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A B S T R A C T

Several methods have been developed for the semantic segmentation of reinforced concrete bridges, however, 
there is a gap for truss bridges. Therefore, in this study a state-of-the-art methodology for the instance and se
mantic segmentation of point clouds of truss bridges for modelling purposes is presented, which, to the best of the 
authors’ knowledge, is the first such methodology. This algorithm segments each truss element and classifies 
them as a chord, diagonal, vertical post, interior lateral brace, bottom lateral brace, or strut. The algorithm 
consists of a sequence of methods, including principal component analysis or clustering, that analyse each point 
and its neighbours in the point cloud. Case studies show that by adjusting only six manually measured param
eters, the algorithm can automatically segment a truss bridge point cloud.   

1. Introduction

Transport infrastructure is a vital asset for our societies because it
enables the movement of people and the exchange of goods. Bridges are 
one of the most important infrastructure elements, which are used by 
several modes of transport. They can overcome obstacles to landscapes 
such as rivers, canals, and valleys. Bridges have become crucial to the 
existence or development of certain territories. A notable example of 
great benefit to the EU is the Oresund Bridge [1], which connects 
Sweden and Finland with the rest of the EU by road [2]. 

Unfortunately, a significant number of bridges in transportation 
networks are aging, causing a global and critical issue. According to the 
European Commission’s Science and Knowledge Service [3], many of 
the 1234 km of road bridges over 100 m in length in the EU, which were 
built during the economic boom of the 1950s, have now reached the end 
of their design life, and carry more vehicle traffic than expected. Because 
of this concern and because manual inspection is still the most common 
method to assess the condition of bridges, research into better bridge 
maintenance techniques is required. 

Building information modelling (BIM) [4] is a principal solution for 
infrastructure maintenance. When applied to bridges, this is called 
bridge information modelling (BrIM). BrIM technology enables the 
storage of bridge data, such as 3D models and component specifications, 
in a digital file. This is extremely useful not only during the design and 

construction of new bridges, but also during the maintenance and in
spection of in-service bridges. Bouzas et al. [5] presented a methodology 
based on a heritage-BIM framework to create models with both archi
tectural and structural information, using data obtained from point 
clouds, accelerometers, and geometric measurements made in situ. The 
different changes experienced by the bridge, such as maintenance work, 
can be integrated into the model, and the structural model can be 
exported to structural analysis software. Shalabi et al. [6] generated a 
BrIM model, which incorporated inspection data and a 3D representa
tion of an in-service bridge, demonstrating that this technology sub
stantially improves bridge assessment and maintenance operations. 
Salamak et al. [7] generated not only a BrIM model based on design 
documentation and a point cloud obtained with laser scanning, but also 
added augmented reality technologies to improve maintenance tasks. 

However, the development of BrIM models may not be an easy task, 
particularly for replicating bridge geometries in digital models. Thus, 
several techniques are being developed to digitise the as-is geometry and 
automate this process. To do so, it is necessary to use innovative solu
tions, such as remote sensing technologies, that allow massive gathering 
of geometric data on bridges with an unprecedented level of accuracy. 
Laser scanning, particularly terrestrial laser scanning (TLS), is one of the 
most widely used technologies for this task. A vast body of literature has 
demonstrated these capabilities [8–10]. Rashidi et al. [11] reviewed 
more than 1500 research publications on the applications of TLS in 
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bridges for generating 3D models, inspection tasks, structural assess
ments, and BrIM models. Although this technology can generate repre
sentations of the environment in the form of 3D point clouds, the 
generation of a 3D model is not automatic and requires segmentation 
and classification processes to identify and locate the bridge elements. 

Based on this, and the idea of automating these processes, several 
authors have developed algorithms to automatically segment the point 
clouds of bridges. Lu et al. [12] presented a slicing method for seg
menting structural elements in reinforced concrete (RC) bridge point 
clouds. Their method can deal with complex topologies and reduce the 
computational cost by splitting data. Moreover, it can process point 
clouds with occlusions, local variability density of points, and frequent 
events in the point clouds. Yan and Hajjar [13] proposed a similar 
heuristic-based method for segmenting steel-girder bridges based on 
their geometric and topological constraints. In a previous study, we [14] 
developed an automated process for detecting the components of ma
sonry bridges based on normal surface calculations. However, these 
methods cannot be applied to truss bridges, which are more complex 
than those analysed in previous studies. 

Several authors have presented deep-learning methods for seg
menting point clouds. PointNet [15] is a state-of-the-art architecture 
that directly applies a deep-learning method to points for classification. 
Despite being overtaken by other models, most are based on this model 
and its improved version, Pointnet++ [16]. Recently, a new model 
presented by Zhao et al., called the Point Transformer [17], proposed an 
entirely different architecture based on the work of Jaderberg et al. on 
spatial transformer networks [18]. For the bridges, Kim et al. [19] 
presented a PointNet-based neural network for the segmentation of RC 
bridges. The classes considered were the deck, pier, and background. 
The consideration of the background significantly reduces the time- 
consuming pre-processing of the point cloud. Xia et al. [20] presented 
an automated semantic segmentation method that applied a multiscale 
local descriptor and used the results to fit a classification artificial neural 
network. They implemented a local descriptor to compensate for the 
lack of data required to train the network. Their results were compared 
with those obtained using Pointnet [15], which was trained with only a 
few data used in their work, obtaining an improvement in the mean 
intersection over union from 46% to 95%. Their work confirmed the 
value of a descriptor when there is a lack of data to train a model. 
However, this method classifies points by point, obtaining a segmented 
point cloud, but does not determine which points belong to which 
element, which is necessary to obtain a 3D model of the bridge. 
Therefore, Xia et al. [20] refined their results by creating clusters using 
DBSCAN [21]. However, this algorithm does not work if there are ele
ments of the same type which are intertwined with each other, such as in 
a truss bridge, because the algorithm forms a unique cluster with these 
elements. Hu et al. [22] presented a method for reconstructing the 

structure-aware semantic 3D models of cable-stayed bridges. They used 
unmanned aerial vehicle (UAV) images and the corresponding photo
grammetric point clouds as inputs. Two independent neural networks 
extracted features from both types of data. These features are combined 
and decoded to a hierarchical binary parsing tree using BiTreeNet and to 
3D shapes from the shape nodes in the binary parsing tree using their 
Shape Decoder to obtain the 3D bridge model. 

In the field of truss bridges, Gyetvai et al. [23] developed a workflow 
to create a model for conducting a finite element-based structural 
assessment of a truss bridge point cloud. Their study can be divided into 
two distinct processes. First, the process identifies the cross section of 
each element by comparing the section-based point cloud to a library of 
sections. Second, the primary dimensions of the bridge are estimated to 
generate the model. However, the segmentation process for each item 
was not automatic. Shang et al. [24] presented a method for 3D recon
struction of truss bridges using images instead of point clouds. They 
proposed flight planning for UAVs to capture bridge images by reducing 
occlusions. These images were used to construct the bridge meshes. 
However, their model only contained information about the bridge as an 
entity, and not about each of its elements. 

This study aims to contribute to current methods for the automatic 
generation of 3D truss bridge models from point clouds. To the best of 
our knowledge, there is no automatic process for segmenting truss 
bridge point clouds. Therefore, the aim was to develop an algorithm 
capable of automatically segmenting the point clouds of truss bridges, 
from which sufficient information can be extracted to create a geometric 
model of the structure containing the nodes, where each element is 
connected. This study starts with the hypothesis that by knowing the 
location of a point of each bridge item and its main direction, it is 
possible to define the nodes of the structure. Hence, the main objective 
of this study is to develop automatic instance segmentation to at least 
partially detect each item whose main direction matches the main di
rection of the item to which it belongs. 

This paper is structured as follows. First, case studies are presented in 
section 2. Section 3 details the proposed methodology for the segmen
tation of a 3D point cloud of a truss bridge. Section 4 presents the results, 
which are then discussed in section 5. Finally, section 6 presents the 
conclusions of this study. Repository available at https://github.com/ 
GeoTechUVigo/truss_bridge_pointcloud_segmentation. 

2. Case studies 

This section presents case studies used to validate the methodology. 

2.1. Case study I 

The first case study is a truss beam bridge, shown in Fig. 1(a) and 

Fig. 1. Case study I.  
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Fig. 1(b). 
The truss structure between two pillars of the bridge was repeated for 

each pair of pillars. Fig. 2 shows a representation of the structure be
tween the two pillars. The truss can be divided into vertical, horizontal, 
and interior faces. The two vertical faces shown in Fig. 3(a) contain 
vertical posts and diagonals. The horizontal face represented in Fig. 3 
(b), which is the bottom face, comprises struts and bottom lateral braces 
that form Saint Andrew’s Crosses separated by struts. The 17 interior 
faces, represented in Fig. 3(c), each comprise a Saint Andrew’s Cross 
formed by two interior lateral braces traversed by an interior brace. In 
addition, four chords joined and supported the entire truss. 

2.2. Case study II 

The second case study was 114 m long and divided into two distinct 
parts with different structures. The analysed part is the truss beam 
structure, which is 30 m long and rests on two pillars. The truss structure 
can be appreciated in Fig. 4(a) and Fig. 4(b). 

A schematic of the bridge truss structure is shown in Fig. 5. The two 
vertical faces shown in Fig. 6(a) contain vertical posts and diagonals. 
The horizontal or bottom face, as shown in Fig. 6(b), comprised struts 
and bottom lateral braces. These lateral braces form Saint Andrew’s 

Crosses separated by struts. The interior faces, which are represented in 
Fig. 6(c) contain interior lateral braces and vertical posts. In addition, 
four chords join and support the entire truss, and two stringers support 
the bridge deck. 

3. Methodology 

The methodology covers data collection during the segmentation 
process, including the identification of infrastructure components, lo
cations, and dimensions. As shown in Fig. 7, the proposed methodology 
is a sequential procedure that can be divided into three steps. 

The first step, data acquisition, involves the acquisition of bridge 
data in the form of a 3D point cloud. Section 3.1 explains the field op
erations conducted to obtain the data used to validate the methodology. 

The second step, pre-processing, prepares the data to be analysed. 
This is discussed in detail in section 3.2. 

The third processing step was segmentation. The segmentation 
methods allow the identification of each member of the bridge. First, the 
bridge is split into faces, as explained in section 3.3. Each type of face is 
then analysed, as explained in section 3.4. The analysis of the vertical, 
horizontal, and interior faces is explained in sections 3.4.1, 3.4.2 and 
3.4.3., respectively. 

Fig. 2. Representation of case study I.  

Fig. 3. Case study I faces. (a) Vertical face, (b) horizontal face, and (c) inte
rior face. 

Fig. 4. Case study II.  

Fig. 5. Representation of case study II. Colour legend is in Fig. 2.  
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Throughout this process, different sub-processes are executed at 
different points in the methodology. For instance, the method used to 
segment the diagonals of the lateral faces is also used to segment the 
bottom lateral braces of the horizontal faces and the interior lateral 
braces of the interior faces. Section 3.4 explains how each face is ana
lysed and section 3.5 details the truss element segmentation process. 

Workflow diagrams are presented to explain the algorithms. All di
agrams have two ellipses representing the start and end. The input is 
denoted by a green rhomboid and the output by a red rhomboid. The 
face analysis processes are represented by the yellow rectangles 
(explained in section 3.4), orange truss element segmentation processes 
(explained in section 3.5), blue specific processes, and white single 
processes. 

Section 3.1 explains the data acquisition. Section 3.2 explains the 
pre-processing. Section 3.3 explains the face sectioning. Section 3.4 
explains the vertical, horizontal, and interior faces analysis. Section 3.5 
explains the methods used in the face analysis to segment each type of 
item of a truss bridge. 

3.1. Data acquisition 

The case studies were surveyed using a TLS (Faro Focus X330). This 
instrument is a phase-shift laser scanner with an operating range of 
0.6–120 m. The Focus X330 has a nominal precision of ±2 mm at 25 m 
distance in normal reflectivity and illumination conditions. This in
strument has a maximum angular resolution of 0.009◦ a horizontal field 
of view of 360◦ and a vertical field of view of 305◦. The acquisition rate 
of the instrument reaches up to 1 million points per second when 
working at maximum speed. 

3.1.1. Case study I 
Restricted access to the case study I structure forced the design of an 

optimised network of scanner stations from both sides of the river. This 
network was formed using eight different scanner positions at ground 
level under the bridge, with 37 scans, to ensure that the whole bridge 
structure was recorded. The data collection from each scanner position 

comprised a low-resolution scan to draft a panorama view to identify the 
placement of the structure to be scanned in detail. It also included a 
high-resolution scan of the field of view corresponding to the bridge. 

Considering the large size of the bridge to be scanned, a topographic 
survey was performed to accurately measure targets in the bridge and 
surroundings that could be used to 1) align all the scans into the same 
coordinate system, 2) ensure the levelling of the point cloud, and 3) geo- 
reference the consolidated point cloud into the Universal Transvers 
Mercator global coordinate system using a Leica TS15 total station. The 
technical features of the instrument are as follows: long-range mea
surements up to 1000 m reflectorless (R1000); 1 mm + 1.5 ppm accu
racy; and angular precision of 1′′ for both horizontal and vertical 
directions. 

A total of 527 points were measured for the entire bridge to allow the 
alignment of the current scans, as well as aligning the scans measured in 
future acquisition campaigns. Only a small number of control points 
were used for the registration of the current scans. 

For the bridge span used to explain the processing method presented 
in the forthcoming sections, eight scanner position data were used, 
which also ensured the registration of all the scans collected in the south 
margin of the bridge. These scans were aligned using the control points 
measured by the total station to obtain a consolidated point cloud with 
more than 100 million points (more than 20 million points representing 
the span under analysis), with a final registration error of 1.1 cm. The 
spatial resolution of the point cloud was between 5 and 15 cm, 
depending on the distance between the target object and scanner. It is 
important to mention that, owing to the extreme geometric complexity 
of the truss structure and limited access to the structure, the consoli
dated point cloud has important occlusions as well as other sources of 
errors, such as mixed pixels provoked by the sharp form of the beam 
elements. 

In addition, alignment, which is defined as the central axis of the 
road crossing the bridge, is used to determine the orientation of the 
bridge more precisely. The alignment is represented as a polyline formed 
by XYZ points stored in a TXT file. 

Fig. 8 shows the recorded point cloud, and Fig. 9 shows the scan 

Fig. 6. Case study II bridge faces. (a) Vertical face, (b) horizontal face, and (c) interior face.  

Fig. 7. Proposed methodology workflow.  
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Fig. 8. Raw case study I bridge point cloud.  

Fig. 9. Eight scan positions of case study I shown as red dots at ground level under the bridge. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 10. Raw case study II bridge point cloud.  
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positions. 

3.1.2. Case study II 
Data acquisition for case study II followed a similar process. Nine 

scans were performed at different positions, on the deck, pillars, and 
remote areas on the banks of the dam. Consequently, a 130 million 
points point cloud of the truss structure was obtained. Figs. 10 and 11 
show the recorded point clouds and Figure 11scan positions, 
respectively. 

3.2. Pre-processing 

The data obtained from field operations were raw point clouds. 
These raw point clouds do not have a uniform density. This can hinder 
the segmentation process because certain operations such as defining 
objects based on the number of points cannot be applied. Besides, and 
related to the above, there are regions with more points than necessary, 

which increases the computation cost when the point cloud is 
segmented. 

Therefore, a voxelisation process was applied. Chen et al. define a 
voxelised object as a “3D discrete representation of a continuous object 
on a regular grid of voxels” [25]. This process consists of discretising the 
space in a regular grid of cubic cells called voxels. The grid size used in 
this study is denoted by g. Several metrics can be applied to the points in 
the voxels that allow the organisation of point clouds. In this case, the 
metric used was the calculation of the centre of mass of the point in each 
voxel. The centres of mass represent the 3D position of each voxel. In this 
way, voxelisation not only makes the point density uniform but also 
down samples the point cloud, making it easier for it to be analysed if the 
level of down sampling is appropriate for the intended purpose. Voxe
lisation is widely used in the classification and segmentation of point 
cloud tasks. For instance, some scholars, such as Wang et al. [26], have 
developed technologies based on the voxelisation of point clouds, to 
analyse forest structures. In addition, Riaño et al. [27] and Weishampel 

Fig. 11. Nine scan positions of case study II shown as green dots on the bridge, red dots on the pillars, and blue dot is a remote position. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Voxelised and oriented point cloud.  
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[28] used voxelisation to detect buildings. Other studies have used 
voxelisation to extract information from road and railway point clouds 
[29,30]. Hereafter, whenever a point cloud is mentioned, a reference is 
made to the voxelised and denoised raw point cloud. Whenever points in 
this point cloud are mentioned, the centre of mass of their voxels is 
referred to. 

Two additional steps were applied to facilitate the segmentation 
process. First, the point cloud is denoised by removing isolated points 
that do not provide relevant information about any element. An isolated 
point is defined as a point whose mean distance to its k nearest neigh
bours is greater than one standard deviation from the mean of the 
average distance between each point to its k nearest neighbours. Second, 
the point cloud was oriented by representing the coordinates in the di
rections of the eigenvectors obtained from the principal component 
analysis (PCA) applied to the point cloud. If the alignment of the road of 
the bridge is available, it is used to calculate the eigenvectors rather than 
the point cloud, because it contains more reliable information about the 
orientation of the bridge. Hereafter, the 1st, 2nd and 3rd eigenvectors 
computed in this step are referred to as the X, Y, and Z axes, respectively. 

PCA is an orthogonal linear transformation that transforms data into 

a new coordinate system. This new coordinate system was defined by the 
eigenvectors of the covariance matrix of the point cloud. By applying 
PCA to spatial data, eigenvectors provide information on the direction of 
data dispersion. Moreover, the eigenvalues of the covariance matrix 
provide information regarding the degree of dispersion in each principal 
direction. 

In this study, when PCA was applied, the eigenvalues were recalcu
lated according to Eq. (1) and sorted from highest to lowest. The ei
genvectors are sorted according to their eigenvalues. 

λi =
λ0i

∑
λ

(1) 

λ0i: original eigenvalue i. 
λi: recalculated eigenvalue i. 
Fig. 12 shows the pre-processed point cloud for case study I. 

3.3. Faces sectioning 

The first segmentation process involved sectioning of the bridge 
faces. To do so, the local maxima of the Z and Y coordinate histograms, 

Fig. 13. Histograms for faces segmentation. Red and yellow boxes are horizontal faces. Magenta and green boxes are vertical faces. Arrows show two most occupied 
coordinates. Red points are local maxima. (a) Z axis coordinate, and (b) Y axis coordinate. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 14. Voxelised point cloud segmented by faces using the histogram and the colours of Fig. 13.  
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shown in Fig. 13(a) and Fig. 13(b), were calculated with bin widths 
binWidthZ and binWidthY, respectively. The maximum values corre
spond to the locations of the face. In addition, the limits of a face in a 
plane are determined by the locations of perpendicular faces. For 
example, a vertical face limits the locations of horizontal faces up and 
down. If a bridge does not have a face, for example, the top horizontal 
face, the histogram also recognises a maximum at the upper end of the 
vertical face because of the concentration of chord points. For bridges 
with a deck in the middle of the girder, the first maximum in Z corre
sponds to the deck location. 

To select the points of each face, those points were close to their 
calculated locations, considering a face width equal to widthVertFace 
and widthHorFace for the vertical and horizontal faces, respectively. 
Additionally, these points must lie between the maximum locations on 
the histogram along the other axis. For instance, as shown in the red 
boxes in Fig. 13(a) and Fig. 13(b), the points of the bottom horizontal 
face are those close to the lower maximum location in Z and between the 
locations of the vertical faces, which are the maximum locations in Y. 
Fig. 14 illustrates the bridge segmented into its faces, where the bottom 
horizontal face used as an example is in red. 

3.4. Analysing faces 

Face-sectioning simplifies the segmentation of the bridge, allowing 
each face to be analysed independently. The workflow applied to each 
type of face is shown in Fig. 15. These workflows were designed to be as 
similar as possible, reorienting the faces to use the same metrics, and 
applying specific functions to search for the elements present in them. 
The functions used for the segmentation of each item type, represented 
by orange rectangles in the diagrams, are described in section 3.5. 

3.4.1. Analysing vertical faces 
The vertical faces are green and magenta, as shown in Fig. 14. These 

faces had two types of items: diagonals and vertical posts. Chords were 
also included in the analysis. Fig. 15(a) shows the workflow used to 
analyse vertical faces. 

This segmentation process analyses all the faces sequentially and 
independently. First, points on the face under study were selected. The 
local PCA was then computed. Local PCA consists of applying PCA to the 
neighbourhood of each point. This neighbourhood includes all points 
closer than distLPCA to the point under analysis and the point itself. 
This analysis allows us to select points whose neighbourhood dispersion 
is required using Eq. (2). 

Λ > Λmin& Λ < Λmax & V > Vmin & V < Vmax (2) 

Being: 
Λ: eigenvalue array of applying local PCA to a point. 
Λmin: minimum eigenvalues defined as threshold. 
Λmin: maximum eigenvalues defined as threshold. 
V: eigenvector matrix for applying local PCA to a point. 
Vmin: minimum eigenvector defined as the threshold. 
Vmax: maximum eigenvector defined as the threshold. 

<: less than elementwise. 
>: greater than elementwise. 

The results of this analysis were used as inputs for algorithms for 
segmenting diagonals, vertical posts, and chords as explained in sections 
3.5.1, 3.5.2, and 3.5.3, respectively. 

Fig. 16 shows a vertical face segmented using this methodology. 

Fig. 15. Faces analysis workflows. (a)Analysing vertical faces, (b)Analysing horizontal faces, and (c) Analysing interior faces.  

Fig. 16. Vertical face segmented. Diagonals in red and green, vertical posts in blue, chords in ochre and no segmented points in black. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.4.2. Analysing horizontal faces 
The horizontal faces are the red and yellow faces shown in Fig. 14. 

The yellow face is the asphalt of the bridge; therefore, it was not ana
lysed. The red face was analysed following the workflow shown in 
Fig. 15(b). This face has two types of items: bottom-lateral braces and 
struts. In addition, there is a gangway close to this face which, in the 
face-sectioning process, is sectioned as part of the bottom horizontal face 
owing to its proximity to it. However, the segmentation of this gangway 
is not an objective of this work, and thus, its points are not analysed. 

This process is like that described above in section 3.4.1. The first 
process consisted of rotation of the face under study by 90◦ along the x- 
axis (as defined in Fig. 12). Therefore, the horizontal face is reoriented 
vertically. This allows us to continue the process as a vertical face, 
segmenting the bottom lateral braces using the algorithm explained in 
section 3.5.1, and the struts with the algorithm explained in section 
3.5.2, because a rotated strut can be segmented in the same manner as a 
vertical post. 

Fig. 17 shows a vertical face segmented using this methodology. This 
figure shows not only points segmented as struts or bottom lateral 
braces, but also non-segmented points such as points that belong to the 
chords (already segmented in the vertical face analysis), gangways, or 
errors in the process. 

3.4.3. Analysing interior faces 
The interior faces were the last faces analysed. This analysis followed 

the workflow shown in Fig. 15(c). Unlike the vertical and horizontal 
faces, the interior faces were not sectioned in the same manner. Thus, 
the segmentation of the bridge interior faces uses vertical member po
sitions. Each interior face is formed by the points between two vertical 
members with the same X position, considering that the width of the face 
is equal to widthInnerFace. Fig. 18 shows the interior faces of the bridge. 

Once the interior faces were sectioned, their elements were 
segmented into interior lateral braces, interior braces, and vertical posts. 

Fig. 17. Horizontal face segmented. Bottom lateral braces in red and green, struts in blue, and points not segmented in black. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 18. Voxelised point cloud with interior faces segmented. Interior faces in magenta and vertical members in blue. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 19. Interior face segmented. Interior lateral braces in red and green, 
interior braces in blue and points not segmented in black. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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The workflow is like that of the other faces, but with the following 
differences: 

First, all faces were segmented jointly instead of individually, as for 
horizontal and vertical faces. Second, a local PCA was applied, as for the 
other faces. Third, as in the horizontal faces, the interior faces were 
rotated by 90◦, but this time on the Z-axis, to reorient them as vertical 
faces. 

The interior lateral braces were then segmented using the method 
described in Section 3.5.1, with the difference that the last step of this 
process, Y-axis filtering, was not applied. There are two reasons. First, 
this was unnecessary because there were no elements external to the 
truss near these faces. Second, these faces are shorter than the others; 
therefore, defining the plane of each interior brace to filter out the el
ements that move away from it is complicated. 

Vertical posts were then segmented by applying the method 
described in section 3.5.2, as in the segmentation of other types of faces. 

Finally, the interior braces were not segmented using the method 
described in section 3.5.3 because there was only one member per face. 
The procedure was as follows. First, using the local PCA results, points 
with horizontal dispersion that are not in the extremes of Z are chosen. A 
histogram in Z is then calculated, and points close to the maximum bin 
are selected. The resulting points are segmented into interior braces. The 
segmented interior face is shown in Fig. 19. 

3.5. Truss element segmentation processes 

This section describes the methodologies used in section 3.4 to 
segment each type of element, using the methods represented by orange 
rectangles in Fig. 15. These methods are designed to segment the ele
ments present on a vertical face. However, they are also used to segment 

analogous elements into horizontal and interior faces after reorienting 
them as vertical faces. 

3.5.1. Segmentation of diagonals 
This section describes the method used for segmenting not only di

agonals but also bottom and interior lateral braces if their faces are 
oriented as vertical faces. Fig. 20 shows the workflow of this process. 

The diagonals are elements joined by nodes. Because the objective is 
to recognise the points belonging to each bar, the first step involves 
removing these nodes. In this step, vertical posts and chord members are 
also removed. To do so, the local PCA result, which is an input, is used to 
select those points that have a linear dispersion, and that this dispersion 
is neither completely in X nor Z. So, Eq. (2) is applied being λmin =

minEigvalDiag and vmax = maxEigvectDiag.The points that matched the 
equations were selected. The results are shown in Fig. 21. This method 
removes vertical posts and chords because they are dispersed along the 
X- or Z-axes. Nodes were removed because their dispersion was planar 
rather than linear. 

These points were then clustered using DBSCAN [21] with epsilon 
and minimum point parameters equal to epsilonDiag and 1, respec
tively. The results are shown in Fig. 22, in which groups of bars are 
formed. 

Once the points were clustered into bars, they were grouped to form 
a unique cluster for each diagonal bar. To achieve this, it is necessary to 
know the directions of the bars. There are two directions because the 
truss comprises diagonals that point up and diagonals that point down. 
The calculation of the directions follows the workflow shown in Fig. 23. 
First, the direction of each bar was calculated by applying a PCA to its 
points. The 1st eigenvector is the direction of the bar. The directions are 
then used as the input of DBSCAN [21] for clustering, with epsilon and 

Fig. 20. Segmentation workflow for diagonals.  

Fig. 21. Result of the method for removing points of nodes, chords, and vertical members. Removals are the red points. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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minimum point parameters equal to epsilonDirections and min
PointsDirections. This process is illustrated in Fig. 24. The mean di
rections of the groups with more points correspond to the two directions 
of the lateral members. 

Once the directions of the diagonals are known, pieces of the bars are 
joined according to the workflow shown in Fig. 26. This process has two 
major stages: the removal of clusters with fewer points than 
minSeedDirections. 

In the first stage, the clusters are assigned to one of the two diagonal 
directions or none. This was performed by calculating the direction of 
each cluster as the first eigenvector of the PCA result and comparing it 
with the diagonal directions. They were assigned a direction if the dot 
product between them was higher than toleranceDirections. The results 
are shown in Fig. 25. 

In the second stage, the clusters were merged. For this purpose, the 
clusters assigned in the same direction were studied. These clusters were 
sorted according to the number of points. Starting from the largest bar, 
the bounding box of the bar under study was defined. This box was 
centred at the centre of mass of the cluster, without a limit in the di
rection assigned to that cluster (calculated with the algorithm of 
Fig. 23), and with a width equal to barWidth. Next, clusters in the same 
direction as any point inside the box were merged. An example of this 
process is shown in Fig. 27. Clusters that were not assigned any direction 
were not considered. 

Finally, the clusters were filtered. Clusters further than lateralYDiag 
from the Y-centre of these clusters were deleted. The final clusters are 
diagonals, bottom lateral braces, or interior braces depending on the 
face to which they belong. 

3.5.2. Segmentation of vertical posts 
This section describes the method used for segmenting not only 

vertical posts, but also struts and interior braces if their faces are reor
iented as vertical faces. These items are straight vertical bars equidistant 
from each other. Fig. 28 shows the workflow of this process. It is 
important to note that this process was applied after the method 
described in section 3.5.1, and points that were already segmented were 
not considered in this analysis. 

The first step consists of selecting points whose neighbourhoods have 

Fig. 22. Vertical face segmented in pieces of possible diagonal. Each cluster is in a different colour. Gray points belong to nodes, vertical posts, and chords.  

Fig. 23. Calculation of the direction workflow of lateral diagonals.  

Fig. 24. Directions of each of the possible pieces of diagonals. Coloured in red 
and in green the directions which form the two major clusters. The mean of the 
red directions is the direction of the bars that point up. The mean of the green 
directions is the direction of the bars that point down. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 25. Selection of pieces of bars by its direction. Green and red points are members of clusters assigned to a direction. Black points are members of clusters with a 
different direction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

D. Lamas et al.                                                                                                                                                                                                                                  



Automation in Construction 151 (2023) 104865

12

vertical dispersion. Using the local PCA result, points that match Eq. (2) 
with vmin = minEigvectVert are selected. 

Once the vertical points are selected, a histogram of their X position 
with a bin width of binWidth is calculated. The objective is to find the 
location of each bar, knowing that there are maxima in those positions 
and that those locations are equidistant. To calculate these locations, the 
methodology shown in Fig. 29 is applied and named Equi
distantHistPeaks. This process consists of finding histogram maxima that 
are equidistant. For this, all local histogram maxima are considered. The 
variance in the distances between consecutive maximum locations is 
then calculated. If the variance is greater than maxVarPeaks, the 
smallest maximum is removed, and the variance is recalculated. When 
the variance is sufficiently small, the locations of the maxima are the 

locations of the vertical posts. Fig. 30 illustrates the histogram 
processing. 

Finally, the points in the computed locations, considering a bar width 
equal to vertBarWidth, are clustered, forming vertical posts, struts, or 
interior braces, depending on the face to which they belong. An example 
of the segmentation of these elements is shown in Fig. 31. 

3.5.3. Segmentation of chords 
Fig. 32 shows the workflow of this process. This section describes the 

method used to segment chords. Chords are horizontal members parallel 
to the X-axis of the reoriented bridge that delimit the truss. For this 
reason, the first steps are like those described above in section 3.5.2: 
selecting points that match Eq. (2) with vmin = minEigvectChord, and 

Fig. 26. Merging lateral diagonal pieces workflow.  
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Fig. 27. Merging pieces of diagonals. Each piece is coloured differently. The studied cluster is pink, inside the blue box. The blue box is extended in direction 1, 
painted in black. All the clusters with any point in the black box and assigned to direction 1 are merged, forming a diagonal. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 28. Segmentation workflow of vertical members.  

Fig. 29. Equidistant histogram peaks workflow.  
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calculating the Z position of each chord using EquidistantHistPeaks. It is 
important to note that this process is applied after the methods described 
in sections 3.5.1 and 3.5.2, and the points already segmented are not 
considered in this analysis. 

For each bar, the points closer to the location of the chord member 
are clustered, considering a chord width in Z equal to chordWidth. The 
cluster is then oriented using a modified version of PCA [30] to be 
denoised in Y. The objective is to remove points that are not part of the 
bar. To do so, a histogram of the Y position with a bin width equal to 
binWidth is generated. This is used to trim the points outside the bar 
limits using the workflow described in Fig. 33, and named TrimHist. This 
method involves sequentially incrementing the number of bins consid
ered, starting from the most populated bin of the histogram. For each 
increment, the ratio of the points considered to the total is computed. 
This increment is repeated until the difference between the actual ratio 
and the previous ratio is lower than histThreshold. An example of a trim 
histogram is shown in Fig. 34(a) and a denoised chord is shown in 
Fig. 34(b). 

Note that in Fig. 34(a), the points inside the red box are those 
selected using the method described in Fig. 33. 

4. Results 

The values of the parameters presented in section 3, which are listed 
in Table 1, are based on the experience of the authors and have been 
tuned on the basis of experiments. The same values are used in all case 
studies. 

The g parameter value requires a compromise between down sam
pling and accuracy. It is an empirical value that is determined using the 
experience of the authors and the magnitude of the bridge elements. 
binWidth must be greater than g because it is used to find groups of 
voxels in the point cloud. binWidthY and binWidthZ are used to 
determine the location of the faces in a histogram; therefore, they must 
be smaller than the face width. distLPCA must have a value that allows 
for the differentiation of the truss parts; for instance, to differentiate 
nodes from bars. The eigenvalue parameters are adjusted depending on 
whether the cluster is linear, planar, or volumetric. The eigenvector 
parameters define only the 1st eigenvector. These indicate the main 
directions of the segmented group. 

Fig. 30. Histogram for the location of vertical members. Peaks of the first iteration in green and peaks of the last iteration in red using Fig. 29 workflow. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 31. Vertical posts segmented. Vertical posts in blue. Points analysed and not segmented as vertical posts in brown. Points that are not analysed because they are 
segmented in a previous step as a different element in gray. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 32. Segmentation workflow of chords.  
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4.1. Case study I 

The specific parameters used in the case study are listed in Table 2. 
These parameters are based on the dimensions of the bridge compo
nents. These are the widths of its faces and the widths of the cross- 
sections of its members, which were manually measured in the point 
cloud. 

The elements detected are shown in Fig. 35. 
The analysed truss bridge had a total of 274 elements comprising 17 

struts, 32 bottom lateral braces, 17 interior braces, 34 interior lateral 
braces, 34 vertical posts, 136 diagonals, and 4 chords. The following 
errors are detected: 

Fig. 35 shows that the leftmost strut is not detected and is a false 

negative. 
On the bottom horizontal face, an external element is segmented as a 

bottom lateral brace. Fig. 36(a) shows the error. 
In the interior face of Fig. 36(b), there are three false positives. This 

face is close to a pillar, and a part of it, which is segmented, has interior 
lateral braces. 

On the interior face shown in Fig. 36(c), which is the interior face 
close to the other pillar, there is one false negative because an interior 
lateral brace is not detected. 

On another interior face, as shown in Fig. 36(d), there is an interior 
lateral brace shown, which is a false positive. 

Moreover, the detected elements are partially segmented. However, 
the intention is not to achieve complete segmentation, but to detect each 

Fig. 33. Trim histogram workflow.  

Fig. 34. (a) Histogram of Y locations in chord member segmentation, (b) the segmented chord where the points selected are in green, and the discarded in red. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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item at least partially, whose main direction matches that of the item to 
which it belongs. As explained in the methodology section, instances are 
selected based on their direction. This implies that each detected 
instance has the same principal direction as the member that it repre
sents. However, it would be interesting to analyse the parts of the truss 
elements that are not segmented. 

Fig. 37(a) shows how the diagonals are completely segmented, 
except for the nodes, and how the gangway hinders the segmentation of 
the interior lateral braces in Fig. 37(b). These areas are not segmented 
because the nodes are removed in the segmentation process to isolate 
each member of the truss. 

On the interior faces, as shown in Fig. 37(c), the same occurs with the 
nodes on the diagonals; however, some points of the bars are not well 
recognised. This results from the fact that there are discontinuities in the 
element itself due to occlusions in the point cloud. 

Lastly, it is important to note that the point cloud has occlusions, as is 

shown in Fig. 8 and in the images of Fig. 36. 
In summary, the segmentation of case study I yielded 272 true pos

itives, 2 false negatives, and 6 false positives. 

4.2. Case study II 

The specific parameters used to process this case study are shown in 
Table 3. 

The elements detected are shown in Fig. 38. 
The truss bridge analysed has 196 elements comprising 12 struts, 14 

bottom lateral braces, 24 interior vertical braces, 72 interior lateral 
braces, 24 vertical posts, 44 diagonals, and 6 chords. The following er
rors are detected: 

A lateral brace is not detected, as is shown in Fig. 39. 
In the horizontal face, 5 bottom lateral braces are not detected. Ten 

struts are not detected on the same surface. Fig. 40 shows the false 
negatives. 

In the interior faces, 25 interior lateral braces and one vertical post 
are not detected. Fig. 42 shows the false negatives. 

Moreover, as in case study I, the detected elements are not 
completely segmented; however, the objective of the segmentation is 
achieved because the principal direction of these elements are correct. 

Lastly, it is important to note that the point cloud has occlusions, as is 
shown in Figs. 10, 39, 40, and 42. This makes it impossible to segment 
the two chords under the bridge deck. 

In summary, the segmentation of case study II yielded 154 true 
positives and 42 false negatives. 

5. Discussion 

The main objective of this study is to develop an automatic instance 
segmentation method for truss-bridge point clouds. To the best of our 
knowledge, the justification for this objective is based on the absence of 
a segmentation process for truss bridges. Therefore, this study represents 
the publication of code and data as the first benchmark for the seg
mentation of truss bridge point-cloud instances. 

The specific objective of this algorithm is to at least partially detect 
every set of points whose main direction matches that of the item to 
which it belongs. This objective allows the determination of the posi
tions of the bridge nodes and the elements connected to them, as 
demonstrated in the continuation of this study [31]. This information is 
essential for modelling purposes. These nodes are critical for deter
mining the geometry and structural behaviour of the bridge, and they 
help ensure that the bridge can withstand the loads and stresses it will 
experience over its lifetime. The proper modelling of these nodes is 
important for accurately predicting the performance and safety of truss 
bridges. 

The results obtained demonstrate the capacity of the algorithm to 
achieve the proposed objective, which was tested using two case studies. 

Table 1 
Values of the parameters used.  

Process Parameter Value Unit 

Common parameters binWidth 2 g m 
Pre-processing g 0.05 m 

k 4  
Faces sectioning binWidthY 

binWidthZ 
widthVertFace/3 
widthHorFace/3 

m 
m 

Analysing faces distLPCA 6 g m 
Segmentation of diagonals minEigvalDiag (0.7 − −)  

maxEigvectdiag 
⎛

⎝
0.9 − −

− − −

0.9 − −

⎞

⎠

epsilonDiag 4/3 g  
epsilonDirections 2 g  
minPointsDirections 10  
minSeedDirections 1.5/g  
toleranceDirections 0.97  
lateralYDiag 4/3 barWidth m 

Segmentation of vertical posts minEigvectVert 
⎛

⎝
− − −

− − −

0.9 − −

⎞

⎠

maxVarPeaks 0.1 g  
Segmentation of chords minEigvectChord 

⎛

⎝
0.9 − −

− − −

− − −

⎞

⎠

histThreshold 0.05   

Table 2 
Parameters used in segmentation of case study I.  

Parameter Value [m] Parameter Value [m] 

barWidth 0.1 widthVertFace 0.9 
vertBarWidth 0.3 widthHorFace 0.6 
chordWidth 1 widthInnerFace 0.9  

Fig. 35. Case study I bridge segmented.  
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In case study I, the good performance of the algorithm can be 
observed by comparing Fig. 2 and Fig. 35. In this case study, 272 true 
positives, 2 false negatives, and 6 false positives are obtained. Most er
rors are caused by occlusions or noise in the point cloud. In fact, all the 
errors are in the interior faces, where there are more occlusions, and 
close to the pillars, where the truss elements are sometimes mistaken for 
pillars. This is shown in Fig. 36. 

In case study II, the results are observed by comparing Fig. 5 and 
Fig. 38. In this case study, 154 true positives and 42 false negatives are 
identified. Most of the errors are due to the reasons already discussed. 

The errors in the interior faces are due to occlusions, as shown in Fig. 42, 
where the number of occlusions is highly relevant. In addition, the errors 
in the horizontal face can be attributed to two factors. First, false posi
tives of the struts are caused by an item close to the pillar. Equi
distantHistPeaks discards strut positions sequentially and discards false 
struts after discarding several real struts; thus, they are not detected. The 
results are shown in Fig. 40 and Fig. 41. Second, the error in the bottom 
lateral brace detection occurs because they do not follow the same di
rection, as shown in Fig. 40, and the algorithm does not foresee this 
possibility. However, it could detect 9 of the 14 braces despite 
occlusions. 

It is important to discuss the effects of the point cloud quality and 
truss topology on the results. 

In any data analysis process, the data quality is the first determining 
factor. For point clouds, particularly in these two case studies, the 
limiting factor for the information that can be extracted from point 
clouds is the presence of occlusions. In point clouds, the occlusions are 
missing points belonging to nonvisible surfaces from any scan position. 
Occlusions are common in point clouds with such characteristics. Owing 

Fig. 36. Errors in case study I bridge segmentation. Errors are shown in a green circle. (a) False negative in the bottom horizontal face, (b) false positives in an 
interior face close to a pillar, (c) false positives in an interior face close to the other pillar, and (d) false positive in an interior face. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 37. Segmented elements from different faces with no segmented points in black. (a) Diagonal in green, (b) bottom face with struts in violet and bottom lateral 
braces in green, and (c) interior face with interior brace in brown and interior lateral braces in red. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Table 3 
Parameters used in the segmentation of case study II.  

Parameter Value [m] Parameter Value [m] 

barWidth 0.3 widthVertFace 0.6 
vertBarWidth 0.2 widthHorFace 0.6 
chordWidth 0.5 widthInnerFace 0.6  
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to the scanning of truss bridges, it is difficult, and in some cases 
impossible, to perform scans in such a position that all bridge elements 
can be visualised without occlusions. Some examples of these occlusions 
can be observed in Figs. 36, 37, 40, and 42. Analysis of the results 
showed that most errors occur in areas with more occlusions. This 

explains the difference between the results obtained in the two case 
studies. Case study II has a significantly higher number of false nega
tives. Most of them are on the interior faces. As shown in Fig. 42, these 
faces have more occlusions than the interior faces in case study I, as 
shown in Fig. 18. This difference is due to the scan points used. In case 
study I, the scan positions are under the bridge; therefore, the board does 
not occlude the interior faces. This is not possible in case study II because 
of terrain characteristics. However, it should be noted that despite errors 
made in areas with occlusions, this algorithm displays a remarkably 
robust performance in these areas, as shown in Fig. 40, where the al
gorithm can recognise elements that are not complete in the point cloud. 
In this sense, the improvement of the results would require not only an 
improvement in the segmentation algorithm but also in the scanning 
methods. 

The truss bridge topology plays an important role in the segmenta
tion process. The two case study bridges have different topologies. As 
mentioned previously, the higher incidence of errors in case study II can 
be explained by occlusions. The topology of this case study with a larger 
number of members on the interior faces and a half-height board affects 
the presence of these occlusions. In addition, there are other errors 
owing to the topology. As shown in Fig. 40, the lateral bottom diagonals 
are not all the same. Those forming the first, last, and central crosses 
have different inclinations than the others. The algorithm detects the 

Fig. 38. Case study II bridge segmented.  

Fig. 39. Vertical face of case study II bridge segmented. The error is marked with a red circle. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 40. Horizontal face of case study II bridge segmented. The item inside the yellow circle is the cause of the failure in the strut segmentation during the execution 
of EquidistantHistPeaks as is shown in Fig. 41. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 41. Histogram of X position of possible strut points. The algorithm Equi
distantHistPeaks fails in the detection of the X position of the struts because the 
yellow location is the last one removed. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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lateral diagonals by calculating their inclinations and assumes that they 
all have the same angle. This limits the detection of the truss topologies. 
However, most parts of truss bridges match this requirement, and the 
algorithm can work in several topologies, as shown in this study. 

Finally, it is important to note that despite being a heuristic method 
with several experimental parameters, only six of them vary between the 
case studies, and these six are related to the dimensions of the truss el
ements; thus, they can be measured easily in the point cloud. 

6. Conclusions 

This study presents a methodology for recording a point cloud from 
truss bridges and automatically segmenting it to obtain information 
about the elements comprising the truss. 

First, data were acquired using a TLS to obtain a point cloud. Second, 
the point cloud is pre-processed, denoised, and down sampled using a 
voxelisation method. Third, a segmentation process is applied. The 
process begins by sectioning the truss into horizontal and vertical faces. 
The faces were then sequentially segmented, orienting them as vertical 
faces to apply similar metrics based on the distribution of the neigh
bourhood at each point. From the results obtained, the interior faces 
were sectioned and analysed, completing the segmentation process. 

A segmented point cloud is obtained using this methodology. The 
true positives obtained have sufficient information about the item to 
which they belong, to at least calculate the nodes to which each element 
is connected. 

Two case studies in which this methodology was tested demonstrate 
good functioning. In the first case study, 272 true positives, 2 false 
negatives, and 6 false positives are obtained. In the second case study, 
154 true positives and 42 false negatives are identified. 

Although there is room for improvement, both in terms of metrics 
and setting more ambitious objectives, such as recognising the sections 
of the truss elements or completely segmenting them, it is important to 
emphasise that, to the best of our knowledge, no state-of-the-art truss 
point cloud segmentation methods have been reported previously. 
However, the data and codes have been published here to serve as 
benchmarks for future studies. 

There are several interesting future research directions for this study. 
We have published a paper [31] continuing this work, which demon
strates that this process can be exploited to generate International 
Foundation Class-compliant models and structural graphs of truss 
bridges. This continuation is possible because the algorithm presented in 
this paper is designed as a conservative model, and it does not focus on 
segmenting all points, but on obtaining groups of points with sufficient 

information to represent each element. 
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