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In clinical and epidemiological research doubly truncated data often appear.
This is the case, for instance, when the data registry is formed by interval
sampling. Double truncation generally induces a sampling bias on the target
variable, so proper corrections of ordinary estimation and inference procedures
must be used. Unfortunately, the nonparametric maximum likelihood estimator
of a doubly truncated distribution has several drawbacks, like potential nonex-
istence and nonuniqueness issues, or large estimation variance. Interestingly,
no correction for double truncation is needed when the sampling bias is ignor-
able, which may occur with interval sampling and other sampling designs. In
such a case the ordinary empirical distribution function is a consistent and fully
efficient estimator that generally brings remarkable variance improvements
compared to the nonparametric maximum likelihood estimator. Thus, identi-
fication of such situations is critical for the simple and efficient estimation of
the target distribution. In this article, we introduce for the first time formal test-
ing procedures for the null hypothesis of ignorable sampling bias with doubly
truncated data. The asymptotic properties of the proposed test statistic are inves-
tigated. A bootstrap algorithm to approximate the null distribution of the test in
practice is introduced. The finite sample performance of the method is studied
in simulated scenarios. Finally, applications to data on onset for childhood can-
cer and Parkinson’s disease are given. Variance improvements in estimation are
discussed and illustrated.

K E Y W O R D S

bootstrap, goodness-of-fit, interval sampling, nonparametric statistics, survival analysis

1 INTRODUCTION

The issue of random double truncation is ubiquitous in clinical and epidemiological research, among other fields. Dou-
ble truncation appears when the observation of the target variable is restricted by two random limits. An example is
found in Survival Analysis, when the target is an event time, and the data correspond to all the events between two spe-
cific dates.1 Such sampling design has been often referred to as interval sampling.2 Double truncation can be regarded
as an extension of left-truncation, a well-known issue that affects cross-sectional data or registries with delayed entries.
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2 UÑA-ÁLVAREZ

Autopsy-confirmed diseases is a remarkable example of double truncation in such left-truncated settings, since under-
going the event of interest (death) before the end of the study becomes then a prerequisite for recruitment; this induces
truncation from the right and, thus, results in doubly truncated event times.3

Unlike for one-sided (left or right) truncation, the nonparametric maximum likelihood estimator (NPMLE) under
random double truncation does not have a closed form. Efron and Petrosian4 introduced the NPMLE of a cumulative
distribution function (CDF) under random double truncation; the motivation was found in the analysis of quasar lumi-
nosities that are subject to random detection limits. These authors exploited the distinctive features of double truncation
to introduce a self-consistency equation for Turnbull’s5 estimator and, consequently, to propose an iterative algorithm
for its calculation. The Efron-Petrosian NPMLE was further investigated by Shen,6 Moreira and de Uña-Álvarez,1 Emura
et al7 and, more recently, by de Uña-Álvarez and Van Keilegom,8 who developed asymptotic theory to cope with double
truncation in the presence of covariates. On the other hand, several R packages implementing the NPMLE for dou-
bly truncated data have been launched along the last decade, so the application of the Efron-Petrosian estimator has
become easy; available packages include DTDA,9 SurvTrunc10 and double.truncation.11 Importantly, the consis-
tency of the Efron-Petrosian estimator depends on the assumption of quasi-independence between the target variable
and the truncating variables. Testing procedures for a quasi-independence assumption in this setting have been investi-
gated; see for instance Martin and Betensky.12 On the other hand, Moreira et al13 introduced a copula-based extension of
the Efron-Petrosian estimator to cope with possibly dependent truncation. Throughout this article it is assumed that the
truncating variables are independent of the target.

The sampling bias induced by double truncation has been discussed and illustrated in a number of research papers.
For instance, Zhu and Wang2 investigated the sampling bias when estimating the birth rate from cancer registries obtained
with interval sampling. In particular, they found that the plausible linear trend for the birth process was converted into a
rather unrealistic bell-shaped curve due to the truncation effects. Mandel et al14 discussed the biases that may arise in the
proportional hazards regression model when fitted from interval sampling data too. Specifically, when looking for a rela-
tionship between genetic information and age at onset for Parkinson’s disease, they found substantial differences between
the estimated coefficients with and without the correction for double truncation. The sampling bias for the Parkinson’s
disease study was further explored in de Uña-Álvarez,15 who concluded the oversampling of patients with intermediate
ages at diagnosis. Rennert and Xie3 described the issue in the setting of autopsy-confirmed neurodegenerative diseases.
Interestingly, they illustrated how by ignoring the double truncation one may overestimate or underestimate the target
survival, depending on the particular situation. The impact of the sampling bias in the Mann-Whitney two-sample test
was pointed out by these authors too. On the contrary, Moreira and de Uña-Álvarez1 discussed how, with interval sam-
pling, the sampling bias may vanish when the truncating variables are uniformly distributed; this was indeed the case for
the childhood cancer registry investigated in the referred paper.

To sum up, random double truncation may, or may not, induce a sampling bias on the target variable. It is convenient
to identify in practice whether such a potential sampling bias exist, at least due to the following reasons:

• When there is no sampling bias the empirical cumulative distribution function (ECDF) is a consistent (and efficient)
estimator of the target CDF, so there is no need to look for alternative estimators;

• The NPMLE which corrects for double truncation may not exist, or may be nonunique;16 and
• The estimation of a distribution from doubly truncated data given by the corresponding NPMLE, when it exists and is

unique, usually entails a large variance.

In other words, when there is no sampling bias one will have a strong motivation to apply the ECDF instead of the
Efron-Petrosian NPMLE. And this is why testing for an ignorable sampling bias under double truncation becomes rele-
vant. Note that this is irrelevant for one-sided truncation, where a sampling bias is always present: left-truncation results
in an oversampling of relatively large event times; the opposite situation occurs under right-truncation.

The potential sampling bias under double truncation can be assessed from the joint graphical display of the ECDF
and the Efron-Petrosian NPMLE. When both curves are close together one gets support for the hypothesis of ignorable
sampling bias. Similarly, one may plot the NPMLE for the sampling probability to check whether it is roughly constant
on the support of the target variable; see for instance Example 2.1.4 in de Uña-Álvarez et al.17 Formal testing methods
that guarantee a given significance level are however missing in the literature at the time of writing. A related reference is
Moreira et al,18 who introduced and investigated through simulations several statistics to test for a parametric model for
the pair of truncating variables. Still, a key difference in the current setting is that the null hypothesis of ignorable sampling
bias does not characterize the (bivariate) truncation distribution; see Section 2 for further details. This complicates the
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UÑA-ÁLVAREZ 3

application of the ideas in Moreira et al18 to test for no sampling bias. In particular, a new resampling plan to approximate
the null distribution of the introduced test statistic will be needed.

The interest in the random double truncation model has rapidly increased in the last years. Recent methods to handle
doubly truncated outcomes include, among other topics, smoothing methods,19,20 proportional hazards regression,14,21

rank regression for linear models,22 competing risks,23 two-sample problems,24 the estimation of a bivariate distribu-
tion,2,25,26 or maximum likelihood theory for parametric models.27,28 Formally testing for an ignorable sampling bias is
important in all these settings with double truncation because, when there is no sampling bias, ordinary methods apply
and the estimation variance can be reduced.

The rest of the article is organized as follows. In Section 2 we introduce the required notation and a test statistic
for the null hypothesis of ignorable sampling bias. The proposed test is defined as the supremum distance between the
Efron-Petrosian NPMLE and the ECDF of the doubly truncated outcomes. The asymptotic null distribution of the test
statistic is obtained, and a bootstrap algorithm to approximate the null distribution in practice is proposed. In Section 3 a
simulation study to investigate the finite sample performance of the proposed test is conducted. In Section 4 illustrative
applications of the proposed methods to data on childhood cancer and Parkinson’s disease are given. A final discussion
that mentions some possible extensions of the introduced methods and alternative testing approaches for an ignorable
sampling bias is given in Section 5.

2 METHODS

2.1 Notation and preliminary remarks

Let X be the target variable with CDF F, assumed to be supported on an interval [aX , bX ] ⊂  or, more generally, on
a set X with lower and upper limits aX and bX . Let (U,V) be a couple of truncating variables independent of X with
(bivariate) CDF K, so the triplet (X ,U,V) is observed only when U ≤ X ≤ V . It is assumed that 𝛼 ≡ P(U ≤ X ≤ V) is
strictly positive. In this setting, the observation of X is limited by the condition aU ≤ X ≤ bV , where aU and bV are the
lower and upper endpoints of the supports of U and V , respectively. Then, it is natural to impose the restrictions aU ≤ aX
and bX ≤ bV .29 If these conditions are violated, no consistent estimation of F can be provided. Similarly, one must assume
P(U ≤ V) = P(U ≤ bX ) = P(V ≥ aX ) = 1 for the identifiability of K.

The sampling information is a set of independent and identically distributed (iid) observations (Xi,Ui,Vi), 1 ≤ i ≤ n,
with the conditional distribution of (X ,U,V) given U ≤ X ≤ V . In general, the ECDF of the Xi’s, F∗n(x) = n−1∑n

i=1I(Xi ≤ x),
is not consistent for F(x). This is because the CDF of X1 is given by

F∗(x) = 𝛼−1
∫

x

aX

G(t)dF(t) (1)

with G(t) = P(U ≤ t ≤ V) = ∫u≤t≤v dK(u, v) and, thus, it does not coincide with F unless G is constant. Note that the func-
tion G reports the sampling probability for the values of the target X ; that is, G(t) is the probability of observing X = t.
When G is strictly positive on X , (1) admits the reverse formulation

F(x) = 𝛼
∫

x

aX

G(t)−1dF∗(t) (2)

and 𝛼 = 1∕∫ bX
aX

G(t)−1dF∗(t) holds. Assumption (C1) below ensures that G is strictly positive, provided that the densities
of the truncating variables exist and have convex support; this implies in particular that there are no regions within
[aU , bV ] where F is not identifiable. Equation (2) reveals that F can be estimated from F∗n and a consistent estimator for
G. Actually, this is the classical idea behind inverse-probability-weighting estimation, where each datum Xi is weighted
according to its inverse sampling probability 1∕G(Xi). The Efron-Petrosian NPMLE4 Fn can be derived in this way, since
it corresponds to (2) with F∗ replaced by F∗n and G replaced by its NPMLE Gn.6 The asymptotic properties of Fn and
Gn were recently detailed by de Uña-Álvarez and Van Keilegom,8 including uniform consistency and weak convergence
results.

Unfortunately, Gn does not have a closed-form; besides, the NPMLE Fn may be nonunique, or even nonexisting.16

This motivates the interest in testing for the null hypothesis0 ∶ G(x) = 𝛼, x ∈ X . Under0 the ECDF F∗n is consistent
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4 UÑA-ÁLVAREZ

for F, so there is no need to work with Fn; this is in agreement with the fact that, when G is constant, there is no sampling
bias on X , and the Xi’s are representative for the target population. Note that, with one-sided truncation, G is monotone
increasing (left-truncation) or monotone decreasing (right-truncation); therefore, testing for0 is irrelevant in that case.
Another way to write the null hypothesis is0 ∶ F(x) = F∗(x), x ∈ X ; that both formulations are equivalent immediately
follows from (1) or (2). Certainly, by using (1), it is easy to see that the variance of G(X) is zero whenever F∗ equals F and,
hence, G(X) is constant almost surely in that case. The reverse implication is obviously true. Therefore, it is natural to test
for0 by comparing Fn to F∗n. This is formalized in the following subsection.

2.2 Test statistic

A possible test statistic for0 is given by the L∞ norm of Fn − F∗n:

Dn ≡ Dn(Fn,F∗n) = sup
x∈X

|Fn(x) − F∗n(x)|. (3)

Large values of Dn lead to the rejection of the hypothesis of ignorable sampling bias; of course, here the vague meaning
of “large” must be formalized by using the null distribution of Dn, so the given significance level is respected. When (3)
leads to the acceptance of0 one may say that there is no significant deviation between the Efron-Petrosian NPMLE Fn
and the ECDF F∗n or, alternatively, that the sampling bias is ignorable. In such a case, the simple estimator F∗n can be used
to estimate the target F, and variance improvements with respect to Fn can be obtained in this way. Moreover, under0
the estimator F∗n is the NPMLE of F; this can be easily seen by decomposing the full likelihood (see (6) below) as a product
of the marginal likelihood of the Xi’s and the conditional likelihood of the (Ui,Vi)’s given the Xi’s.

Since both F∗n and Fn are concentrated on the Xi’s, a simple expression for (3) can be derived. Specifically, the
Efron-Petrosian NPMLE can be written as

Fn(x) =
𝛼n

n

n∑

i=1
Gn(Xi)−1I(Xi ≤ x) (4)

where 𝛼n = ∫ GndFn = n∕
∑n

i=1Gn(Xi)−1. Then,

Dn = max
1≤i≤n

|Fn(Xi) − F∗n(Xi)| = n−1
𝛼n max

1≤i≤n

|
|
|
|
|
|

n∑

j=1

[
1

Gn(Xi)
− 1
𝛼n

]

I(Xj ≤ Xi)
|
|
|
|
|
|

. (5)

Equation (5) indicates that Dn is essentially the maximum cumulative difference between the inverse sampling probabil-
ities 1∕Gn(Xi) and 1∕𝛼n. There exists no explicit formula for Gn; indeed, the couple (Fn,Gn) is implicitly defined as the
maximizer of the full likelihood of the (Xi,Ui,Vi)’s, which is given by

n =
(

∫ ∫u≤x≤v
dK(u, v)dF(x)

)−n n∏

i=1
dF(Xi)dK(Ui,Vi). (6)

The assumed independence between X and (U,V) is critical to justify (6). Maximization ofn with respect to both F and K
leads to their NPMLEs, Fn and Kn respectively. Finally, the NPMLE of G is computed from Kn as Gn(x) = ∫u≤x≤v dKn(u, v).

The complicated structure of (6) results in a circularity, in the sense that Fn depends on Gn, as indicated by (4), while
Gn itself is depending on Fn. Actually, Fn and Gn solve the couple of equations

(i) Fn(x) =
(∑n

i=1Gn(Xi)−1)−1∑n
i=1Gn(Xi)−1I(Xi ≤ x),

(ii) Gn(x) =
(∑n

i=1(Fn(Vi) − Fn(Ui−))−1)−1∑n
i=1(Fn(Vi) − Fn(Ui−))−1I(Ui ≤ x ≤ Vi)

(Shen6). In practice, iterative algorithms that aim the maximization ofn are used to compute the Efron-Petrosian NPMLE
Fn and/or the corresponding empirical sampling bias Gn. See de Uña-Álvarez et al17 for a thorough review of the NPMLE
with doubly truncated data.
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UÑA-ÁLVAREZ 5

The limiting null distribution of Dn is given in the following result. We will refer to the following conditions, where
[aU1 , bU1] and [aV1 , bV1] denote the supports of U1 and V1:

(C1) F has only a finite number of discontinuity points and is continuous everywhere else; aU1 < aX < aV1 , bU1 < bX <

bV1 , bX − aX < ∞ and P(V1 − U1 ≥ 𝜈) = 1 for some 𝜈 > 0
(C2) The marginal densities of U1 and V1 have convex support and are bounded on X

Condition (C1) admits continuous and discrete distributions, provided that the number of point masses of F is finite.
Besides, this condition (C1), together with the convexity condition in (C2), implies that the sampling probability for X is
bounded away from zero, which is important in proofs. We mention that the inequalities aU1 < aX < aV1 and bU1 < bX <

bV1 and the equality P(V1 − U1 ≥ 𝜈) = 1 in (C1) are only slightly stronger versions of the aforementioned identifiability
conditions for F and K. Finally, (C2) guarantees that the operator  appearing the asymptotic representation of Fn is
bounded; this is needed for obtaining the asymptotic properties of Fn. See de Uña-Álvarez and Van Keilegom8 for further
details and discussion.

Theorem 1. Assume conditions (C1) and (C2). Then, under 0, it holds
√

nDn → supx∈X
|(x)| in distribu-

tion, where  is a zero-mean Gaussian process.

Theorem 1 follows from de Uña-Álvarez and Van Keilegom,8 Theorem 2.1, where an asymptotic representation for
the centered Efron-Petrosian NPMLE Fn(x) − F(x) as a sum of zero-mean iid random variables is given. Under 0 that
representation still holds for Fn(x) − F∗n(x), although the extra term F∗(x) − F∗n(x)naturally appears. This however does not
introduce new difficulties in proofs, due to the simple structure of the ECDF; note that the class of indicator functions is
Donsker, so weak convergence is obtained. This, together with the continuous mapping theorem, is enough to conclude.
The straightforward details are omitted.

The distribution of the limiting variable supx∈X
|(x)| in Theorem 1 is difficult to handle; in general it will depend

on an operator which does not have a closed-form. To be specific, the process (x) is the limit of S1n(x) + S2n(x), x ∈
X , where S1n(x) = n−1∕2∑n

i=1[hi](x) for a certain linear operator  and certain iid random functions hi, and S2n(x) =
−n−1∕2∑n

i=1(I(Xi ≤ x) − F(x)). Moreover, equals the sum of an infinite series,
∑∞

r=0Ar, where A is an operator depending
on population parameters in a complicated way.8 Thus, it is unclear how the asymptotic law arising from the term S1n(x) +
S2n(x) can be used for practical purposes. Interestingly, both S1n(x) and S2n(x) are zero-mean under the null hypothesis
of ignorable sampling bias; however, in general the expectation of S2n(x) is given by n1∕2(F(x) − F∗(x)), which does not
vanish when0 is false. This guarantees the consistency of Dn as the sample size n grows.

Due to the aforementioned complexity of the asymptotic null distribution of Dn, a bootstrap approximation is proposed
in the following subsection.

2.3 Bootstrap approximation

Bootstrap methods for randomly truncated data have been widely investigated in the literature. In the left-truncated
setting, Gross and Lai30 discussed and compared two different bootstrap resampling plans: the simple bootstrap and
the obvious bootstrap. For doubly truncated data, the simple and the obvious bootstrap were used in Moreira and de
Uña-Álvarez1 to approximate the sampling distribution of the Efron-Petrosian NPMLE Fn. The simple bootstrap resam-
ples from the (Xi,Ui,Vi)’s with replacement. On the other hand, the obvious boostrap independently resamples the target
variable X and the truncating couple (U,V) from Fn and Kn respectively; then, an acceptance/rejection rule is imple-
mented, so only the triplets satisfying U ≤ X ≤ V are retained. As discussed in the aforementioned works, these two
bootstraps are not equivalent. In particular, with the obvious bootstrap triplets (Xi,Uj,Vj), i ≠ j, are possible as long as
Uj ≤ Xi ≤ Vj is satisfied, while only triplets belonging to the original sample are allowed by the simple bootstrap. This
makes a difference with respect to the right-censored setting, in which the simple bootstrap and the obvious bootstrap
induce the same probability law.31

In the testing framework, bootstrap methods aim the estimation of the null distribution of the test statistic. For this,
the bootstrap usually incorporates the null hypothesis at some stage of the resampling algorithm. Unfortunately, it is
unclear how this can be done in the setting of this article, since the null hypothesis does not determine the distribution of
the random variables X and (U,V). A possibility is to apply the obvious bootstrap described above but with Fn replaced by
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6 UÑA-ÁLVAREZ

F∗n when resampling the target variable, so the hypothesis F = F∗ is mimicked. Preliminary simulations indicate however
that such bootstrap approximation may be conservative (results not shown). An alternative route is to modify the structure
of the bootstrap test statistic in such a way that the simple bootstrap becomes applicable; see Martínez-Camblor and
Corral32 for a deeper insight. We will follow this approach in order to propose a bootstrap approximation for the null
distribution of Dn.

Introduce D(1)
n = supx∈X

|Fn(x) − F(x) + F∗(x) − F∗n(x)|. Note that equality Dn = D(1)
n holds under0, while Dn ≠ D(1)

n
under the alternative. Given the bootstrap triplets (Xb

i ,U
b
i ,V

b
i ), 1 ≤ i ≤ n, sampled with replacement from the (Xi,Ui,Vi)’s,

define Db
n = supx∈X

|Fb
n(x) − Fn(x) + F∗n(x) − F∗,bn (x)|. Here, Fb

n and F∗,bn denote the estimators Fn and F∗n when computed
from the bootstrap resample. For left-truncated data, Gross and Lai30 established under certain conditions the valid-
ity of the simple bootstrap to approximate the distribution of the NPMLE Fn, a result that can be readily extended to
Fn(x) − F∗n(x). This proves that the bootstrap process Fb

n(x) − Fn(x) + F∗n(x) − F∗,bn (x), x ∈ X , consistently approximates
the distribution of D(1)

n in the left-truncated setting. The formal extension of such result to double truncation is not imme-
diate, however. For instance, Edgeworth expansions as those invoked by Gross and Lai30 have not been developed for the
Efron-Petrosian estimator; the complex nature of Fn discussed in Section 2.2 makes this difficult. Importantly, simula-
tion results in the following section, see also the Supporting Information, reveal that the proposed approximation works
well when testing for0; this suggests that the simple bootstrap is consistent under double truncation too. On the other
hand, our results are in agreement with Moreira and de Uña-Álvarez,1 who showed that the simple bootstrap performs
satisfactorily in the construction of pointwise confidence intervals for a doubly truncated CDF. Note that the bootstrap
approximation proposed for the test statistic Dn does not draw resamples under the null hypothesis; rather, the bootstrap
version of the test statistic Db

n is centered around Fn(x) − F∗n(x). This moves the testing problem close to the confidence
interval setting.

In practice, Db
n can be implemented as a maximum along the Xi’s, since (with the simple bootstrap) the Xb

i ’s are by
force a subset of the original data. We propose to compute Db

n, as defined here, for a large number of bootstrap replicates B;
then, the null distribution of Dn is approximated from its bootstrap evaluations Db

n, 1 ≤ b ≤ B. Equivalently, the bootstrap
P-value is computed as

pB = B−1
B∑

b=1
I(Db

n ≥ Dn). (7)

The null hypothesis of ignorable sampling bias is rejected when pB is smaller than or equal to the nominal significance
level for the test. Note that, since the distribution of the Db

n’s approximate that of D(1)
n , and since Dn = D(1)

n under0, the
P-value in (7) is conjectured to follow a uniform distribution under the null hypothesis. On the other hand, in general
the distribution of Dn is shifted to the right when compared to D(1)

n , the shift increasing as F∗ departs from F. Therefore,
a natural conjecture is that the proposed P-value is stochastically dominated by a uniform random variable under the
alternative, anticipating the consistency of the proposed bootstrap approach.

The performance of the test statistic Dn with the given bootstrap approximation is investigated by simulations in the
following section.

3 SIMULATION STUDY

In this section we investigate the finite sample performance of the test statistic Dn through simulations. Two different
models are considered: the first one corresponds to interval sampling (Model 1), while in the second one the truncation
limits are simulated independently (Model 2). Specifically, for a target variable X supported on the unit intervalX = [0, 1]
and certain parameter values 𝜍 > 0 and 𝜌 > 0 we consider the following scenarios:

• M1 (Model 1). U = (1 + 𝜍)Z𝜌 − 𝜍 and V = U + 𝜍, where Z ∼ U(0, 1) is independent of X ;
• M2 (Model 2). U = (1 + 𝜍)Z1 − 𝜍 and V = 𝜍(Z−𝜌2 − 1), where Zi ∼ U(0, 1), i = 1, 2, are independent random variables

and independent of X

In Model 1 (interval sampling) the 𝜍 parameter stands for the width of the sampling interval. In this Model 1, the
left-truncation limit U is supported on (−𝜍, 1), while V is supported on (0, 1 + 𝜍); this implies that both F and K are
identifiable. In Model 2 (independent truncation limits), U is again supported on (−𝜍, 1) but V is now supported on (0,∞).

 10970258, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9828 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [13/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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F I G U R E 1 Sampling bias for simulated Model 1 (left) and Model 2 (right): 𝜌 = 1 (dotted line), 𝜌 = 2 (dashed line) and 𝜌 = 6 (solid
line). Black and grey lines correspond to 𝜍 = 1∕2 and 𝜍 = 1 respectively.

In this case, F is identifiable, but K is not; this is because V < U may occur (the couple (U,V) should be redefined as
conditionally on U ≤ V if the identifiability of K is aimed). In both models M1 and M2 the sampling bias is ignorable only
when 𝜌 = 1. Specifically, for Model 1 and x ∈ (0, 1) it holds

G(x) = (1 + 𝜍)−1∕𝜌[(x + 𝜍)1∕𝜌 − x1∕𝜌], (8)

so when 𝜌 = 1 the sampling probability G(x) is free of X and the truncation proportion is (1 + 𝜍)−1. On the other hand,
for Model 2 one gets

G(x) = 𝜍1∕𝜌(1 + 𝜍)−1(x + 𝜍)1−1∕𝜌; (9)

again, (9) is constant when 𝜌 = 1, giving the same truncation rate as in Model 1. Smaller values of 𝜍 result in a larger
proportion of truncated data. For instance, in Model 1 the truncation rate for 𝜌 = 1, 𝜌 = 2 and 𝜌 = 6 is 50%, 61% and 81%
(𝜍 = 1), or 67%, 74% and 87% (𝜍 = 1∕2). For Model 2, the truncation rate is 39% (𝜌 = 2, 𝜍 = 1), 30% (𝜌 = 6, 𝜍 = 1), 53%
(𝜌 = 2, 𝜍 = 1∕2) or 41% (𝜌 = 6, 𝜍 = 1∕2). We will investigate the influence of the 𝜍 parameter in the performance of the
test; specifically, values 𝜍 = 1 and 𝜍 = 1∕2 will be considered.

Besides the null case 𝜌 = 1 we will consider weak (𝜌 = 2) and strong (𝜌 = 6) deviations from the hypothesis of ignorable
sampling bias under Model 1 and Model 2. The sampling probabilities (8) and (9) for the several choices of 𝜌 and 𝜍 are
depicted in Figure 1. From this Figure 1 it is seen that, when 𝜌 ≠ 1, the sampling probability decreases (Model 1) or
increases (Model 2) as X grows, with a more clear violation of0 when 𝜌 = 6. Finally, the target variable X will be taken
as uniformly distributed on the unit interval or, alternatively, distributed as a Beta(a, b) model with shape parameters
(a, b) = (1, 1∕2) and (a, b) = (1∕2, 1). This will allow for the investigation of the sensitiveness of Dn to changes in F.

In Table 1 the proportion of rejections of0 performed by Dn along 1000 Monte Carlo replicates is given; the results
corresponds to a uniformly distributed target X . We considered sample sizes n ∈ {100,200} and nominal significance
levels 𝛾 ∈ {0.1, 0.05, 0.01}. The number of bootstrap replicates was B = 500. From Table 1 it is seen that the proposed test
respects the nominal level fairly well. On the other hand, the power of the test increases with the sample size and the
degree of departure from the hypothesis of ignorable sampling bias, as expected. Finally, the influence of 𝜍 is more subtle.
For Model 1, the statistical power increases with 𝜍, and this is well connected to the meaning of this parameter, which
is the width of the sampling interval under M1. For Model 2, the opposite occurs. This can be explained from the fact
that, when 𝜍 = 1∕2, the sampling probability G under M2 departs more from a constant than with 𝜍 = 1 (Figure 1, right).
Violations of the level occurred in some of the scenarios when using a smaller number of bootstrap replicates (B = 300,
results not shown); this sensitivity should be taken into account when using the proposed bootstrap approximation in
practice.

 10970258, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9828 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [13/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 UÑA-ÁLVAREZ

T A B L E 1 Proportion of rejections of0 performed by Dn along 1000 Monte Carlo trials, Model 1 (interval sampling) and Model 2
(independent truncation limits). The nominal level of the test is 𝛾 . The null hypothesis corresponds to 𝜌 = 1, while 𝜌 = 2 and 𝜌 = 6 represent
weak and strong deviation from0, respectively. The number of trials that were discarded for 𝜌 = (1, 2, 6) because the Efron-Petrosian
NPMLE did not exist or was not unique is indicated between brackets at the right of the 𝜍 value.The number of bootstrap replicates was 500.

𝝆 = 1 𝝆 = 2 𝝆 = 6

𝜸 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

Model 1, n = 100

𝜍 = 1 (18, 49,118) 0.0866 0.0346 0.0031 0.5342 0.4038 0.1672 0.9524 0.8980 0.6474

𝜍 = 1∕2 (36, 63,153) 0.0788 0.0342 0.0062 0.2241 0.1249 0.0395 0.5502 0.3601 0.0874

Model 1, n = 200

𝜍 = 1 (6, 25, 79) 0.0755 0.0493 0.0131 0.8585 0.7713 0.5149 0.9957 0.9946 0.9739

𝜍 = 1∕2 (18, 49, 97) 0.0876 0.0407 0.0051 0.4585 0.3291 0.1367 0.8959 0.7697 0.4363

Model 2, n = 100

𝜍 = 1 (18, 18, 6) 0.0804 0.0397 0.0071 0.5193 0.4012 0.1670 0.9789 0.9447 0.7736

𝜍 = 1∕2 (33, 23, 16) 0.0889 0.0465 0.0062 0.6888 0.5333 0.2651 0.9990 0.9878 0.9258

Model 2, n = 200

𝜍 = 1 (7, 9, 4) 0.0886 0.0483 0.0030 0.8214 0.7215 0.4480 1.000 1.000 0.9970

𝜍 = 1∕2 (16, 8, 5) 0.0884 0.0467 0.0071 0.9234 0.8569 0.6522 1.000 1.000 1.000

The simulations were repeated with a different distribution for the target variable X . As mentioned, Beta(1, 1∕2) and
Beta(1∕2, 1)models were considered to this end. The results, see Web Tables 1 and 2 in the Supporting Information, went
in the expected direction; that is, the power of Dn decreased as the target distribution concentrated in areas along which G
was relatively flat. To be specific, the power of Dn for X ∼ Beta(1, 1∕2) (which shifts the uniform density to the right) was
smaller compared to the figures in Table 1. Naturally, the situation was just the opposite with X ∼ Beta(1∕2, 1). This is in
agreement with the fact that, for both Model 1 and Model 2, the absolute value of the first derivative of G(x) is monotone
decreasing.

In the simulation study an issue related to the possible nonexistence or nonuniqueness of the Efron-Petrosian NPMLE
occurred. Specifically, for a small number of trials the estimator Fn could not be computed in a reliable way. These
trials were eliminated when computing the empirical rejection levels attached to Dn. In Table 1 the exact number of dis-
carded samples is provided; it is seen that the problem occurs less frequently when increasing the sample size. The same
issue appeared in the bootstrap resamples. In this case, the bootstrap P-value pB in (7) was computed from the avail-
able evaluations of Db

n; anyway, these were the total amount of B = 500 evaluations for most of the simulated trials. In
practice, potential issues with the computation of the NPMLE can be avoided through the preliminary fitting of a para-
metric truncation model; of course, this may induce some estimation bias, particularly when the parametric family is
miss-specified. To be explicit, in the setting of parametric truncation the weights Gn(Xi) in (4) are replaced by G(Xi; ̂𝜃),
where G(x; ̂𝜃) = ∫u≤x≤v dK(u, v; ̂𝜃) is the sampling probability for X = x under a given parametric family K(⋅, ⋅; 𝜃) for the
truncation CDF. This leads to an alternative estimator for F, of semiparametric nature. The 𝜃 parameter can be estimated
by maximizing the conditional likelihood of the (Ui,Vi)’s given the Xi’s. See Moreira et al18 for more on this. Indeed,
the parametric truncation setup provides an alternative test for ignorable sampling bias because, when G(⋅; 𝜃0) is flat for
some 𝜃0 in the parametric space, a test for the null hypothesis 𝜃 = 𝜃0 is valid for that aim. A limitation of this alternative
approach is that it is not omnibus, since it may fail to detect departures from the null hypothesis when the parametric
family is miss-specified.

4 REAL DATA APPLICATIONS

4.1 Childhood cancer data

We consider all the children diagnosed from cancer in the region of North Portugal (which includes the districts of Porto,
Braga, Bragança, Vila Real and Viana do Castelo) between January 1999 and December 2003.1 The number of cases was
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F I G U R E 2 Left: Efron-Petrosian NPMLE (solid line) and ECDF (dashed line). Right: NPMLE of the sampling probability (solid line)
and sampling probability under the hypothesis of ignorable sampling bias (dashed line). Childhood cancer data.

409. The target variable is the age at diagnosis X (in days) and, thus, it is doubly truncated due to the interval sampling. The
truncating values (U,V) are determined by the birth dates. Specifically, V is defined as age (in days) at December 2003,
while U is defined as U = V − 1825 (interval width of 5 years). Note that, with this notation, the individual is recruited
when U ≤ X ≤ V holds. On the other hand, no censoring on X is present, since only children diagnosed from cancer are
included in the sample. Information on X was missing for three cases; hence, the sample size is n = 406. The data are
available within the data frame ChildCancer of the R package DTDA.

The value of the test statistic Dn was 0.0206, with corresponding P-value 0.9120 based on B = 500 bootstrap resamples.
Thus the test largely accepts the null hypothesis of ignorable sampling bias. This is in agreement with the informal analysis
of Moreira and de Uña-Álvarez,1 who obtained a truncation distribution close to uniform for this dataset.

In Figure 2 the goodness-of-fit plots for 0 corresponding to the processes Fn(x) − F∗n(x) (left) and Gn(x) − 𝛼n (right)
are provided; the estimated proportion of truncation is, in this case, 1 − 𝛼n = 0.7557. From this Figure 2 it is seen that the
ECDF is close to the Efron-Petrosian estimator, and that the sampling probability is roughly constant. The fact that an
ignorable sampling bias holds in this case can be explained from the homogeneity of the birth process for the individuals
who will develop cancer along their childhood.

Variance improvements when using F∗n(x) instead of Fn(x) to analyze the data on childhood cancer are depicted in
Figure 3. Specifically, the ratio 𝜎n(x)∕𝜎∗n(x) for x ∈ {Xi, 1 ≤ i ≤ n} is displayed, where 𝜎∗n(x) = (F∗n(x)(1 − F∗n(x))∕n)1∕2 is
the usual empirical standard error of F∗n(x) and 𝜎n(x) is the standard error of the Efron-Petrosian estimator based on the
simple bootstrap (B = 500 replicates). From Figure 3 it is seen that 𝜎n(x) is several times larger than 𝜎∗n(x) in most of the
support of X ; interestingly, the standard error of Fn(x) relative to F∗n(x)may be as large as 3.5 at particular quantiles x. This
illustrates how testing for0 may help to reduce the estimation variance and, hence, to facilitate the statistical inference
from the doubly truncated outcomes.

4.2 Parkinson’s disease data

Clark et al33 studied the association between genetic information and age of onset of Parkinson’s disease. In that study,
in order to eliminate potential biases coming from different survival profiles, the selected patients were those with the
DNA sample taken 8 years at maximum after the onset of Parkinson. Therefore, the age at onset X is truncated from the
right by the age at blood sampling V , and left-truncated by U = V − 8 (age in years). Two different groups of patients
were considered: early onset, with ages at onset ranging between 35 and 55 years (n = 99); and late onset, for which the
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F I G U R E 3 Standard error of the Efron-Petrosian NPMLE relative to the ECDF function. Childhood cancer data.

ages range between 63 and 87 years (n = 100). These two datasets are available from PDearly and PDlate objects in
the package DTDA. Truncation values are missing for two patients in the early onset group, and these cases were removed
for our analyses; the final sample size in this group is thus n = 97.

The informal graphical assessment for ignorable sampling bias for the early and late onset groups is given in Figures 4
and 5 respectively. In both cases a sampling bias is revealed; this is much clearer for the late onset group, in which the
sampling probabilities are extremely low for ages below 69 years (Figure 5, right). This results in a clear departure between
Fn and F∗n at the left tail (Figure 5, left). The evidences against 0 in the early onset group are weaker, although the
empirical sampling probability Gn exhibits a clearly increasing shape. The formal testing of 0 through Dn gave the
following results (p-values p computed from 500 replicates; 30 resamples were removed for the late onset group due to
the nonexistence/nonuniqueness of the NPMLE): Dn = 0.2612 and p = 0.0520 (early onset), and Dn = 0.7929, p = 0.0022
(late onset). Therefore, at significance level 0.05 the test accepts the null for the early onset group, but it rejects it for the
late onset.

For completeness, the accuracy of Fn relative to F∗n in both groups was calculated (Web Figures 1 and 2 in the Support-
ing Information), even when one would probably be in favour of using the Efron-Petrosian NPMLE for the Parkinson’s
disease study, according to the attained P-values. Similarly as in the childhood cancer study, the standard error of the
Efron-Petrosian estimator was several times that of F∗n(x) for most of the x-values (the Xi’s), with a larger relative defi-
ciency of Fn at the left tail of the distribution. The situation for the late onset group was critical, in the sense that the
standard error of Fn was more than ten times larger at specific quantiles. Unfortunately, the formal tests performed by Dn
give few chances to work with F∗n in this case.

5 DISCUSSION

Random truncation induces most of the times a sampling bias on the target variable. This is always the case with left- or
right-truncation, often encountered in the analysis of time-to-event data, where proper corrections are needed. However,
with double truncation the situation may be different, since the truncation limits may compensate each other so the
sampling bias becomes negligible. If that is the case, ordinary statistical procedures are applicable, thus simplifying the
estimation and inference.

In this article a formal test for the null hypothesis of ignorable sampling bias under random double truncation has
been proposed. The test is based on the maximum departure between the Efron-Petrosian NPMLE and the ECDF. The
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F I G U R E 4 Left: Efron-Petrosian NPMLE (solid line) and ECDF (dashed line). Right: NPMLE of the sampling probability (solid line)
and sampling probability under the hypothesis of ignorable sampling bias (dashed line). Parkinson’s disease data, early onset.
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F I G U R E 5 Left: Efron-Petrosian NPMLE (solid line) and ECDF (dashed line). Right: NPMLE of the sampling probability (solid line)
and sampling probability under the hypothesis of ignorable sampling bias (dashed line). Parkinson’s disease data, late onset.

asymptotic null distribution of the test statistic has been established, and a bootstrap procedure for the practical appli-
cation of the test has been designed. Simulation studies have been conducted in order to investigate the finite sample
performance of the test. The method has been found to respect the nominal level well, while exhibiting a power that
increases with the sample size and the degree of violation of the null hypothesis. Applications to data on childhood can-
cer and Parkinson’s disease have served to further illustrate the proposed method, including the variance improvements
entailed by the acceptance of0 when estimating the target distribution F.

When the null hypothesis of ignorable sampling bias is accepted, there is no evidence against the validity of the ECDF
for the estimation of the target CDF. The decision of using the ECDF based on the proposed test may entail, however,
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12 UÑA-ÁLVAREZ

a variance increase compared to that provided by the standard formula F(x)(1 − F(x))∕n, even when 0 is true; this
should be acknowledged in any subsequent analysis. The variance increase will be more evident as the significance level
employed to test for 0 grows. For instance, under 0, for Model 1 in the simulation study, case 𝜍 = 1, the variance
increase at the three quartiles of X ranged between 9% and 17% when 𝛾 = 0.05, rising to between 19% and 32% when
𝛾 = 0.1. The issue must be taken into account in statistical practice. See for instance Shuster,34 who investigated the impact
of hybrid testing strategies in clinical trials.

Test statistics for0 based on the sampling probability process Gn(x) − 𝛼n, x ∈ X , could be considered too. Prelimi-
nary simulations performed by the author (results not shown) indicate that the test based on the supremum norm of this
alternative process, DG

n say, does not dominate (nor is dominated by) Dn in the sense of the power. Importantly, since the
jump points of Gn(x) correspond to the truncation values, the practical implementation and interpretation of DG

n requires
some care. It is also possible to consider distances other than the supremum (Kolmogorov-Smirnov type) norm to rede-
fine the test statistic Dn, such as Cramér-von Mises or Anderson-Darling type distances. This is currently under study and
the corresponding results will be presented elsewhere.

Another possible route to explore when looking for powerful testing procedures is that given by smooth tests. With
smooth tests density functions, rather than cumulative distributions, are compared. This may result in power improve-
ments when the bandwidth factor is properly chosen; see for instance Martínez-Camblor and de Uña-Álvarez.35 Recently,
tests based on the comparison of empirical characteristic functions have been investigated in a variety of settings.36,37

Such approach could be brought here too in order to construct a test for0.
The null hypothesis of ignorable sampling bias can be written as 0 ∶ a(x) = 1, x ∈ X , where a(x) = 𝛼−1G(x) is the

normalized sampling probability. A generalization of this testing problem is the one in which the null states a(x) = a0(x),
x ∈ X , for a fully specified function a0(x). This is relevant when there exists information on the sampling bias other
than ignorability; for instance, with interval sampling such information could be given by general population registries
reporting birth rates for the process of interest. Under this generalized null hypothesis, the NPMLE of F is just the
inverse-probability-weighted estimator, F0

n say, which attaches weight a0(Xi)−1 to Xi, 1 ≤ i ≤ n. Obviously, Dn can be
generalized for this problem, becoming the maximum deviation between the Fn(Xi)’s and the F0

n(Xi)’s. Formal the-
ory can be derived similarly as in Theorem 1, although regularity conditions on the function a0(x) must be imposed.
When the fully specified function a0(x) in 0 is replaced by a parametric family things are more complicated; the fact
that the function a(x) does not characterize the truncation distribution is responsible for this. Minimum-distance and
pseudo-likelihood approaches are possible; the practical performance of such estimators and the development of the
corresponding asymptotic theory are interesting topics for our future research.
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