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Simple Summary: Designing systems that optimize the process of evaluating mammogram images
with the goal of improving the diagnostic process of breast cancer is an active field of research due
to the large health and social impact of this disease. This paper presents a new intelligent clinical
decision support system that, through the concurrence of inferential models, allows the definition of
various risk metrics for patients. Those metrics are weighted and combined into a Global Risk value to
be finally corrected by means of an empirical weighting factor derived from the BI-RADS analysis
and condition associated with the patient’s mammogram images. The validation results have shown
meaningful disease detection rates within the study group used, which makes it possible to estimate
the potential for a diagnostic use of the developed system.

Abstract: Breast cancer is the most frequently diagnosed tumor pathology on a global scale, being
the leading cause of mortality in women. In light of this problem, screening programs have been
implemented on the population at risk in the form of mammograms, starting in the 20th century. This
has considerably reduced the associated deaths, as well as improved the prognosis of the patients
who suffer from this disease. In spite of this, the evaluation of mammograms is not without certain
variability and depends, to a large extent, on the experience and training of the medical team carrying
out the assessment. With the aim of supporting the evaluation process of mammogram images and
improving the diagnosis process, this work presents the design, development and proof of concept of
a novel intelligent clinical decision support system, grounded on two predictive approaches that work
concurrently. The first of them applies a series of expert systems based on fuzzy inferential engines,
geared towards the treatment of the characteristics associated with the main findings present in
mammograms. This allows the determination of a series of risk indicators, the Symbolic Risks, related
to the risk of developing breast cancer according to the different findings. The second one implements
a classification machine learning algorithm, which using data related to mammography findings as
well as general patient information determines another metric, the Statistical Risk, also linked to the
risk of developing breast cancer. These risk indicators are then combined, resulting in a new indicator,
the Global Risk. This could then be corrected using a weighting factor according to the BI-RADS
category, allocated to each patient by the medical team in charge. Thus, the Corrected Global Risk is
obtained, which after interpretation can be used to establish the patient’s status as well as generate
personalized recommendations. The proof of concept and software implementation of the system
were carried out using a data set with 130 patients from a database from the School of Medicine
and Public Health of the University of Wisconsin-Madison. The results obtained were encouraging,
highlighting the potential use of the application, albeit pending intensive clinical validation in real
environments. Moreover, its possible integration in hospital computer systems is expected to improve
diagnostic processes as well as patient prognosis.
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1. Introduction

Breast cancer is currently the most frequently diagnosed tumor pathology worldwide,
accounting for one in eight cases of cancer among the overall population. One in four cases
of oncologic pathology in women correspond to breast cancer [1–3], being the cause of 15.5%
of overall cancer deaths by the year 2020 [2]. Due to the high impact of this type of cancer,
in the last century, a major effort has been made to implement early detection strategies that,
along with early diagnosis as well as effective treatment, have significantly improved the
diagnosis of patients and lowered the associated mortality rates [3]. These early detection
strategies, usually carried out through population screening programs, are generally based
on the performance of periodic mammograms in high-risk groups, mainly women over
40 years of age. The aim is to detect, as soon as possible, any signs that may indicate the
possible presence of the pathology, with the subsequent referral of suspected cases for
further testing in order to confirm or refute the suspicion and establish a diagnosis. In this
regard, for the evaluation of mammograms, the Breast Imaging Reporting and Data System
(BI-RADS) [4] is standardly applied, providing the medical team with a common lexicon for
the description of the findings observed in the images and facilitating the categorization of
the mammogram through the definition of seven levels. These range from no suspiciousness
to absolute certainty that the subject has a case of breast cancer, thus facilitating the task of
describing and classifying the findings. Nevertheless, the interpretation of mammograms
is not trite, and depending on the training and experience of the medical team in charge of
evaluation, the results may show a certain degree of variability and subjectivity [5–7]. In
some cases, this may imply the performance or omission of extra tests to confirm or rule
out a potential case of breast cancer, with all the possible disadvantages that this may entail
for the patient.

In this context, within the healthcare field, it is essential to have mechanisms and
tools available to provide support in the arduous and challenging clinical decision-making
processes. These tools, usually supported by artificial intelligence techniques, are currently
a working reality, with multiple and diverse proposals existing in the current literature,
mostly integrated into clinical decision support systems [8–25]. With regard to breast
cancer, many proposals make use of symbolic inference models [21,25], although with the
rise of the connectionist paradigm, in recent years applications have been developed that
use large and complex neural network models for the detection of these tumors [26–32].
They have enabled the management of hospital resources to be improved upon, thereby
increasing the quality of the services provided while reducing the high costs associated
with them. Along these lines, this paper proposes an adaptation, development and proof
of concept of the work presented by the authors in Casal-Guisande et al. (2022) [25]. In
that publication, the authors outlined the concept of a breast cancer diagnostic system
based on the implementation of a cascade of expert systems that collected and formalized
the patient’s medical information. Their output was processed to find covariance factors
that would form a new knowledge base to train a statistical classifier upon which the
final diagnostic prediction could be based. The sequential flow of information that was
proposed reduced the uncertainty related to both processing and interaction, although it
diminished the inferential counter position. In other words, the statistical inference was set
off after the symbolic inferential process, whose outputs were the grounds for the definition
of the classifier’s starting data. Therefore, there is a conditioning of the symbolic part to
the statistical part that, in a sense, limits the diversification of knowledge and, above all,
limits the interpretation of the correlation patterns that the machine learning algorithm
can obtain.
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The improved system proposed in this paper is built upon the aforementioned one
and aims not only to improve upon the results published at the time, but also redesign the
flow of data and knowledge in order to increase the diversifying effect of the inferential
models. To this end, an intelligent system was implemented consisting of two blocks
that work concurrently [12,13,17,25–27]. The first block is based on the use of expert
systems employing fuzzy inference engines, focused on the processing of data related
to the findings present in mammograms, i.e., masses, calcifications, asymmetries and
distortions of the architecture. The second block, based on the use of a classification
machine learning algorithm, is focused on the joint processing of data from mammograms,
with the exception of BI-RADS, as well as general patient data. Through these concurrent
processes it is able to obtain a series of risk indicators, the Symbolic Risks and the Statistical
Risk, respectively. These indicators are then aggregated to obtain a percentage indicator of
Global Risk, representative of the likelihood of developing breast cancer. This might then be
corrected and its value weighted according to the BI-RADS level assigned by the medical
team, thus determining a Corrected Global Risk indicator that, after adequate interpretation
and evaluation, allows for the generation of warnings regarding the patient’s condition as
well as provides recommendations. The simultaneous deployment of the inferential systems
enables their outputs to be contrasted and merged, while the development of analytical
models, as will be discussed later, can effectively reduce the uncertainty associated with
this type of structure.

This document is organized in five sections. Section 2 presents the conceptual design
of the proposed intelligent system, outlining the different stages and data flows. It is then
followed by a thorough description of the software implementation of the intelligent system
in addition to commenting on the previous results of its proof of concept. In Section 3, a
practical case of application of the proposed intelligent system is presented so as to illustrate
its performance. Section 4 discusses the architecture of the proposed system, followed by
Section 5, which presents the conclusions obtained along with potential development lines.

2. Materials and Methods
2.1. Definition of the System
2.1.1. Database Description

In order to conduct this research, a database belonging to the School of Medicine and
Public Health of the University of Wisconsin-Madison was used containing information
on 130 patients. Out of the 130 patients within the dataset, 21 were diagnosed with breast
cancer after comprehensive testing. All patients in this study underwent confirmatory
biopsies that, in each case, either validated or ruled out the presence of cancer from a
histopathological point of view. This dataset was comprised of general patient information
(age, family and personal history of cancer), commonly available on electronic health
records, as well as mammography profiling via BI-RADS terminology [28]. It also included
the associated BI-RADS category.

A summarized overview of the main characteristics of the population used can be found
in Table 1. A further detailed description of the data considered is presented in Tables 2 and 3.
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Table 1. Summary of the data set.

Patients 130
Number of biopsied patients 130
Confirmed cancer cases 21
Healthy individuals (controls) 109
Average age 55.2

Number of criteria

13
Mass (shape, margins, density), calcifications
(type, shape, distribution), asymmetries (type),
distortion (type), breast tissue density,
BI-RADS category, age, personal history and
family history

Nature of the criteria Quantitative and qualitative

Table 2. Summary of the patients’ general data.

Data Data Type Commentary

Age Numeric -

Patient with cancer history Categorical Yes, no and N/A.

Patient with family history of cancer Categorical None, minor, major and
N/A.

Table 3. Summary of mammogram findings.

Subgroup Data Type of Data Commentary

Mass

Shape Categorical None, oval, round, lobulated and irregular.

Margins Categorical None, circumscribed, obscured, micro-lobulated,
indistinct and spiculated.

Density Categorical None, equal density, low density and high density.

Calcifications

Type Categorical None, primary and associated.

Shape Categorical

None, skin, vascular, coarse or “popcorn-like”,
large rod-like, round, rim, dystrophic, milk of
calcium, suture, amorphous, coarse heterogeneous,
fine pleomorphic, fine linear or fine linear
branching.

Distribution Categorical None, diffuse, regional, grouped, linear and
segmental.

Asymmetries and
distortions

Type of asymmetry Categorical None, missing, focal and developing.

Type of distortion Categorical None, primary and associated.

Breast tissue
density - Categorical Missing, fatty, scattered areas of fibro glandular,

heterogeneously dense and extremely dense.

BI-RADS
category - Categorical 0, 1, 2, 3, 4.a, 4.b, 4.c, 5 and 6.

2.1.2. Conceptual System Design

A flowchart for the intelligent clinical decision support system for breast cancer risk
evaluation is shown in Figure 1.
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Figure 1. Flowchart for the intelligent clinical decision support system for the determination of
breast cancer risk. The flow of information that takes place in the different stages contemplated by
the system can be observed, including Stage 1, data collection, Stage 2, subdivided into Stage 2.1.a,
symbolic inference, Stage 2.1.b, statistical inference, and Stage 2.2, risk aggregation. Following this,
Stage 3 carries out the determination of the Corrected Global Risk based on the value presented by the
BI-RADS indicator. Lastly, Stage 4 is where warnings are issued and decisions are taken.

Gathering and Interpretation of Patient Information

The first stage in the proposed intelligent system is restricted to the collection of general
patient data, typically available in electronic health records (for more information see
Table 2) as well as the interpretation and annotation of the findings found in mammograms
following the BI-RADS© terminology [28] by a medical specialist, detailed in Table 3.
Together with each of the descriptors, a corresponding field associated with the nature of
the data is added, differentiating between numerical and categorical data.

Data Processing

Once the data presented in Stage 1 have been compiled and arranged, they are then
processed by the proposed intelligent system, firstly employing a series of expert systems
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and a classification machine learning algorithm arranged in two sub-stages that work
concurrently [12,13,17,25–27], 2.1.a and 2.1.b. Through these two sub-steps, it is possible to
determine a series of risk indicators related to the risk of developing breast cancer. These
same indicators are then aggregated in Step 2.2, which determines a Global Risk index
that combines them and represents the risk of a patient suffering from breast cancer. The
different sub-stages are detailed below:

• Stage 2.1.a—Determination of Symbolic Risks: once the information regarding the
findings in the mammogram, introduced in Stage 1, has been gathered, the processing
is carried out using a series of expert systems that work concurrently [12,13,17,25–27]
which are based on Mamdani-type fuzzy inference systems [29–31]. Each of these
expert systems is assigned the processing of the data subsets associated with the
different findings (masses, calcifications, asymmetries and distortions) in order to
obtain a series of risk indicators, the Symbolic Risks (R1, R2 and R3), with values
ranging between 0 and 100, each of them related to the risk of developing breast
cancer.

• Stage 2.1.b—Statistical Risk determination: In parallel to Stage 2.1.a, Stage 2.1.b carries
out the processing of all the collected data, both those in Tables 2 and 3, excluding
the BI-RADS category determined by the expert, by means of a machine learning
classification algorithm [32]. According to the nature and quality of these data, they
may be subjected to a normalization process with a possible synthetic scaling of the
sample [25]. The algorithm training is based on the dataset introduced in Section 2.1.1,
where each case is labeled as either “cancer” or “non-cancer”. This allocation is indis-
putable within the study group since all the patients underwent a biopsy and their real
condition is known. This considerably reduces the epistemological and interaction
uncertainty of the training data itself. Once the model has been trained, a new patient’s
data are presented, so that the model may determine a percentage indicator of risk at
the output, the so-called Statistical Risk (Rs), ranging from 0 to 100, which is intended
to indicate the risk that the patient may suffer from breast cancer.

• Stage 2.2—Risk aggregation and Global Risk determination: Having obtained the
Symbolic Risks (R1, R2 and R3) as well as the Statistical Risk (Rs), they are then aggregated
by means of the expression shown in Equation (1), which allows for the calculation
of the Global Risk (RG). Said expression is based on the product of the weighted
sum of the Symbolic Risks and the decimal logarithm of the Statistical Risk. The first
term, the weighted sum, provides a measure of risk that brings together the different
Symbolic Risk indicators according to the potential importance given by the medical
team to each of the groups of findings (masses, calcifications and asymmetries, and
distortions of the architecture). Meanwhile, the second term has a multiplicative effect,
increasing the level of risk previously obtained in the event that the patient under
analysis presents a similar pattern to that of a patient with breast cancer within the
sample with which the statistical model was constructed. Note that in the event that
any of the groups of findings used to calculate the Symbolic Risks is absent in the
case under study, meaning that any of the risk indicators is null, an equitable weight
redistribution will be performed among the rest of the findings. Alternatively, a new
weight redistribution proposed by the medical team will be considered. Furthermore,
it is also worth mentioning that the Global Risk value ranges between zero and one
hundred; in case of a higher value, despite the multiplicative effect of the logarithm
term, its maximum value shall be one hundred.

RG = (ω1·R1 + ω2·R2 + ω3·R3)· log10 Rs (1)

Global Risk Correction

As discussed in the previous stage, a series of risks were calculated and aggregated,
resulting in the Global Risk being determined. Following this, during this stage, the Global
Risk could be corrected by taking into account the value of the BI-RADS index proposed
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by the medical team according to the analysis of the mammograms. This Global Risk, as
has been stated, is a measure of the patient’s potential risk of developing breast cancer,
computed by means of statistical categorical data as well as assorted symbolic variables
related to findings from the mammograms. While it is an effective metric, it is preferable to
use the internationally validated BI-RADS indicator, previously presented. Currently, this
indicator is the standard for tumor assessment in breast cancer, being the main diagnostic
criterion. Nevertheless, the interpretation of the index itself, and the allocation of an index
to a potential tumor lesion, requires considerable expertise and accuracy on the part of the
medical team. Both knowledge and experience in the use of the BI-RADS scale are required,
which makes its widespread use difficult in medical teams with little practice in its use or
in the diagnostic interpretation. Still, as has been stated, its use continues to be crucial in
the staging of breast cancer and should therefore be valued and accepted as a fundamental
diagnostic vector. This study, in not including the BI-RADS index when calculating the
Global Risk, aims towards the formalization of knowledge, both in its statistical and symbolic
aspects, to be precise. Thus, the diagnostic process would not depend on the determination
of highly specific knowledge, but rather on a more general formalization of the data
relating to the patient’s health. This would allow a plausible and reliable risk level to be
obtained, with less epistemic uncertainty associated with the application of the BI-RADS
index. However, the influence of the BI-RADS cannot be ignored under any circumstances;
hence, it is proposed that once the Global Risk has been determined, it should be weighted
in an orderly manner by the BI-RADS index that the medical team associates with the
possible cancerous tumor that the patient may suffer from. To achieve this, a weighted
order algorithm was adapted in which, depending on the BI-RADS index obtained, factors
that rescale the Global Risk are established according to the risk itself. This allows us, on the
one hand, to limit the uncertainty of the index and, on the other, to reaffirm the implicit
closeness that should exist between the Global Risk and the BI-RADS index. Equation (2)
presents the expression for the calculation of the Corrected Global Risk (RG’), where Fp is the
weighting factor.

R′G = RG·Fp (2)

Table 4 presents a proposal of the Global Risk weighting factors according to the order
of the BI-RADS index assigned to the patient. The determination of the factors was derived
from an empirical analysis of the correlation and causality chains existing between the
presence of cancer, the BI-RADS index and the Global Risk value determined. The aim was
to obtain an analytical relationship that would allow the Global Risk value to be modified as
a function of the BI-RADS index, thereby maximizing its diagnostic accuracy. With this, the
aim is not only to improve the accuracy of the prediction, but also to bring said prediction
closer to the standard medical interpretation derived from the BI-RADS index value, often
determinant in the confirmation of a suspected disease case. Precisely due to this, the
weighting factor does not contemplate any statistical inferential process, since it exclusively
involves an analytical multiplication or division factor associated with what the BI-RADS
index means and represents. It is important to note that despite the application of this
weighting, the absolute maximum value of the Corrected Global Risk equals one hundred.

Generation of Warnings and Decision Making

Once the Corrected Global Risk (RG’) is determined, its evaluation is passed on, thereby
setting up a series of statuses and recommendations related to each patient:

• Healthy case: Refer the patient for routine review;
• Dubious case: Reconsider the patient’s case, consider performing other tests as well as

summoning the patient for a new visit in a period of time to be specified;
• Potential breast cancer case: Perform confirmatory tests.

The evaluation is a simple suggestion of classification that obeys the need to make an
explicit diagnostic decision. Although it is supported by the Corrected Global Risk, it could
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equally be supported by the Global Risk as long as the medical team does not consider the
correction necessary.

Table 4. Weighting factors according to the order of the BI-RADS index.

BI-RADS Weighting Factor (Fp )

1
FP = 1

k + f
(

RG
)

With k = −BIRADSlevel + (3.5)

f
(

RG
)
= 10

RG+102

3
Fc = 100

RG
; FP = t + f

(
RG

)
; FP =

{
t + f

(
RG

)
i f FC > FP

FC i f FC ≤ FP
With t = BIRADSlevel − (1.5)

f
(

RG
)
= 10

RG+10

4A

4B

4C

5 FP = 100
RG

6

2.2. Implementation of the System

This section deals with the implementation of the intelligent clinical decision support
system for breast cancer diagnosis, describing the proposed software application in detail
and commenting on the previous results derived from its proof of concept. The system was
developed following the recommendations of Hevner et al. [33,34], which would allow for
integration into hospital information systems, if needed.

MATLAB© software (R2021b, MathWorks©, Natick, MA, USA) was used to carry out
the implementation. Table 5 shows a list of the different Toolboxes used.

Table 5. List of MATLAB® Toolboxes used in this work.

Toolbox Commentary

App Designer [35] Used for the design and development of the graphical
user interface of the software artifact.

Fuzzy Logic Toolbox [36] Used for the implementation of inference engines
based on fuzzy logic.

Classification Learner [37]

Used for the training of classification machine learning
algorithms. Allows massive and simultaneous testing
of a wide variety of algorithms, making it easier for
the user to select the best alternative.

In addition to these tools, it was necessary to use Python (version 3.9.12) as an auxiliary
tool to provide support for the data augmentation process by means of the SMOTE-NC
algorithm from the imbalanced-learn library [38].

Figure 2 depicts a screenshot of the home screen of the developed software application.
The Stage #1 box corresponds to the area of the application used to enter the starting
data, i.e., the patient’s general data and those related to the findings coming from the
mammography interpretation by the specialists. The Stage #2 box corresponds to the area
of the application used to calculate the risks. This represents Stage 2 of the methodology
presented, with three different boxes: the Symbolic Reasoning box, relating to Stage 2.1.a, in
which the Symbolic Risks associated with the groups of findings present in the mammograms
are determined, the Statistical Reasoning box relating to Stage 2.1.b, associated with the
calculation of the Statistical Risk, and finally the Global Risk box, relating to Stage 2.2, in
which the aggregation of the Symbolic Risks and Statistical Risk is carried out, yielding the
Global Risk. Then, in the Stage #3 box, the Global Risk is corrected, taking into account the
value of the BI-RADS indicator. Finally, the Stage #4 box presents the panel related to Stage 4
of the intelligent system, which deals with the generation of warnings and decision making.
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Figure 2. Screenshot of the main graphical interface of the intelligent clinical decision support system
for breast cancer risk assessment. Box Stage #1 refers to the first stage of the methodology in which
data collection is performed. Box Stage #2 refers to the second stage of the methodology in which
the system risk assessment is performed. In the Stage #3 box, the Global Risk indicator is corrected
by considering the value of the BI-RADS indicator. Finally, Stage #4 refers to Stage 4, in which the
generation of alerts and decision making is carried out.

2.2.1. Data Collection

Once the data of each of the patients being studied by the system are submitted, they
must be input into the software through the available fields in the Stage #1 box in Figure 2.
There are two areas: one relating to general patient information in the “Other data” section,
and the other to information regarding the findings observed in the mammograms, as well
as the BI-RADS indicator established by the medical team after the evaluation of each case,
which must be entered in the “Mammogram” section. This information should be typed
into the forms with caution, avoiding errors or omissions that could lead to an inflated
printout, thus increasing the uncertainty of the system.

2.2.2. Data Processing

After inputting the data into the application, they are processed by the proposed
intelligent system. In the application there is a panel, the so-called Stage #2, where the
different calculation blocks are located. In line with what was discussed in Section 2.1.2,
this processing consists of two main blocks that work concurrently [12,13,17,25–27]. The
first has a series of expert systems that also work concurrently [12,13,17,25–27], focused on
the determination of the Symbolic Risks, while the second deploys a classification machine
learning algorithm, focused on the determination of the Statistical Risk. Following this, both
the Symbolic Risks and the Statistical Risk are aggregated, determining the Global Risk.
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Next, the definition associated with each of the blocks is described, as well as the
calculation of the previously mentioned risk indicators.

Determination of the Symbolic Risks

As mentioned before, a number of concurrent expert systems are used to determine
the Symbolic Risks [12,13,17,25–27]. These systems are in charge of processing the different
groups of data relating to the findings present in mammograms (masses, calcifications and
asymmetries, and distortion of the architecture), already presented in Table 3.

In this paper, Mamdani-type fuzzy inference engines [29–31,39] are employed, similar
to those used in the first level of the cascade in the work of Casal-Guisande et al. [25] and
others [12,13,17,26,27].

Table 6 summarizes the antecedents and consequents of each of the deployed expert
systems. Regarding the membership functions, we complied with the recommendations
of Ross [39], choosing the use of normal, convex and symmetric functions. As for the
antecedents, singleton membership functions were used, while in the case of the conse-
quents, those related to Symbolic Risks, triangular membership functions between 0 and
100 were used. The choice to use singleton functions for the antecedents was due to the
nature of the data represented, as they point to a single value within a category, such as the
shape of a mass within the typified ones. On the contrary, the consequents are represented
by triangular functions since their variables can take membership values between zero
and one, but there is only a single value that presents maximum membership. The risks,
intended here as the consequent variables, were defined by assuming that there is a single
value within their measurement scale that represents the highest risk, in line with the latest
work published by the authors in this field [25].

Table 6. Summary of the antecedents and consequents of each expert system.

Expert System 1—Masses

Antecedents Consequents [0, 100]

Present/absent
Shape
Margins
Density

R1

Expert System 2—Calcifications

Antecedents Consequents [0, 100]

Present/absent
Type
Shape
Distribution

R2

Expert System 3—Architectural Distortion and Asymmetries

Antecedents Consequents [0, 100]

Asymmetry present/absent
Type of asymmetry
Distortion of the architecture present/absent
Type of distortion

R3

A general summary of the overall configuration of the expert systems’ inference engine
is presented in Table 7.
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Table 7. General configuration of expert systems’ inference engine.

Inference Engine Component Type

Fuzzy structure Mamdani-type

Defuzzification method Centroid [39]

Implication method MIN

Aggregation method MAX

Once the symbolic inference process is carried out, three risk indicators are obtained,
R1, R2 and R3, each one of them related to the risk of developing breast cancer according to
the group of findings associated with their respective calculation. The greater the value of
each of them, the greater the risk of developing breast cancer.

Determination of the Statistical Risk

Concurrently [12,13,17,25–27] to the determination of the Symbolic Risks, the determination
of the Statistical Risk is carried out through the use of a classification machine learning algorithm.
This model is based on the dataset presented in Section 2.1.1, with the exception of the BI-RADS
indicator established by the medical team. Most of the data are categorical [40,41], as can be
seen in Tables 2 and 3. The only exception is age, which is normalized using the Min-Max
normalization method, the expression of which is shown in Equation (3).

t′ =
ti −min(t)

max(t)−min(t)
(3)

Upon revision of the data set distribution, a significant imbalance between the “cancer”
and “non-cancer” classes is apparent, which may affect the performance of the classifier and
its subsequent generalization. In light of these circumstances, and following the usual trend
in the development of decision support tools for medical diagnostic environments, it was
decided to use controlled data augmentation techniques, through which the results of the
binary classifiers are improved [25,42]. In this paper, the use of SMOTE-NC, a variant of the
synthetic minority over-sampling technique (SMOTE) [42,43], is employed. This approach
allows for the augmentation of datasets in which numerical and categorical variables exist
simultaneously once all of them have been transformed [25]. The data augmentation
strategy adopted involves adding patients until there were 200 cases of each class (cancer
and non-cancer) using a strategy with a number of neighbors k = 5 [25].

By doing so, a coherent and representative dataset was assembled to be used for the
training and tuning of the classification machine learning algorithms. Several tests were
performed using the MATLAB© Classification Learner app, with a k-fold cross validation
strategy [44], with k = 5. After carrying out different tests, and relying on the use of ROC
curves [25], it was found that the bagged tree algorithm was the one that demonstrated the
best results. Regardless, it is worth noting that any other machine learning classification
approach might be a valid alternative as long as it provides better results, in terms of the
interpretation of the ROC curves, than those obtained with the current approach. Figure 3
shows the ROC validation curve of the bagged trees algorithm for the “cancer” class,
showing a very high AUC [25] value of 0.98.

After defining the model, the classifier returns a risk indicator, the so-called Statistical
Risk, corresponding to the risk of a new patient developing breast cancer. It ranges from
zero to one, although for the sake of convenience it is scaled between zero and one hundred.
The greater the Statistical Risk value, the greater the risk that the patient is suffering from
breast cancer.
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Figure 3. ROC validation curve for the cancer class of the bagged trees model.

Determination of the Global Risk

Having determined the Symbolic Risk as well as the Statistical Risk, their aggregation is
carried out using Equation (1), as presented in the conceptual description of the system.
This results in a new risk indicator that groups together the previous risks, known as Global
Risk. Its value lies between zero and one hundred, representing, similarly to previous cases,
the risk of suffering breast cancer. However, in this instance, the indicator is aggregated,
bringing together the different findings and general data of the patient under different
perspectives, both symbolic and statistical.

Determination of the Corrected Global Risk

As mentioned earlier, in this study, the BI-RADS indicator was not included in the
calculation of the risk indicators. Despite this, it is not reasonable to ignore its influence,
so once the Global Risk is determined, it is weighted according to the BI-RADS index
allocated to the case by the medical team. The objective of this correction does not lie in
improving the real predictive capacity of the system, an issue that is implicitly covered in
the determination of the Global Risk, but in bringing the usual medical decision process
based on the BI-RADS standard closer to the decision itself. Since it is common practice to
refer patients based mainly on the values of this index, the system adopts this influence
and generates a corrected risk value that is close to said practice, even though it might
differ from the real prediction provided by the system. In this sense, a series of empirical
expressions were defined that make it possible to correct the predictions to bring them
closer to the suspicion signs inherent to BI-RADS. Table 4 shows the correlation between
the BI-RADS level and the expression used to determine the Corrected Global Risk indicator.

2.2.3. Generation of Warnings and Decision Making

Once the patient’s data are processed and the Global Risk indicator is determined and
corrected in accordance with the BI-RADS level assigned to the case, an assessment of the
existing risk is carried out with the aim to establish the patient’s status in order to provide
recommendations that will facilitate the patient’s diagnosis. In this sense, three possible
states are considered, which are summarized in Table 8, together with the established risk
thresholds. It should be underlined that these risk criteria may be subject to revision in the
future depending on the results of the clinical validation stage, as well as on the criteria of
the medical specialists.
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Table 8. System states and threshold levels.

State Threshold

Healthy case Corrected Global Risk < 40

Dubious case 40 ≤ Corrected Global Risk < 60

Potential case Corrected Global Risk ≥ 60

It is worth to emphasize that the risk levels established here are just illustrative and
obey only the need to carry out an explicit diagnosis and the potential application of the
Global Risk correction. As already mentioned, the system has classification capabilities
represented by the Global Risk that, in principle, would not require risk thresholds, since it
classifies patients into two classes: those who could suffer from cancer and those who could
not. However, by incorporating a correction based on the BI-RADS index, this classification
is vaguer to approach and adapt to the criteria of the diagnostic medical team. For this
reason, it is considered convenient to keep a suggestion of risk levels, which is much closer
to the interpretation of the doctor than to the inferential classification of the system.

2.2.4. Analysis of Results

After the implementation of the system and taking as a reference the collected and
conveniently labeled dataset, a proof of concept [45] was carried out to demonstrate the
correct operation of the software prototype developed, as well as estimate its capabilities
and diagnostic success. The system can be understood as a binary classifier [46,47] that
predicts the assignment of classes, two in this case: “cancer” or “non-cancer”, to the patients
included in the study. Likewise, this prediction must be reflected, first in the calculation
of the Global Risk, and second in the determination of the Corrected Global Risk, since
in reality both risks start from different premises. As already mentioned, the former is
determined from the patient’s data through an inferential process, while the latter consists
of an analytical approximation to the usual medical practice based on the BI-RADS index.
To measure the efficiency and performance of this classifier [46,47] the standard measures
of sensitivity (a metric for the ability to detect the disease in patients actually suffering
from the disease) and specificity (a metric for the ability to not detect the disease in patients
actually not suffering from the disease), were used. Furthermore, a global precision metric
was added that measures the general performance of the classifier, in this case through
the Matthews correlation coefficient (Mcc) [48–50]. On the other hand, additional and
complementary metrics to the usual ones were incorporated, such as the false negative
rate (a metric for those cases incorrectly classified as not suffering from the disease), and
the false positive rate (a metric for those cases that the classifier incorrectly identifies as
suffering from the disease). Other values, such as the sensitivity per lesion (a metric for
the fraction of correctly identified tumors) were, in this case, integrated into the metrics
described above. All the previous values are collected in Table 9.

From the analysis of the results shown in that table, it is possible to draw different
conclusions. Analyzing the values obtained in the calculation of the Global Risk on the study
dataset, high values of sensitivity (90.5%) and specificity (89.81%) are observed, which also
results in high values of the Matthews correlation coefficient (0.7). Taking these data, it
is reasonable to conclude that the system presents, in this proof of concept, unique and
differentiating predictive capabilities supported by the concurrence of inferences. The
ability to model knowledge through symbolic models, while incorporating the results of
statistical inference as well, undoubtedly increases its performance as a classifier.



Cancers 2023, 15, 1711 14 of 22

Table 9. Results.

Global Risk Corrected Global Risk

Sensitivity 90.5% 100%

False negative rate 9.52% 0%

Specificity 89.81% 60.19%

False positive rate 10.19% 39.81%

Mcc 0.7 0.44

AUC 0.91 0.78

On the other hand, considering the metrics derived from the Corrected Global Risk,
sensitivity values of 100% and specificity of 60.19% are observed with a Matthews corre-
lation coefficient value of 0.44. It is clear that the predictive capabilities of the classifier
decreased. However, in the same way, its cause is also evident: as mentioned before, the
correction was not intended to improve the results over the real prediction, but to bring
them closer to the usual medical and diagnostic practice. In other words, the goal is that
the system can behave in a standardized and recognizable way for the healthcare team
that uses it. Thus, the classification strongly obeys the BI-RADS index and, based on it,
supports subsequent decisions, which would guarantee 100% success in the detection of
the disease, even assuming an increase in the number of patients undergoing unnecessary
confirmatory tests. The data obtained give a clear reflection of what has been said.

Therefore, the intelligent system has two characteristics that are differentiated and
very useful in diagnosis. On the one hand, it has enhanced predictive capabilities with
excellent results on the study dataset. On the other hand, the system can adapt these results
to the usual behavior of medical teams in the diagnosis of breast cancer and maximize the
detection of all suspected cases. The potential of use and diagnosis of the system are thus
highlighted and verified in the proof of concept, which thus fulfills the main objective of its
realization.

Despite all this, it should be noted that those are only preliminary results derived from
the proof-of-concept analysis on the study dataset. It is foreseeable, and reasonable, that
the incorporation of new data, unrelated to the reliability and low uncertainty of the data
used, decreases the predictive capacity of the system, although the correction strategy can
always guarantee detection.

3. Results

In this section, the intent is not to validate the proposed intelligent system, but rather
to present a practical case study of its performance to illustrate its potential use in the
clinical setting as well as its ease of use. As commented in the previous section, the scope
of our work only spans the proof-of-concept stage, so this example, derived from it, just
aims to show the application workflow using data from a new patient. Thus, it is of note
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that the patient’s data analyzed in this scenario were not involved in the statistical model
training process.

3.1. Data Collection

A summary of the findings in the mammography, as well as the general data of the
patient, are presented in Table 10. With the intention of comparing the results of the model
with the real clinical picture presented by this patient, it is essential to bear in mind that
this was a patient who, after diagnostic tests, was found to have breast cancer.

Table 10. Patient’s data to be analyzed.

Mammogram
Type of finding Characteristic Value

Mass

Present/absent Present

Shape Irregular

Margins Spiculated

Density Homogeneous

Calcifications

Present/absent Present

Primary/associated Associated

Shape Coarse heterogeneous

Distribution Grouped

Asymmetry Present/absent Absent

Type -

Architectural Distortion
Present/absent Absent

Primary/associated -

Breast density - Heterogeneously dense

BI-RADS category - 4B
Other data

Data Value

Age 65

Patient history No

Family history No

Having fed the data into the app, it was then processed by the intelligent system.

3.2. Data Processing

Once the data were submitted to the application, they were processed by the proposed
intelligent decision support system. Firstly, the Symbolic Risk indicators and Statistical Risk
indicator were determined. As for the Symbolic Risks, values of 89.97%, 99.98% and 0% were
obtained for R1, R2 and R3, respectively. As for Statistical Risk, it had a value of 25.61%.

These risks were then aggregated by means of Equation (1). It was assumed that all
the Symbolic Risks were equally influential. However, since the third risk had a null value,
the weights associated with each Symbolic Risk were as follows: ω1 = ω2 = 0.5, ω3 = 0.
Equation (4) shows the numerical calculation of the Global Risk, which in this case, because
of its upper bounded value, presented a value of 100.

RG = (0.5·89.97 + 0.5·99.98 + 0)· log10 25.61 ≥ 100→ RG = 100 (4)

A screenshot of the Stage #2 panel in the application is shown in Figure 4, in which the
obtained risk values are displayed.
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3.3. Global Risk Correction

Having obtained the Global Risk, in Stage #3, it was corrected by applying a weighting
according to the BI-RADS level assigned by a specialist. Since the BI-RADS level assigned
was 4B and the Global Risk already was the maximum value, the Corrected Global Risk value
was identical, with a value of 100. The obtained Corrected Global Risk value can be seen in
the Stage #3 box in Figure 4.

Figure 4. Screenshot of the software tool for the case study.

3.4. Warning Generation and Decision Making

Lastly, the risk assessment was carried out. A value higher than the second threshold
was found, generating a status of maximum alert, as can be seen in the Stage #4 box in
Figure 4. A recommendation was made to the medical team to carry out tests to verify
the potential diagnosis. As this example shows, the correction confirmed the suspicion
derived from the inferential process that, without any doubt, placed the patient at high risk
of suffering from breast cancer. In this case, the correction based on BI-RADS could even be
considered unnecessary, but it was carried out in order to consider and adapt the system to
the team’s standard diagnostic criteria.

The system’s recommendation was consistent with the verified patient’s condition.

4. Discussion

Breast cancer is currently the world’s major diagnosed tumor disease, overtaking lung
cancer to be one of the leading causes of death among women. The early detection of this
pathology is crucial in reducing its associated impact by means of population screening
programs. These consist of mammography screening of high-risk groups in order to detect
potential cases and treat them as quickly as possible if needed, thus improving diagnoses
and reducing the mortality rates associated with the disease. When interpreting and
assessing mammograms, it is standard practice to use the BI-RADS system, establishing
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a common lexicon as well as a series of levels for categorizing the patient’s lesion, in an
attempt to represent the likelihood that a malignant case of cancer is present. Despite this,
the interpretation and evaluation process of mammography findings involves a certain
degree of variability associated with the experience and training of the medical team in
charge of their interpretation. This directly influences the diagnosis and the next steps to
be taken regarding each patient.

In this paper, a new intelligent system for clinical decision support in breast cancer is
presented as a result of the evolution of the architecture of the intelligent system proposed
by the authors in Casal-Guisande et al. [25]. The aim is to adapt it to the particular needs of
medical teams in order to facilitate its future validation and improve its performance. The
knowledge bases were adapted to the medical team, optimizing the information flows and
customizing the system to their particular needs.

Breast cancer diagnosis is a multi-variable problem, in which a series of variables
are used to determine whether or not a patient is suffering from the condition. The
conventional approach usually employed in these cases, which is the most common in
terms of state-of-the-art knowledge, relies on the use of single inferential approaches,
either statistical or symbolic. In line with the latest works by the authors [17,25,27], it has
become increasingly common and convenient to jointly use inferential approaches of a
heterogeneous nature, both statistical and symbolic. In this case, this is carried out through
the joint use of a series of fuzzy inferential engines and a machine learning algorithm for
classification, representing the diagnostic procedure of breast cancer from different but
complementary approaches that seek to represent the same reality. However, from the
point of view of the architecture of the proposed intelligent system, and in contrast to
the previous work proposed by the authors in Casal-Guisande et al. [25], the use of the
symbolic and statistical inferential engines is not sequential, but concurrent. This allows
the simultaneous determination of a series of risk indicators associated with the different
blocks, the Symbolic Risks and the Statistical Risk, which are associated with the risk of
suffering from breast cancer.

This new approach uses the knowledge needed for calculation through two parallel
and concurrent inferential processes, which represents a considerable departure from the
use of such knowledge into a single inferential process, the outputs of which could feed
further processes. An individual analysis of the different risks could allow the medical
team to gauge the risk of a patient developing cancer. However, the individual inferential
capability of the different engines deployed is the only one that would be given preference.
Nevertheless, in this paper, thanks to the concurrence of the inferential engines, an approach
that gives priority to the joint use of the engines can be opted for by using an empirical
expression, namely Equation (1), to facilitate the joint interpretation of the engines through
a risk indicator, the Global Risk. This indicator is based on the weighted sum of the Symbolic
Risks, each one representing the main groups of findings present in the mammography
(masses and calcifications, as well as asymmetries and distortion of the architecture), which
allows a medical team to fine-tune the significance and contribution of each of the findings
groups towards the aggregated risk, represented by the Global Risk indicator. The ability to
make this adjustment is a remarkable feature, since it allows customizing and tailoring the
use of the system to suit each medical team, making it more versatile.

Moreover, Statistical Risk has a multiplicative effect, increasing the existing risk level
(obtained through the weighted sum of the Symbolic Risks), thereby increasing the hazard
level in suspicious cases. With this approach, the different types of risk can be aggregated
in a simple and efficient way, incorporating an additional layer to the risk layer associated
with the reasoning, thus increasing the risk level in the case that a pattern similar to that of
the cancer cases used to train the classification machine learning algorithm is detected.

Undoubtedly, one of the greatest advantages of these inferential models is their almost
unlimited capabilities to incorporate knowledge into their knowledge base, expressly
formalized or simply in the form of a dataset. This knowledge can always be expanded
and used in the prediction once it has been properly analyzed.
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Notably, the BI-RADS level assigned in this study by the medical team to each patient
does not have a direct influence on the inferential processes. In contrast to the previous
work proposed by the authors, it is not an input to the inferential processes. In this case,
this assigned BI-RADS level allows weighting the Global Risk level obtained by means of
the use of an analytical function, thus making possible to reduce or increase the risk level
obtained in accordance with the opinion of the medical team.

Hence, the proposed approach is not only a reframing of the already published breast
cancer diagnostic process, but an entirely novel conceptualization of it. The shift from a
sequential flow of knowledge to a concurring flow is a remarkable breakthrough. Whereas
the use of a sequence of inference processes guarantees a preservation of information,
adopting a concurrent sequence of inference, fostered by the same knowledge, provides a
notable diversifying effect in addition to the aforementioned preservation of information.
Regardless of the inferential model used, its prediction results should be unique when
it aims at a diagnosis given the same initial input. Fluctuation will always imply an un-
bounded increase in the uncertainty of the process. Whereas in the sequential approach this
could be corrected by factorial techniques, a concurrent approach requires interpretation of
the outputs obtained from the inferential processes.

Said interpretation, which is not free of variability, should be carried out, at least ini-
tially, through analytical models that adjust the correspondence between their actual values
and the predictions. Indeed, the presence of analytical solutions reduces the influence of
the generalist artificial intelligence approach by simplifying, if not linearizing, a deductive
process. Yet, in this case, the aim is not to find an analytical expression for the prediction,
but rather to look for one that will allow the predictions to be combined. Subsequent
empirical analysis aims to limit the uncertainty of variability by using simple mathematical
relationships, which may seem somewhat perplexing. The use of probabilistic models,
Bayesian classifiers, or management of this uncertainty through fuzzy logics, while effective
in slightly improving the robustness of the expressions, would not represent a substantial
change, as it would be impossible to find realistic relationships between the degrees of
certainty of the explanatory variables, in this case the risks, and the explained variable,
here the presence or absence of cancer.

Perhaps once a significant number of triads of variables and labels are gathered,
annotated and classified, it might be possible to carry out multivariate analyses and find
implied causal relationships. However, in a concept proposal such as the one presented in
this paper, this question is hardly feasible. Without doubt, this is a novelty, although it is
also a weakness (perhaps the most representative of all) of the current formulation.

All the circumstances discussed so far constitute a clear departure from the previous
work proposed by the authors, while also representing a first in this field of study.

In addition to all the above, the conceptualization of the proposed intelligent system,
supported by the use of symbolic inferential approaches (through the use of expert systems)
and statistical inferential approaches (through the deployment of a classification machine
learning algorithm), allows for the improvement and optimization of decision-making
processes. In this case, this knowledge usually resides in specialized medical teams, so this
app facilitates achieving a common diagnostic process by medical teams with different
training and experience. Likewise, the intelligent system carries out an implicit control and
management of the uncertainty present in the diagnostic process, both in its epistemological
and random aspects, as well as considers ambiguity and interaction [51,52]. It does so
through the joint use of the aforementioned symbolic and statistical approaches, a trend
that is becoming pervasive in the field of intelligent systems.

Besides all the advantages and matters discussed so far, the use of an intelligent system
such as the one proposed in this work presents important improvements in the diagnostic
and healthcare fields. Determining a percentile risk indicator for breast cancer is a very
valuable metric, helping the medical team with the arduous task associated with the early
diagnosis of a possible case of breast cancer. This in itself reduces, as far as possible, the false
positive and false negative rates during the screening stage, decreasing the associated costs
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and improving upon the quality of the services rendered. However, although this reduction
in false classifications is transcendental in order to avoid unnecessary tests to patients,
with the consequent relief not only in their state of mind but also in costs and medical
processes, the incorporation of the Global Risk correction endows the intelligent system with
a unique empirical approach. This means that, although having a diagnostic method with
high precision and success is the main motivation of intelligent clinical decision support
systems, by incorporating analytical and empirical approaches into their architecture,
we succeed in bringing their capabilities closer to the usual medical practice. With this,
and whenever the healthcare team considers it necessary, they can maximize detection,
sacrificing diagnostic accuracy even in those cases where the system clearly classifies a
patient as healthy but their BI-RADS index raises some suspicion. The corrective approach
does not improve the classifier, but increases its trust on the part of the team, who can
see their own criteria reflected in the system’s predictions, even when these, for example,
are excessively conservative. The system could, allegedly, produce minor discrepancies,
especially in doubtful cases, based on this correction, although it would always allow the
medical team to observe the real prediction, compare, learn and reason based on it.

On the other hand, for the proposed system, in addition to the difficulties previously
expressed and related to the reduction of diversification associated with the use of the
empirical corrective approach, there are other limitations that must be commented. Obvi-
ously, the first one is associated with the formalization of knowledge and the generation of
the knowledge base required by expert systems. This can become a significant handicap
when it comes to generating the set of declarative rules necessary to activate the inferential
mechanisms of the fuzzy logic used. Along with this, it should be noted that the concurrent
counterpoint of symbolic inference and statistical inference, although less dependent on
the express formalization of knowledge, implies that predictions cannot be explained and,
therefore, has no plausible chain of rationality. The combination of inferential models, even
hybridized, can mean an extraordinary improvement in the accuracy of diagnostic classi-
fiers, but it is mainly the explicability of reasoning through the formalization of existing
knowledge that should be considered.

5. Conclusions

In this paper, a novel intelligent system to support the breast cancer diagnostic process
has been presented. For this purpose, the system employs, both jointly and concurrently,
symbolic inference approaches (through the deployment of expert systems) and statistical
inference approaches (through a statistical classifier), by means of which it is possible
to determine a percentage risk metric related to the risk of suffering from breast cancer.
The novelty of this system, besides the joint use of symbolic and statistical inferential
approaches, lies in the way these are combined. This is achieved by means of an empirical
expression that accommodates the nature of the data, as well as the possible and subse-
quent correction of the risk indicator using a weighting according to the BI-RADS level
assigned, which allows the opinion of the medical team to be taken into account in the
recommendation generated by the system.

The intelligent system was implemented in a software tool, developed based on data
from the School of Medicine and Public Health of the University of Wisconsin-Madison,
demonstrating its usefulness through a practical case, highlighting its simplicity and
potential for further application once it is validated. In this regard, the system is currently
undergoing adaptation and maturation phases in order to validated in the near future in
clinical settings in order to establish its validity and reliability.
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