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A B S T R A C T

Land cover mapping is fundamental for national and international agencies to monitor forest resources. How
ever, monitoring forest disturbances by direct comparison of these maps poses several difficulties and challenges. 
As a result, different methodologies have been explored to detect forest disturbances. However, most of them 
cannot be fully integrated with land cover map production since they require additional input data, while others 
are not suitable for monitoring small land parcels. This study presents a methodology that fulfils the need to 
integrate land cover mapping with land cover change detection. Specifically, this methodology was designed to 
complement the Sentinel-2-based land cover mapping used in Galicia, northwest Spain, a region characterized by 
small land parceling. First, two previously obtained land cover maps from 2019 and 2020 were compared to 
identify all the pixels with potential land cover changes using QGIS. The behavior of spectral indexes in a time 
series were then analyzed to identify which of the previously identified pixels correspond to forest disturbances. 
This step was implemented in the software R. Using the Normalized Difference Vegetation Index (NDVI) to detect 
different land cover changes it was obtained an overall accuracy of 82%, considering the existence of varying 
phenologies, diverse topographic conditions, and areas with a high level of stand fragmentation. This study could 
help agencies that have already developed their own land cover maps to easily advance the integration of their 
maps with land cover change detection, since this technique can be applied with any land cover mapping 
methodology based on multitemporal analysis of satellite images, without the need for additional input data.   

1. Introduction

Up-to-date information about the location and evolution of forest
resources is fundamental for sustainable forest management and for 
monitoring their well-being (FAO, 2020). The development of Earth 
observation programs that provide open-access satellite imagery has 
spurred a revolution in terms of forest observation and monitoring ca
pabilities, since these programs provide timely and precise information 
about the Earth’s surface (Wulder et al., 2018; Gyamfi-Ampadu and 
Gebreslasie, 2021; Nitoslawski et al., 2021). The automated production 
of land cover maps is a key milestone in this new era of forest obser
vation (Wulder et al., 2018). These maps are valuable for providing up- 
to-date and accurate information about the composition and distribution 
of forests. Several regional, national, and international programs have 
endeavored to generate land cover maps adapted to meet the specific 
needs of stakeholders (Buchhorn et al., 2020; JCyL, 2022, Malinowski 
et al. 2020, MLRLC, 2019; Serviglobal, 2022; UKCEH, 2021). An 

example of this at the international level is the land cover maps pro
duced by different European Union agencies. The European Environ
ment Agency has been producing land cover maps at the European level 
since 1990 (Corine Land Cover) (EEA, 2021). Other European agencies 
have launched projects, such as the 2017 S2GLC project, to develop 
methodologies for creating more frequently updated maps with 
increased spatial resolution (ESA and SEOM, 2017; Malinowski et al. 
2020). Efforts by national and even regional agencies have focused on 
developing their own land cover maps for their specific needs, i.e., 
increased legend disaggregation or frequency of updates (Alonso et al., 
2021; Inglada et al., 2017; UKCEH, 2021). For example, the UK has been 
producing annual land cover maps using Sentinel-2 data since 2017 
(UKCEH, 2021). Given the wide availability of time series of land cover 
maps, there has been a shift in focus away from the static study of forest 
resource location and distribution toward a more dynamic monitoring of 
forest evolution throughout time and the detection of forest disturbances 
(Addo-Fordjour and Ankomah, 2017; Gilani et al. 2020; Vieilledent 
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et al., 2018). 
However, challenges and even significant errors in disturbance 

detection and reporting have been observed when forest disturbances 
are monitored via the direct comparison of land cover maps (Alonso 
et al., 2022b, Buchhorn et al., 2021, Congalton et al., 2014). The main 
problem is that, when comparing land cover classifications for consec
utive time periods, even if they are produced following the same 
methodology, pixels assigned to a different land cover in an updated 
map with respect to an earlier map might not correspond unequivocally 
to disturbances (Alonso et al., 2022b, UKCEH, 2021, Zhu et al., 2020). 
The comparisons are affected by class-specific errors that blur the real 
ground truth situation. Some studies state that maps produced along the 
time series are valuable for monitoring land cover evolution, supporting 
policy design, and helping in decision-making, since the errors among 
annual maps often fluctuate spatially across the maps over time, while 
real changes persist for any given location (UKCEH, 2021). However, 
other studies point out that land cover maps should be complemented 

with additional information to aid in the detection and reporting of land 
cover changes (Alonso et al., 2022b; Buchhorn et al., 2021; Inglada 
et al., 2017; Wulder et al., 2018). 

Bearing this in mind, specific methodologies have been developed to 
detect forest disturbances. The most efficient methods rely on the 
analysis of dense time series of satellite images. Common algorithms 
used are Breaks For Additive Season and Trend (BFAST) (Verbesselt 
et al., 2010; Verbesselt et al., 2012; Masiliūnas et al., 2021), LandTrendr 
(Kennedy et al., 2010), and Continuous Change Detection and Classifi
cation (CCDC) (Zhu and Woodcock, 2014). These algorithms rely on the 
analysis of a historical period and the detection of breakpoints in a 
certain variable that should remain stable throughout the considered 
time period. The length of the time period considered, the stability of the 
variable analyzed, and the resolution of the source data greatly impact 
the accuracy for detecting changes (Gao et al., 2021). 

The Copernicus land cover change product (Copernicus, 2020) is an 
example of using breakpoint analysis in time-series imagery to detect 
forest changes. Specifically, this product combines the annually pro
duced land cover maps using Sentinel-2 images with the detection of 
changes, by applying BFAST family algorithms to MODIS time series. 
This product relies on MODIS as these data provide the required 
consistent long-term archive of surface reflectance with high temporal 
frequency to obtain highly accurate results when performing breakpoint 
detection. However, the coarse resolution of MODIS (250 m) hinders the 
detection of forest activities affecting only small areas. This is an 
important limitation since, in certain European regions, the forestry 
sector is quite active but forest stands are highly fragmented. 

Time series of medium spatial resolution satellite images have been 
explored to detect breakpoints in areas with fragmented forest stands. A 
study was done using BFAST over sets of Landsat images (30 m) to detect 
forest disturbances (Esteban Cava et al., 2022). These methods have 
obtained promising results, although they still present some drawbacks 
such as difficulty in detecting very small disturbances and the need to 
apply a supervised classification after detecting breakpoints to decrease 
errors of commission (Esteban Cava et al., 2022). Multiple studies have 
indicated the necessity of a supervised classification in fragmented for
est areas and in areas with a high phenological change rate or an 

Table 1 
Sentinel-2 band descriptions. Source, ESA (2015).  

Band 
designation 

Band name Central 
wavelength 
(nm) 

Bandwidth 
(nm) 

Resolution 
(m) 

Band 1 Coastal aerosol 443 21 60 
Band 2 Blue 490 66 10 
Band 3 Green 560 36 10 
Band 4 Red 665 31 10 
Band 5 Red edge 705 15 20 
Band 6 Red edge 740 15 20 
Band 7 Red edge 783 20 20 
Band 8 NIR (near 

infrared) 
842 106 10 

Band 8A Narrow NIR 865 21 20 
Band 9 Water Vapor 945 20 60 
Band 10 SWIR 

(Shortwave 
Infrared) - Cirrus 

1375 31 60 

Band 11 SWIR 1610 91 20 
Band 12 SWIR 2190 175 20  

Fig. 1. The study area of Galicia in northwestern Spain.  
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abundance of clouds (Esteban Cava et al., 2022). In fact, studies suggest 
that, in multiple different environments, supervised classifications are 
needed to refine the output of the BFAST and LandTrendr algorithms (Xu 
et al., 2022; Masiliūnas et al., 2021; Shen et al., 2022). Another draw
back of the use of these algorithms is the need to analyze very long time 
series, because this means downloading, organizing, storing, and pro
cessing large amounts of data. However, this limitation might be solved 
by using the cloud computing platform Google Earth Engine, designed 
specifically to overcome this problem (Gorelick et al., 2017). In fact, 
multiple studies have already utilized this platform (Chen et al., 2021a; 
Hamunyela et al., 2020; Mandal and Hosaka, 2020). 

A number of studies have explored different methodologies to detect 
forest changes while avoiding dense time-series analyses (Cardille et al., 
2022; Giannetti et al., 2020; López-Amoedo, et al., 2021; Lv et al., 
2018). A frequent approach is to explore the behavior of spectral indices 
in areas previously identified as forest over short time periods, such as 2 
(Cardille et al., 2022; Lv et al., 2018) or 3 years (Giannetti et al., 2020). 
Different techniques have been tested, such as decision trees (Cardille 
et al., 2022; López-Amoedo, et al., 2021) or change indices (Giannetti 
et al., 2020). However, given the efforts of multiple different agencies to 
develop their own self-adapted land cover maps, it would be logical to 
develop a methodology that integrates existing map production methods 
with land change detection. Additionally, according to Wulder et al. 
(2018), the essence of land cover monitoring involves producing an 
integrated product that provides both land cover and land cover change 
information. 

Therefore, this study proposes a methodology to detect forest dis
turbances in areas with different topographic conditions, diverse land 
covers, and varying phenologies. This methodology complements and 
enhances land cover mapping methodologies that rely on the analysis of 
time-series satellite imagery. Specifically, this method was designed as 
part of the land cover mapping protocol that is planned to be used in the 
new regional forest inventory of Galicia (northwestern Spain) (Xunta de 
Galicia, 2022a). 

2. Material and methods 

2.1. Study case 

This methodology was developed for Galicia, a region in the north
west of Spain that encompasses a total area of 29.575 km2. The study 
area is shown in 1. Galicia has both Atlantic and Mediterranean climates 
(Meteogalicia, 2022). According to the last forestry report from the 
government of Galicia in 2016, 48% of the region was covered by for
ests, which was expected to increase owing to the different policies 
aimed at promoting forest growth (Xunta de Galicia, 2016). Further, 
agricultural land abandonment is observed in Galicia, which also con
tributes to the expansion of forest land (Corbelle-Rico et al., 2022). The 
main tree species present in Galician forests are Eucalyptus spp., Pinus 
spp., Quercus spp., and Castanea spp., along with species typical of ri
parian zones such as Salix spp. and Alnus glutinosa (Xunta de Galicia, 
2016). Galicia has an active forest sector (Levers et al., 2014; MITERD, 

Fig. 2. Methodology overview.  

Fig. 3. Workflow to identify changed pixels.  
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2018; Xunta de Galicia, 2022b). Additionally, forests in Galicia are 
highly fragmented: it is estimated that 40% of the productive forest area 
corresponds to cadastral plots smaller than 0.5 ha (Spanish government, 
2011). This results in a large number of small, annually harvested par
cels scattered across the whole region. According to the official reports, 
in the last 7 years (from 2015 to 2021), the regional government has 
received an average of 83,902 administrative harvesting requests per 
year, with an average surface area per request of 0.5 ha (Xunta de 
Galicia, 2022b). As well as harvesting, forests in Galicia are also 
disturbed by wildfires, being one of the regions in Spain most affected by 
wildfires (MAPA, 2019; MAPA, 2021). 

In view of this, the Galician regional government launched an 
ambitious research project in 2020, aimed at developing a self-adapted 
forest inventory that would take into account the idiosyncrasies of the 
land surface, and could be used to precisely monitor the evolution of 
forests in Galicia and to design management strategies (Xunta de Gali
cia, 2022a). Two of the key components of this inventory are (1) to 
develop methodologies to produce up-to-date forestry-specific land 
cover maps and (2) to efficiently detect forest disturbances (Xunta de 
Galicia, 2022a). The first design has already been accomplished and is 
described in Alonso et al. (2021). 

2.2. Materials 

2.2.1. Satellite imagery 
This methodology relies on Sentinel-2 Level 2A multispectral images 

(Bottom-of-Atmosphere reflectance). Sentinel-2 is a constellation of two 
satellites launched by the European Space Agency (ESA) (ESA, 2015). 
The main aim of the mission is to monitor vegetation systems on the 
Earth’s surface. The mission provides systematic coverage of the entire 
globe with a high revisit frequency (of between 5 and 10 days). The 
Sentinel-2 payload instrument captures multispectral information on 13 
channels. The spatial resolution of the images obtained ranges from 10 
to 60 m, depending on the channel. Information on the bands is outlined 
in Table 1. 

From the Sentinel-2 products available for download (European 
Commission and ESA, 2022), the Level 2A product (analysis ready data 
product) was selected. The images were downloaded from the Coper
nicus Open Access Hub (European Commission and ESA, 2022). 

For the years 2019 and 2020, one image per month and per tile was 
downloaded, for a total of 24 images per Sentinel-2 tile. The criteria used 
to select the image to represent each month was the same as that used by 
Alonso et al. (2021). For each month, the image with the minimum 
cloud percentage was selected, with the condition that the cloud per
centage would never surpass 50%. In cases where no images met this 
threshold, an additional image from the previous or following month 
was selected (see Fig. 1). 

2.2.2. Reference images 
Reference data were obtained from aerial orthorectified images 

(PNOA images) (MTMAU, 2022). The Spanish National Cartographical 
Institute (IGN) (MTMAU and IGN, 2022) provides open-access images 

Fig. 4. Example of changed pixel identification in an area that suffered a wildfire.  
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from two photogrammetric flights performed in 2017 and 2020 for 
Galicia. The spatial resolutions for the 2017 (PNOA 2017) and the 2020 
(PNOA 2020) images are 0.25 and 0.15 m, respectively. The georefer
encing mean square errors for the 2017 and 2020 images are ≤ 0.50 and 
≤ 0.20 m, respectively (MTMAU, 2022). 

2.2.3. Land cover maps 
The starting point for this study was two forestry-oriented land cover 

maps of Galicia: a 2019 land cover map (MAP19) and a 2020 land cover 
map (MAP20). The maps were obtained from Alonso et al. (2022b) and 
created following the same methodology, described in detail in Alonso 
et al. (2021 and 2022b) and based on supervised classifications of 
Sentinel-2 images. The legend for the maps is as follows: Eucalyptus spp., 
conifers, broadleaves, shrubs, crops and pastures, bare soil, anthropo
genic areas, and water. The overall accuracies of the maps are 86% for 
MAP19 and 88% for MAP20. Further accuracy metrics can be found in 
Alonso et al. (2022b). 

2.3. Methodology 

The aim of this method is to identify, from the land cover map 
comparison, which of the pixels that changed land cover class from the 
classification in one year to the next actually correspond to forest dis
turbances. The method has two main steps: (1) identifying changing 
pixels and (2) selecting disturbance pixels. The first step involves pixel- 
to-pixel comparisons, while the second step analyzes the behavior of 
spectral indices along a time series. The time series started in January 
2019 and ended in December 2021. Fig. 2 shows an overview of the 
methodology. 

2.3.1. Identification of changed pixels 
To identify all pixels where the land cover potentially changed from 

2019 to 2020, MAP19 and MAP20 were combined to obtain a single 
raster reflecting the land cover for both years. For this, raster calcula
tions were performed using the raster calculator in QGIS (QGIS.org, 
2022). In this particular case, MAP19 was multiplied by 100 and added 
to MAP20, giving the following coded digital values of pixels: the first 
digit (hundreds) corresponds to the 2019 land cover class, and the third 
digit (units) to the 2020 land cover class. Wherever the land use for a 
pixel in MAP19 and MAP20 matched, the first and third digits of the new 
raster also matched. However, if the first and third digits are different, 
then that pixel is identified as a change pixel. A list of mismatch codes 
was then defined according to the codes of the land cover classes, 
enabling the identification of changed pixels and the creation of a binary 
raster containing their distribution. 

Once the changed pixels were identified, the downloaded images 
were masked in such a way that only the spectral information of the 
changed pixels was retained, while the rest of the pixels were changed to 
“no data.” This process serves to reduce the amount of information to be 
processed in the following steps. Fig. 3 illustrates this processing step. 

2.3.2. Selection of disturbance pixels 
Disturbance pixels were selected by analyzing the behavior of the 

spectral indices of pixels identified in the previous step throughout the 
study period. The indices analyzed were the Normalized Difference 
Vegetation Index (NDVI) (Kogan 1995; Tarpley et al., 1984) and the 
Normalized Burn Ratio (NBR) (Key and Benson, 2003). The NDVI is 
commonly used to assess the greenness of land cover, since it is highly 
sensitive to chlorophyll content (Kogan 1995; Tarpley et al., 1984). It 
uses the near infrared (NIR) and red channels of multispectral images 

Fig. 5. Example of changed pixel identification in an area that was harvested.  
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(Equation 1), which are bands 8 and 4, respectively, in Sentinel 2. 

NDVI =
NIR − RED
NIR + RED 

Equation 1. NDVI formula. NIR: near infrared, Sentinel-2 band 8; 
RED: Sentinel-2 band 4. 

The NBR is commonly used to identify burned areas through satellite 
imagery analysis (Key and Benson, 2003). It uses the shortwave infrared 
(SWIR) and NIR channels of multispectral images (Equation 2), which 
are bands 12 and 8, respectively, in Sentinel-2. 

NBR =
NIR − SWIR
NIR + SWIR 

Equation 2. NBR formula. NIR: near infrared, Sentinel-2 band 8; 
SWIR: shortwave infrared, Sentinel-2 band 12. 

Both indices have been used previously to detect forest disturbances 
(Cardille et al., 2022; Chen et al, 2021b; Gao et al., 2019; Tian et al., 
2018; Zhou et al., 2021). Some studies have also focused on identifying 
which index performs better, although the results thus far have been 
inconclusive and depend on the context (Zhou et al., 2021; Hislop et al., 
2019; Bueno et al., 2020). For this reason, in this study, both indices 
were explored. 

Before calculating the indices, the masked downloaded images were 
preprocessed to remove any cloud pixels that might greatly interfere 
with the subsequent analyses. Clouds were removed using the cloud 
layer that includes the Level 2A product. Upon preprocessing the 

images, the NDVI and NBR were calculated, giving the spectral behavior 
of the changing pixels for the months analyzed. 

To summarize the behavior of the spectral indices throughout the 
time series, the following statistics were then calculated for each pixel 
and for each spectral index: maximum; minimum; average; standard 
deviation; median; variance; skewness; and the 5th, 10th, 50th, 90th, 
and 95th percentiles. The next steps use these statistics to identify 
changing pixels that correspond to a disturbance among all the changing 
pixels. All these steps were conducted in the R software (R Core Team, 
2020). 

A set of training data was defined: a random sample of points 
selected from among the previously identified changing pixels. Each 
point was inspected in detail to determine whether it corresponded to a 
change (a disturbance) or if, in fact, no change had occurred (a non- 
disturbance). A change was defined as any decrease in vegetation due 
to a disturbance, for example, timber logging or a forest fire. The in
spection was performed through photointerpretation of Sentinel-2 and 
PNOA images from 2017 and 2020. If a disturbance was observed in the 
2017 and 2020 PNOA images, that point was further inspected in the 
Sentinel-2 images to verify that the change had indeed occurred in the 
time frame of interest (from 2019 to 2020). If this could be confirmed, 
the pixel was included in the training data as a disturbance point. 
However, if no disturbance was observed between the 2017 and 2020 
images, that point was further analyzed in the Sentinel-2 images to 
confirm that indeed no disturbance had occurred in 2020, even after the 
acquisition of the PNOA image. If it was confirmed that no disturbance 

Fig. 6. Example of changed pixel identification due to edge effects.  
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had occurred, the pixel was included in the training data as a non- 
disturbance point. Care was taken to procure training data representa
tive of the most common disturbances present in the study area (both 
harvests and wildfires), and the driver of the disturbance was also 
interpreted in the PNOA and Sentinel-2 images. In cases where it was not 
possible to determine whether a point was a disturbance or not through 
photointerpretation, the point was removed from the sample. 

Once the indices were calculated and the training sets defined, a 
decision tree was built using R software to establish the thresholds that 
would distinguish between pixels that corresponded to disturbances and 
pixels that corresponded to non-disturbances. A decision tree is an easy- 
to-use machine learning approach for performing supervised classifica
tions (Breiman et al., 1984) that could potentially be implemented with 
future datasets. The decision tree was built and applied using the “rpart” 
library in R software, with default parameters (Therneau and Atkinson, 
2019). The resulting decision tree was applied to all of the potential 
disturbance pixels to identify which of them in fact corresponded to real 
disturbances. 

The obtained results were cross verified. A random stratified sample 
of 500 points was created: 250 pixels classified as non-disturbances and 
250 pixels classified as disturbances. The real land cover of the sample 
was obtained through interpretation of the reference images (PNOA 
2017 and 2020) and Sentinel-2 images, following the same strategy as 
that used to obtain the training data. A confusion matrix was built and 
the overall accuracy (OA), users accuracy (UA), and producers accuracy 
(PA) were calculated. This procedure was performed for both the NDVI 

and NBR indices. The final accuracy metrics obtained were compared to 
determine which index was most appropriate for this method. 

3. Results 

3.1. Changed pixel identification 

In total, 14,909,340 changed pixels were identified, corresponding to 
20% of the surface area of Galicia. Figs. 4–8 show examples of identified 
changed pixels. In Figs. 4 and 5, changed pixels are shown in an area 
where a certain disturbance took place: a wildfire and a timber harvest, 
respectively. Figs. 6, 7, and 8, on the other hand, correspond to examples 
of areas where changed pixels were detected but no disturbance has 
occurred. Fig. 6 is an example of changed pixels being detected due to 
edge effects. Fig. 7 shows changed pixels that were identified in a stand 
that had undergone slashing. In 2019, this stand was identified as pine, 
but the next year some of the pixels in the stand were identified as shrubs 
by the radiometry of the understory, which exceeded the radiometry of 
the canopy as a result of the treatment received. The final image (Fig. 8) 
corresponds to changed pixels identified in a young stand that is 
growing. In the first year, the stand was wrongly classified as broad
leaves, but as the canopy began to fill in, the stand was then correctly 
classified as eucalyptus. 

Fig. 7. Example of changed pixel identification in an area that had undergone slashing.  
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3.2. Disturbance pixel selection 

The evolution of the NDVI values over the studied time series is 
shown for two points in Fig. 9: one point corresponds to an undisturbed 
eucalyptus stand, and the other point corresponds to a disturbed (har
vested) eucalyptus stand. The behavior lines illustrate the different 
profiles of both cases. Sentinel-2 images captured at different dates in 
false color (B8, B4, and B3) are shown to help explain the histogram of 
the disturbed plot. Additionally, a high-resolution image (PNOA 2017 
and PNOA 2020) of the disturbed plot is shown. 

A total of 749 points were used to train the decision tree: 478 non- 
disturbance points and 271 disturbance points. The decision trees ob
tained for the NDVI and the NBR are shown in Figs. 10 and 11, 
respectively. Both trees used the 10th percentile as the first criterion to 
differentiate between disturbances and non-disturbances. The other 
metrics included in the decision tree for the NDVI were skewness and 
standard deviation, while the NBR decision tree also selected the 90th 
percentile. The thresholds for each branch of the two trees were quite 
similar. 

Application of the decision trees led to the identification of 
1,930,879 disturbance pixels for the NDVI and 4,734,549 disturbance 
pixels for the NBR. The results are shown in Fig. 12 where they can be 
compared with the changed pixels identified in the comparison of the 
two land-cover maps. 

Tables 2 and 3 present the confusion matrices obtained after 
applying the NDVI and NBR decision trees, respectively, to all the 
identified changed pixels. Greater overall accuracy was obtained when 

using the NDVI, which is mostly due to the high number of false-positive 
disturbances reported by the NBR. The proportion of true positives, with 
a user’s accuracy of 98% in both confusion matrices, highlights the 
advantage of using both indices for analysis. 

The verification results were further analyzed, considering the type 
of disturbance identified in the reference data. The results are presented 
in Tables 4–7. A high percentage of the disturbances correspond to 
harvestings (94% for the NDVI and 95% for the NBR), as expected 
considering the ratio of harvestings and wildfires in the study area. 
Tables 4 and 6 present the results in absolute values, and Tables 5 and 7 
in relative values. Tables 5 and 7 show that small percentages of each 
type of disturbance are undetected by the algorithms. Finally, in the 
NBR, the percentage of detected wildfires is slightly higher than in the 
NDVI. 

Graphical examples of the performance of the decision trees for both 
indices are shown in 13. Fig. 13a shows a harvesting event that was 
correctly detected by the NDVI and the NBR. Fig. 13b shows an example 
of an error of commission when applying the NBR. The reference images 
show that it is an area where pine is growing and therefore some pixels 
are most commonly detected as pine throughout the year, while others 
are sometimes identified as shrubs because the radiometry detected is 
that of the understory. This method provides a solution to this problem, 
as it correctly identifies these pixels as undisturbed. Fig. 13c shows an 
example of an area correctly identified as undisturbed. This area pre
sented an absence of trees in 2017 and is where eucalyptus had been 
planted and was starting to grow. It is true that a land cover change 
occurred; however, it is not a disturbance but rather a vegetation 

Fig. 8. Example of changed pixel identification in an undisturbed area of a young eucalyptus stand growing.  
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recovery, and therefore the algorithm, as expected, identified it as a non- 
disturbance. Fig. 13d shows an example of a very small harvest area 
correctly detected by the algorithm. Additionally, in Fig. 13 d), another 
harvested area appears that was not analyzed because it was not iden
tified as part of the changed pixels. This could be because it might have 
been a late harvest in 2020 and therefore the 2020 land cover map still 
identifies it as trees. When using this method, late harvesting events, 
such as this one, will be identified in the following years analysis 
(comparison of 2020 and 2021 maps). Fig. 13e shows an area covered by 

shrubs and trees in 2017 that suffered a wildfire in 2020. This distur
bance was correctly identified by both the NDVI and the NBR. 

4. Discussion 

The methodology outlined herein is capable of detecting changes 
that occur in different land covers with varying phenologies, as well as in 
areas with differing topographic conditions. It was also efficient in areas 
with a great degree of stand fragmentation, as shown in Fig. 12, a 

Fig. 9. NDVI values over the studied time series of an undisturbed eucalyptus stand and a disturbed eucalyptus stand. Sentinel-2 images captured at different dates in 
false color (B8, B4, and B3) are shown to help explain the histogram of the disturbed plot. PNOA 2017 and PNOA 2020 are high-resolution images of the 
disturbed plot. 

Fig. 10. Decision tree obtained for the NDVI.  
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phenomenon that is quite common in the study area. This methodology 
provides a reliable alternative to methodologies that rely on breakpoint 
detection in a dense time series of images with coarse spatial resolution, 
such as those proposed by Esteban Cava et al. (2022) and Buchhorn et al. 
(2021). However, a detailed comparison of the results of this study and 
those obtained by Esteban Cava et al. (2022) could be carried out to 
evaluate the applicability of each method for cases of very small har
vesting areas in this study area. 

The disturbance detection methodology was designed to be 
compatible and easily integrated with the land cover mapping meth
odology designed for Galicia. Both processes can be performed in par
allel since they rely on the same sets of monthly Sentinel-2 images 
(Alonso et al. 2022b): the 12-image sets that are used to create the 
annual land cover maps can also be used in the image series for 
disturbance detection. Therefore, this method does not require addi
tional datasets, nor extra downloading, resampling, and processing. This 

Fig. 11. Decision tree obtained for the NBR.  

Fig. 12. Comparison between changed pixels identified and the disturbances detected at these pixels using the NDVI and NBR.  

Table 2 
Results of the NDVI verification: producer’s accuracy (PA), user’s accuracy (UA), 
and overall accuracy (OA).   

Decision tree results 

Reference data Undisturbed Disturbed TOTAL PA 

Undisturbed 244 86 330 74% 
Disturbed 6 164 170 96% 
TOTAL 250 250 500 OA 
UA 98% 66% OA 82%  

Table 3 
Results of the NBR verification: producer’s accuracy (PA), user’s accuracy (UA), 
and overall accuracy (OA).   

Decision tree results 

Reference data Undisturbed Disturbed TOTAL PA 

Undisturbed 247 147 394 63% 
Disturbed 3 103 106 97% 
TOTAL 250 250 500 OA 
UA 98% 41% OA 70%  
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is the main difference between this methodology and those developed by 
Cardille et al. (2022) and Giannetti et al. (2020). For example, Cardille 
et al. (2022) use all the available Landsat and Sentinel-2 images in a 2- 
year period that have a cloud cover of less than 50%. Their methodol
ogy, which entails a significant increase in stored information and 
computational time, also analyzes data at a coarser resolution, given 
that the pixel size of Landsat images is 30 m (Cardille et al. 2022). This is 
not desirable for this study region due to its high level of fragmentation. 

The highest accuracies were obtained when using the NDVI, with an 
overall accuracy of 82%. The accuracies were lower when using the NBR 
owing to the high number of false positives obtained with this spectral 
index. This result contradicts the results obtained in other studies relying 
on the NBR, such as the study by Cardille et al. (2022), in which the PA 
and the UA were both above 75%. Similarly, Zhou et al. (2021) obtained 
higher accuracies with the NBR than with the NDVI. Therefore, the 
decision of which index to apply may depend, as suggested by Bueno 
et al. (2020), on the methodology, the type of disturbance to assess, and 
the type of vegetation analyzed. 

It should be noted that the highest overall accuracy achieved in this 
study is somewhat lower than the values reported in the scientific 
literature for analogous methodologies, which generally range from 
88% to 99% (Cardille et al., 2022; Giannetti et al., 2020; López-Amoedo 
et al., 2021). This is because the size of the disturbances tend to be larger 
in other methodologies. The study by López-Amoedo et al. (2021) is an 
exception, as it focuses on small harvesting events similar to the dis
turbances analyzed here. However, their study analyzes only two genera 
of forest stands, and their methodology is designed to detect distur
bances and evaluate accuracy at the parcel level. Consequently, the 
overall accuracies cannot be compared directly. Furthermore, all these 
previous methodologies are based on either a preexisting forest mask 
(Cardille et al., 2022; Giannetti et al., 2020) or a selection of cadastral 
plots that are known to be forest land (López-Amoedo et al., 2021). 
Masks are prone to classification errors and can require continual 
updating in areas with intense land cover dynamics, while declarations 

(the basis of cadastral parcel analysis) can deviate from reality for 
multiple reasons (López-Amoedo et al., 2021), so these methods ought to 
be complemented with intensive photointerpretation work. The meth
odology presented herein is especially valuable for regions such as 
Galicia with highly dynamic forests, since it can be applied directly to 
the whole territory and any type of forest stands, without the need for a 
forest mask or intensive photointerpretation. 

This study reveals that, given the high number of changed pixels with 
respect to true forest disturbances, forest changes cannot be derived 
simply from the comparison of land cover maps from consecutive years 
in areas with intense forest dynamics and where stands are highly 
fragmented. Refinement procedures, such as that presented herein, are 
essential. Edge pixels play an important role, as shown in Fig. 6 since, in 
a small parcel system, a high percentage of the area may correspond to 
edge pixels. Sentinel-2 miss-registration issues (Kukawska et al., 2017) 
may augment edge effects (Mi et al., 2022), therefore research on co- 
registration of Sentinel-2 images may be crucial for these kinds of 
regions. 

Detecting changed pixels is an important starting point in forest 
disturbance reporting and forest stand monitoring, and the methodology 
presented in this study does this efficiently. Once the disturbance pixels 
are confirmed, it might be interesting to analyze the driver generating 
the disturbance (i.e., harvesting activity or wildfires), as in the study by 
Cardille et al. (2022). Using the methodology of Alonso et al. (2022a) to 
distinguish disturbance drivers could be an interesting complement to 
the methodology described herein since it does not require any addi
tional information as it relies on the analysis of the disturbance geom
etry. Furthermore, since the confirmed disturbances are georeferenced, 
they can be analyzed with earlier land cover maps to quantify changes in 
relation to the type of cover affected, and to evaluate the spatial dis
tribution of the disturbances, if needed. Finally, an in-depth analysis 
could be performed to investigate how best to deal with changed pixels 
that do not correspond to disturbances. It is crucial to develop territory- 
specific workflows, such as those designed by Abercrombie and Friedl 
(2015) and Zhu et al. (2020), to update land cover maps. An essential 
part of creating this workflow is an in-depth exploration, similar in 
nature to the analysis performed by Alonso et al. (2022b), of the cor
respondence between land cover maps and reality. 

Although the method presented herein was specifically designed for 
Galicia, it is compatible with other land cover mapping methodologies 
such as those by Inglada et al. (2017) and the UKCEH (2021). For 
example, this methodology could allow the UKCEH to detect distur
bances without the need to acquire additional input data, and thus 
resolve their current issue of having to wait long periods of time to 
discern whether pixel changes are permanent in time and hence corre
spond to disturbance or they are mapping error related (UKCEH, 2021). 

Table 4 
Disturbance class data obtained by the NDVI, considering the type of disturbance 
detected in the reference data.    

Reference     

Undisturbed Disturbed TOTAL  

N Percentage N Percentage N Percentage 

Wildfire 1 17% 10 6% 11 6% 
Harvesting 5 83% 154 94% 159 94% 
TOTAL 6 100% 164 100% 170 100%  

Table 5 
Relative values of disturbance class data obtained by the NDVI, considering the 
type of disturbance detected in the reference data.   

Reference   

Undisturbed Disturbed  

Wildfire 9% 91% 100% 
Harvesting 3% 97% 100%  

Table 6 
Disturbance class data obtained by the NBR, considering the type of disturbance detected in the reference data.    

Reference      

Undisturbed Disturbed TOTAL     

N Percentage N Percentage N Percentage 

Wildfire 0 0% 5 5% 5 5% 
Harvesting 3 100% 98 95% 101 95% 
TOTAL 3 100% 103 100% 106 100%  

Table 7 
Relative values of disturbance class data obtained by the NBR, considering the 
type of disturbance detected in the reference data.   

Reference   

Undisturbed Disturbed  

Wildfire 0% 100% 100% 
Harvesting 3% 97% 101  
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Another advantage of this methodology is that, as it is not dependent 
upon long time series of data, it is compatible with new satellites with 
enhanced characteristics. For example, many recent land cover and 
forest mapping studies are incorporating images from PlanetScope 
(Lefulebe et al., 2022; Pickering et al., 2021; Rösch et al., 2022), a sat
ellite with a very low revisit time (daily) and which provides images 
with a higher resolution (3 m) than the Sentinel-2 images. The increased 
spatial resolution of PlanetScope makes it an appealing alternative for 
mapping regions such as Galicia that require a high level of spatial 
detail. 

5. Conclusion 

The presented methodology has proven to be robust and efficient at 
detecting forest disturbances in a large area with varying land covers, 
topographic conditions, and phenologies, and even in areas with a high 
degree of stand fragmentation. The workflow can be integrated with the 
land cover mapping methodology developed for the Continuous Galician 
Forest Inventory. This method allows the detection of small forest dis
turbances and their inclusion in annual land cover maps. It does not 
require the acquisition of additional data nor long time series of satellite 
images, which is valuable as it reduces computational time and the 
amount of information that must be stored, without sacrificing spatial 
resolution. Additionally, this means that it could potentially be used 
with new, enhanced satellite imagery in the future. 

Finally, although specifically designed for the case of Galicia, this 
methodology could be applied to any land cover map production 
workflow based on time-series satellite imagery. For many agencies that 
have already developed their own time-series land cover maps, this 
method could facilitate the integration of land cover change detection 

into their maps. 
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Fig. 13. Examples of the performance of the decision trees. Red: pixels detected as a disturbance by the NDVI. Purple: pixels detected as a disturbance by the NBR. 
Gray: pixels detected as undisturbed by the NBR or the NDVI. A) A harvesting event that was correctly detected by the NDVI and by the NBR. B) An example of an 
error of commission when only applying the NBR. C) An example of an area correctly identified as undisturbed by both the NBR and the NDVI. D) An example of a 
very small harvest area correctly detected by both the NDVI and the NBR. E) A wildfire in a shrub area correctly detected by the NDVI and the NBR. (For inter
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Gao, Y., Solórzano, J.V., Quevedo, A., Loya-Carrillo, J.O., 2021. How BFAST trend and 
seasonal model components affect disturbance detection in tropical dry forest and 
temperate Forest. Remote Sens. 13, 2033. https://doi.org/10.3390/rs13112033. 

Giannetti, F., Pegna, R., Francini, S., McRoberts, R.E., Travaglini, D., Marchetti, M., 
Scarascia Mugnozza, G., Chirici, G., 2020. A new method for automated clearcut 
disturbance Detection in Mediterranean coppice forests using Landsat time series. 
Remote Sens. 12, 3720. https://doi.org/10.3390/rs12223720. 

Gilani, H., Naz, H., Arshad, M., Nazim, K., Akram, U., Abrar, A., Asif, M., 2020. 
Evaluating mangrove conservation and sustainability through spatiotemporal 
(1990–2020) mangrove cover change analysis in Pakistan. Estuar. Coast. Shelf Sci. 
249 https://doi.org/10.1016/j.ecss.2020.107128. 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. 
Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. 
Environ. 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031. 

Gyamfi-Ampadu, E., Gebreslasie, M., 2021. Two decades progress on the application of 
remote sensing for monitoring tropical and sub-tropical natural forests: a review. 
Forests 12, 739. https://doi.org/10.3390/f12060739. 

Hamunyela, E., Rosca, S., Mirt, A., Engle, E., Herold, M., Gieseke, F., Verbesselt, J., 2020. 
Implementation of BFAST monitor Algorithm on Google Earth Engine to support 
large-area and sub-annual change monitoring using Earth observation data. Remote 
Sens. (Basel) 12 (18), 2953. https://doi.org/10.3390/rs12182953. 

Hislop, S., Jones, S., Soto-Berelov, M., Skidmore, A., Haywood, A., Nguyen, T.H., 2019. 
A fusion approach to forest disturbance mapping using time series ensemble 
techniques. Remote Sens. Environ. 221, 188–197. https://doi.org/10.1016/j. 
rse.2018.11.025. 

Inglada, J., Vincent, A., Arias, M., Tardy, B., Morin, D., Rodes, I., 2017. Operational high 
resolution land cover map production at the country scale using satellite image time 
series. Remote Sens. 9, 95. https://doi.org/10.3390/rs9010095. 

JCyL (Junta de Castilla y León), 2022. Mapa de cultivos y superficies naturales. http:// 
mcsncyl.itacyl.es/ (accessed 12 December 2022). 

Kennedy, R.E., Yang, Z., Cohen, W.B., 2010. Detecting trends in forest disturbance and 
recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation 
algorithms. Remote Sens. Environ. 114, 2897–2910. https://doi.org/10.1016/j. 
rse.2010.07.008. 

Key, C.H., Benson, N.C., 2003. The normalized burn ratio (NBR): A Landsat TM 
radiometric measure of burn severity. US Geological Survey Northern Rocky 
Mountain Science Center. U.S. Department of the Interior, U.S. Geological Survey, 
Northern Rocky Mountain Science Center.  

Kogan, F.N., 1995. Droughts of the late 1980s in the United States as derived from NOAA 
polar-orbiting satellite data. Bull. Am. Meteorol. Soc. 76 (5), 655–668. https://doi. 
org/10.1175/1520-0477(1995)076<0655:DOTLIT>2.0.CO;2. 
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Geográfica. http://centrodedescargas.cnig.es/CentroDescargas/index.jsp (accessed 
9 December 2022). 

MTMAU (Ministerio de Transporte Movilidad y Agenda Urbana), 2022. Plan Nacional de 
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