyptus spp. harvesting. Reference images: PNOA 2017 (MTMAU, 2021)
and PNOA 2020 (MTMAU, 2021).

Figure 8 Example of a recently harvested and reforested Eucalyptus spp. area erroneously assigned to Broadleaves that is then correctly assigned to
Eucalyptus when the trees start to grow. Reference images: PNOA 2017 (MTMAU, 2021) and PNOA 2020 (MTMAU, 2021).

the accuracy metrics both at the overall and the individual class
levels over several years attests to the temporal consistency and
robustness of this classificationmethod (Tsendbazar et al., 2021).

This is a matter of great importance when the aim is to capture
forest area dynamics through the comparison of land covermaps
produced at regular intervals.
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Figure 9 Example of an area erroneously classified as Shrubs after a thinning. Reference images: PNOA 2017 (MTMAU, 2021) and PNOA 2020 (MTMAU,
2021).

Figure 10 Example of an area assigned to the class Anthropogenic areas after a forest fire event. Reference images: PNOA 2017 (MTMAU, 2021) and
PNOA 2020 (MTMAU, 2021).

The two approaches used to compare the consecutive-year
classifications in this study yielded notably different results.
These differences confirm that reporting the surface of change
merely through pixel counting is likely to lead to the wrong
conclusions, as previously discussed by Palahí et al. (2021),

Congalton et al. (2014) and Olofsson et al. (2013). A much
lower percentage of change was found in the net change
comparison than in the spatial agreement analysis. This indicates
that map errors are at least partially compensated for in the
global net change comparison. One of the many examples of
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Figure 11 Example of a conifer plantation in an early stage assigned to Shrubs on MAP19 and to Conifers on MAP20. Reference images: PNOA 2017
(MTMAU, 2021) and PNOA 2020 (MTMAU, 2021).

this is that Eucalyptus spp. pixels wrongly classified as conifers
are compensated for by Conifer pixels wrongly classified as
Eucalyptus spp. In fact, this effect is also reflected in the
confusion matrices. Furthermore, edge effects may also be
compensated for within the map.
The spatial comparison of maps from consecutive years

revealed the presence of many spurious changes (defined as
changes that could have not possibly have occurred in the 2-
year time period observed). A detailed visual interpretation of
the areas corresponding to these changes showed that a certain
number of them correspond to misclassifications (where no
change had occurred) or edge pixels. However, some of them
were also associated to real changes (true positives). Principally,
these real changes included the following scenarios: (a) Pixels
changing from Eucalyptus spp. to Broadleaves corresponded
to logged areas where vegetation such as Pteridium spp. or
annual grasses had begun to grow; (b) Pixels which changed
from Broadleaves to Eucalyptus spp. corresponded to young
eucalyptus plantations with increasingly closed canopy cover.
One strategy to rectify the spurious changes in maps from

consecutive time periods may be to define sets of rules to decide
the correct land cover class for pixels affected by these spuri-
ous changes (Abercrombie and Friedl, 2015; Zhu et al., 2020).
Alternatively, a certain inertia could be conferred to the maps
by observing data from a time series of longer than 12 months
(Wulder et al., 2020). Performing seasonal analysis similar to the
one performed by Zhao et al. (2016) might be also of inter-
est. In this approach, depending on the class in question, the
final class assigned to a pixel is either the class identified in
a certain season or the class resulting from a plurality voting
criteria.

However, these solutions might not solve the problem of
inconsistent edge pixels classification from 1 year to the next.
In areas like Galicia, where stands are highly fragmented, this
can be quite common. Thousands of pixels of 20 m Ground Sam-
pling Distance can be located along the borders of neighboring
plantations stocked with different species. Slight variations in
the geometry of observation, and mis-registration errors, among
other factors, can result in differing land-cover classes assigned
to a pixel from 1 year to another (Kukawska et al., 2017; Mi
et al., 2022). One potential solution to deal with edge effect errors
may be to transform pixel-basedmaps into polygon-basedmaps
(Kussul et al., 2016; Sohl et al., 2017), that is, following an object-
based approach. Thus, the pixel information would be used to
define the land cover of previously defined vectoral structures,
such as cadastral parcels (UKCEH, 2020). This approach could
aid, as well, in the analysis of forest evolution since it allows for
changes to be studied in relatively permanent units that also tend
to be have a direct relation to the scale at which these changes
occurs (Sohl et al., 2017). However, disturbances and harvesting
can also occur at a sub-parcel level and hence this approachmay
also result in polygons with mixed land cover classes.
In the spatial comparison approach, the discrepancy category

‘tree to others’ proved to be highly reliable, especially when it
involved Eucalyptus spp. and Conifers. This category could be
useful for forestmonitoring purposes since it could be used as the
basis for a harvesting alert system which would identify eligible
candidates to check through field work or high resolution remote
sensing data. Such a system could be useful in regions with a
highly active forestry sector, where the verification of all declared
harvests is otherwise impossible because cutting is constant and
harvestings are continual and greatly dispersed.
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The visual inspection of the tree-to-other discrepancy areas
showed that some areas classified as Shrubs, Crops and pastures
or Bare soil on the maps met the criteria for standard definitions
of forests (FAO, 2018; Official Journal of the European Union,
2018). For example, some areas that have been logged are
classified as bare soil when in reality they are merely temporally
unstocked areas expected to regenerate. Therefore, if national
and international forest monitoring is to be conducted according
to the requirements of the FAO, a system based on annual land
covermapsmight not be adequate formonitoring the actual true
forest area. Solutions like the ones presented by Wulder et al.
(2020), that take several years data into consideration, might be
more appropriate. This temporal inertia may also be necessary
to define and analyze the direction of the changes that properly
represents forest dynamics.
In summary, this study discussed some strengths and limita-

tions of comparing annual land cover maps for forest monitoring
purposes. The maps, as well as a detailed error analysis, such as
the one conducted in this study, could be used as input in more
specific forest dynamics analysis (Estes et al., 2017). For example,
information about the reduction or increase in broadleaf forest
cover can be helpful in assessing the state of conservation of
an area because broadleaf forests serve as habitats for certain
endangered and protected animals which do not live in pine
or eucalyptus plantations. In such scenarios, awareness of the
mapping errors surrounding Eucalyptus plantations and edge
pixels can help to correctly interpret results with respect to the
destruction or evolution of these animals’ habitats.

Conclusion
In this study, 2 consecutive-year land cover maps were used to
analyze tree-related land cover changes in a study area charac-
terized by a high frequency of land cover changes, presence of
fast-growing species and a high level of stand fragmentation.
The land-cover maps were obtained from Sentinel-2 satellite
images using a multitemporal approach based on a random
forest classifier. Both maps showed high accuracies, a testament
to the consistency of the classification methodology.
However, although individually obtained accuracieswere high,

a great deal of spurious changes (changes that could not have
taken place within the timeframe analyzed) were observed . A
detailed analysis of selected areas led to a greater understanding
of the processes underlying these spurious changes. For exam-
ple, a change from shrubs to broadleaf stands frequently cor-
responded to very young Eucalyptus plantations whose canopy
was starting to close. Meanwhile, changes from a forest category
to shrubs often corresponded to thinning activities. Understand-
ing these processes that lead to misclassifications is key when
seeking to enhance forest monitoring through land cover map
comparisons. One of such improvements could be to automat-
ically correct pixels affected by spurious changes by assigning
the class which is most likely to be the correct class of a given
spurious change and then verifying the assignment using data of
subsequent years.
The results shown in this study will be used to advance in the

design of a workflow to operationally monitor and report annual
forest changes and analyze forest evolution across the whole
region of Galicia. The approach presented could also be useful to

better understand forest change dynamics of other regions with
a similar environmental and management contexts.
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