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Abstract
Future changes in the intensity of tropical cyclones (TCs) under global warming are 
uncertain, although several studies have projected an upward trend in TC intensity. In 
this study, we examined the changes in the strength of TCs in the twenty-first century 
based on the Hurricane Maximum Potential Intensity (HuMPI) model forced with the sea 
surface temperature (SST) from the bias-corrected CMIP6 dataset. We first investigated 
the relationship between the mean lifetime maximum intensity (LMI) of major hurricanes 
(MHs) and the maximum potential intensity (MPI) using the SST from the Daily Optimum 
Interpolation SST database. The LMI of MHs and the MPI in the last two decades was, 
on average, 2–3% higher than mean values in the sub-period 1982–2000, suggesting a 
relationship between changes in MPI and LMI. From our findings, the projected changes 
in TC intensity in the near-future period (2016–2040) will be almost similar for SSP2-
4.5 and SSP5-8.5 climate scenarios. However, TCs will be 9.5% and 17% more intense by 
the end (2071–2100) of the twenty-first century under both climate scenarios, respectively, 
compared with the mean intensity over the historical period (1985–2014). In addition, 
the MPI response to a warmed sea surface temperature per degree of warming is a 5–7% 
increase in maximum potential wind speed. These results should be interpreted as a 
projection of changes in TC intensity under global warming since the HuMPI formulation 
does not include environmental factors (i.e., vertical wind shear, mid-level moisture content 
and environmental stratification) that influence TC long-term intensity variations.

Highlights 

•	 The maximum potential intensity (MPI) of tropical cyclones is a predictor of their cli-
matological intensities.

•	 Tropical cyclones will be 17% more intense than today by the end of the 21st Century.
•	 The maximum potential wind speed will increase by 5–7%/ºC under global warming.
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1  Introduction

Tropical cyclones (TCs) are among the most devastating natural phenomena, causing 
lives and economic losses, due to strong winds, heavy rainfall, flash flooding and storm 
surge (Poulos 2010; Peduzzi et  al. 2012; Gallina et  al. 2016; Klotzbach et  al. 2018). 
Overall, the impact of TCs has globally caused around 1.9 million death over the last 
two centuries, especially in coastal areas (Shultz et  al. 2005; Mendelsohn et al. 2012; 
Hoque et al. 2017a, b, c).

Despite the long-term TC databases such as the Atlantic Hurricane Database (HURDAT2; 
Landsea and Franklin 2013) included in the International Best Track Archive for Climate 
Stewardship (IBTrACS; Knapp et al. 2010, 2018), the inhomogeneities in TC records (Chang 
and Guo 2007; Vecchi and Knutson 2008; Kossin et al. 2013; Bhatia et al. 2019) prevent the 
detection of reliable climatic signals in the variability of TC activity both at the basins and on 
a global scale (Emanuel 2021a). Therefore, the influence of climate change on TC activity 
remains uncertain (Peduzzi et al. 2012; Moon et al. 2019; Knutson et al. 2019, 2020).

While some studies in the last decades have found an increase in the percentage of 
Category 4–5 hurricanes on the Saffir–Simpson wind scale (e.g., Webster et  al. 2005; 
Elsner et al. 2008; Holland and Bruyère 2014), other works have considered this trend 
part of the interdecadal variations in the frequency of intense TCs related to fluctuations 
in the atmospheric environment (Chan 2006; Li et al. 2015; Yan et al. 2017) or detected 
a non-significant upward trend (Klotzbach and Landsea  2015). Most recently, Kossin 
et al. (2020) noted a significant upward trend in the exceedance probability and propor-
tion of major hurricanes (MHs, Category 3 + on the Saffir–Simpson scale) but Pérez-
Alarcón et al. (2021a) and Vecchi et al. (2021) found a no robust long-term trend in TCs 
reaching hurricane category over the North Atlantic (NATL) basin. On the contrary, 
Klotzbach et al. (2022) detected a downward trend in the global number of hurricanes 
from 1990 to 2021. For further details, readers can consult a recent book by Chu and 
Murakami (2022), which updates and describes changes in TC activity.

Numerous studies (e.g., Emanuel et al. 2008; Camargo 2013; Murakami et al. 2014; 
Satoh et al. 2015; Wehner et al. 2015; Knutson et al. 2020; Roberts et al. 2020; Emanuel 
2021b; Chand et al. 2022) have also revealed changes in TC frequency in future climate. 
For example, Camargo (2013), using 14 models from phase 5 of the Coupled Model 
Intercomparison Project (CMIP5), found that all of the models underestimated the 
global frequency of TCs and presented a wide range of global TC frequency. Murakami 
et  al. (2014) found a marked decrease in TC frequency in the basins of the Southern 
Hemisphere, Bay of Bengal, Western North Pacific (WNP), Central and East Pacific 
(NEPAC), and the Caribbean Sea and increases in the Arabian Sea and the subtropi-
cal central Pacific Ocean. Likewise, Roberts et  al. (2020), using the sixth-generation 
Coupled Climate Model Intercomparison Project (CMIP6) HighResMIP Multimodel 
Ensemble, found that TC activity generally will decrease in the South Indian Ocean by 
2050, while changes in the other basins are more sensitive to tracking algorithms. On 
this basis, most of the previous findings highlighted a robust reduction in global TC 
frequency as a response to global warming. In contrast, few studies using dynamical 
models (Bhatia et  al. 2018; Vecchi et  al. 2019) or statistical–dynamical downscaling 
(Emanuel and Sobel 2013; Lee et al. 2020) recently detected that the frequency of TCs 
shifts to higher values as the twenty-first century progresses.

Additionally, several studies (e.g., Mendelsohn et al. 2012; Emanuel and Sobel 2013; 
Yin et  al. 2013; Fraza and Elsner 2015; Walsh et  al. 2016, 2019; Bhatia et  al. 2018; 
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Knutson et al. 2020; Lee et al. 2020; Emanuel 2021b; Pérez-Alarcón et al. 2021b) have 
also projected an increase in the intensity of TCs under different climate change scenar-
ios. In this line, Bhatia et al. (2018) found that the TC intensification rate is projected 
to be higher by the end of this century relative to the present day, leading to more MHs, 
Emanuel (2021b) found an increase in the severity of TCs using CMIP6, and Knutson 
et al. (2020) stated that climate change is probably increasing the intensity of TCs. Nev-
ertheless, future changes in TC activity depend on the uncertainties in climate projec-
tions, such as climate-forcing scenarios, model dynamics, physics and spatial resolu-
tions (Roberts et al. 2018).

The linkages between climate and TC intensity could be examined through the maximum 
potential intensity (MPI) of TCs (Emanuel 1986), which is generally taken as the upper TC 
intensity limit (Walsh et al. 2019). Previous studies have analytically derived equations for 
the MPI with processes that possibly affect TC intensity, such as convective available poten-
tial energy in the eyewall region (Bister and Emanuel 2002), effects of dry air intrusion into 
the core (Tang and Emanuel 2010), effects of the ocean mixing under TC forcing (Miy-
amoto et al. 2017), the environmental stratification (Kieu and Zhang 2018), and the friction 
in the atmospheric boundary layer (Pérez-Alarcón et al. 2021c, 2022). All these previous 
MPI approaches were based on the classical Emanuel’s MPI theory representing the TC as 
a Carnot heat engine. Recent works by Kieu and Wang (2017ab) considered the basic scales 
of hurricanes as dynamical variables to derive a low-order hurricane model, which leads to 
an estimate of the MPI different from the classic Carnot cycle approach. According to Kieu 
and Zhang (2018), this low-order model could lead to an MPI equilibrium and its asymptoti-
cal stability, which cannot be achieved by working with a steady-state assumption as in the 
previous studies (e.g., Emanuel 1986; Bister and Emanuel 2002).

Emanuel and Sobel (2013) highlighted that the TC potential intensity variations using 
the Carnot cycle approach are likely more dependent on the SST than other forcing condi-
tions. It is important to remark that TCs generally cannot achieve their MPI due to sev-
eral negative environmental factors, such as vertical wind shear (Frank and Ritchie 2001; 
Alland et al. 2021a, b; Sharma and Varma 2022; Wang and Tan 2022), entrainment of dry 
air (Shu and Wu 2009; Luo and Han 2021; Shi et al. 2019; Wang and Toumi 2019), and 
sea surface temperature (SST) cooling from air-sea interaction (Pun et al. 2013; Yang et al. 
2020; Pasquero et  al. 2021). Nonetheless, based on the MPI theory, several works have 
addressed the increasing intensity of future TCs. For example, Korty et al. (2008) found 
a significant increase and poleward expansion of MPI. Wing et al. (2015) detected robust 
trends of TC MPI in the NATL basin over the period 1980–2013, suggesting that the envi-
ronment could support intense TCs circa to the upper limit. Knutson et al. (2020) addressed 
that the projected increase in TC intensity with SST warming by about 1–10% for a 2 ºC 
is supported by the MPI trends. Park et al. (2021) examined the MPI over the area of TC 
passage to South Korea using CMIP5 and CMIP6 models. Pérez-Alarcón et  al. (2021b) 
applied the Hurricane Maximum Potential Intensity model (HuMPI; Pérez-Alarcón et al. 
2021c, 2022) forced with the SST from the Geophysical Fluid Dynamics Laboratory – Cli-
matic Model version 4.0 (Held et al. 2019) to investigate the projected changes in the TC 
MPI over the NATL basin for 2050, 2075 and 2100 under the extreme Shared Socio-Eco-
nomic Pathways (SSPs) 5–8.5 (SSP5-8.5; O’Neill et  al. 2017; Riahi et  al. 2017). Pérez-
Alarcón and Fernández-Alvarez (2022) also investigated the climatological variations in 
the intensity of TCs formed over the NATL basin by applying the HuMPI model. These 
authors found an increase of 3.89% and 3.20% in the last 20 seasons (2002–2021) relative 
to the period 1982–2001 for MHs and MPI, respectively.
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Even though theory and modeling studies suggest an increase in TC intensity on the 
basin-wide and global scales in a warming climate, there are uncertainties in the pro-
jected responses of TC intensity to climate change (Knutson et al. 2019, 2020). For further 
details, readers can also refer to the review paper by Wu et al. (2022), which provides a 
comprehensive state-of-art of the effect of climate change on TC intensity. Additionally, 
despite variety of negative influences not fully accounted for by the MPI theory, previous 
works (Emanuel 2000; Wing et al. 2007; Bryan and Rotunno 2009; Kossin and Camargo 
2009; Wang et al. 2014; Gilford et al. 2017, 2019) have noted that the potential intensity 
theory could be used as a predictor for the climatological intensities of TCs. Therefore, 
this work seeks to examine the changes in TC intensity both at the basins and on a global 
scale based on the MPI under the CMIP6 SSP2-4.5 and SSP5-8.5 scenarios during the 
twenty-first century by applying the HuMPI model. The SSP2-4.5 and SSP5-8.5 scenarios 
represent, respectively, the intermediate challenges scenario with a radiative stabilization 
rate of 4.5 Wm2 beyond 2100 and the high challenges scenario with emissions high enough 
to produce a radiative forcing of 8.5 Wm2 in 2100. These “medium” and “high” scenar-
ios have been used for many previous projections summarized by the Intergovernmental 
Panel on Climate Change (Widhalm et al. 2018). Additionally, detailed descriptions of the 
CMIP6 SSPs can be found in O’Neill et al. (2017) and Eyring et al. (2016) which provide 
an overview of the experimental design of CMIP6.

The rest of the paper includes in Section 2 the databases and methodology applied in 
this work and a description of the HuMPI model. The results and discussion are provided 
in Sections 3 and 4, respectively, and the conclusions and plans for future works are pro-
vided in Section 5.

2 � Materials and Methods

2.1 � Data

To feed the HuMPI model, we used the SST from the Bias-corrected CMIP6 global data-
set for the SSP2-4.5 and SSP5-8.5 scenarios from 1979 to 2100 (Xu et al. 2021) with a 
horizontal grid spacing of 1.25° × 1.25°. This database was constructed based on 18 mod-
els from the most up-to-date Global Circulation Models CMIP6 (see Xu et al. 2021) and 
the European Centre for Medium-Range Weather Forecasts Reanalysis 5 (ERA5) reanaly-
sis (Hersbach et  al. 2020). In summary, the bias-corrected method applied to this data-
set decomposed Global Circulation Models and reanalysis data into long-term trends 
and anomalies. The long-term trend was estimated using the multi-model ensemble (Dai 
et al. 2020) mean derived from 18 CMIP6 models over historical (1979–2014) and future 
(2015–2100) periods. The 18 CMIP6 models used to construct the Bias-corrected CMIP6 
dataset are listed in Table 1 according to their equilibrium climate sensitivity (ECS) from 
lowest to highest. The ECS is defined as the global mean temperature change following 
double CO2 concentrations (Nijsse et al. 2020; Zelinka et al. 2020).

In addition, we utilized the Daily Optimum Interpolation SST (OISST) database v2.1 (Ban-
zon et al. 2020) with 0.25° × 0.25° horizontal resolution to evaluate the changes in the MPI in 
the four past decades. We also used the TCs records from 1982 to 2020 from the United States 
warning agency best tracks: the National Hurricane Center/Central Pacific Hurricane Center 
(HURDAT2; Landsea and Franklin 2013) for NATL and Central and East Pacific (NEPAC) 
basins and the Joint Typhoon Warning Center (JTWC; Chu et  al. 2002) for the remaining 
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global basins. It is worth noting that both agencies are from the United States, which guaran-
tees homogeneity in the estimation of the TC intensity as the one-minute average wind speed 
at an altitude of 10 m.

2.2 � Description of HuMPI model

The HuMPI model was developed by Pérez-Alarcón et al. (2021c), and it is based on the 
classic potential intensity theory of TCs (E-PI theory) proposed by Emanuel (1986). The 
E-PI theory assumes that the steady mature TC has an axisymmetric structure with flows 
that satisfy both hydrostatic and gradient wind balances, and is in a state of slantwise moist 
neutral condition (Emanuel 1986; Wu et  al. 2022). Overall, HuMPI is divided into two 
parts: the first represents the thermodynamic part and the second the dynamic part. The 
thermodynamic part assumes that the TC acts as a generalized Carnot heat engine requir-
ing the SST as input. The potential maximum wind speed (Vmax) at the top of the boundary 
layer (BL) can be expressed as:

where Tb (in K) is the temperature at the top of the BL, T00 (in K) is the outflow tempera-
ture, Ck/Cd is the ratio between the surface exchange coefficient for enthalpy and the sur-
face drag coefficient, ( h∗

s
−h∗

b
 ) is the difference between the saturation moist static energy 

(in m2/s2) at the sea surface and the saturation moist static energy above the BL. Following 
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Table 1   CMIP6 models used by Xu et  al. (2021) to construct the Bias-corrected CMIP6 global dataset. 
ECS: equilibrium climate sensitivity (in ºC). The ECS was obtained from Nijsse et al. (2020)

Model ECS Institution Region

MIROC6 2.56 Japan Agency for Marine-Earth Science and Technology Japan
GFDL-ESM4 2.68 Geophysical Fluid Dynamics Laboratory, USA
NorESM2-LM 2.69 Norwegian Climate Center Norway
MPI-ESM1-2-LR 2.77 Max Planck Institute for Meteorology Germany
FGOALS-fg3 2.80 Institute of Atmospheric Physics, Chinese Academy of Sciences China
MPI-ESM1-2-HR 2.99 Max Planck Institute for Meteorology Germany
FGOALS-f3-L 3.00 Institute of Atmospheric Physics, Chinese Academy of Sciences China
AWI-CM-1–1-MR 3.20 Alfred Wegener Institute, Helmholtz Centre for Polar and Marine 

Research
Germany

BCC-CSM2-MR 3.07 Beijing Climate Center China
MRI-ESM2-0 3.14 Meteorological Research Institute, Japan Meteorological Agency Japan
ACCESS-ESM1-5 3.97 Commonwealth Scientific and Industrial Research Organisation Australia
EC-Earth 4.22 European EC-Earth Consortium Europe
EC-Earth3-Veg 4.34 European EC-Earth Consortium Europe
IPSL-CM6A-LR 4.63 Institute Pierre Simon Laplace France
ACCESS-CM2 4.81 Commonwealth Scientific and Industrial Research Organisation Australia
CESM2-WACCM 4.90 Climate and Global Dynamics Laboratory USA
CEMS2 5.30 Climate and Global Dynamics Laboratory USA
CanESM5 5.66 Canadian Centre for Climate Modelling and Analysis Canada



	 A. Pérez‑Alarcón et al.

1 3

   36   Page 6 of 22

Emanuel (2004), variations in h∗
b
 at constant altitude are related to variations in the satura-

tion entropy. By the first law of thermodynamics, we obtain:

where

where rm (in m) is the radius of maximum wind speed, ra (in m) is the outer limit of the 
vortex, Pm and Pa (in Pa) are the surface pressures at rm and ra, respectively, f (in s−1) is the 
Coriolis parameter, and ha is the BL moist static energy. Solving (Eq. 2) and considering 
only the positive solution, we can estimate Vmax (in m/s) at the top of the BL.

The dynamic part of the HuMPI model is based on the TC BL model proposed by Smith 
(2003) and revised by Smith and Vogl (2008). Taking the integral of the BL equations for 
a steady axisymmetric vortex in a homogeneous fluid on an f-plane (see Eqs. 1–4 in Smith 
2003) with respect to z from the surface to the top of the BL and assuming that the BL has 
uniform depth (δ, in m) and constant density, the equations for radial (u) and azimuthal (v) 
components of wind speed (in m/s) are obtained:

where vgr (in m/s) is the tangential wind speed, wδ− = (wδ −|wδ|)/2, wδ is the vertical veloc-
ity (in m/s) at the top of the BL. The assumption of gradient wind balance for the tangential 
wind speed has been considered the major deficiency of the E-PI theory (Smith et al. 2008; 
Kowaleski and Evans 2016; Makarieva and Nefiodov 2023). Therefore, to compute tan-
gential wind speed (vgr), the HuMPI uses the radial wind profile developed by Willoughby 
et al. (2006). This radial wind profile depends on the Vmax, which was taken from Eq. (2). 
By assuming that the wind speed in surface is quite similar to the wind speed in the BL, 
and solving Eqs. (6)-(7), we computed the maximum potential wind speed (MPWS) as the 
maximum of 

√

u2 + v2 . To estimate the minimum potential central pressure (MPCP), we 
used the pressure radial profile developed by Fernández-Alvarez et  al. (2019). Note that 
MPWS (MPCP) theoretically establishes the upper (lower) limit for the maximum wind 
speed (minimum central pressure) that a TC can reach.

HuMPI was previously used by Pérez-Alarcón et al. (2021b) to investigate the impact 
of global warming on the MPI of TCs formed over the NATL basin. It is worth noting that 
HuMPI estimates the limit of TC intensity if the large-scale factors are favorable for TC 
intensification. Note that real TC intensity is affected by both dynamic and thermodynamic 
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factors. In some of the basins, dynamic factors are more important than thermodynamic 
factors to TC intensification, i.e., the WNP basin (Chan 2009).

2.3 � Methodology

The annual average of SST, maximum potential wind speed (MPWS) and minimum poten-
tial central pressure (MPCP) were computed for each basin using the grid points inside 
the red boxes shown in Fig. 1. That is, from 5ºN to 35ºN and the eastern coast of America 
to 1ºW for the NATL, from 5ºN to 30ºN and the western coast of America to 180ºW for 
NEPAC, from 5ºN to 30ºN and 100ºE to 180ºE for WNP, from 5ºN to 25ºN and the north-
eastern coast of Africa coast to 100ºE for North Indian Ocean (NIO), from 5ºS to 30ºS and 
the southeastern coast of Africa to 135ºE for the South Indian Ocean (SIO); and from 5ºS 
to 30ºS and 135ºE to 120ºW for the South Pacific Ocean (SPO). Although several works 
(Shen et al. 2018; Sun et al. 2019; Zhang et al. 2018) have identified the long-term pole-
ward shift of TC, the criterion of selection of these regions was based on the fact that TCs 
generally reached the hurricane category on the Saffir–Simpson wind scale in these areas, 
as indicated by purple points in Fig. 1.

To gain an overview of the relationship between the lifetime maximum intensity (LMI) 
of TCs that reached the MH category and the MPI, we first performed the HuMPI estima-
tions fed by the SST from the OISST dataset from 1982 to 2020, and second, we divided 
this period into two sub-periods. The length of each sub-period was determined based on 
the SST anomalies in each basin. We applied the pruned exact linear time (PELT) method 
(Killick et  al. 2012) to detect a change point in the SST anomalies, as shown in Fig.  2. 
Thus, based on the PELT algorithm, we divided the 1980–2020 time frame into 1982–2002 
and 2003–2020 for NATL and NEPAC, 1982–2001 and 2002–2020 for NIO and SIO and 
1982–2000 and 2001–2020 for WNP and SPO basins. Hereafter, the first sub-period is 
namely SP1 and the second SP2. We then computed the increase of the mean SST, MH 
intensity, and MPI in the period SP2 relative to period SP1. For this analysis, we only uti-
lized from best track archives the LMI of MHs for which MPI is most relevant. We refer 
to LMI as the first time a TC reaches its maximum intensity during its lifetime, following 
Emanuel (2000) and Gilford et al. (2019).

Fig. 1   Study region. The dashed blue lines denote the boundaries of each basin. The red lines represent 
the areas for computing the annual average sea surface temperature, maximum potential wind speed and 
minimum potential central pressure
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Additionally, we conducted MPI estimations using the HuMPI model forced with the 
SST from the historical and future periods from the bias-corrected CMIP6 dataset for 
the SSP2-4.5 and SSP5-8.5 scenarios. We then estimated the changes in the MPI rela-
tive to the historical period. Following recommendations from the World Meteorologi-
cal Organization (WMO), a 30-year period is the most appropriate length to perform 
climatological analysis (Lai and Dzombak 2019). Therefore, we examined the SST, 
MPWS and MPCP in three 30-year periods, namely historical (HIST, 1985–2014), mid 
(MID, 2041–2070) and end (END, 2071–2010) of the twenty-first century. Addition-
ally, TC prediction for the near-future period (usually, a time scale of 10–30 years) has 
recently received attention from researchers in this field (e.g., Kim et  al. 2012; Choi 
et al. 2016; Li et al. 2017). Thus, we also analyzed these variables in the 25-year near-
future period (2016–2040).

Fig. 2   Annual sea surface temperature (SST) anomalies (ºC) from 1982 to 2020 in (a) North Atlantic 
(NATL), (b) Central and East Pacific (NEPAC), (c) North Indian Ocean (NIO), (d) Western North Pacific 
(WNP), (e) South Indian Ocean (SIO), (f) South Pacific Ocean (SPO). The SST anomalies were computed 
as the differences between the annual SST and the mean SST from 1982 to 2020. The annual SST values 
were computed using the grid points within the red lines in Fig. 1. The vertical black dashed line illustrates 
the change point detected in the SST anomalies
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TC activity is distinctly marked by a strong seasonal cycle. Therefore, the annual mean 
values were averaged in each basin during the most active period of the TC season, as 
shown by Dwyer et al. (2015) and Sobel et al. (2021), from August to October in NATL, 
from July to September in NEPAC, from July to October in WNP, from January to March 
in SIO and SPO. For the NIO basin, as the TC activity shows a bimodal monthly distribu-
tion, the annual average was computed using May, October, and November.

Additionally, to reduce the influence of the interannual variability on the response of 
SST, MPWS and MCPC to climate warming, we applied an 11-year time window moving 
average for each year from 2015 to 2100. Note that five years from the historical period 
were used for estimating the variables’ values in 2015 (the mean from 2010 to 2020). Simi-
larly, it occurred in 2016, 2017, 2018, and 2019 but using 4, 3, 2 and 1 years, respectively, 
from the historical period. Additionally, as the Bias-corrected CMIP6 global dataset used 
to force the HuMPI model is available until 2100, we reduced the time window for the 
moving average to 9, 7, 5, and 3 years as we approached 2100. For example, the value in 
1999 is the average from 1998 to 2100, while in 2100 is the average of 1999 and 2100.

3 � Results

3.1 � Changes in the Intensity of TCs from 1982 to 2020

Figure 3 displays the increment within the most active period of the TC season of the mean 
SST from the OISST dataset, LMI and MPWS in the period SP2 relative to the period SP1. 
The rising of average SST ranged from 1.2% to 2.0% in the Northern Hemisphere, with the 
highest increment in NATL and NIO basins, while the changes in SST varied from 1.2% 
to 1.9% in the basins in the Southern Hemisphere (SIO and SPO). Note from Fig. 3 that 
the LMI exhibited the highest increment in the NEPAC basin with 6.2%, while the MPWS 
showed the largest changes in NATL (3.4%) and SIO (3.0%).

Table 2 shows trends in the SST, LMI and MPWS in a regional and global scales dur-
ing the peak of TC season in each basin from 1982 to 2020. While the SST exhibited an 
increasing trend (p < 0.05) in all basins (Table 2), we only found a statistically significant 
increase in the LMI of MHs in NEPAC, WNP, SIO and SPO. In addition, the SST has 
globally increased by 0.20 ºC/decade and the LMI by 1.1 m/s per decade. Furthermore, the 
MPWS has increased from 0.7 m/s to 1.2 m/s per decade, with the most notable increase 

Fig. 3   Changes (in percentage) of 
the mean Sea Surface Tempera-
ture (SST), lifetime maximum 
intensity (LMI) of major hurri-
canes intensity (Category 3 + hur-
ricanes on the Saffir–Simpson 
wind scale) and maximum 
potential wind speed (MPWS) 
in the period SP2 relative to the 
period SP1. See the Methodology 
section and Fig. 2 for references 
in the time frame of periods SP1 
and SP2 in each basin
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in NATL (1.2 m/s per decade), and WNP (1.1 m/s per decade) basins, while the globally 
increase was 0.9 m/s per decade. Note that we did not analyze the changes in the minimum 
central pressure due to several missing values in the JTWC best track archives.

Figure 3 reveals that an increase in the LMI of MHs in SP2 agrees with an increasing 
SST. Similarly, during SP2, the MPI has increased relative to SP1. Note that the changes in 
the LMI were computed using the observational records from the best track archives. Thus, 
changes in LMI are also controlled by dynamics factors (e.g., vertical wind shear), which 
are not included in the MPI estimations, as noted above. Previously Sobel et  al. (2016) 
addressed that MPI provide a useful guide to the statistical distribution of actual intensities 
achieved by real TCs. Therefore, although the growth fractions are different, an increase in 
the MPI suggests an increase in the LMI of MHs. This behavior confirms previous findings 
addressed by Emanuel (2000) and Gilford et al. (2019), who stated that the MPI could be 
used as a predictor of the climatology intensity of TCs. Guo and Tan (2018) noted that the 
MPI is strongly tied to the change in TC intensity and locations. In addition, although most 
TCs do not reach their MPI, some observational evidences suggest that variations of LMI 
are consistent with variations in MPI (Emanuel 2000; Wing et al. 2007).

3.2 � Trends in the MPI of TCs Using the HIST Period from the Bias‑corrected CMIP6 
Dataset

We also computed trends in SST and MPI variables using the annual mean values in each 
basin from the outputs from the HuMPI model forced with the SST from the HIST period. 
During 30-year HIST period (1985–2014), the bias-corrected SST exhibited an upward 
trend (p < 0.05) slightly lower than the tendency found using the OISST dataset. Overall, 
the SST increased from 0.11 ºC/decade (in SPO) to 0.21 ºC/decade (in NATL), while the 
globally upward trend was 0.17 ºC/decade.

Likewise, the MPWS showed a statistically significant (p < 0.05) upward trend in 
response to the increase in SST, ranging from 0.50  m/s per decade (in SIO) to 1.3  m/s 
per decade (in WNP). Additionally, the globally increased of the MPWS was 0.83 m/s per 
decade, which is quite similar to that found using the OISST dataset. The MPCP exhib-
ited a small significant downward trend, varying from 0.70 hPa/decade to 1.45 hPa/decade. 
Table 3 summarizes these findings. Similar MPI trends were previously found by Song and 
Klotzbach (2018) using TC records from 1961 to 2016 of the WNP basin, which is consist-
ent with the continuous warming of the tropical WNP SST.

It is worth noting that these mean values were exclusively computed using the data 
during the peak of the TC season in each basin (see Methodology section), not for 

Table 2   Trends in the mean sea surface temperature (SST, in ºC/decade), lifetime maximum intensity (LMI, 
in m/s per decade) of major hurricanes (category 3 + on the Saffir–Simpson wind scale) and maximum 
potential wind speed (MPWS, in m/s per decade) from 1982 to 2020 using the OISST, best-track datasets 
and HuMPI model, respectively. Note that these trends were computed during the peak of TC season in 
each basin. Values with an * are statistically significant at 95% confidence level

Variable NATL NEPAC NIO WNP SIO SPO Global

SST 0.25* 0.16* 0.21* 0.23* 0.22* 0.17* 0.20*
LMI 1.1 1.8* 1.1 0.9* 0.9* 1.1* 1.1*
MPWS 1.2* 0.8* 0.9* 1.1* 0.9* 0.7* 0.9*
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the whole TC season. Therefore, climatological MPI differs from the operational MPI 
(e.g., daily MPI reported by the Center for Ocean-Land–Atmosphere studies at http://​
wxmaps.​org/​pix/​hurpot.​html or by the Department of Meteorology of the Higher Insti-
tute of Technologies and Applied Sciences, University of Havana, for the NATL basin 
at https://​www.​instec.​cu/​model/​HuMPI.​php) or climatological MPI using the full TC 
season. We use these mean values as a baseline to project the changes in the MPI and, 
therefore, TC intensity under the SSP2-4.5 and SSP5-8.5 climate scenarios.

3.3 � Projected Changes in the Intensity of TCs

The percent increment in the SST, MPWS and MPCP during the future period 
(2015–2100) relative to their mean values in the HIST period is shown in Fig. 4. The 
SST will increase by about 1.5–2.5% in the near-future, 4–5% in the mid-century and 
6.5–8% by the end of the twenty-first century under the SSP2-4.5 climate scenario, as 
revealed in Fig. 4. In response, the MPWS will be 3.5–4.5%, 5.5–7.5% and 8.5–10.5% 
higher in the near-future, mid and end of the twenty-first century than its mean values 
in the HIST period, respectively, while the MPCP will decrease by about 0.5%, 0.6% 
and 1.2%, respectively. Overall, we detected that the SST will increase at a rate of 
0.62–0.80%/decade, while the projected trend in MPWS and MPCP will be 1.1–1.3%/
decade and -0.1–0.2%/decade, respectively.

Figure 4 also reveals for the near-future period, the projected changes in SST and 
MPI are almost similar in each basin under both climate scenarios. Under the extreme 
climate scenario SSP5-8.5, the increase in SST and MPWS will be approximately 
1.5–1.7 times higher than their respective values under the SSP2-4.5 scenario at 
the END period. The SST will increase by 10–11% (5–6%) at the end (mid) of the 
twenty-first century. Meanwhile, the MPWS will be 9–11% (MID) and 15–18% (END) 
higher than its mean values in the HIST period. Likewise, the MPCP will decrease by 
1.1–1.8% and 2.1–2.8%, respectively.

Emanuel and Sobel (2013) and Wing et  al. (2015) stated that trends in MPI are 
primarily explained by trends in air-sea thermodynamic disequilibrium. Figure 4 also 
shows that the increasing rate of mean MPI is slightly larger than that of mean SST. 
Given that the MPI formulation in HuMPI model does not depend on mid-level mois-
ture, the result indicates that temperature in the upper troposphere play an important 
role in controlling the MPI of TCs.

Table 3   Trends in the mean sea surface temperature (SST, in ºC/decade), maximum potential wind speed 
(MPWS, in m/s per decade) and minimum potential central pressure (MPCP, in hPa/decade) from 1985 to 
2014 using the SST from the bias-corrected CMIP6 dataset during historical simulations. All values are sta-
tistically significant at 95% confidence level

Variable NATL NEPAC NIO WNP SIO SPO Global

SST 0.21 0.19 0.16 0.20 0.17 0.11 0.17
MPWS 1.09 0.91 0.70 1.30 0.80 0.50 0.83
MPCP -1.45 -1.18 -0.91 -1.40 -1.10 -0.70 -1.1

http://wxmaps.org/pix/hurpot.html
http://wxmaps.org/pix/hurpot.html
https://www.instec.cu/model/HuMPI.php
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Fig. 4   Changes (in percentage) of the mean Sea Surface Temperature (SST), maximum potential wind 
speed (MPWS) and minimum potential central pressure (MPCP) in the period 2015–2100 under the 
SSP2-4.5 and SSP5-8.5 climate scenarios relative to the historical period (1985–2014). Green, blue and 
red shaded areas denote the time frame for the near-future (NF, 2016–2040), MID (2041–2070) and END 
(2071–2010) periods. The black, purple and brown solid lines denote the SST from the OISST dataset and 
SSP2-4.5 and SSP5-8.5 scenarios from the bias-corrected CMPI6 dataset, respectively. The purple and 
brown shaded areas represent the 95% confidence interval (CI) for the projected changes in SST, MPWS 
and MPCP under the SSP2-4.5 and SSP5-8.5 scenarios, respectively. The CI was computed using the SST 
from CMIP6 models listed in Table 1 and the corresponding HuMPI simulations
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4 � Discussion

By applying a linear regression between SST and MPWS, we detected that the MPWS 
increases by about 5–7%/ºC under global warming, which is interestingly similar with the 
expected increase in low-level atmospheric water vapour based on the Clausius–Clapeyron 
relationship. Several authors (e.g., Braun et al. 2012; Ge et al. 2013; Tao and Zhang 2014) 
have addressed the role of atmospheric moisture in TCs genesis and intensification. Other 
studies (e.g., Held and Soden 2006; O’Gorman and Muller 2010; Knutson et al. 2020) have 
noted that under climate change and according to the Clausius–Clapeyron relationship, the 
low-level atmospheric water vapor will increase by about 6–7%/ºC.

Figure 5 shows that the spatial pattern of the projected increase in SST and MPWS and 
the projected decrease in MPCP agrees with the future annual changes of these variables 
shown in Fig. 4. This confirms the projected increase of SST previously discussed in tropi-
cal regions over which TCs generally occur. Consequently, it is observed that all basins 
exhibit extreme values of MPWS and MPCP by the END period under the SSP5-8.5 sce-
nario. In addition, the projected changes over the NATL basin confirms previous findings 
by Pérez-Alarcón et al. (2021b).

Interestingly, the largest projected changes in SST, MPWS and MPCP are observed north 
and south of 20º of latitude in both hemispheres (Fig. 5). This behavior supports the future pole-
ward expansion of TC activity (Zhao and Held 2012; Murakami et al. 2012) due to changes in 

Fig. 5   Projected increase (%) in the sea surface temperature (SST) and maximum potential wind speed 
(MPWS) and projected decrease (%) in the minimum potential central pressure (MPCP) for the near-future 
(NF, 2016–2040), MID (2041–2070) and END (2071–2100) of twenty-first century under the (a) SSP2-
4.5 and (b) SSP5-8.5 climate scenarios. These projections were computed using as baseline the historical 
period (1985–2014) and are statistically significant at 95% confidence level
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the meridional structure of favorable environmental conditions for TCs development (Wu et al. 
2014; Grise et al. 2018; Sharmila and Walsh 2018). According to Sharmila and Walsh (2018), 
regional variations of the Hadley circulation favor the expansion of the tropics providing ben-
eficial conditions for poleward development of TCs. Overall, there is increasing evidence that 
the spatial distribution of future SST changes and associated tropical circulation changes play a 
modulator role in the projected responses of TC intensity (Knutson et al. 2013; Murakami et al. 
2012; Wu et al. 2014; Sharmila and Walsh 2018; Studholme et al. 2022).

Our findings agree with previous works that investigated future changes in TC intensity. For 
example, Bloemendaal et al. (2022) detected an increase in TC intensity ranging from 7.2% to 
23.8% by combining the benefits of high-resolution global climate models (GCMs) with syn-
thetic TC modeling. Meanwhile, Thompson et al. (2021) applied the pseudo-global warming 
method to investigate Bejisa-like cyclones in future environments over the SPO basin. They 
found that the intensity will be 6.5% more intense on average by the end of the twenty-first 
century than in the present climate. Note that we projected an increase in TC intensity over 
the SPO basin by 6–7% and 8–12% under SSP2-4.5 and SSP5-8.5 climate scenarios (Fig. 4), 
respectively. Using a similar approach, Delfino et al. (2023) found that the intensity of TCs-
like Typhoons Haiyan, Bopha, and Mangkhut over the WNP basin will increase by 14%, 4%, 
and 12%, respectively, under the SSP5-8.5 scenario. Our results support this previous finding 
by projecting an increase of TC intensity over the WNP basin by approximately 9.8% and 
12.9% at the MID and END of the twenty-first century under the high emissions scenario 
(SSP5-8.5). Although slightly high, our results also confirm and support the findings of Knut-
son et al. (2019), who projected an increase in TC intensity by about 1–10% derived from 
synthesizing the results from many GCM-based studies.

Due to the dominant role of SST in determining the MPI based on the Emanuel MPI the-
ory, these results provide insights into the projected changes in the intensity of TCs. Never-
theless, observational and modelling studies showed that large-scale factors play an essential 
role in TC long-term intensities variations (e.g., Kieu and Zhang 2018). Dynamics factors can 
inhibit a TC from reaching its MPI, as previously noted by Kossin (2017) and Kossin et al. 
(2020). For example, vertical wind shear can affect the thermal structure of a TC and limit its 
intensification (e.g., Wu and Emanuel 1993; Jones 1995; Frank and Ritchie 2001; Fraza and 
Elsner 2015). Although this work did not investigate changes in dynamic factors that influence 
TC activity under global warming, a recent study by Lockwood et al. (2022) using CMIP6 
models found a negative correlation between MPI and vertical wind shear. Further studies are 
required to understand the response of large-scale parameters to global warming that modu-
late TC activity. Additionally, a limitation in several Global Circulation Model projections of 
future TC activity is the lack of realistic air-sea interaction processes due to simulations with 
specified SSTs rather than coupled ocean–atmosphere simulations (Walsh et al. 2019). It is 
important to highlight that CMIP6 models have achieved encouraging progress over the previ-
ous phases of the Coupled Model Intercomparison Project (Li et al. 2020; Zhou et al. 2020; 
Fu et al. 2021). Recently, Yang and Huang (2022) noted that CMIP6 models notably improved 
air-sea interactions.

5 � Conclusions

This work analyzed the changes in the intensity of TCs under the Shared Socio-Economic 
Pathways (SSPs) 2–4.5 and 5–8.5 climate scenarios based on the Hurricane Maximum 
Potential Intensity (HuMPI) model estimations. For investigating the relationship between 



Global Increase of the Intensity of Tropical Cyclones under…

1 3

Page 15 of 22     36 

the lifetime maximum intensity (LMI) of major hurricanes (MHs) and the maximum poten-
tial intensity (MPI), we fed HuMPI with the sea surface temperature (SST) from the Daily 
Optimum Interpolation SST database. To compute the annual mean values of LMI, SST 
and MPI in various basins, we extracted these variables in the months of the maximum 
frequency of TC activity in each region, i.e., from August to October in the North Atlantic 
(NATL) basin, from July to September in the Central and East Pacific (NEPAC), from July 
to October in the Western North Pacific (WNP), from January to March in the South Indian 
Ocean (SIO) and the South Pacific Ocean (SPO), and in May and from October to Novem-
ber in the North Indian Ocean (NIO). We also applied the pruned exact linear time (PELT) 
algorithm to detect a change point in SST anomalies time series in each basin to subdivide 
the 1982–2020 period into two sub-periods (SP1 and SP2). We found that changes in the 
average MPI in the SP2, relative to the SP1, were reflected in the changes in the LMI of 
MHs, which confirmed that the MPI is an important predictor of the climatological intensi-
ties of TCs, in agreement with previous research findings.

We forced the HuMPI model with the SST from the Bias-corrected CMIP6 global dataset 
to detect future changes in the intensity of TCs. From our findings, TCs will be 6.5% (10%) 
and 9.5% (17%) more intense by the MID (2041–2070) and the END (2071–2100) of the 
twenty-first century under SSP2-4.5 and SSP5-8.5 scenarios compared with the average MPI 
over the HIST period (1985–2014), respectively. The largest changes in SST and MPI were 
detected north and south of 20º of latitude in both hemispheres, which supports the projected 
poleward shift of TC activity due to the expansion of the tropics. Overall, we detected that the 
maximum potential wind speed increases by about 5–7%/ºC under global warming. These 
findings should be interpreted as a projection of changes in TC intensity in a warmer climate. 
The HuMPI formulation did not include environmental factors that play essential roles in TC 
long-term intensity variations, such as vertical wind shear, mid-level moisture content and 
environmental stratification. Additionally, our results are affected by the uncertainties in cli-
mate projections, i.e., climate-forcing scenario and model dynamics, physics and resolutions.

In future work, we will include in the study the projected changes in large-scale param-
eters that affect the intensity of TCs, such as vertical wind shear and moisture content in 
the atmosphere as well as in the climatic variability modes, to have more details on how 
global warming will influence the activity of the TCs in each basin and on a global scale.
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