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Abstract

This work proposes a two-way coupling between a Smoothed Particle Hydrodynamics (SPH) model-based named
ualSPHysics and a Finite Element Analysis (FEA) method to solve fluid–structure interaction (FSI). Aiming at having a

omputationally efficient solution via spatial adjustable resolutions for the two phases, the SPH-FEA coupling herein presented
mplements the Euler–Bernoulli beam model, based on a simplified model that incorporates axial and flexural deformations, to
ntroduce a solid solver in the DualSPHysics framework. This approach is particularly functional and very precise for slender
eam elements undergoing large displacements, and large deformations can also be experienced by the structural elements due
o the non-linear FEA implementation via a co-rotational formulation. In this two-way coupling, the structure is discretised in
he SPH domain using boundary particles on which the forces exerted by fluid phases are computed. Such forces are passed
ver to the FEA structural solver that updates the beam shape and, finally, the particle positions are subsequently reshuffled to
epresent the deformed shape at each time step. The SPH-FEA coupling is validated against four reference cases, which prove
he model to be as accurate as other approaches presented in literature.

2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Multiphysics simulations are now becoming mainstream for industry in many application fields, one of which
s fluid–structure interaction (FSI) [1]. According to the investigated effect, different classes of problems can be
dentified under the FSI, in which the physics may strongly differ and whose coupled effects are not negligible. FSI
efers to aeroelastic or hydroelastic problems characterised by strong interaction between fluid phases and flexible
tructures that combined lead to deformations that, in turn, dynamically influence the response of the other medium
2,3]. Other common cases in which FSI becomes relevant are either when structures are extremely compliant

and so, they closely follow the fluid dynamics and experience large deformations. Another common case is when
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free-surface flows impact deformable structures with sudden changes in pressure, often resulting in portions of
fluid being scattered throughout. Relevant examples here come from the simulation of biological systems [4] and
impulsive loads on structures [5]. Whatever the instance, the evolution of the fluid and the deformation of the
structure should be taken into account seamlessly to preserve the veracity of the numerical prediction.

Traditionally, FSI problems were addressed through mesh-based methods, often considering a partitioned
pproach and thus, using appropriate Finite Element Methods (FEM) to treat the fluid and the structure separately
6]. However, the fluid mesh should follow the movement of the solid, making the use of remeshing tools
ssential. Computational costs and convergence issues have led to consider meshless approaches for the fluid phase.
agrangian particle methods appear to be particularly advantageous for investigating FSI problems due to their
eshless nature, which easily allows large deformations and tracking interfaces between the different phases with

recision [7]. As the Smoothed Particle Hydrodynamics (SPH) technique is relatively new, SPH-FEM coupling is a
ecent approach to model FSI [8]: this hybrid method exploits the strengths of both models. Some applications of
his methodology are presented in Fourey et al. [9]. A multi-resolution SPH-FEM method for FSI was presented by
hen et al. [10], where the multi-resolution technology can be applied for discretising the fluid and the structure.

Fully Lagrangian approaches have been used for the FSI applications, where both fluids and solids are modelled
ithin the same SPH framework, although employing different techniques. Sun et al. [11] proposed a coupling
etween a multiphase solver δ-SPH for fluid and a total Lagrangian SPH for the solid solver, which was improved

and described in Sun et al. [12]. In addition, a particular mechanical relationship dictating the motion of the rigid
bodies such that they mimic flexible elements was described in Capasso et al. [13]. A GPU implementation was
presented in O’Connor and Rogers [14], proposing a unified SPH framework for FSI applications. Ren et al. [15]
described and validated a fully SPH-based solver to study complex fluid motion with high non-linearity against
flexible structures. Other approaches coupled SPH with Discrete Element Method (DEM) such as the one presented
in Nasar et al. [16].

One example is the coupled Enhanced Incompressible SPH (ISPH) fluid solver with an SPH-based solid solver
presented in Khayyer et al. [17], which provides full validation of the SPH-based solid solver. Similarly, Morikawa
and Asai [18] presented a two-way coupling between an Explicit Incompressible SPH (EISPH) fluid solver and an
SPH solid solver to deal with FSI problems.

As suggested by the available literature, the use of the SPH method to deal with FSI problems has been growing
large and progressing at a very fast pace (see [7]). However, it is well known that particle-based methods, at least
when considered in their primordial implementations [19] with a traditional SPH gradient formulation, have to deal
with high-frequency non-physical noise pressure. The SPH methods that are influenced by this problem are the so-
called weakly compressible SPH (WCSPH), in which an equation of state is solved to obtain the pressure, usually
with a stiff relationship that bounds pressure and density fields [20]. A great deal of research has been carried out
to face this issue, and the very first algorithm is known as artificial viscosity [21]. One of the most widely accepted
pressure enhancers defines a numerical artefact to smooth the density field and it was presented in Antuono et al.
[22], lately extended further by Khayyer et al. [23]. As a matter of fact, small particle oscillations do not jeopardise
the overall quality of the numerical method as a whole, but it can nonetheless be an issue when an SPH-based solver
is embedded in so-called weak coupling schemes with other solvers: this is relevant to FSI applications. Meringolo
et al. [24] investigated the limitations of the WCSPH method and provided a filter to mitigate the acoustic noise.
On the other hand, other approaches based on SPH, like the ISPH aforementioned, which base the solution of the
pressure field on a projection method [25], are inherently devoid of this problem since fluid incompressibility is
enforced and guaranteed by solving a Poisson’s equation although it presents other drawbacks [26].

The open-source DualSPHysics [27] code is the SPH-based method used in the present work. This code can
be freely downloaded from the website www.dual.sphysics.org. It was developed to simulate free-surface flows
and their interaction with fixed and floating structures within an international collaborative work between several
universities and research centres. DualSPHysics is a highly parallelised implementation of SPH that allows to exploit
the capabilities of both multi-core central processing units (CPUs) and graphics processing units (GPUs) [28]. On
the other hand, Project Chrono [29] is a multiphysics simulation engine that can be compiled as a library to be
coupled as a third-party application, which handles flexible structures and allows solid–solid body interactions with
frictional contacts in very large multibody systems with mechanical constraints, among other multiple functionalities.
A first coupling between DualSPHysics and Project Chrono was presented in Canelas et al. [30], where a complete

system of mechanical constraints was validated by comparing numerical and experimental results for an oscillating
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wave surge converter device. Recently, Martı́nez-Estévez et al. [31] presented an extension of the first coupling
ualSPHysics-Chrono, including new features to deal with solid–solid interaction, where the coupling strategy
sing a general-purpose communication interface (the so-called DSPHChronoLib) to handle the exchange of data
etween both solvers is described. Within the field of renewable energy, many successful applications have been
resented over the last years with the coupled code [32,33].

A new structured version of the DualSPHysics code coupled to the multiphysics library Project Chrono is
resented here. Project Chrono implements a non-linear Finite Element Analysis (FEA) method that can deal
ith flexible structures. As mentioned before, it also supports collision detection algorithms between rigid and
exible bodies and allows simulating multibody dynamics where mechanical constraints can be applied on the
odies. Therefore, in this work, a two-way coupling SPH-FEA is proposed in order to solve FSI, in which the
overning equations to solve fluid are handled by the SPH-based model, whereas the FEA solves the structural
ynamics. This novel approach comprises several advantages in comparison with other methods: (i) co-operative
ramework; (ii) resolution independence; (iii) performance and resource optimisation; and (iv) extended capabilities.
onsidering the first one, the novel methodology presented in this work preserves the accuracy and robustness of

he two solvers employed in a co-operative framework. This is, in fact, one of the main advantages of this coupling
ince the pros of using a meshless SPH method to solve the fluid (adaptable and accurate) are aggregated to those
f using a mesh-based mechanical solver (light and precise). Secondly, this methodology allows the possibility of
sing distinct spatial resolutions for each model, providing a key distinctive feature: uncoupled resolutions. The

basis of this concept is that even though both models are synchronised and communicate to each other during the
simulation, they solve their own systems separately in different environments and the resolutions employed are
independent. Considering the performance, the equations to solve the structure using the FEA module of Project
Chrono are less expensive in terms of computational cost than approaches using fully Lagrangian solvers. Finally,
the multiphysics library Project Chrono provides a wide range of features that promotes the possibility of including
more functionalities and so, to extend the capabilities of the coupled model. One example is the use of frictional
contact surfaces in FEA meshes in very large multibody systems, where mechanical constraints can be also defined
to restrict the movement of flexible elements.

For this first implementation, the FEA solver is coupled by linking the structural element that describes a linear
elastic beam known as the Euler–Bernoulli beam model and restricted to 2D. This implies that the method as
such cannot deal with stocky elements due to model limitations or experience out-of-plane deformations as the
third dimension is not taken into account. The mentioned model is very convenient to test and validate the general
structure of the coupling, including its accuracy, robustness and flexibility, as it is computationally inexpensive, and
a range of closed-form solutions can be found for academic cases. Nevertheless, it is expected that the co-simulating
environment helps to improve the applicability of the proposed SPH framework to industrial applications to a much
greater extent.

The contents of this paper are organised as follows: Section 2 shows the main formulation included in the SPH
model; Section 3 presents the FEA method integrated in the multiphysics library; Section 4 describes the coupling
procedure between both models; Section 5 shows several benchmarks carried out in order to validate the coupling;
nd finally, Section 6 draws the conclusions of this work.

. Smoothed particle hydrodynamics solver

This section introduces the main formulation implemented in the DualSPHysics [27] SPH-based numerical
odel, the novel approach for the boundary conditions and the time step integrator used in this code.

.1. SPH principle

SPH is a meshless method that discretises a continuum on a set of particles, in which the equations of fluid
ynamics are solved. The physical quantities of each particle are obtained as an interpolation of the quantities of its
eighbouring particles. The contribution of their neighbours is computed by using a weighting function or kernel
W), whose area of influence is defined by a smoothing length (h). Then, an integral approximation of any function
(r) represents the SPH basis by following:

F (r) =
∫

F
(
r ′
)

W
(
r − r ′, h

)
d r ′ (1)
3
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being r the position of the point where the function is computed and r ′ is the position at each time step. Thus, the
function F is approximated, in discrete form, by the interpolation of the contribution of all particles belonging to
the compact support of the kernel function, following:

F (ra) ≈
∑

b

F (rb)
mb

ρb
W (ra − rb, h) (2)

here the subscripts a and b refer to the target particle and the neighbouring particle, respectively, m is the mass and
is the density. On the other hand, the weighting function W(r, h), chosen in this work, is the Quintic Wendland

ernel [34] that is defined as:

W (q) = αD

(
1 −

q
2

)4
(2q + 1) , 0 ≤ q ≤ 2 (3)

being q = rab/h the non-dimensional distance between particles, rab is the distance between particles a and b, and
αD is set to 10/7πh2 in two-dimensional space (2-D).

Note that in DualSPHysics, particles are initially created at the same initial spacing (dp). This spacing is used to
define the smoothing length of the simulations. In this work, the smoothing length is h = 1.2dp, so that the kernel
interaction 2h distance is 2.4dp.

2.2. Governing equations

The discrete form of the Navier–Stokes (N–S) equations is used to govern the motion of the particles in a fluid
dynamics system. The momentum equation in Lagrangian form can be written as:

dva

dt
= −

∑
b

mb

(
pb + pa

ρbρa

)
∇a Wab + Γ a + g, (4)

Γ a =

∑
b

mb
4υ0rab · ∇a Wab

(ρa + ρb)
(
r2

ab + 0.01h2
)vab +

∑
b

mb

(
τ

i j
a + τ

i j
b

ρbρa

)
∇

i Wab (5)

here t is the simulation time, v is the velocity, p is the pressure, g is the gravity acceleration and Wab is the kernel
unction. The dissipation treatment (Γ a) is included to the momentum equation, which uses a laminar viscosity
first term) approximated by Lo and Shao [35], and a sub-particle scale model (SPS) (second term) described by
alrymple and Rogers [36] in which a Favre averaging in a weakly compressible approach is used. The term υ0

denotes the kinematic viscosity (set to 10−6 m2/s) of the fluid and τ is the SPS stress tensor in Einstein notation
in coordinate directions i and j according to:

τ i j
= υ iυ j − υ i υ j (6)

odelled by an eddy viscosity closure as:

τ i j

ρ
= 2υS P S

(
Si j

−
1
3

Si iδi j
)
−

2
3

CL∆
2δi j

⏐⏐Si j
⏐⏐2 (7)

being υS P S = [CSM∆]2
|Si j

|
2 the turbulent eddy viscosity, CSM = 0.12 is the Smagorinsky’s constant, CL = 0.0066,

∆ is the initial particle spacing and |Si j
| = 1/2(2Si j Si j )1/2, and Si j is an element of the SPS strain tensor. Details

of the implementation can be found in the reference paper Domı́nguez et al. [27].
On the other hand, the continuity equation in discrete form can be expressed following:

dρa

dt
=

∑
b

mbvab · ∇a Wab + D, (8)

D = 2δhcs

∑
b

(
ρT

ba − ρ
H
ab

) rab · ∇a Wab

r2
ab

mb

ρb
(9)

Here, the density diffusion term (D) is added to the continuity equation to reduce fluctuations in the density
field, following the formulation presented in Fourtakas et al. [37], in which superscripts T and H represent the total
nd hydrostatic component of the density, respectively. The approach employed for the density diffusion treatment
n this work is based on the formulation presented in Molteni and Colagrossi [38], but introducing a correction for
4
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which the dynamic density is replaced with the total density (ρT ). The term cs is the numerical speed of sound
nd being δ the coefficient that controls this diffusion term (set to 0.1). Thus, for a weakly compressible fluid, the
ydrostatic pressure difference of particles a and b is computed as:

pH
ab = ρ0gzab (10)

here zab is the vertical distance between particles a and b. Despite the use of a formulation based on the one
escribed in Molteni and Colagrossi [38] carries some inconsistencies near the wall boundaries, the use of total
ensity improves the behaviour of the pressure near the wall boundaries as it was demonstrated by Fourtakas et al.
37]. It should be noted that in Antuono et al. [39] a general approach is described, known as δ-SPH, which ensures

the consistency of the density fluid at free surface, but it implies the computation of a normalised density gradient,
whereas in Fourtakas et al. [37] it is not needed to perform that extra calculation and their approach works accurately
for gravity-dominated flows with significantly lower computational cost.

DualSPHysics code includes a weakly compressible SPH formulation to solve the fluid pressure, and therefore,
the pressure (p) is obtained from the particle density (ρ) by using the following equation of state:

p =
c2

sρ0

γp

[(
ρ

ρ0

)γp

− 1
]

(11)

where ρ0 = 1000 kg/m3 is the reference density of the fluid and γp = 7 is the polytropic constant.

2.3. Boundary conditions

DualSPHysics implements the modified Dynamic Boundary Conditions (DBC) method (the so-called mDBC)
proposed by English et al. [40], which is a modification of the original DBC method formerly presented in Crespo
et al. [41] and originally conceived by [42]. The boundary particle arrangement within the mDBC implementation
is done following the same strategy of the DBC (see [41]). However, a boundary interface is created some distance
from the innermost layer of boundary particles, usually at dp/2 for simple shapes. An example of this novel method
is depicted in Fig. 1, in which the boundary interface is represented with a black line. A ghost node (cross) is
created in the fluid domain for each boundary particle (the so-called target boundary particle in Fig. 1), following
the procedure proposed by Marrone et al. [43]. Normal vectors (arrows) are defined from the boundary particles
to the boundary interface, pointing in the fluid domain direction. Then, the ghost node is projected according to
its normal vector. When flat boundaries are modelled, the ghost node is mirrored across the boundary interface;
otherwise for boundary particles placed in a corner, the ghost node is mirrored through this corner into the fluid
domain.

Following this novel methodology, boundary particles obtain the fluid properties computed through a corrected
SPH approximation at the ghost node, where the density field is evaluated considering the procedure proposed by
Liu and Liu [44]. Then, the density of the ghost node (ρg) is obtained as:

ρg =

∑
j ρ j Wg j

m j
ρ j∑

j Wg j
m j
ρ j

(12)

When the ghost node incorporates the new density value, the density of the boundary particle (ρb) is obtained
by following:

ρb = ρg +
(
rb − rg

)
·
[
∂xρg; ∂yρg; ∂zρg

]
(13)

where rb is the position of the boundary particle, rg is the position of the associated ghost node, and [∂xρg; ∂yρg;
∂zρg] is the gradient computed at the ghost node considering a first-order consistent SPH interpolation [44]. This
approach offers a more accurate and smoother pressure field. More details can be found in [40].

In DualSPHysics, the basic equations of rigid body dynamics are implemented in order to simulate the motion of
fluid-driven objects [45]. The motion of a fluid-driven object is derived by considering its interaction with fluid and
its own weight. In this SPH code, the rigid bodies are considered as a fluid-driven object composed by boundary
particles k. Thus, the net force exerted by the fluid is computed on each boundary particle of the object according
5
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Fig. 1. Projection of ghost nodes when the mDBC method is applied.

to the sum of the contributions of all surrounding fluid particles. Therefore, each boundary particle k experiences a
force per unit mass given by:

f k =

∑
a

f ka (14)

here fka is the force per unit mass exerted by the fluid particle a on the boundary particle k.

.4. Time integrator scheme

DualSPHysics implements the symplectic position Verlet (the so-called Symplectic) time integrator scheme [46],
hich is an explicit and second-order accurate in time scheme. For brevity, the governing equations can be written

s:
dva

dt
= f a;

dρa

dt
= Ra;

d ra

dt
= va (15)

When viscous density forces and density evolution are present in DualSPHysics, the velocity is required at the
n + 1/2) step. Therefore, a velocity Verlet half step is used to compute the required velocity for the acceleration
nd density evolution for f (rn+1/2) and R(rn+1/2), respectively. Then, the scheme implemented in DualSPHysics is
iven by:

rn+1/2
a = rn

a +
∆tS P H

2 vn
a,

v
n+1/2
a = vn

a +
∆tS P H

2 f n
a,

vn+1
a = vn

a +∆tS P H f n+1/2
a ,

rn+1
a = vn

a +∆tS P H

(
vn+1

a +vn
a

2

) (16)

Finally, the density evolution is computed according the half time step of the symplectic position Verlet scheme
by following [47], whose form is given by:

ρ
n+1/2
a = ρn

a +
∆tS P H

2 Rn
a ,

ρn+1
a = ρn

a +
2−εn+1/2

a

2+εn+1/2
a

(17)

eing εn+1/2
a = −

(
Rn+1/2

a
n+1/2

)
∆tS P H
ρa

6
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Fig. 2. Concept of the co-rotational formulation implemented in Project Chrono (inspired by [52]).

DualSPHysics implements a variable time step (∆tS P H ) that is controlled by a CFL (Courant–Friedrich–Lewy)
condition, in which the force term (∆t f ) and the viscous diffusion term (∆tcv) follow [48], and are defined as:

∆t f = min
a

(√
h/
⏐⏐⏐⏐dva

dt

⏐⏐⏐⏐
)
; ∆tcv = min

a

h

cs + maxb
|hva ·ra |

r2
ab+0.012

(18)

So, the final value of the integrator time step is given by:

∆tS P H = 0.2 min
(
∆t f ,∆tcv

)
(19)

Details on the implementation of the time integrator scheme and the variable time step in DualSPHysics are
given in [27].

3. FEA structural solver

The core module of Project Chrono (Chrono::Engine) supports the modelling of non-linear Finite Element
Analysis (FEA) to solve flexible multibody systems [29]. In this work, the flexible elements are solved with
the co-rotational (CR) approach, whose theory can be seen for instance in Belytschko and Glaum [49], and
Felippa and Haugen [50]. The CR concept is a Finite Element Method (FEM) that allows large displacements and
rotations, but strains and deformations must be small when linear systems are considered. However, Project Chrono
implements a non-linear FEA via CR formulation where large deformations are allowed in structural elements, such
as the classical three-dimensional (3-D) Euler–Bernoulli beam, based on the work presented in Rankin and Nour-
Omid [51].

In this CR implementation, a floating coordinate system (Fc) is considered to follow the deformed shape of the
elements, where a reference configuration (C0) of the element is used to compute the deformed state (CD) from a
superposition between C0 to the so-called floating or shadow configuration (Cs). In addition, a local small-strain
deformation is included from Cs to CD [52]. Fig. 2 depicts the concept of the CR formulation as implemented in this
multiphysics library. Assuming that the flexible elements are discretised as 3-D beams composed of two end-nodes
(denoted by A and B) and six degrees of freedom (DOFs) at each node, the initial frame position is placed in the
midpoint of the two nodes.

Project Chrono computes the global stiffness matrix (Ke) and the global force (fe) vector of the beam element from
the local components K e and f e, which represent the local stiffness matrix and the local force vector, respectively.
Note that the overlined terms indicate quantity in the local reference system. First of all, the local displacement (d)
is defined by considering the components that can produce a deformation in the beam:

d =

(
d A, θ A, d B, θ B

)
(20)

here d A and d B are the local displacements, and θ A and θ B are the local finite rotations referred to the end nodes
of the beam. Details of this formulation are given in Crisfield et al. [53], and in Tasora and Masarati [52].
7
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Fig. 3. Schematic of the Euler–Bernoulli beam theory in 2-D.

Once d is obtained, the local nodal forces ( f in) are computed from the local stiffness matrix and the local
displacements using:

f in = K e d (21)

Finally, f in and K e are transformed from the local system into global coordinates following the approach
presented in [50] and in [52]. The method can be applied to beam elements composed of two nodes and 6-DOFs
such as the classical Euler–Bernoulli beams available in Project Chrono.

3.1. Euler–Bernoulli beam

The classical Euler–Bernoulli beam theory is used to provide a simplified framework for anticipating the response
of structural elements. As such, finite elements can be modelled and solved under the Euler–Bernoulli theory to
compute the deformation of beams considering their internal stress (see for instance [54]). A 3-D beam is usually
identified as a geometrical structure in which one of its dimensions is much larger than the other two, being the
largest dimension considered the axis of the beam and the cross-section normal to the axis. Fig. 3 shows a schematic
of a Euler–Bernoulli beam, in this case, represented in 2-D, being A the fixed end-node and B the free-end node.

In this work, the main kinematic formulae about the Euler–Bernoulli beams are presented in the following:

w = w (x) (22)

ϕ (x) = −
dw (x)

dx
(23)

here x is the axis direction of the beam, w is the displacement orthogonal to the axis or axial displacement, and ϕ
s the rotation or sectional displacement with respect to the axial direction of the beam. Eq. (23) implicitly contains
he condition that uniquely characterises the Euler–Bernoulli approach in which the kinematic of each cross section
trictly forms a 90-degree angle with the deflected shape of the beam.

The governing equation to solve the deflection of a homogeneous (i.e., same material) and uniform (i.e., same
ross section within A and B) beam is defined as:

q (x) = −ϕ (x)
(

E I
dϕ (x)

dx

)
(24)

where q(x) is the transversal load, E the Young’s Modulus, and I the second moment of the inertia of the
ross-section, being the product EI called flexural rigidity.

Assuming the structure is modelled as a co-rotated Euler–Bernoulli beam, the translation u(x) of the element
depends on Eq. (23), which contains the displacements and rotations of the end nodes. The state is used to compute
the deflection ϕ along the axis and then, when the deflection is known, the bending moment function (M) can be
evaluated with the following equation:

M (x) = −E I
(

dϕ (x)
)

(25)

dx

8
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The normal stress along the cross section (σxx ) induced by bending moment (M) can be evaluated using the
Navier’s hypothesis [55] that gives:

σxx (x) = −
M (x)

I
y (26)

here y is the distance between the point of interest (may not belong to the cross-section) and the beam axis along
he height of the cross section. This definition yields a linear relationship between distance from the neutral axis
nd the considered point.

The Euler–Bernoulli defined as such provides a very advantageous tool that requires little computational overhead
nd little data transfer. Nevertheless, the model has certainly got limitations, and they generate from the particular
onditions in which the theory thrives. In particular, the model cannot accurately capture the kinematic of beams for
hich shear forces are relevant and can only capture linearly distributed stress patterns. It can nonetheless accurately

nd reliably proxy slender beams, as it will be shown in Section 5.

.2. Time integrator scheme

The implicit time integrator Hilber–Hughes–Taylor (HHT) proposed by Hilber et al. [56] is available in Project
hrono. This time integrator scheme is able to deal with structural dynamic systems using a set of second-order
rdinary Differential Equations (ODE). Therefore, the HHT scheme can be used to simulate flexible structures
ithin the FEA approach. This scheme generalises the Newmark’s algorithm proposed by Newmark [57] for second-
rder ODE systems. Details of the implementation of HHT and Newmark’s in Project Chrono are given in Negrut
t al. [58]. Then, the system using Newmark’s algorithm is integrated in time:

M
d2q
dt2 + C

dq
dt

+ K q = Fe (t) (27)

here M, C and K are mass, damping and stiffness matrices, respectively, and Fe is the vector of external forces,
hich varies in time t, whereas q represents the configuration of the system as a set of generalised coordinates. In

his work, Fe constitutes the communication interface that realises the connection with the externally computed loads
rom the SPH particle interaction. The Newmark’s scheme is solved assuming the following integration formulae:

qn+1
= qn

+∆Ch
dqn

dt
+

∆2
Ch

2

[
(1 − 2β)

d2qn

dt2 + 2β
d2qn+1

dt2

]
, (28)

dqn+1

dt
=

dqn

dt
+∆Ch

[
(1 − γ )

d2qn

dt2 + γ
d2qn+1

dt2

]
(29)

here the terms β and γ are the parameters to govern the numerical dissipation of the algorithm, which can be
efined as:

γ ≥
1
2
; β ≥

(
γ +

1
2

)2

4
(30)

Eqs. (28) and (29) are used to discretise the equations of motion (Eq. (27)) at time tn+1 by using an integration
time step (∆tCh), and following:

M
d2qn+1

dt2 + C
dqn+1

dt
+ K qn+1

= Fe
(
tn+1) (31)

This method becomes second-order accurate when the values γ = 1/2 and β = 1/4 are considered. However, it
oes not introduce any numerical damping in the solution, making it impractical to address problems where high-
requency oscillations can disturb the system’s solution [58]. This indeed is the main drawback of the Newmark’s
amily of integrators: they are not able to provide second-order accuracy along with desirable level of numerical
amping. Conversely, the HHT method stands out because it overcomes the issue of its predecessor due to it is
nconditionally stable, preserves the numerical damping properties, and achieves second-order accuracy [58]. It
ncludes an extra dissipation quotient (so-called α) to Eq. (31), which makes it an optimal and accurate method,
f wisely employed, when some numerical damping is required to damp out high-order mode of vibration effects,
9
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Fig. 4. Discretisation of the domain in DualSPHysics and Project Chrono.

which often arise in flexible structure with high multiplicity of connected elements. The equation of motion for the
HHT scheme can be written as:

M
d2qn+1

dt2 + (1 + α)C
dqn+1

dt
− αC

dqn

dt
+ (1 + α) K qn+1

− αK qn
= Fe

(
t̃n+1) , (32)

t̃n+1
= tn

+ (1 + α)∆Ch (33)

here α ∈ [−1/3, 0] and the parameters to govern the numerical dissipation of HHT algorithm are defined,
ollowing [58], by:

γ =
1
2
− α; β =

(1 − α)2

4
(34)

Therefore, the HHT scheme works as the Newmark’s when α = 0 (i.e., γ = 1/2 and β = 1/4) as it clearly
indicates that there is no numerical damping applied and is second order accurate. Otherwise, numerical dissipation
is present for γ > 1/2, and the larger the value of α, the more damping is induced in the numerical solution. In
his work, the HHT integrator has been used to solve the structure with α = 0 since no dissipation is required for

the cases reproduced in the validation section (see in Fourey et al. [9]).

4. SPH-FEA coupling

The novel implementation presented in this manuscript is based on a two-way coupling of the SPH model with
the FEA structural solver described in Section 3. The DualSPHysics code solves the fluid–fluid and fluid–solid
interactions, and the behaviour of the deformable object is simulated using the FEA structural solver integrated
in Project Chrono. The entire domain is described using subsets of particles within the SPH solver, including the
flexible structure as a set of boundary particles. On the other hand, within the FEA solver, the structure is built
with a set of segments (N) that connects nodes (N + 1). The segments are modelled using beam elements under
the Euler–Bernoulli formulation (Section 3.1), whereas the beam nodes are 3-D finite element nodes with 6-DOFs.
Fig. 4 shows the discretisation of the domain in both models (DualSPHysics and Project Chrono).

DualSPHysics and Project Chrono exchange data to simulate the fluid–elastic structure interactions within a
two-way procedure via a communication interface, where DualSPHysics controls the communication making calls
to Project Chrono. The data exchange process can be split into two event flows: (i) initial setup; and (ii) time step
integration. These events are explained in the following subsections.
10



I. Martı́nez-Estévez, B. Tagliafierro, J. El Rahi et al. Computer Methods in Applied Mechanics and Engineering 410 (2023) 115989

P
t
s
t
w
S
m
n
2

4

t
(
s
T
[
b
d
i
i

Fig. 5. Initial setup of the flexible structure in DualSPHysics and Project Chrono.

4.1. Initial setup flow

Initially, DualSPHysics transfers to Project Chrono the density of the structure (ρ), number of structure segments
(N), damping coefficient (c), Young’s Modulus (E), and Poisson’s ratio (ν) to model the elastic structure. After that,

roject Chrono returns the vector with the initial positions of the nodes (R0). Once the initial setup is completed,
he structure is built and discretised in both the SPH and the FEA domains. The SPH solver divides the flexible
tructure into N + 1 blocks. The concept of block represents a set of particles of the structure that will be linked
o a FEA beam node. Fig. 5 shows the initial setup where the blocks are identified with bi and the beam nodes
ith ni , being i ∈ [0, N ] the index of the blocks and nodes. The approach followed in this work is such that the
PH solver computes linear forces exerted by the fluid on the blocks and the FEA structural solver simulates the
ovement and the deformation of the flexible structure by applying those forces on the beam nodes. It should be

oted that the model presented here does not account the torsional forces exerted by the fluid since it is focused on
-D simulations yet, where the torsion of the beam is neglected.

.2. Time integration flow

In the time step integration flow, both models exchange data in order to solve fluid–structure interaction. Then,
he advance of a SPH time step (∆tS P H ) is solved, which is repeated until the maximum simulation time is achieved
tM AX ). The process of simulating a ∆tS P H can be split into three steps: (i) compute the linear forces (F) on the
tructure; (ii) solve the movement of the structure (R); and (iii) update the magnitudes of the structure particles.
he coupled model presented in this work is based on the coupling strategy presented in Martı́nez-Estévez et al.

31] by using the general-purpose communication interface DSPHChronoLib to handle the data exchange process
etween DualSPHysics and Project Chrono. The use of this interface as a link between both solvers facilitates the
evelopment tasks since it follows a low coupling strategy, which means that new changes or features implemented
n either solver would not affect the operation of the other [31]. A complete schematic of the flow events is shown
n Fig. 6.

The three steps involved during the simulation are depicted in Fig. 7 and explained here in detail:

(i) DualSPHysics computes the particle interaction by solving the SPH governing equations (4) and (8)
considering the fluid–structure interaction and linear (dV/dt) and angular (dΩ/dt) accelerations are obtained.
The SPH model computes the linear forces on the structure particles by solving the Eq. (14). Then, the
linear forces (Fi ) on each block bi are computed as the sum of all the forces of the particles belonging to it.
Therefore, the vector includes the total force exerted by the fluid on the block bi . Thus, the forces computed
on the block bi , will be applied on the node ni .

(ii) DualSPHysics transfers Fi to Project Chrono through DSPHChronoLib. The FEA structural solver applies

Fi on its respectively node ni and solves the movement of the structure. This process usually takes several

11
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Fig. 6. Scheme of the two-way time step integration flow of the coupled model.

Fig. 7. Main steps during the time step integration of the two-way coupling between DualSPHysics and Project Chrono to solve fluid–structure
nteractions.

internal integration time steps (∆tCh), and therefore, it goes on until the loop exit condition is satisfied
(tCh≥∆tS P H ) and Project Chrono updates the system. The behaviour of the flexible structure is considered
to obtain the variable ∆tS P H (computed in Eq. (19)) since the velocity of its particles is taken account in
Eq. (18). Note that tCh is not the absolute internal time of the simulation in the multiphysics library, hence
it is relative to each ∆tS P H that is solved.

(iii) Project Chrono transfers back the node positions (Ri ) to DualSPHysics through DSPHChronoLib. Then,
DualSPHysics computes the deformation of the shape in SPH and updates the position (r), velocity (v),
density (ρ) and pressure (p) of all particles. At this point, the system is ready to be updated and to solve the
next time step, if any.

. Validation cases

The literature revised in the introduction provides examples of benchmark cases useful for accuracy comparison.

n this section, four benchmarks are presented in order to validate the proposed coupled model for FSI: (i) freely

12
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Fig. 8. Geometric configuration and initial particle arrangement of the cantilevered beam for an SPH resolution dp = S/4.

oscillating cantilevered beam; (ii) hydrostatic water column on an elastic beam; (iii) breaking water column with
an elastic gate; and (iv) breaking water column impacting an elastic obstacle. All the simulations included in this
section are carried out on a personal computer with AMD Ryzen 9 5950X CPU and a graphic card NVIDIA RTX
A5000. The SPH solver of DualSPHysics is executed on the GPU while Project Chrono is solved on a single-core
CPU thread.

5.1. A freely oscillating cantilevered beam

Prior to presenting proper FSI cases, a first benchmark is herein used to ascertain the agreement of the structure
solution under dynamic conditions, which allows validating the management of the coupled library by the main code
DualSPHysics. The undamped, dynamic response of a cantilevered beam subjected to an initial velocity distribution
is compared to an analytical solution that was derived from the theory of thin plates developed by Landau and
Lifshitz [59]. Fig. 8 shows the geometry of the cantilevered beam that is composed of two end-nodes (A and B),

hose dimensions are length L = 0.20 m and thickness S = 0.02 m and its elastic material properties are Young’s
odulus E = 1.68 MPa, Poisson’s ratio ν = 0.40, and density ρ = 1000 kg/m3. The motion of a freely oscillating

late at its free-end (node B in Fig. 8), described by its middle plane line in a 2-D framework, is given into closed
orm as:

w (L , t) =
ψcs

ω
· cos (ωt) (35)

where w is the displacement in the complementary direction to the axis, ψ is a scaling factor (set to 1/100), being
cs =

√
K/ρ the speed of sound of the material, K = E/(3(1 − 2ν) the bulk modulus and ω the circular frequency

of oscillation defined as:

ω = k2
w

√
E I T

12ρ
(
1 − ν2

) (36)

here kw is the wave number that corresponds to the first mode (i.e., kw = 1.875/L), I is the beam area moment
f inertia of the cross section.

The boundary conditions imposed to the beam to realise a clamped-free-end static scheme are:

w (A) = 0;
∂w

∂x
(A) = 0;

∂2w

∂x2 (B) = 0;
∂3w

∂x3 (B) = 0 (37)

hereas an initial velocity field is imposed to the beam’s axis as:
∂w (x)
∂t

= ψcs
f (x)

f (x = L)
(38)

n which f (x) is defined according to the following function:

f (x) = (cos kwL + cosh kwL) (cosh kwx − cos kwL)
+ (sin kwL − sinh kwL) (sinh kwx − sin kwx) (39)

Note that the Neumann boundary conditions are enforced at (internal) node level, meaning that the vertical
elocity profile is discretised according to the node position along the axis and so this approach asymptotically
ends to the continuous distribution when the number of nodes (segments) increases.
13
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Table 1
Performance of the freely oscillating cantilevered beam case for dp = S/4.

dp Structure
particles

Fluid
particles

Segments
(N)

SPH steps DualSPHysics
runtime [s]

Chrono
runtime [s]

Total
runtime [s]

% Chrono

S/4 205 – 10 44 195 104 30 134 22
S/4 205 – 20 44 195 106 33 139 24
S/4 205 – 30 44 195 108 42 150 28

Fig. 8 visualises the initial solid layout for the beam and the initial particle setup corresponding to the initial
interparticle distance dp = S/4. According to the coupling procedure presented in Section 4, regardless of the fluid
presence, the initial value of dp must guarantee a minimum width of one particle per segment so that there is
consistency between the geometric beam configuration in both spaces. However, this test case does not involve the
solution of any fluid phase and the structure is completely resolved within the Project Chrono subroutine thus giving
no relevance to the particle discretisation.

It is important to underline that to compare the results of a Euler–Bernoulli beam model to plate theory’s, a
correction must be implemented to account for the different hypotheses on which the two theories develop to
predict the steady-state solution for thin elements. In the first place, the slenderness of the beam herein considered
(i.e., ∝ L/S) classifies as slender, and for which the Euler–Bernoulli theory should be providing good estimation of
the overall kinematics. However, the same geometric configuration gives rise to two different flexural rigidities that
differ for a constant value introduced by further deformability of the planar model, as it was proposed in [60] and
recently demonstrated and validated in [13]. The computation of the correction follows:

Ê =
E

1 − ν2 (40)

here Ê represents the corrected value to be used to define the axial and flexural stiffness that are passed to the
tructural solver. Using the value defined by means of Eq. (40) allows to use the solution of Eq. (35) as reference.

To assess the accuracy and precision of the structural model, three simulations with N = 10, 20, and 30 segments
are respectively run, and the results are collected in Fig. 9 in terms of dimensionless tip deflection in time (node B)
using the theoretical maximum motion amplitude (ψcs)/ω = 0.0025 m (see Eq. (35)). Note that with the maximum
deflection being small in comparison to the beam length, the validity of the theoretical solution obtained using the
linear theory is ensured. The beam tip deflection matches the theoretical target for each case, showing hardly any
dispersion among the considered FEM resolutions. The agreement is quantified here measuring the L1 error for the
amplitude and the period when N = 30 is used. A proper reproduction of the displacement function is shown, with
a frequency error of about 3% (ωtheory = 20.82 rad/s against ωnum = 20.27 rad/s) an overall error on the amplitude
around 1.5%, which specifically accounts for an almost 2%-error for the positive peaks and a 0.2% for the negative
peaks.

Table 1 shows the different setups of the freely oscillating cantilevered beam carried out for a physical time
Time = 1.50 s. All cases are configured with the same SPH resolution (dp = S/4). However, the number of segments
(N) is modified in order to validate the structural behaviour of the FEA solver. It should be noticed that only structure
particles are created in this benchmark, so the relevant computational cost to be studied is the consumed one by the
multiphysics library. The data reported in the table show that DualSPHysics takes the same computational time as
the number of steps remain the same, whereas the number of segments to be solved prevalently affects the Chrono
runtime.

5.2. A hydrostatic water column on an elastic beam

A first validation in which FSI phenomenon is relevant is carried out in this section although the physics of
this test does not comprise violent collisions and sudden variation of motion. This means that the solution to the
problem may be retrieved by uncoupling fluid and structure response still getting high accuracy. In fact, this test
case was originally proposed by Fourey [61], as a theoretical configuration to settle a solution of practical interest
to compare with. Anyway, it serves well the scope of this section, providing a fair benchmark to evaluating the

precision of the numerical solver.

14
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Fig. 9. Time histories of the dimensionless tip deflection (given as a function of the maximum theoretical displacement) of the plate for
different number of segments.

Fig. 10. Initial configuration the hydrostatic water column over an elastic beam and the initial particle arrangement in which the fluid and
boundary particles are indicated for the SPH resolution dp = S/2.5.

Fig. 10 proposes a schematic sketch of the setup geometry. By assuming that the hydrostatic water column,
whose height is H = 2.00 m, is at equilibrium on a double-clamped aluminium plate (beam), it allows calculating
a closed-form solution of the problem in its initial configuration (straight line). In addition, density ρ = 1000 kg/m3,
peed of sound cs = 50 m/s and gravity acceleration as −9.81 m/s2 are considered. The water column is propped
y a 5-centimetre thick (S = 0.05 m) and 100-centimetre long (L = 1.00 m) aluminium plate, defined with Young’s
odulus E = 67.5 GPa, Poisson’s ratio ν = 0.34, and density ρ = 2700 kg/m3. Thus, the deflection of the beam

t its mid-span point C, considering that the beam is clamped on both sides (points A and B), is given by:

w (L/2) =
1

g
(ρH + ρa T ) L4

(41)

384 Ea Ia
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Fig. 11. Displacement history for the mid-span point C for different particle resolutions and number of segments compared to the theoretical
solution.

where Ia is the moment of inertia of the beam area. For the problem at hand, Eq. (41) gives a vertical deflection of
77.5 µm, which is itself small, so it resolves to little or no overall movement in the water column. The magnitude

f the theoretical displacement, which is several orders of magnitude smaller than the length of the beam, reinforces
he quality of the hypotheses on which the utilised beam model grounds, providing a very accurate reference to
ompare with. It is important to note that for this case there is no need to apply the correction proposed in Eq. (40)
ecause the reference solution is developed with respect to the beam theory rather than the plate theory.

The magnitude of the beam’s deflection at its mid-span point (C) justifies the use of this benchmark for defining
he accuracy and precision of most FSI coupling procedures. Focusing more on the stability of the technique being
sed [9,14,17], its use is essentially due to the availability of a highly reliable analytical solution. On this account, it
hould be emphasised that the use of the double precision for data transfer was critical to correctly capture the plate
isplacement, being the displacement of the beam many orders of magnitude smaller than the size of the domain.

The dataset is structured in Fig. 11 and corresponds to the outcome of the SPH-FEA coupled model for four
different FEM resolutions (number of segments N = 8, 16, 32, and 64). Each chart refers to a different initial particle

size, respectively, dp = S/2.5 (a), dp = S/5 (b), dp = S/10 (c), and dp = S/20 (d), reporting the displacement of
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Fig. 12. Particle resolution convergence study for the displacement history at the mid-span point C for 64 FEM segments compared to the
theoretical solution.

the control point C against the analytical solution given by Eq. (41), and all the simulations comprise a one-second
duration. In this case, when the system response depends on data exchanged between the two solvers, the number
of segments mildly affects the accuracy of the whole setup even when boosting the system resolution. This could
possibly be due to the low mobility of the fluid particles, which resolves in relatively high accuracy in the fluid force
computation regardless of dp. Although the case with N = 8 provides low precision, showing a consistent offset
rom the reference solution of about 3 µm, it exhibits the same overall features of the cases with higher number of
egments. Lastly, N = 16, N = 32, and N = 64 provide greater precision, with the latter two fully capturing the
nalytical solution, as can be clearly seen in panel (d).

Fig. 12 provides an overview on the convergence issue posed by the initial particle resolution dp, while keeping
he same number of segments (N = 64) for the double-clamped beam. Two main peculiarities of the problem can
e clearly appreciated when the problem is solved using the proposed coupling: the particle resolution is game
hanging in the accuracy and stability of the water column as smaller particle sizes are indicative of less noisy
ressure fields. Despite the particle resolution, the fluid forces are well computed in all the cases and thus leading
o the same vertical force distributions that eventually provoke the same mid-span deflections.

A better understanding, indeed, on the damped oscillatory nature of the beam mid-point displacement can be
rasped by considering the four snapshots in Fig. 13: each one pictures the state of the fluid tank and the beam, with
p = S/2.5, at different time steps taken during Time = 0.001 s (a), Time = 0.021 s (b), Time = 0.041 s (c), and
ime = 0.061 s (d). The time-window covers a range of 0.080 s that corresponds to the return period of occurrence
f the spikes that appear in Fig. 11. The cyclic behaviour, marked by large oscillations and clearly visible for coarser
article spacings, is induced by a shock wave, which is likely generated by the initial set down experienced by the
eam, propagating vertically in the tank. If one considers that the disturbance is generated at time zero (panel (a)
n Fig. 13), the periodicity of the spikes matches perfectly with the travelled distance, which is twice the water
olumn height (2H) over the fluid speed of sound cs . The particle resolution affects the system response since finer
article resolutions allow damping out the pressure disturbance much quickly, resulting in shorter times necessary
o stabilise the beam vibrations induced by the pressure wave.

Lastly, Fig. 14 shows a comparison between the pressure measured right above the mid-span point C in the fluid
ank for the two resolutions (and N = 64) considered above with the analytical pressure computed for still water
nd no plate deformation. The pressure time histories are affected by the shock wave that forms at time zero, when
he water column settles on to the elastic beam. As the particle resolution decreases, the pressure fluctuations seem
o reduce as well, and the damping effect provided by the fluid formulation is able to filter out the energy contented

f this acoustic wave.
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Fig. 13. Snapshots of a one-period pressure wave propagation within the fluid tank with dp = S/20, where fluid particles are coloured by
pressure whereas solid particles by vertical velocity.

Fig. 14. Fluid pressure time evolution for the mid-span point C for different particle resolutions and N = 64 compared to the theoretical
solution.

Fig. 15 shows two snapshots corresponding to the fluid pressure and beam stress at the initial state (Time =

0 s) and after a while when the system is at the equilibrium (Time = 1.00 s), for which pressure field matches
the initial state. The initial stage of the water settling on the aluminium beam consists of the water column in its
configuration dictated by the presence of gravity alone, whereas the beam is initialised as if gravity were not applied
yet. As shown before, the exchange of data process commences soon after the first SPH time step, after which the
fluid–structure system starts interacting. The right-hand visual representation proposes the fluid pressure and the
beam stress fields for a state at which static conditions have been reached. The stress along the beam (σxx ) shows
to be distributed in perfect accordance with the theoretical response of a double clamped beam under a uniform
load condition. At the two clamped section, where the beam Boundary Conditions are enforced, the upper fibres are
engaged in tension (negative values), whereas the mid cross section proposes a reverse fibre configuration by having
the lower ones in tension. Note that the position of the inflection points, in which stress are close to zero (green

areas), is perfectly captured as they locate at 0.211L from the closest fixed cross section. It is worth mentioning
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Fig. 15. Snapshots of the simulation considering the fluid pressure and beam stress of the initial state (left) and when the system is at
quilibrium (right).

hat although the initial shock wave is still travelling, the induced under/over pressure does not cause detectable
tress variations in the beam, essentially due to the low magnitude of those pressure oscillations (see Fig. 14).

The accuracy of the coupling is tested with respect to the energy conservation of the structural solver provided
y the non-linear FEA solver. As a matter of fact, this case provides proper background for this type of validation
onsidering the total elastic strain energy stored by Euler–Bernoulli beam. With reference to Fig. 3 regarding the
omenclature, the internal energy (UI ) can be defined as:

UI =
1
2

∫ L

0
E I

(
d2w

dx2

)2

dx (42)

Eq. (42) provides, in time, the energy stored by the beam element, and it can be compared with the work done
y the external forces. Hence, by considering the work of the external entities acting on a double clamped beam,
t can be calculated in a closed form by considering the static displacement function:

w (x) = −x
q(1 − x)(L2x2

− L3x)
24E I L2 (43)

eing q = (ρH + ρa T ). By integrating Eq. (42) over the length of the beam, the work of the distributed load is:

UE =
L5q

1440E I
(44)

Fig. 16 shows the time evolution of the beam internal energy for an increasing number of beam segments while
eeping fixed the SPH particle size to dp = S/20, and the numerical model response is compared with the theoretical
olution (0.433 J) proposed in Eq. (44). Here, due to the scope of this last test, the simulations are executed for
0.0 s. The chart, proposed in a logarithmic time scale, allows following in detail the initial load process. As
entioned before, the process starts with the beam in a neutral position. At the time the first-time step is computed,

he fluid experiences the gravity pull and, therefore the fluid mass finds the beam reactive forces during its fall.
ue to the impulsive force that is transferred to the beam, the first instants of the simulation (for all the cases) see
strong increase in the maximum deformation of the beam that, as it can be noticed from the chart, corresponds

o a spike in beam internal energy. The first five visibly decaying cycles (up to Time = 0.02 s) can be used to
characterise the dynamic response of the beam as they are close to the first period of vibration of the system
formed by the beam and the part of water it interacts with. The evident damped cyclic response is provided by an
energy dissipation that occurs in the fluid phase. From this time on, and up to Time = 0.080 s, the beam reaches
its equilibrium configuration that matches the theoretical value. Thus, the pressure wave, previously generated by
the settling process (see Fig. 13), reaches again the beam-to-fluid interface, thus provoking very small vibrations
throughout the beam. The frequency at which those new vibrations take place is close to the previous one, but not

exactly the same as the hydrodynamic stiffness offered by the water interface is reduced due to the very small
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Fig. 16. Total strain energy of the beam compared to the theoretical solution: time history and convergence study.

Table 2
Performance of the hydrostatic water column on an elastic beam case for N = 64.

dp Structure
particles

Fluid
particles

Segments
(N)

SPH steps DualSPHysics
runtime [s]

Chrono
runtime [s]

Total
runtime [s]

% Chrono

S/2.5 153 6409 64 7383 45 42 87 48
S/5 606 23 106 64 14 775 97 78 175 45
S/10 2211 87 201 64 29 549 192 124 316 39
S/20 8421 338 391 64 59 096 337 183 520 35

overpressure magnitudes. This process iterates for about one second, after which the beam stays steady at its
equilibrium position, at which the UI is consistent with the theoretical value, highlighted by the zoomed view
on the time-window from Time 8.00 to 9.00 s. For the sake of reference, a similar investigation on the inner energy
content of the beam is proposed in [17,62]. The right-hand side of Fig. 16 proposes a converge study by measure
of the L2 error for whole time series, and those values are then reported with respect to the length of segment the
beam is discretised with. The chart proposes a close-to-second order convergence rate when moving from the 8 to
16 segments, which is consistent with the time stepper HHT. However, the chart also proves that moving towards
finer discretizations does not yield the same rate of convergence. This can be possibly explained by the fact that
the resolution of the fluid phase is unchanged, so the overall coupling model hits its saturation state.

The performance results presented in this section include only the combination of each solver’s resolution selected
with the best of the other solver. Thus, Table 2 shows the performance results of the simulations for different values
of dp while the number of segments is kept constant (N = 64). It can be noticed that the number of particles is
varying and, as it increases, the total runtime grows accordingly. Although the resolution of Project Chrono does
not change, its runtime is slightly different when the number of particles rises. This trend is possibly due to the
increasing number of SPH steps, which is not constant for each simulation because the SPH solver uses a variable
integration time step (∆tS P H ) that depends on the resolution (h in Eq. (18)). Therefore, when the number of calls
to the multiphysics library to solve a time step rises, it causes an additional overhead even though the percentage
(%) of time consumed by Chrono is within a narrow range for each case.

On the other hand, Table 3 shows the performance results of the simulations for different values of segments
N), in which the SPH resolution does not change (dp = S/20). For all the cases, the number of particles is the
ame, while the DualSPHysics runtime and the number of SPH steps do not remain constant. More specifically, the
untime of DualSPHysics can indirectly be affected by the number of segments since the SPH solver has to compute
he fluid forces for each FEA beam node (N + 1) (see Section 4.2). Thus, when the number of segments increases,

ven if for a constant value of dp, the DualSPHysics runtime can be also affected. On the other hand, the number
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Table 3
Performance of the hydrostatic water column on an elastic beam case for dp = S/20.

dp Structure
particles

Fluid
particles

Segments
(N)

SPH steps DualSPHysics
runtime [s]

Chrono
runtime [s]

Total
runtime [s]

% Chrono

S/20 8421 338 391 8 59 095 289 45 334 14
S/20 8421 338 391 16 59 097 290 52 342 15
S/20 8421 338 391 32 59 093 292 77 369 21
S/20 8421 338 391 64 59 096 337 183 520 35

Fig. 17. Initial configuration of the elastic gate, the breaking water column, and its particle discretisation for the SPH resolution dp = S/2.

of SPH steps is slightly different since the variable time step used in the SPH solver is computed according to the
maximum particle velocity. Therefore, any variation in the response of the FEA model when solving the structure
can provoke changes in the ∆tS P H . Finally, it can be noticed that the execution time of Project Chrono and the
percentage (%) of elapsed time consumption rises according to the number of segments.

5.3. A breaking water-column with an elastic gate

The third case makes use of an experimentally tested setup that was first presented in Antoci et al. [63], in
which the experimental set-up and results in a two-dimensional fashion are provided. The schematic of the setup
is given in Fig. 17, where a water column, with dimensions height H = 0.14 m and width W = 0.10 m, is
confined between vertical walls. The vertical wall on the right terminates with a 7.90-mm elastic gate (length
L = 0.079 m, thickness S = 0.005 m), clamped to the upper part of a fixed support (node B) and otherwise
free to deflect in any direction. Moreover, density ρ = 1000 kg/m3, speed of sound cs = 50 m/s, and gravity
cceleration as −9.81 m/s2 are considered. The elasticity of the gate is modelled using a beam element as proposed
y the SPH-FEA scheme to reproduce the deformation induced by the fluid pressure. As final note, it is important to
ention that the experimental data (beam free-end and water level in the tank time histories) given in [63] evidently

efers to a 3-D case. However, the setup was conceived and ran expecting that the response of the system was not

ffected by the extension in the third dimension (i.e., width of the tank), so that a bi-dimensional cross section
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Fig. 18. Horizontal and vertical displacement histories for the tip of the beam (point A) for different particle resolutions and N = 32
compared to the experimental reference [63].

Table 4
RMSE estimation between experimental and numerical results for horizontal and vertical displacement of the tip of the beam (point A).

Displacement Horizontal Vertical

dp S/2 S/4 S/8 S/16 S/2 S/4 S/8 S/16

RSME 0.0027 0.0022 0.0016 0.0012 0.0017 0.0014 0.0010 0.0008

could well represent the overall system evolution. Fig. 17 reports a vertical cross section of the system along an
xis of symmetry for the system, which is used to configure the 2-D numerical environment for this investigation.
o support this assumption, apart from the accuracy that the 2-D model in [63] showed, other researchers have
ade comparison between 2-D and 3-D cases [64,65], de facto recollecting very small deviations between the two

olutions.
In this investigation, the parameters that describe the flexible element configuration have been set in accordance

ith the reference one (i.e., material density ρ = 1100 kg/m3, Poisson’s ratio ν = 0.50), except for some details that
re given in the following. Firstly, the rubber plate was approximated by [63] as a linear elastic model with Young’s
odulus E = 12 MPa and Poisson’s ratio ν = 0.40. However, in the present work, a more compelling modelling

rocedure was enforced following the mechanical stress–strain characterisation performed by and reported in [66].
his has led structural solvers with advanced capabilities to implement a hyper-elastic material relationship, and thus

mproving the model accuracy [8,9,64,67]. Nevertheless, the simulations performed using this coupling employ a
inear elasticity model and thus, it is only possible to constrain the beam response to obey an initial Young’s modulus
efined as the secant modulus from the stress–strain relationship at a strain of 0.02 (available in Fourey et al. [9]),
iving back a value of E = 6.50 MPa. Lastly, the beam has been modelled with N = 32 for all the cases.

The accuracy of the numerical model is investigated by analysing the results shown in Figs. 18 and 19, and
also considering the results provided in Table 4. In Fig. 18, the beam tip displacement in the vertical (dashed
ines) and the horizontal (solid lines) directions is obtained from four different simulations and compared against
he experimental reference. The objective of this plot is to provide an evaluation of the accuracy sensitivity to the
article resolution, as for each simulation a decreasing particle size is used. It can be noticed that the results tend to
onverge to the reference data when increasing the resolution. Therefore, the four resolutions provide a consistent
eam response to the fluid kinematics.
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Fig. 19. Water level evolution for different particle resolutions in the middle of the tank (a) and just behind the gate (b).

As anticipated, Table 4 sides the description of this case providing a quantitative assessment of the performance
f the model by using the root-mean square error (RMSE) estimator. Thus, the continuous representation provided in
ig. 18 for the numerical model results is first discretised into a set of ten data points that temporally correspond to

he experimental sampling time. The RMSE operator processes the dataset and provides the figures that are reported
n the following table, for both horizontal and vertical displacement. The results show that the RMSE value decreases
ith increasing resolution for both horizontal and vertical displacements of the tip. Therefore, studied numerical

onfigurations provide a similar accuracy on account of the experimental solution and provide a clear convergence
rend to the reference experimental solution as well.

Fig. 19 shows a comparison of the water level in the middle of the tank (x = 0.05 m) and close to the gate’s wall
x = 0.09 m), with only the lowest resolution deviating from the numerical trend established by the others. From the
wo charts in Fig. 19, it is clear that the numerical model is able to capture the overall water discharge phenomenon,
xcept for a persistent in-time overestimation. On this account, the reference paper [63] reports a similar deviation
or the water level evolution at the two locations, explaining that the faster water discharge observed in the numerical
odel would likely be due to an excess of initial deformation in the beam. Conversely, another investigative work by

9] that provides a similar comparison, suggested that there might be a time shift between the reference displacement
nd the water level data. The authors lean for the latter reasoning since a slight time shift in the water discharge
ould deliver much closer agreement and, at the same time, since it is more plausible on account of the accuracy

hown by the model in retracing the gate motion.
In closing, six rendered views of the simulations are proposed in Fig. 20 for six-time steps where the two

eparated colour bars indicate the fluid pressure and structure stress, respectively. They correspond to the beginning
f the water discharge (first row), where the beam experiences sudden changes in the beam stress distribution, then
he level of stress becomes gradually steadier as the water discharge increases. From the fourth (second row) it can
e noticed that the beam achieves a sort of stationary posture, where the fluid forces are at equilibrium with the
lastic recentring force of the system (Fig. 18 from Time = 0.16 s). Note that the beam stress field here is almost
nchanged from one snapshot to the other, and this reflects the small variation in maximum displacement.

Furthermore, Fig. 21 shows the instant of the simulation when the tip of the elastic structure reaches its maximum
eflection (Time = 0.16 s), where the fluid pressure and the stress field for the elastic gate are represented considering
he SPH resolution dp = S/16. This much more zoomed visualisation of the numerical configuration captured at a
iven time offers the possibility to appreciate the quality of the resolved pressure field, which is very smooth. Such
moothness is preserved at the discharge cross section that develops soon after the tip of the beam, where a new
ree surface and the pressure gradient is the highest. On the other hand, the zoomed representation of the beam
onfirms equally high quality in the stress response. The spectrum of the colour bar that indicates beam stress in
uch that blue refers to the tension and red, compression. Two main features may be immediately apparent from the

gures, and they are a direct consequence of the employed model to describe the beam. First, the range is perfectly
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Fig. 20. Snapshots of the simulation of the elastic gate with dp = S/16 in which the fluid pressure and structure stress are represented.

Fig. 21. Fluid pressure and structure stress at Time = 0.16 s of the elastic gate case where the structure experiences the maximum deflection.
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Table 5
Performance of the breaking water-column with an elastic gate case for N = 32.

dp Structure
particles

Fluid
particles

Segments
(N)

SPH steps DualSPHysics
runtime [s]

Chrono
runtime [s]

Total
runtime [s]

% Chrono

S/2 99 2184 32 30 724 108 126 235 54
S/4 320 8848 32 61 547 300 251 551 45
S/8 1143 35 612 32 122 761 641 466 1106 42
S/16 4318 142 912 32 244 922 1609 995 2604 38

symmetric, and it results from the fact that fluid actions are (axial and longitudinal ones) computed using the SPH
boundary particles, but then they are applied to the nodes located on the axis of the beam. Secondly, there is a layer
of particles, located in the middle of the beam (neutral axis) that does not experience any stress due to the fact that
only the bending moment is considered, thus not having axial forces. Note that the selected range for σxx allows
describing fully the stress value spectrum and thus comparison can be visually made to other references such as
(Zhang et al. [68]).

Table 5 shows the performance results for the third benchmark presented in this work, defining four different
SPH resolutions (dp = S/2, dp= S/4, dp= S/8 and dp= S/16). In all the cases, the beam is modelled with N= 32,
and a physical time Time= 0.40 s is simulated. When the number of particles simulated increases, due to the use
of progressively finer interparticle spacings, both the DualSPHysics runtime and the SPH time steps proportionally
increase. Likewise, as it can be noticed from the seventh column, the Project Chrono runtime is influenced in spite
of having a constant resolution of the FEA solver. This occurs due to the growing number of calls to the FEA solver
that corresponds to the SPH steps. This fact is clear when the percentage of time consumed by Project Chrono is
considered, which is quite similar in all cases.

5.4. A dam break impacting a flexible obstacle

In contrast with the testing performed prior within this paper, the nature of the fourth benchmark comprises a
much violent fluid–structure interaction, characterised by large displacements and harsh accelerations of the solid
phase with respect to the fluid one. The test proposed by Liao et al. [69] comprises a breaking water column
impacting a rubber plate in a 3-D confined environment, in which multi-phase effects become relevant for the correct
simulation of the obstacle displacement. Within the scope of this research, the impact of the water column and the
flow over the flexible obstacle is taken as a reference up to 0.80 s because the multiphase water–air interaction
that happens after cannot be captured by the present solver. The sketch of the problem is given in Fig. 22. In
the experiment, the elastic baffle is made of rubber with thickness S = 0.004 m, length L = 0.090 m, density
ρ = 1161.54 kg/m3, and Young’s modulus E = 3.50 MPa. The plate is placed vertically at 0.40 m away from the
right-hand side of the water column, and it is deployed such a way that the cross section indicated by point A can
be considered the only boundary surface clamped to the experimental water tank. On the other hand, point B is
considered representative of the free end of this cantilevered plate. It is important to mention at this stage that the
plate width takes up the whole width of the tank (0.10 m), and as so happens, this is very handy as the dynamics
of the system is well represented by its middle plane, providing the basis for testing numerical solvers considering
2-D environments. During the test, the motion of the baffle was monitored using a visual tracking system, and the
motion for three markers was recorded; in the following, data that refers to Marker 1 (0.0875 m above the tank
bottom) is used for comparison purposes.

For the numerical model, the water column height H = 0.20 m is discretised with density ρ = 997 kg/m3

and using a speed of sound cs = 50 m/s. It is kept still up to time zero, when the removable gate starts moving
upward at an imposed velocity that corresponds to the motion law given in the reference work. The flexible plate
comprises N = 32 Euler–Bernoulli beam segments with the following properties: a corrected Young’s modulus
Ê = 4.39 MPa is obtained from Eq. (40) and Poisson’s ratio ν = 0.45. The numerical discretisation for a resolution
that corresponds to dp = S/4 (1 mm) is visualised in Fig. 22.

Four SPH resolutions are considered (dp = S/4, dp = S/8, dp = S/16 and dp = S/32), while keeping a fixed
number of segments (N = 32) to solve this benchmark numerically. The response of the solver for the four cases
listed before is arranged in a chart and reported in Fig. 23 by comparing the experimental data for the horizontal
25
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Fig. 22. Initial configuration of the dam break impacting a flexible obstacle and its particle discretisation for the SPH resolution dp = S/4.

Fig. 23. Horizontal displacement histories for the tip of the beam (Marker 1) for different particle resolutions (dp) and N = 32 compared
to the experimental reference [69].

displacement of Marker 1 [69] against the same quantity computed from the numerical simulations. The description
of this test case is further completed by Fig. 24 that shows six visualisations at relevant steps, which collect particle
information on the fluid pressure (colour bar on the left) and structure stress (colour bar on the right).

The model predicts the response of the beam under the free-surface flow impact up to Time = 0.50 s, whereas
it drops in agreement due to the influence of the air phase on the overall dynamic of the fluid phase, as suggested
by previous literature dealing with this case. A more detailed discussion can be found in Liao et al. [69] and in
Sun et al. [11] on the effect of multi-phase interaction on the accuracy of this specific problem. Regardless, this
benchmark is very useful to test the stability and accuracy of FSI solvers. The proposed one shows similar features to
other single-phase solvers (see for instance Khayyer et al. [70] and O’Connor & Rogers [14]). More specifically, the
impact instant, which mostly depends on the accuracy of the fluid phase is well captured by providing a consistent
and precise instant for the four resolutions around Time = 0.27 s (first frame of Fig. 24). From this point on, the
impact of the waterfront resolves in sudden beam deformations, which start cumulating as the tip of the beam goes
towards its maximum deformation. Around Time = 0.32 s (second frame of Fig. 24), the fluid mass is deflected by
the beam, which in turn, experiences a deformed shape comprising two changes in curvature. However, the accuracy
during this phase indicates quite remarkable sensitivity to the fluid resolution, as the displacement of the beam tends
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Fig. 24. Snapshots of the simulation of dam break impacting a flexible obstacle with dp = S/32 in which the fluid pressure and structure
stress are represented.

towards a maximum displacement of around 0.06 m, and this is highlighted in the third frame of Fig. 24. The beam,
at this instant, has shifted its deformed shape to show a linear bending moment distribution. Note that the tip of
the beam has slightly detached the fluid main flow due to a backlash effect. The ensuing phase is characterised
by a sort of steady state due to a substantial constant flow that maintains an almost constant state of stress in the
beam, as shown in the fourth and fifth frames in Fig. 24. Lastly, the sixth frame in Fig. 24 determines the point at
which the multiphase air–water interaction begins due to the trapped air below the flow that is still in contact with
the lateral wall. However, this does not become apparent in terms of beam deflection till Time = 0.60 s when the
horizontal displacement diverges from the reference solution. After this, the response of the system is no longer
consistent since the air trapped in the cavity that forms downstream of the beam heavily affects the hydrodynamics
of the system [11]. It is also included a zoomed view of the snapshot that corresponds to Time = 0.42 s, where it
can be seen the representation of the stress along the beam.

Table 6 shows the performance results for the fourth benchmark presented in this work, where a physical time
Time = 1.00 s is simulated. The four different SPH resolutions (dp = S/4, dp = S/8, dp = S/16 and dp = S/32)
are performed, while the beam is modelled with N = 32 for all the cases. It can be noticed that when the number
of particles simulated increases, due to the use of higher SPH resolutions, both the DualSPHysics runtime and
the SPH time steps increase accordingly. Moreover, the Project Chrono runtime is slightly affected by the SPH
resolution, due to the growing number of calls to the FEA solver that corresponds to the SPH steps. However, the
percentage of time consumed by Project Chrono decreases when the number of particles increase. Regarding the
highest SPH resolution reported here (dp = S/32), which corresponds to more than 2.5 million of fluid particles,
the computational cost of solving the structure is 15% of the total runtime.

6. Conclusions and future work

This paper has presented a novel SPH-FEA solver coupling between the open source DualSPHysics and the
Project Chrono library. The outcome software leverages the meshless SPH method to deal with the resolution of
27
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Table 6
Performance of the flexible obstacle case for N = 32.

dp Structure
particles

Fluid
particles

Segments
(N)

SPH steps DualSPHysics
runtime [s]

Chrono
runtime [s]

Total
runtime [s]

% Chrono

S/4 455 40 401 32 158 938 1299 619 1918 32
S/8 1629 160 801 32 322 158 3864 1120 4984 22
S/16 6137 641 601 32 676 281 8824 2252 11 076 20
S/32 23 793 2 563 200 32 1 342 800 35 990 6406 42 396 15

the Navier–Stokes’ equations to simulate fluid phases, whereas the non-linear FEM-based FEA module herein solves
the dynamics of elastic structures. The proposed coupled method offers many advantages for the simulations of FSI
problems thanks to the blending of the two solvers. On the one hand, the strength of the SPH-based fluid solver, very
powerful in addressing violent flows and dealing with free-surface flows. On the other, the relatively inexpensive
Euler–Bernoulli beam model and the Lagrangian capabilities of the Corotational framework for flexible elements
capable of accommodating large displacements. Ultimately, it is important to mention that the structure of the
two-way algorithm herein presented, in which the two systems communicate via exchanging forces and positions,
has demonstrated to be extremely robust and thus providing a key distinctive feature to this new implementation:
uncoupled resolutions.

Following an increasing level of complexity, four standardised validation cases have been proposed as references
o validate the numerical framework. Firstly, the numerical prediction for a freely oscillating cantilevered beam,
n which the motion is induced by very specific initial conditions, was validated contrasting with an analytical
olution. The comparison shows a satisfactory matching, though overestimating the fundamental (or first) period
f vibration of the structural system within a 2-% range, whereas perfectly capturing the motion amplitude. This
nitial investigation was critical for assessing minimum requirements to optimise the beam mesh, and the accuracy
hat the structural solver requires to perform the subsequent validation tasks.

Secondly, a proper case of fluid interacting with a structure has been set up. Despite its simplicity, a double-
lamped horizontal beam supporting a pseudo-static water column has revealed to be extremely useful in estimating
he model precision, as widely recognised in the reported literature. Again, a theoretical solution, based on
egitimated hypotheses, provides the reference framework to compare with, and the proposed model shows accuracy
n estimating the beam mid-point displacement. Additionally, the energy dissipation of the structural integrator has
een thoroughly checked for long simulations. The results provided another metric to highlight the accuracy and
recision of the solver, but in more general terms, they allow us to remark the coupling strategy ensures the energy
onservation of the system. The results sourced from the performed simulations highlight the pros of having the
ncoupled-resolution feature, which, in principle, allows to tune the model in accordance with the expected response
f the system, thus smartly allocating the computational resources.

Thirdly, the discharge of a water reservoir adjusted by a flexible gate has been simulated following the
xperimental setup investigated in [63]. The surface of the elastic element (the gate) interacts with a medium-
peed flow that also develops relevant interactions between the beam’s displacement and the fluid transient states.
elatively low fluid resolutions delivered good agreement on account of a well-resolved beam kinematics, and, as

he results showed, the first investigated case fails in estimating the beam deflection only when the particle size
ampers the correct prediction of the water discharge, essentially correlated to the fluid resolution.

Lastly, the fourth case achieves the maximum level of complexity among the cases presented in this paper. A
reaking water column runs over a flexible beam which in an initial phase deflects the flow that then chaotically
catters across the whole closed environment. Again, the numerical model successfully predicts the overall FSI
ystem dynamics, while proving very resilient to such extreme spatial changes. The sensitivity analysis that was
erformed by considering both solid and fluid phases proved that even cases with a very limited number of particle
ayers can suffice. It should be noted that the air phase was not simulated in this work. Therefore, the reported
umerical results are not in perfect agreement when the influence of the air phase on the overall dynamic of the
uid phase plays an important role, as discussed in [11].

In this work, the proposed coupling has been described and used with respect to a two-dimensional environment,
ut its extension to a 3-D one should be theoretically possible. Future work will comprise the implementation and

alidations of the presented framework for 3-D simulations, for which the effect of rotational forces or torques on the
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nodes will be considered for experiencing bending and torsion in the beam. To sum up, the extension will keep using
Euler–Bernoulli-based beam elements that, in spite of being capable of describing only particular physical systems,
can provide an excellent balance between the solid solver computational cost and the quality of the outcome. It is
expected that the impact of computational performance of the structural solver will greatly diminish when moving
to full 3-D simulations, as its cost will mostly stay the same while the fluid simulation runtime will be dominant.

In addition, future implementation will contain a builder for structural systems that can comprise multiple beams
ssembled together to form any structure configuration, on which the use of the Rayleigh damping model will be
ctivated. As it is the writing of this paper, multiphysics simulations comprising free surface flows and flexible
lements in 3D are still restricted to academic cases and have not yet seen applications to engineering problems
ainly due to their prohibitive computational cost.
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