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Abstract: Passive radar is an interesting approach in the context of non-cooperative target detec-
tion. Because the signal source takes advantage of the so-called illuminator of opportunity (IoO),
the deployed system is silent, allowing the operator cheap, portable, and practically undetectable
deployments. These systems match perfectly with the use of antenna arrays to take advantage of the
additional gains provided by the coherent combination of the signals received at each element. To
obtain these benefits, linear processing methods are required to enhance the system’s performance. In
this work, we summarize the main beamforming methods in the literature to provide a clear picture
of the current state of the art. Next, we perform an analysis of the benefits and drawbacks and explore
the chance of increasing the number of antenna elements. Finally, we identify the major challenges to
be addressed by researchers in the future.

Keywords: passive radar; beamforming; cross ambiguity function; uniform linear array; MRC;
MVDR; ZF

1. Introduction

In recent years, the use of passive radar that utilizes existing signals in the environment
as illuminators of opportunity (IoOs) has gained attention in the academic and military
fields due to its capability to detect targets without revealing the location of the sensor,
because it does not emit radar signals [1]. Therefore, its receiver is much less susceptible to
electronic countermeasures (ECM) [2], and its intrinsic bistatic operation has anti-stealth
capabilities. Furthermore, as it is completely passive, deploying the receiver does not need
frequency allocation, making it usable in densely populated areas where electromagnetic
interference can be a problem, nor does it require a careful transmit beamforming design to
avoid interception [3].

Passive radars are also smaller and less expensive than their active counterparts.
Examples of signals that can be used as IoOs in passive radar include frequency modulation
(FM) radio [4,5], digital audio broadcasting (DAB) [6] and digital video broadcasting–
terrestrial (DVB-T) [7,8], global system for mobile communications (GSM) [9,10] and long
term evolution (LTE) [11], global navigation satellite system (GNSS) [12–14] and digital
video broadcasting–satellite (DVB-S) [15], WLAN [16], and 5G [17–19] signals. Because
the waveforms transmitted by these opportunity transmitters are not optimized for radar
applications and there is a lack of control over the transmission parameters, complex signal
processing methods are required to detect the weak scattering signal from the targets.

1.1. Passive Bistatic Radar Scenario

Figure 1 depicts the basic scheme of a bistatic passive radar, where R1 is the target-to-
transmitter distance, R2 is the target-to-receiver distance, RTR is the transmitter-to-receiver
distance or baseline, which is known in advance, and β is the bistatic angle defined by R1
and R2.

The different techniques available for target detection rely on a comparison between
a direct signal coming from the IoO and the echo signals reflected by the targets. In the
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context of passive radar, this assumption results in a receiver that is equipped with two
different channels, namely the reference channel for capturing the reference signal, r(t),
and the surveillance channel for capturing the surveillance signal, s(t). The received
surveillance signal comprises the direct component from the IoO, sDPI(t), the echo reflected
from the target, secho(t), and additional echo terms corresponding to potential clutter,
multipath, and/or extra targets, sint(t).

Figure 1. Basic bistatic passive radar scenario.

The system performance is significantly affected by the direct-path interference (DPI)
signal, sDPI(t), captured by the surveillance channel arriving from the IoO. This interference
correlates perfectly with the reference signal and has a level that can be significantly higher
than the level of the echoes from the targets.

Unlike classical radar approaches, where the transmitter and receiver are located
in the same position, the passive radar technique estimates the so-called bistatic range,
R = R1 + R2 − RTR. Likewise, passive radar can be used to calculate the bistatic velocity
of targets. Note that bistatic range and velocity values are not directly comparable to their
monostatic equivalents. The use of the bistatic range instead of the monostatic range is due
to the uncertainty introduced by the geometrical model inherent to this kind of system. It
is well known that a bistatic range measurement places the target on an ellipsoid (Figure 1),
with the transmitter and receiver located at its foci (iso-range contour).

Target positions are obtained by measuring the direction of arrival (DoA) of the target
echo signal in addition to the range measurement. The target is located at the intersection
of the ellipsoid and the estimated DoA cone. Another option for locating a target is to use
multiple transmitter–receiver pairs to calculate the point of intersection of the ellipsoids,
using one transmitter and multiple receivers or multiple transmitters and one receiver [20].

In the first solution, the DoA can be estimated using an array of antennas at the receiver
for the surveillance channel. If the elements are spaced appropriately, a directive pattern
can be generated through the collective processing of signals received at each element. This
DoA estimation approach has the advantage of improving the signal-to-noise ratio (SNR)
by combining energy from multiple antennas (beamforming) and allows the beam to be
electronically directed in any direction, or even a set of directional beams to be generated
that comprehensively cover the entire area of interest (AoI) in the air space. This would
necessarily require the use of multiple coherent reception channels.

Several solutions have been proposed to obtain DoA information, e.g., beam scan-
ning [21] or super-resolution methods [22,23]. Nevertheless, we assume that the angular
direction of the target is known, as these estimation methods fall out of the scope of the
present work.
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Beamforming techniques can also be used to collect the transmitted signal by synthe-
sizing a single beam pointed at an IoO or multiple beams pointed to multiple disparate
IoOs, or to take advantage of this space–time characterization enabling clutter/multipath
cancellation filters.

As noted above, this opportunistic illuminator might broadcast any type of broadband
signal, for instance, FM radio, DVB-T, DAB, GSM, LTE, etc. All of them are common
candidates for providing the opportunistic waveforms required for passive radar systems.
The choice of one type of signal (waveform) of opportunity is based on many aspects,
including the type of target and its dynamics, the expected range and velocity resolution,
the system coverage, and obviously, the availability of the IoOs.

In bistatic passive radar applications, the minimum range separation required between
two targets is called range resolution ∆R, where two targets are assumed to be co-linear
with the bistatic bisector. The range resolution is defined as follows:

∆R =
c

2B cos(β/2)
, (1)

where B and c are the signal bandwidth and the light velocity, respectively, and β is the
bistatic angle defined in Figure 1.

For a fixed bistatic angle, the bistatic range resolution is determined by the IoO signal
bandwidth. Range resolution is inversely proportional to the baseband bandwidth of the
transmitted waveform. Assuming that β = 60◦, typical resolutions of 1.0–3.5 km may be
achieved with FM radio signals, 800 m with GSM, 100 m with DAB, 22 m with DVB-T, 9 m
with LTE, and 7 m with GNSS.

The Doppler resolution in passive radar can be determined from the receiver’s period
of time that signal is acquired, termed coherent processing interval (CPI) and denoted by
TCPI. The CPI duration determines how the radar can best observe targets of different
radial velocities. The bistatic velocity resolution can be defined as

∆v =
λ

2TCPI cos(β/2)
, (2)

where λ is the carrier wavelength.
Assuming again a fixed bistatic angle and a specific value of TCPI, the best velocity

resolutions are obtained for the highest carrier frequencies. Typical values of velocity
resolution obtained with β = 60◦ and TCPI = 0.25 s are 7 m/s with FM radio signals, 3 m/s
with DAB, 0.8 m/s with DVB-T, 0.5 with GNSS, 0.4 m/s with GSM, 0.25 m/s with LTE,
and 0.07 m/s with DVB-S.

The range or coverage of the system depends on the transmit power of the IoO. For a
given target and bistatic geometry, the higher the transmit power, the larger the bistatic
range targets can be detected. FM and DVB-T are the most powerful emitters and GNSS
and DVB-S are the weakest.

1.2. Prior Art

Cross ambiguity function is one key indicator that is commonly used to evaluate
radar performance for a specific signal or waveform. In passive radar, target detection and
parameter estimation are traditionally performed by evaluating the cross ambiguity func-
tion (CAF), i.e., correlating s(t) with delayed and Doppler shifted versions of the reference
transmit signal r(t). In bistatic passive radar, CAF shape can be determined by two factors:
system geometry (position and direction of the target motion) and waveform properties.

Multiple solutions have been proposed in passive radar to enhance target detection and
identify its DoA using adaptive beamforming techniques in order to improve localization
performances. In this paper, we will evaluate the different beamforming options and their
applicability to a variety of practical passive radar scenarios. These solutions can be carried
out in the angular domain if the spatial processing is performed prior to the CAF or in
the range–Doppler domain if the CAF is performed before the adaptive beamforming.
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In the angular domain, well-known solutions are available in the radar literature [24],
which can be employed depending on the figure of merit to be optimized. These solutions
will be termed maximum ratio combining (MRC) [25], minimum variance distortionless
response (MVDR) [26], and zero-forcing (ZF) [25,27], and we will present their main
advantages and drawbacks, as well as an analysis regarding their utilization in the context
of passive radar. These techniques require accurate knowledge of the angular locations to
offer good performance. Unfortunately, this knowledge is difficult to acquire. When the
signal is processed in the range–Doppler domain, the estimation of the covariance matrices
to use spatial filtering techniques is computed using scenario information regarding the
range and Doppler features of the interference. Other options leverage temporal processing
to remove interference, such as the extensive cancellation algorithm (ECA) [28] and other
solutions, but they are severely affected when multipath components are present or rely on
particular waveforms to operate [29], which is impractical in the context of passive radars.

In the angular domain, the array response vector calculation method is derived in
its most general form from the spatial covariance matrix of the data received during the
CPI [29]. However, this procedure presents two potential drawbacks. In the first place,
the DoA of the target needs to be accurately known, otherwise, it could be canceled
unintentionally. Second, in order to calculate correctly the beamforming vector, the spatial
covariance matrix should only contain interference signal components. However, in the
majority of practical cases, it is not possible to separate the interference component from
the signal component. Thenceforth, countless adaptive beamforming techniques have
been proposed in order to improve the spatial covariance matrix estimation. In [30], the
reconstruction of the interference-plus-noise covariance matrix using the spatial spectrum
distribution and the correction of the array response vector was proposed to maximize
the beamformer output power without converging to any interference. In [31,32], the
decomposition of the spatial covariance matrix using eigen-subspace-based beamforming
techniques to the signal and noise subspaces was proposed, where the influence of the
surveillance signal can be eliminated in the covariance matrix using a side-lobe canceller.
In [27], the estimate of the spatial covariance matrix combining deterministic sidelobe
reduction and adaptive pattern shaping that preserves the low sidelobe level is discussed.
An intermediate solution between the angular domain and the range–Doppler domain
can be found in [33], where adaptive beamforming is applied after the range–Doppler
processing has been processed, whereas the sample matrix inversion method has been
previously used in the angular domain to estimate the noise plus interference spatial
covariance matrix.

Additional solutions to improve the adaptive beamforming techniques based on the
fully dimensional space–time domain, known as space–time adaptive processing (STAP)
techniques, have been studied in [34]. These schemes combine the information correspond-
ing to different dimensions to characterize and mitigate interference. These techniques
are referred to as STAP and explore a particular angle–range–Doppler combination at a
time [35,36]. Once this combination is selected, an artificial vector is computed by stacking
several angular responses for the chosen range–Doppler bin together with a set of range
responses for fixed angle–Doppler values. The performance of this kind of approach is,
however, heavily dependent on the particular scenario, as the authors assume a spread-
Doppler clutter and interference in the neighborhood of the target and the absence of the
target for the same range–Doppler region, or the utilization of a particular waveform in the
IoO [34]. Moreover, the construction of the aforementioned vectors, as well as their size,
is conducted based on experiments [35] and thus is complicated to analyze in a general
context. For these reasons, we will concentrate on the general versions based on spatial
filtering whether selecting a Doppler or a range region. Regarding the beamforming se-
lection, in this kind of work, the method to optimize the signal-to-interference-plus-noise
ratio (SINR) is using a minimum variance space–time adaptive beamforming followed by
a least squares spatial adaptive filtering.
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In the range–Doppler domain, the first approach of adaptive beamforming techniques
was proposed for high-frequency over-the-horizon passive radar [29]. This method tries
to avoid the target echo cancellation problem inherent to the angular domain processing.
An alternative solution based on spatial adaptive beamforming after the cross-correlation
function was proposed in [37,38]. In [37], a processing method containing spatial filtering
and high resolution DoA estimators working in the range–Doppler domain was proposed.
In [38], a spatial smoothing beamforming-based Bucci algorithm was proposed to suppress
the direct reference signal and the clutter, while the well-known multiple signal classifica-
tion (MUSIC) algorithm [22] was used to estimate the angle of arrival of the target return by
searching the array response that is orthogonal to a noise subspace, which is obtained from
singular value decomposition of the range–Doppler matrix. Practical implementations of
adaptive beamforming techniques in the range–Doppler domain can be found in [39,40].
Therein, the authors employed difference covariance matrices based on range or Doppler
characterizations of the targets and compare with a strategy referred to as deterministic null,
where a ZF beamformer is pointed to the directions where interference sources produce
strong radar returns.

The aim of this work is to describe the main beamforming approaches in the context
of passive radar, focusing on their particular features regarding usability, side information
required for its utilization, the expected performance results, and computational costs.
Moreover, we will explore how these solutions apply to the different domains of the
received signal and compare the benefits and drawbacks of both solutions. In addition, as
an actual trend in the context of radar and communications is an increase in the number of
elements on the array to radiate narrow energy beams, we provide some insight concerning
the effects of moving to large dimensional arrays in a passive radar setup. Finally, we
identify some limitations of the proposed methods and explore future lines of research that
might be of interest to the scientific community.

After this introductory part (Section 1), the paper is structured as follows: the system
model and the main beamforming approaches are presented in Section 2. Section 3 develops
the above techniques applied in different domains (beamforming before and after the CAF).
Section 4 contains the results of simulations showing the behavior and gains of the different
techniques and a subsequent discussion of them. Finally, open questions and lines of
future research are explained in Section 5, and Section 6 contains the main conclusions of
this work.

Notation: Lower and upper case bold letters denote vectors and matrices, and CM is
complex vector space with dimension M; (·)T , (·)H denote the transpose and Hermitian
transpose operations, respectively; <{·} and ={·} represent the real and the imaginary
parts of a complex number; symbol∼reads as statistically distributed as and E

[
·
]

is the
statistical expectation; NC(0, C) is a zero-mean Gaussian distribution with covariance C;
‖ · ‖ is the Euclidean norm.

2. System Model

In this work, we focus on the scenario where the IoO is equipped with a single antenna.
In the point of interest, the passive radar system is located to receive the aforementioned
signal. However, we separately deploy a single antenna for capturing the reference signal
r(t) and an antenna array of M elements to acquire the surveillance signal s(t) ∈ CM.

In particular, we consider that the baseband complex data signal is given by x(t)ej2π fct ∈ C,
with carrier frequency fc and signal bandwidth B. This signal passes through the reference
and surveillance channels, for which we only consider the line-of-sight (LoS) component,
and is acquired at the sampling frequency fs = 1

Ts
. Thus, for the reference channel, we

produce the discrete time samples at instant t = nTs described as follows:

r[n] = αx[n] + w[n], (3)

with w[n] ∈ C being the additive white Gaussian noise (AWGN) and α ∈ C the complex
gain collecting several propagation effects. We assume that the reference signal is isolated
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and, therefore, there are no multipath components. During the CPI, NCPI = TCPI fs samples
are captured. Simultaneously, we acquire the signal corresponding to the surveillance
channel, which contains the direct signal and the echo reflected from a moving target,
as follows:

s[n] = sDPI[n] + secho[n] + sint[n] + z[n]

= αda(θd)x[n− τd]︸ ︷︷ ︸
DPI

+ αea(θe)x[n− τe]e
j2π

fD
fs

n︸ ︷︷ ︸
desired signal

+
Ni−1

∑
i=0

αia(θi)x[n− τi]e
j2π

fDi
fs

n

︸ ︷︷ ︸
interference signals

+z[n], (4)

where αd, αe, αi ∈ C, are the complex attenuation introduced by the channel, τd, τe, and
τi are time delays, expressed in samples, and we have introduced the Doppler frequency
shift fD = v

λ , with λ = c
fc

. Moreover, as the surveillance signal is obtained by means of an
antenna array, the spatial distribution of the elements has to be taken into consideration.
Hence, we denote the array response vector by a(θ) ∈ CM for the angular direction θ, and
introduce θd, θe, and θi to represent the angular directions for the direct, echo, and inter-
ference paths, respectively. In addition, we denote the noise vector as z[n]∼NC(0, σ2IM).
The additional Ni echo terms in (4) correspond to multi-path components, clutter, and/or
further targets that may be present in the scenario, with their associated attenuation coef-
ficients, angular directions, delays, and Doppler shifts. Finally, by assuming an uniform
linear array (ULA) arrangement, as presented in Figure 2, a(θ) reads as [41]

a(θ) =
[
e−j 2π

c fcd sin(θ) M−1
2 , e−j 2π

c fcd sin(θ)(M−1
2 −1), . . . , ej 2π

c fcd sin(θ) M−1
2

]T
, (5)

where d is the inter-element distance and M is odd for notation simplicity. The use of
different array geometries, mainly rectangular and circular, is possible in the context
of passive radar, and results in array response vectors a(θ) showing its own particular
spatial features [42].

Figure 2. Structure of an ULA arrangement with M antennas.

It is important to highlight that the surveillance signal in (4) is a M-element vector,
where the entries exhibit a strong correlation due to the spatial closeness of the antenna
elements. As such, the received signals can be linearly combined using the beamforming
vector b, that is,

y[n] = bHs[n]. (6)

This feature enables the usage of different beamforming techniques depending on the
desired system features.



Sensors 2023, 23, 3435 7 of 28

2.1. System Performance Metrics

An important aspect of any system, as it will provide a figure of merit to establish
comparisons, is the performance metric chosen to evaluate a design. In this work, to
measure the kindness of the proposed solutions, we will employ two well-known perfor-
mance metrics, viz., SNR and SINR. These metrics consider a desired signal d(t), a noise
component n(t), and K more interference sources ik(t), k ∈ {1, . . . , K}. The available signal
is then a(t) = d(t) + ∑K

k=1 ik(t) + n(t), and the performance metrics read as

SNR =
E[|d(t)|2]
E[|n(t)|2] , (7)

SINR =
E[|d(t)|2]

E[|n(t)|2] + ∑K
k=1 E[|ik(t)|2]

. (8)

While the SNR focuses on the ratio between the powers of the signal of interest and
the noise, the SINR also takes into account the effects of potential interference signals
that might disrupt the proper reception of the received signal. Usually, the beamforming
designs are oriented to optimize one of the later metrics, or a variation of any of them.

2.2. Main Beamforming Strategies

In this section, we analyze the main beamforming approaches used in radar systems.
These techniques provide designs based on different criteria that can be employed de-
pending on the particular features of the AoI. For example, they can be used to enhance
the strength of the signal of interest or to remove interference or other undesired effects,
among others. These promising characteristics are achieved by jointly combining the
received signals with a linear transformation with expression (6) and assuming that b is
constant during a CPI interval. Therefore, in this work we will distinguish among three
major approaches for the design of the beamforming vector b, namely, MRC, MVDR [24],
and ZF [25]. The details on the optimization problem that they solve and their respective
expressions are presented in Table 1, where we have introduced the desired direction d,
interference matrix R, and the normalization factor ρ. The particular values of d and R are
given by the practical setup and the domain where the spatial dimension of the received
signal is employed, as discussed in the ensuing sections. Next, we provide some insight
regarding these different options for beamforming.

Table 1. Summary of main beamforming strategies.

Name Optimization Problem Beamformer Expression

MRC max |bHd|2 b = ρd
MVDR max |b

H d|2
bH Rb

b = ρR−1d
ZF max |bHd|2 s.t. bHR = 0 b = ρ(IM − R(RHR)−1RH)d

2.2.1. MRC

MRC is a basic strategy that consists of maximizing the power of the desired signal
d. In addition to its simplicity, this approach presents other benefits with respect to more
elaborated options. First, the calculation of the beamformer is very efficient in terms
of computational complexity and, second, the only information required to obtain the
beamformer is the spatial signature of the desired signal. The main counterpart of this
approach is that, as no other spatial directions are considered in the design (i.e., the
influence of R in the system performance is neglected), this approach might also increase
the interference when the projection of d in the subspace generated by the columns of R
is non-negligible.

Although it is clear that MRC is a naïve strategy, it constitutes a very interesting option
in scenarios where the desired signal and the interference are separable, as all the spatial
degrees of freedom are dedicated to increasing the SNR.
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2.2.2. MVDR

The second design considered, MVDR, is more sophisticated as it not only enhances
the desired signal strength but also mitigates the effects of undesired interference [26]. This
is due to the nature of the optimization problem maximized when using this approximation,
that is,

max
|bHd|2
bHRb

. (9)

When we develop the numerator in (9) as bHddHb, the formulation is identical to
a generalized Rayleigh quotient, which is a well-known problem in the wireless com-
munications literature [43]. This formulation aims at maximizing the ratio between the
desired signal and the undesired interference or noise. For the scenario considered, ddH

is a rank 1 Hermitian matrix, and R has to be a positive definite matrix. Accordingly,
the solution to this problem is obtained as the generalized eigenvector of R and ddH ,
that is, R−1ddHb = λmaxb. Since ddH is a rank 1 matrix that can be decomposed as a
vector product, dHb is a scalar, and the previous expression clearly leads to the solution
b = R−1d. The usage of this beamformer is meaningful if we intend to remove the spatial
characteristics of the interference while trying to enhance the signal of interest. This is in
contrast with the MRC scheme that neglects the interference matrix R.

As a counterpart, to effectively use this method, it is mandatory to acquire an accurate
knowledge of the interference matrix R and the desired direction d. In addition, the
computational complexity of this method scales with O(M3), which might be impractical
depending on the number of antenna elements in the array and/or the computation power
of the receiver device.

2.2.3. ZF

ZF is a popular option in the wireless communication literature, as it is able to com-
pletely remove the interference [44]. Thus, in multi-user scenarios where the inter-user
interference is the system bottleneck, the use of ZF leads to asymptotically optimal solu-
tions [45]. This nice feature can be also exploited in the context of passive radar to remove
the DPI, multipath effects, or even clutter [27]. To achieve interference-removing capabil-
ities, the optimization problem of ZF imposes the constraint bHR = 0, with R ∈ CM×K

being a rectangular matrix such that the number of interference sources K fulfills K < M.
Therefore, the ZF solution is readily obtained as the orthogonal projection of the desired
direction d into the null space spanned by the columns of R. Note that, although both
MVDR and ZF take into account the interference, it is handled in different ways. Whereas
the former strategy “corrects” the direction vector d to avoid the influence of the interfer-
ence, ZF totally removes the vector components of d lying in the interference subspace.
Accordingly, situations with tolerable levels of interference are not handled properly using
ZF, which unnecessarily sacrifices spatial degrees of freedom to totally remove these effects.
Thus, ZF appears as a good option in scenarios with strong interference and d lying in a
subspace partially or not overlapping with that spanned by R.

Similar to MVDR, the benefits of employing ZF only apply when accurate knowledge
of the interference matrix R and the direction d is available. Again, the computational
complexity of this method is generally dominated by a matrix inversion. However, the
inverse operates over a square matrix of dimension K, with K < M, and computational
cost in the order O(K3). If the number of antennas M is considerably larger than K, the use
of ZF would be computationally more efficient than MVDR, providing a more practical
approach in certain scenarios.

3. Beamforming Techniques to Enhance the Surveillance Signal

In the previous section, we revised different options for linearly combining the signals
corresponding to the antenna elements of the array. In the context of passive radar, the
combination can be performed not only in the spatial domain, where the signal and
interference locations are characterized by an angular direction [29,30], but also in the
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range–Doppler domain, where the objects can be classified according to their distance,
angle, and speed, subsequently applying beamforming techniques to improve the system
performance [29,39]. The schematic views corresponding to both approaches can be seen
in Figure 3. In the following, we will explore these two alternatives and analyze the
opportunities arising when the information of all the antenna elements is jointly processed.
Finally, we will analyze the benefits and drawbacks of these strategies.

(a)

(b)

Figure 3. Comparison of main beamforming techniques, applied in different domains: (a) in the
angular domain, before the CAF; (b) in the range–Doppler domain, after the CAF.

3.1. Beamforming before the CAF

As already noted, an essential step in a passive radar system is to perform the com-
parison of the surveillance signal s[n] in (4) with the scalar signal r[n] in (3) to discover the
distance and speed information related to the potential targets. In this first approach, before
performing the aforementioned comparison, we use some signal processing techniques that
coherently combine the signals received by the antenna array. This way, for each sample n,
the receiver performs a linear combination and generates an effective scalar signal (6), with
the aim of amplifying the target signal and/or removing undesired effects. In addition,
these desirable features improve by adding more antenna elements, as the number of
observations also increases. This straightforward option naturally arises in the context
of passive radar, as it presents several benefits, such as SNR enhancement, interference
cancellation, clutter mitigation, or DPI removal. Moreover, these kinds of advantages are
commonly exploited in communications systems, where the usage of multiple antennas is
one of the technologies enabling future wireless communication systems [24,46].

Let us introduce the received signal of (6) in the context of passive radar. Recall
that the echo delay τe and Doppler frequency shift fD in (4) are unknown and have to
be determined. To that end, a search is performed over a grid of bistatic range, τ, and
Doppler, l, bins. This grid has to be defined over the delay (in samples) T = [τmin, τmax]
and Doppler shift (integer) L = [−L, L] intervals, for a positive integer L ∈ Z+; these
intervals are chosen according to the scenario, such that τe ∈ T , and fD ∈ fs[

−L
NCPI

, L
NCPI

].
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At this point, it is important to remark that the bistatic range and velocity resolutions of
the map depend on the system parameters according to Equations (1) and (2), respectively.
Under these conditions, the relationship between the reference and the surveillance signal
can be exploited. Indeed, the surveillance signal is a time-delayed and Doppler-shifted
version of the reference signal. As a consequence, the techniques intended to detect and
characterize non-cooperative targets take advantage of the correlation between the signals
on Equations (3) and (4). Therefore, finding local maxima in the CAF is the centerpiece of
passive radar signal processing [47].

After coherently combining the signals received by the antenna array, we evaluate the
CAF over y[n] in (6) and the reference signal r[n] in (3), i.e.,

c(τ, l) =
NCPI−1

∑
n=0

y[n]r∗[n− τ]e−j2π l
NCPI

n (10)

= α∗αdbHa(θd)
NCPI−1

∑
n=0

x[n− τd]x∗[n− τ]e−j2π l
NCPI

n (11)

+ α∗αebHa(θe)
NCPI−1

∑
n=0

x[n− τe]x∗[n− τ]e−j2π
(

l
NCPI

− fD
fs

)
n (12)

+ α∗
NCPI−1

∑
n=0

bHz[n]x∗[n− τ]e−j2π l
NCPI

n
+

NCPI−1

∑
n=0

y[n]w∗[n− τ]e−j2π l
NCPI

n. (13)

As already introduced, the choice of the beamformer vector b determines the amount
of interference through the factor bHa(θd) and the SNR of the surveillance signal with
bHz[n]. Similarly, it might help to alleviate or even remove the effects of the clutter
components or additional interferers, when they are present. These extra components
would lead to additional terms in the form of (11) with their respective angular directions θ.
Finally, the last term in (13) contains the noise contribution and exhibits that the SNR of the
reference signal is independent of the choice of b, as expected. In conclusion, the design of
the beamformer vector b is key to producing a convenient range–velocity map that will
later be employed to estimate the values for the delay τ̂e and Doppler frequency f̂D, i.e.,

{τ̂e, f̂D} = argmax
τ∈T ,l∈L

|c(τ, l)|. (14)

We see from (10) that |c(τ, l)| present peaks for τ ≈ τe and l ≈ fD
fs

NCPI associated with
the desired signal, and τ ≈ τd and l = 0 corresponding to the DPI. Clearly, SNR and SINR
provide a hint regarding how much the peaks of interest stand out.

Considering the received signal (6), we now evaluate the different beamforming
options in Section 2.2 and their applicability to different practical scenarios. To perform this
comparison, we work under the assumption that prior information regarding the target
and the interference sources is available. As already stated, such information has to be
estimated in practical setups, and a lot of solutions have been proposed to obtain DoA
information, e.g., beam scanning [21] or super-resolution methods [22,23]. Nevertheless,
we assume that the angular directions for the target and the interference signals are known,
as these estimation methods fall out of the scope of the present work.

For the MRC beamformer, we assume that θe is available at the receiver. Then, the
coherent processing of the received signals might exploit this knowledge by employing the
beamforming vector

b =
1√
M

a(θe). (15)
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Then, the post-combined signal y[n] is given as follows:

y[n] = αe
√

Mx[n− τe]e
j2π

fD
fs

n
+ αdx[n]bHa(θd) +

1√
M

M−1

∑
m=0

ej 2π
c fcd sin(θe)(m−M−1

2 )zm[n]. (16)

As introduced in Section 2.2, the MRC strategy points the beamformer vector to the
target angular direction aiming at improving the SNR, which is defined in (7) as the quotient
of the desired signal power and the noise power, that is,

SNRMRC =
E
[
|αebHa(θe)x[n− τe]e

j2π
fD
fs

n|2
]

E
[
|bHz[n]|2

] =
M|αe|2E

[
|x[n]|2

]
σ2 =

M|αe|2
σ2 (17)

under the common assumption E
[
|x[n]|2

]
= 1. In particular, the SNR increases linearly

with the number of elements in the antenna array, M. Thus, a simple beamforming strategy
is appealing due to the capacity of enhancing the CAF term associated with the target
echo (12), whereas spatially white noise in (13) does not obtain any gain. Unfortunately, it is
possible that the coherent combination of the signals received at each element also increases
undesired interference terms, such as (11), that can be much more powerful that the ones
corresponding to potential targets. Thus, the SINR metric (8), which is an extension of the
SNR that also includes the interference, might constitute a more appealing figure of merit
for the AoI, that is,

SINRMRC =
E
[
|αebHa(θe)x[n− τe]e

j2π
fD
fs

n|2
]

E
[
|bHz[n]|2

]
+ E

[
|αdbHa(θd)x[n]|2

]
=

|αe|2E
[
|x[n]|2

]
|bHa(θe)|2

bH
(
σ2IM + |αd|2E

[
|x[n]|2

]
a(θd)aH(θd)

)
b
=

M|αe|2

σ2 + |αd |2
M |a(θe)Ha(θd)|2

, (18)

where we have substituted the beamformer expression for the MRC to show that the
interference power increases linearly with the number of antennas M as well.

Contrary to MRC, when the beamforming design is performed according to the MVDR,
the spatial degrees of freedom available at the receiver are also used to combat interference.
In such a case, not only the knowledge about the target angular direction θe is necessary, but
also the angular information regarding the interfering signals. This DoA awareness might
be obtained in a training stage if the interference source locations are fixed, for instance,
the DPI contribution angular direction θd. As ill-conditioned matrices R are unfeasible
for the MVDR problem formulation of (9), a regularization term is often employed to
correct rank deficient issues. Accordingly, a good choice is to define this matrix as in the
next expression:

R = |αd|2a(θd)a
H(θd) + σ2IM, (19)

where more terms can be included for additional interfering sources with their corresponding
gains and angular directions. Using this definition, the MVDR beamformer turns out to be

b = ρ
(
|αd|2a(θd)a

H(θd) + σ2IM

)−1
a(θe), (20)

with ρ being a normalization factor ensuring ‖b‖2 = 1. The former beamformer is optimal
in terms of the SINR, as we see in the next equation:

SINRMVDR =
|αe|2E

[
|x[n]|2

]
|bHa(θe)|2

bH
(
σ2IM + |αd|2E

[
|x[n]|2

]
a(θd)aH(θd)

)
b
= |αe|2aH(θe)R−1a(θe), (21)
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where we have used b in (20) to obtain the last equality. Remarkably, when |αd|2 � σ2,
R results in a scaled identity matrix, and the MVDR beamformer is equivalent to the
MRC one.

Another alternative to taking into consideration the detrimental effects of interference
is the ZF beamformer. Similar to MVDR, the knowledge of the angular directions of the
signal of interest and the interference signals is mandatory to effectively use this approach.
However, the interference is handled in a different way in the two schemes. First, let us
introduce the matrix R for the ZF design as

R = [a(θ1), a(θ2), . . . , a(θK)]. (22)

This way ZF removes the interference of K < M sources and R ∈ CM×K. In the
particular case of (4), where only DPI is considered, this matrix reduces to the M× 1 vector
R = a(θd). Therefore, the ZF beamformer is then

b = ρP⊥a(θe) = ρ

(
IM −

1
M

a(θd)a
H(θd)

)
a(θe), (23)

that is, the orthogonal projection of the MRC beamformer into the null space of R, up
to some scaling ρ. We have introduced the orthogonal projection matrix P⊥ for notation
simplicity. By plugging in Equation (23) in the SINR expression we get

SINRZF =
E
[
|αebHa(θe)x[n− τe]e

j2π
fD
fs

n|2
]

E
[
|bHz[n]|2

]
+ E

[
|αdbHa(θd)x[n]|2

] = |αe|2
σ2 aH(θe)P⊥a(θe). (24)

Note that, as the interference is removed thanks to the use of the ZF beamformer,
the last expression shows an SNR gain as in (17). As a consequence, the cost of removing
the interference by utilizing this approach is a smaller SNR gain compared to MRC, i.e.,
aH(θe)P⊥a(θe) ≤ M.

Asymptotic Regime

In this section, we analyze the effects of one current trend in both radar and com-
munication research areas, that is, the benefits related to the increase in the number of
elements in the array. The interest of the research community goes even in the direction of
mixing these two applications, as radar localization capabilities are very useful to assist
channel training stages of multiple-input multiple-output (MIMO) wireless communication
systems [48–50]. These two approaches are commonly coupled with the use of antenna
arrays with a large number of elements M. Therefore, it is interesting to analyze the effect
of incorporating this technology into the beamforming designs of passive radar systems.

Let us start by evaluating the consequences of increasing the number of elements M
in the context of MRC beamforming. To that end, we introduce the function that computes
the inner products of the array response vectors µ(ϑ1, ϑ2) = a(ϑ1)

Ha(ϑ2). An insightful
expression for this product is given by

µ(ϑ1, ϑ2) =
sin
(

Mπ d
λ (sin ϑ2 − sin ϑ1)

)
sin
(

π d
λ (sin ϑ2 − sin ϑ1)

) . (25)

Using (25), we rewrite the signal after MRC beamforming, (16), as

y[n] = αe
√

Mx[n− τe]e
j2π

fD
fs

n
+ αdx[n]

µ(θe, θd)√
M

+
1√
M

M−1

∑
m=0

ej 2π
c fcd sin(θe)(m−M−1

2 )zm[n]. (26)

Particularly, in the asymptotic regime where M→ ∞, the second term in (26) cancels
out except when θd = θe, as the numerator of (25) is bounded, whereas the denominator
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sublinearly increases with M. Moreover, notice that the noise vector contains independent
Gaussian distributed variables zm[n], m ∈ {0, . . . , M− 1}, with a variance decreasing on
M. Thus, the third term of (26) also reduces with M, and the received signal approaches

to y[n] ≈ αe
√

Mx[n − τe]e
j2π

fD
fs

n, which is a scaled version of the desired signal in (4).
Likewise, the SINR reduces to

SINRMRC =
M|αe|2

σ2 + |αd |2
M |a(θe)Ha(θd)|2

=
M|αe|2

σ2 + |αd |2
M µ(θe, θd)2

≈ M|αe|2
σ2 , (27)

which is the SNR expression in (17). As such, MRC is the optimal choice in the asymptotic regime.
From our previous discussion, it is clear that when the number of available antenna

elements is small, the clutter, multi-path, and DPI cancellation features of the asymptotic
regime do not apply unless more sophisticated beamforming designs such as MVDR or
ZF are employed. However, as the available degrees of freedom reduce in this scenario,
the interference removal capabilities spoil the beamforming gain for the desired signal.
Now, we show that the three solutions converge when we increase the number of antenna
elements, i.e., MVDR and ZF beamformers approach the MRC one. In the case of MVDR
this can be noticed by expanding the matrix inverse in (20), yielding

b = ρ
(
|αd|2a(θd)a

H(θd) + σ2IM

)−1
a(θe)

= ρ

[
1
σ2 IM −

|αd|2
σ4 a(θd)

(
1 +
|αd|2

σ2 aH(θd)a(θd)

)−1

aH(θd)

]
a(θe) (28)

=
ρ

σ2 a(θe)− ρ
|αd|2

σ4 a(θd)

(
1 +
|αd|2

σ2 M
)−1

µ(θe, θd) ≈
ρ

σ2 a(θe),

where we have used the matrix inversion lemma [51]. By properly adjusting the scaling
factor ρ, we obtain (15). Following the same lines, the performance metric SINRMVDR
reduces to

SINRMVDR = |αe|2aH(θe)R−1a(θe)

=
|αe|2
σ2 aH(θe)a(θe)−

|αd|2
σ4

(
1 +
|αd|2

σ2 M
)−1

µ2(θe, θd) ≈
M|αe|2

σ2 ,

which is the SNR expression for MRC beamforming in (17).
In the case of ZF, we rewrite (23) to again evaluate the impact of asymptotically large

values of M; this is

b = ρP⊥a(θe) = ρa(θe)− ρ
1
M

µ(θe, θd)a(θd) ≈ ρa(θe).

Similar to MVDR, in the case of ZF, we obtain the MRC beamformer when we increase
the number of antenna elements. For the performance metric SINRZF in (24), we get

SINRZF =
|αe|2
σ2 aH(θe)P⊥a(θe) =

|αe|2
σ2 aH(θe)a(θe)−

1
M
|αe|2
σ2 µ2(θe, θd) ≈

M|αe|2
σ2 .

Comparing both SINR expressions, SINRMVDR and SINRZF, we observe that the main
difference comes from the treatment of the AWGN. Whereas SINRMVDR approximates
SNRMRC when the noise power σ2 is large compared to the interference power |αd|2, this
fact is completely ignored in SINRZF, which is more suited for practical situations where
interference is the dominating term in the signal disturbance.

Although in this analysis we have considered the asymptotic regime, the interference
cancellation capabilities of beamforming approximately hold for a large but not impractical
number of antennas M ≈ 100 [52]. From a practical point of view, observe that the antenna
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array size for a DVB-T signal with d = λ
2 under a ULA arrangement is about 25 m, and 5 m

for a planar configuration. These are reasonable sizes for a building roof or a wall. When
moving to higher frequencies, as in millimeter wave (mmWave) radar systems [53,54],
these sizes considerably reduce, obtaining vales of about 25 cm for 60 GHz frequencies.

3.2. Beamforming after the CAF

An alternative approach to that described in the previous section consists of per-
forming the CAF directly over the received signals for each element and applying the
beamforming procedure afterward in the range–Doppler domain. In this scheme, the CAF
is independently evaluated over each element of the array m ∈ [0, M− 1], allowing us to
work with a vector of functions c(τ, l). In opposition to the previous method, where the θe
is considered to be known prior to the computation of (10), this second approach provides
additional flexibility in the exploitation of the spatial features of the received signal. Taking
into account the aforementioned process, the CAF vector reads as

[c(τ, l)]m =
NCPI−1

∑
n=0

[s[n]]mr∗[n− τ]e−j2π l
NCPI

n

=
NCPI−1

∑
n=0

(
αd[a(θd)]mx[n− τd] + αe[a(θe)]mx[n− τe]e

j2π
fD
fs

n
+ [z[n]]m

)
r∗[n− τ]e−j2π l

NCPI
n

= α∗αdej 2π
c fcd sin(θd)(m−M−1

2 )
NCPI−1

∑
n=0

x[n− τd]x∗[n− τ]e−j2π l
NCPI

n (29)

+ α∗αeej 2π
c fcd sin(θe)(m−M−1

2 )
NCPI−1

∑
n=0

x[n− τe]x∗[n− τ]e−j2π( l
NCPI

− fD
fs
)n (30)

+ α∗
NCPI−1

∑
n=0

[z[n]]mx∗[n− τ]e−j2π l
NCPI

n
+

NCPI−1

∑
n=0

[s[n]]mw∗[n− τ]e−j2π l
NCPI

n. (31)

The main terms in the expression are separated in the different lines of the former equation.
In particular, (29) is the term associated with the direct path, with a phase rotation that
corresponds to the antenna element m and the angle θd, (30) presents a similar structure
but represents the signal corresponding target echo and, finally, (31) is composed of the
error terms associated to the surveillance and reference channels, respectively.

It is clear that one of the main challenges for the schemes that aim at mitigating or
removing the interference, presented in Section 3.1, is the acquisition of proper spatial
interference matrices R. Among other difficulties, one must realize that, during the training
steps performed to estimate these interference matrices, the signals to be rejected are
usually mixed with the desired signals in the channel observations. This lack of separability
might cause the rejection of target echoes with spatial characteristics similar to that of the
interference signals. Furthermore, it is common that a side-effect of these cancellations
leads to a reduction in the overall signal power.

When beamforming is applied after the CAF, it makes it possible to isolate the received
signal contributions corresponding to the target echoes, clutter, and potential interference
sources as they present different signatures in the range–Doppler domain. Therefore,
the spatial characterization of unwanted signals is easier to get, as the spatial covariance
matrices can be obtained from the vectors c(τ, l) associated with certain values for the
range and the Doppler parameters. If a target echo presents a different range–Doppler pair
than the clutter or the interference, it will be possible to build an interference matrix R that
alleviates the interference without masking potential targets [29].

Recall that targets, as well as interference and clutter, usually expand over several
ranges and/or Doppler bins. This fact is employed to select regions that partially rep-
resent the interference and the noise with the aim of interference mitigation, while not
affecting the actual signal of interest. To that end, we can find two different approaches
in the literature. The first one identifies a set of Doppler bins L− ∪ L+ corresponding to
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interference and uses subsets corresponding to the lower L− = {lL
−, lL
− + 1, . . . , lU

−} and the
upper L+ = {lL

+, lL
+ + 1, . . . , lU

+} part of this set, together with all the range cells, to define
the matrices R− and R+. Next, R− is employed to compute the beamformer with the
object of sounding the upper subset of Doppler frequencies, whereas R+ offers the change
of exploring the lower subset [29]. Alternatively, all Doppler shifts might be selected for
covariance matrix estimation, whereas the range would be the dimension allowing one
to separate clutter and interference from the targets with the information contained in
the bistatic distances. An additional advantage of this approach is that targets appear in
several range bins due to movement, thus reducing the risk of unintentionally removing
the desired signal masked by the interference [40].

To exhibit the spatial signature of this approach, we will use a matrix-vector notation
to highlight the similarities and differences with the approach that exclusively relies on the
angular domain to enhance the received signal, that is,

c(τ, l) ≈ a(θd)gd(τ, l) + a(θe)ge(τ, l) + ż(τ, l), (32)

where we have used the approximation ∑NCPI−1
n=0 [s[n]]mw∗[n − τ]e−j2π l

NCPI
n ≈ 0. This

approach is reasonable as the reference channel is often corrected [10,55] and considered as
error-free [34]. Moreover, we have introduced the scalar correlation functions gd(τ, l) and
ge(τ, l), and the spatially white Gaussian random vector ż(τ, l), defined as follows:

gd(τ, l) = α∗αd

NCPI−1

∑
n=0

x[n− τd]x∗[n− τ]e−j2π l
NCPI

n,

ge(τ, l) = α∗αe

NCPI−1

∑
n=0

x[n− τe]x∗[n− τ]e−j2π( l
NCPI

− fD
fs
)n, (33)

ż(τ, l) = α∗
NCPI−1

∑
n=0

z[n]x∗[n− τ]e−j2π l
NCPI

n.

By employing Equation (32), we will analyze this scheme from a similar perspective
to that of Section 3.1 to reveal the common aspects and the main differences. Let us start
introducing the interference plus noise matrix associated with a particular set of Doppler
bins and all the ranges

R− = ∑
τ∈T

∑
l∈L−

c(τ, l)cH(τ, l)

= ∑
τ∈T

∑
l∈L−

|gd(τ, l)|2a(θd)a
H(θd) + |ge(τ, l)|2a(θe)aH(θe) (34)

+ ż(τ, l)żH(τ, l) + 2<{g∗d(τ, l)ge(τ, l)a(θe)aH(θd)}+ 2<{g∗e (τ, l)ż(τ, l)aH(θe)} (35)

+ 2<{g∗d(τ, l)ż(τ, l)aH(θd)}.

We can expect, for the structure of this matrix, a strong influence of the addends scaled by
the squared absolute values of the correlation functions in (34), as well as from the noise
covariance matrix obtained with the outer products of the noise vectors at the beginning
of (35). On the contrary, it is expected that the remaining terms, which include crossed
products, have a small effect on the covariance matrix.

If we consider a good selection of Doppler bin set L−, we must be able to isolate the
interference and noise term from the previous expression, as this choice would lead to small
values for the cross-products of the scalar correlation terms for a target Doppler-spread not
included in L−, obtaining

R− ≈ ∑
τ∈T

∑
l∈L−

|gd(τ, l)|2a(θd)a
H(θd) + ż(τ, l)żH(τ, l). (36)
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This matrix is then employed to build a beamforming vector that is useful to sound the
upper Doppler bins, due to its capability for alleviating the effects of the interference and
the noise, that is, the authors in [29] resort to the MVDR solution with

b− = ρR−1
− a(θe). (37)

Next, b− is used to produce the scalar CAF by linearly combining the M components
of the CAF vector as c+(τ, l) = bH

−c(τ, l) for l ∈ L+. Analogously, b+ = ρR−1
+ a(θe) is com-

puted using R+ for targets sought in the Doppler range l ∈ L−, with c−(τ, l) = bH
+c(τ, l).

Depending on the particularities of the scenario, it might be interesting to swap the
roles of range and Doppler dimensions in the computation of the interference and noise
matrices R. This approach was employed in [40].

We will now evaluate the SINR expression when this kind of solution is used, under
the assumption of Doppler bin set L− properly selected

SINR+ =
|αe|2|bH

−a(θe)|2

bH
−Rb−

=
|αe|2(aH(θe)R−1

− a(θe))2

aH(θe)R−1
− RR−1

− a(θe)
, (38)

where R is the actual interference plus noise matrix from (19) for the set of bins L+, and
b− will be optimal only if R− = γR, for some scaling factor γ. Accordingly, the SINR
level is bounded by that achieved with the knowledge of the interference source angles.
Nevertheless, under ideal conditions, R− in (36) can be approximated by

R− ≈ |α|2|αd|2a(θd)a
H(θd) + |α|2IM, (39)

thus achieving optimality for the SINR metric. As the nice properties of the asymptotically
large M regime can be again derived from (36) following a similar procedure to that of the
MVDR in Section 3.1, we refer to the reader to that section for further details.

3.3. Discussion

In the previous sections, we analyzed the characteristics of the two main approaches
of beamforming for passive radar. Table 2 contains a classification of the main work in the
literature with respect to these different techniques.

Table 2. Classification of main work on the reference list.

Domain Beamforming Type
References

Angular Range–Doppler MRC MVDR ZF

[24,29,35,36,56]

[24,30,33,37,57–59]

[27,31,32,40]

[60]

[14,29,34,37,38,40,61,62]

[35,36]

Regarding the comparison between performing beamforming in the angular or range–
Doppler domain, we can establish the ensuing key ideas:

• Target detection and parameter estimation are more manageable in the range–Doppler
domain. As already said, when the DoA estimation is performed in the angular
domain, it is easier to miss the estimation of the target if its angular direction is similar
to that of a strong interference source. In spite of this, obtaining the covariance matrices
in the range–Doppler domain also has a downside. Indeed, the sample covariance
matrices obtained with this method have to be computed with an adequate sample
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size to fulfill the full rank condition to avoid numerical problems and to effectively
capture the spatial structure of the interference and the noise. The number of samples
grows with the number of antennas M, which is inconvenient when moving to large
antenna arrays.

• Processing in the range–Doppler domain lacks the flexibility of the angular domain
approach. Apart from MVDR, it is not possible to employ other beamforming solutions
that estimate the sample covariance matrices because they contain both the interference
and the noise, so the ZF strategy is not applicable. This can be easily appreciated in
the classification provided in Table 2.

• Regarding the computational complexity, the angular domain can take advantage of
the flexibility of using different beamforming designs that might be adapted to different
situations. For instance, the MRC is a useful and computationally cheap approach
when interference is not strong or the antenna array is adequately orientated to mitigate
it. In addition, the computational complexity of the ZF approach is dominated by a
matrix inversion of the size of the number of interference sources, which might be
very small compared to the number of antenna elements M. On the contrary, MVDR,
which is the only option for beamforming in the range–Doppler domain estimating
the covariance matrix, performs a matrix inversion of size M. When moving to larger
antenna array sizes, this fact, together with the computational load introduced when
the CAF is performed for each antenna element, might lead to impractical situations.

• In relation to SINR increase produced by the beamforming operation, we have clearly
stated that, under favorable conditions, the SINR achieved with the range–Doppler
approach is equal to that obtained with the proper angular directions. Therefore,
the scenario of application and, correspondingly, the method employed to accurately
obtain the angular spatial information of the setup is a key idea to choosing one
approach over the other one.

4. Results and Discussion

This section is devoted to the numerical evaluation of the main beamforming strategies
in the literature. The results obtained support the conclusions of our previous analysis and
provide additional insight regarding the expected behavior of the different approaches.

4.1. Scenario Description

Synthetic passive radar data were generated in order to simulate a realistic scenario
and evaluate the performance of the different beamforming techniques presented in the
previous sections. Figure 4 shows the geometry of this scenario, whose main blocks are:
the receiver antenna array, the transmitter antenna, and different targets located inside of
the AoI. We consider a ULA receiver antenna composed of a variable number of individual
antennas M that are equally spaced with a distance d = 0.5 λ for a frequency of 618 MHz
(which corresponds to a DVB-T channel of interest for future research development). In
the AoI, we introduce three targets moving at different velocities and directions (−10◦, 0◦,
and 10◦ from the broadside array, respectively). Without loss of generality, the transmitter
antenna is simply considered to be an omnidirectional antenna located 10 km away from
the receiver antenna array.

The opportunistic waveform used in this work allows reaching a maximum range
resolution ∆R of 12 m. A CPI of 85 ms was selected in order to obtain a maximum Doppler
resolution of 5.7 Hz. In the next subsections, the desired signal is associated with the echo
produced by target #2 of the simulated scenario, and the interference or undesired signals
correspond to targets arriving from the angular locations −10◦ and 10◦, associated with
the echoes produced by targets #1 and #3, respectively. Furthermore, the corresponding
echo powers are assumed to be of 0 dB relative to the desired signal power. The main
transmission parameters used in the numerical evaluation, as well as the bistatic resolutions
reached, are summarized in Table 3.
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Figure 4. Synthetic passive radar scenario. The symbols ’*’ depict the position and the number of the
array elements.

Table 3. Summary of main transmission parameters and bistatic resolutions.

Parameter Value

Operating frequency 618 MHz
Acquisition time 85 ms

Signal bandwidth 12 MHz
Bistatic range resolution (maximum) 18 m

Bistatic Doppler resolution (maximum) 5.7 Hz
Elements distance (λ/2) 24 cm

4.2. Evaluation of the Different Beamforming Strategies

In this section, the different beamforming approaches previously presented (MRC,
MVDR, and ZF) are analyzed and compared in terms of their capabilities to enhance the
signal strength in the steering angle and to remove, or at least attenuate, the interference
and other undesired signals coming from other directions. Different noise power levels are
considered in order to evaluate the performance of the different beamforming techniques
when the spatially white noise is added to the interference in determined directions.

In Figure 5, the array response patterns for the MRC, MVDR, and ZF techniques are
shown as a function of the number of array elements and the white noise power. Without
loss of generality, a representative maximum steering angle of 30◦ is considered, as it is
generally limited by the individual radiant element. Two undesired target signal echoes
arriving from −10◦ and 10◦ with corresponding powers σ2

i of 0 dB relative to the desired
target signal echo power are considered.
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(a) (b)

(c) (d)

(e) (f)
Figure 5. Beamforming techniques as a function of the number of array elements and the noise
power (steering angle of 30◦): (a) M = 4, σ2 = −30 dB; (b) M = 8, σ2 = −30 dB; (c) M = 4, σ2 = 0 dB;
(d) M = 8, σ2 = 0 dB; (e) M = 4, σ2 = 30 dB; (f) M = 8, σ2 = 30 dB.

As expected, as the number of array elements increases, so does the energy con-
centration at the desired angular direction. Furthermore, the angular resolution is finer
because the main beam is narrower, thus increasing the gain. With respect to the different
techniques, both the MRC and the ZF beamformers do not depend on the noise power,
hence the array response is the same for a given number of array elements. In particular,
the MRC technique maximizes the power of the desired target echo signal at the steering
angle, whereas the ZF technique guarantees that the power of the interfering signals in the
respective arrival angles is zero. In contrast, the MVDR response is a more sophisticated
technique because it maximizes the ratio between the desired signal power and the unde-
sired signal power (interference and noise power). Figure 5 shows the MVDR response for
a white noise power σ2 of −30 dB, 0 dB, and 30 dB relative to the desired signal power. It
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should be noted that when the noise power is much smaller than the desired signal power,
the MVDR response meets the ZF response (Figure 5a,b). In contrast, if the noise power
is much higher than the desired signal power, the MVDR response converges to the MRC
response (Figure 5e,f). However, for an intermediate situation (for example, noise power
of 0 dB), MVDR maximizes the ratio between the desired signal and the combination of
the interference signals and the noise. Despite this fact, the interference signals are not
completely removed and the array gain is not maximum in the steering angle of the desired
signal (Figure 5c,d).

Taking as a reference the desired steering angle, Figure 6 shows how the beamforming
gain of the different techniques varies as a function of the number of array elements and
the noise power. This gain is a scaled version of the numerator of both the SNR and the
SINR; see (7) and (8), respectively. As anticipated in the analysis of Section 3.1, when the
number of array elements M is large enough, the gain of the three strategies converges to M.
However, when the number of array elements is scarce, slight discrepancies between the
different techniques can be observed. As the MRC technique maximizes the desired signal
power regardless of the interference signals, it presents a higher gain in the target direction.

(a) (b)

(c)
Figure 6. Beamforming techniques gain as a function of the number of array elements and the noise
power: (a) σ2 = 30 dB; (b) σ2 = 0 dB; (c) σ2 = −30 dB.

Nevertheless, the interference signals are likely to remain as strong disturbances.
On the contrary, the ZF does not present such high gain, but it completely removes the
interference signals. On the other hand, the MVDR technique maximizes the ratio between
the desired signal power and the undesired signal power (interference and noise). Therefore,
the MVDR gain will depend on the noise level. When the noise level is small compared
to the power of the desired signal, the MVDR gain approximates that of the ZF method
(Figure 6c), whereas if the noise level is larger than the desired signal power, the MVDR
gain tends to the MRC gain (Figure 6a). For intermediate noise values, the MVDR gain
will be bounded by the MRC and the ZF gains until they converge to the number of array
elements. It is worth noting that the ZF gain exhibits erratic behavior when the number of
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interference signals k is similar to the number of array elements M, as the spatial degrees
of freedom available for beamforming are used to remove the undesired signals, sacrificing
the array gain in favor of the stringent null constraints. This effect can be seen in Figure 6
(ZF gain line for a number of array elements smaller than 7).

4.3. Range–Doppler Map When Beamforming Is Applied before the CAF

In this subsection, the range–Doppler map corresponding to each beamforming strat-
egy is evaluated when the CAF is processed after the beamforming. Accordingly, we
evaluate if the different techniques remove or partially attenuate the echo signal of targets
#1 and #3 while the strength of target #2 increases or, at least, remains the same. Moreover,
we consider scenarios with different noise power levels.

The range–Doppler maps corresponding to the MRC, MVDR, and ZF strategies are
shown in Figure 7 for a fixed number of array elements M = 4. As previously noted,
the MRC beamforming strategy maximizes the desired signal power without considering
the interference spatial signature, hence the range–Doppler map incorrectly shows the
presence of the three targets (Figure 7a). On the opposite side, the ZF strategy completely
removes the undesired target responses at the expense of reducing the gain in the steering
direction (Figure 7b). In the case of the MVDR strategy, as it maximizes the ratio between
the desired signal power and the interference and noise signal power, the dependence of the
response with the noise power level appears. Thus, if the noise power is much larger than
the interference signal power, the MVDR strategy exhibits the same behavior as the MRC
strategy and, therefore, the three targets are visible in the range–Doppler map (Figure 7c).

Conversely, if the noise power is much smaller than the interference signal power, the
MVDR strategy removes the undesired target responses just like the ZF strategy (Figure 7e).
Finally, if the magnitude of the noise power is comparable to the magnitude of the interfer-
ence signal power, the MVDR strategy attenuates the undesired target echoes, but without
completely removing them with the aim of avoiding an excessive reduction on the gain in
the desired signal direction (Figure 7d).

4.4. Range–Doppler Map When Beamforming Is Applied after the CAF

In this subsection, the range–Doppler map is evaluated when the respective beamform-
ing strategies are applied after the CAF for each single array element. That is, M maps are
processed and later combined to produce the actual range–Doppler map. When beamform-
ing is applied after the CAF, it exploits the fact that signal contributions corresponding to
the desired signal and to the interference present different signatures in the range–Doppler
domain. As a consequence, they can be isolated and the spatial covariance matrices can be
obtained for certain values of the range and the Doppler parameters. However, both the
desired signal echo and the interference signal echoes can be extended over several ranges
and/or Doppler bins, making the selection of interference and noise regions difficult unless
accurate information regarding the scenario is used.
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(a) (b)

(c) (d)

(e)
Figure 7. Range–Doppler map applying different beamforming techniques before the CAF: (a) MRC;
(b) ZF; (c) MVDR (σ2 = 30 dB); (d) MVDR (σ2 = 0 dB); (e) MVDR (σ2 = −30 dB).

A way to evaluate the performance of the strategy of applying the beamforming after
the CAF is to study the acquisition of the interference and noise matrices R (Section 3.2),
that is, how the covariance matrix is affected when the ratio between the interference signal
power and the noise power level does not correspond to the true ratio. This might occur,
for example, when the range–Doppler intervals are not chosen correctly. In this case, the
coefficients estimated from scalar correlation functions such as gd(τ, l) are smaller than they
should be, causing deviations in the SINR optimal structure for the covariance matrices.
Even the relationship between the different undesired signals could be incorrect, leading
to a similar result. Figure 8 shows the effects of incorrectly estimating these covariance
matrices. For instance, when the covariance matrix belonging to the interference generated
by target #1 is poorly estimated, this undesired target is not completely removed from the
range–Doppler map (Figure 8a). The same effect can be observed when the signal strength
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belonging to the interference generated by target #3 is inaccurately estimated, as it is still
present in the range–Doppler map (Figure 8b).

(a) (b)
Figure 8. Range–Doppler map applying the MVDR beamforming technique after the CAF where
the interference signals are not removed correctly: (a) target #1 is not removed; (b) target #3 is
not removed.

5. Open Issues and Future Research Directions

In this section, we pose some issues that hinder or limit the system’s performance,
with the aim of providing a clear picture that helps to identify open problems and further
improvements that might be addressed by the research community in the future.

5.1. Improving the Estimation Accuracy of the Covariance Matrices

It is clear from the analysis that obtaining precise information on the spatial features of
the interference is critical to achieving good performance results. A small number of studies
consider the use of the range–Doppler domain to obtain this information, with the sample
covariance matrix being the most used strategy. We think that a possible line of research is
the improvement of this estimation procedure, as the combination of range–Doppler–beam
selection might help to characterize the spatial signatures of the targets and the interference.
For instance, a multi-frequency joint sparse Bayesian learning method is proposed in [60],
although it is only effective after removing interference and clutter components.

5.2. Exploiting Different IoOs to Enhance the Quality of the Reference Channel

It is clear that the utilization of an antenna array to sound the surveillance channel
exhibits fundamental advantages. This rationale is also valid for the acquisition of the
reference signal. As such, it might be useful to consider the utilization of these technologies
to obtain the reference signal and how they can be exploited to improve detection. For
example, two possible use cases are the employment of the same array to receive both
the surveillance and reference channels, see, e.g., [29], or the coherent combination of the
reference signals coming from different IoOs.

5.3. Simultaneous Detection of Multiple Targets

The detection of targets using a passive radar is an interesting problem, as can be seen
from the amount of literature on this topic. However, most of the work focuses on scenarios
where the detection capabilities of the system focus on searching for a single target. A more
challenging scenario arises when multiple targets are present, especially when the number
of targets is not available [63,64]. Smart employment of the scenario information and target
attributes is the key to obtaining reasonable performance detection even without reference
signals [65,66]. In this context, the use of antenna arrays is very helpful, as the angular
discrimination of the different targets makes them easier to identify.
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5.4. Combination with Temporal Processing Techniques

The successful use of temporal processing techniques such as ECA makes them an
appealing resource that can be combined with both the angular and range–Doppler beam-
forming techniques. Accordingly, more specific versions of temporal processing techniques
can be used, as they might be useful to remove some clutter or interference components if
their range–Doppler–beam features make it possible to separate them from the signal of
interest. Combining the two approaches might lead to solutions similar to that provided in
STAP schemes, which is a minor trend in the context of passive radar [34–36].

5.5. Spherical-Wave Front for Passive Radar

When the antenna sizes and the target distances are comparable, the far-field assump-
tion no longer applies, and the planar-wave front assumption is no longer valid [67]. This
means that the traditional assumptions and methods employed to compute the beamformer
and the achievable performances have to be revisited. This kind of scenario is meaningful,
for instance, in indoor applications where the system implements a solution to locate objects
or people [68,69]. Moreover, when moving to high frequencies such as mmWave radars [48],
often equipped on cars that deploy a large number of small-sized antenna elements, the
effects of this approach must be considered to efficiently use the radio-frequency spectrum.

5.6. Integration with Communication Systems

The efficient usage of the energy and the infrastructure employed in wireless commu-
nication systems is an actual trend in the research community. In particular, joint radar
and communication systems have been regarded as a promising technology enabling com-
munication with users and, at the same time, performing target location or tracking [70].
Nevertheless, the coexistence of two applications leads to the need for a balance between
the performance obtained with both sub-systems. Therefore, obtaining the beamforming
vectors is a challenging problem that must be carefully addressed, and it suffers from effects
such as multi-user interference or target blockage. To alleviate these issues, and under the
philosophy of reducing power consumption, the utilization of reconfigurable intelligent
surface (RIS) is an appealing opportunity for these dual systems [71–73]. RISs are passive
surfaces with a massive number of reconfigurable passive elements that allow a smart
adaptation for the propagation environment [74]. Consequently, adopting this technology
would provide additional capabilities in the context of passive radar, as it can be exploited
as an additional and configurable IoO.

6. Conclusions

The use of passive radar in the context of non-cooperative target detection is an im-
portant current research issue. This article presents a review of the main beamforming
procedures covered so far and develops these in the angular and range–Doppler domains
in order to analyze their applicability and performance characteristics. The results obtained
and supported by our numerical evaluations confirm that estimations and target detection
are more manageable in the range–Doppler domain. However, this approach is computa-
tionally complex in contrast with the angular domain, which, in addition, is more flexible.
This leads us to identify several open problems and further challenges to be addressed for
the research community.
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Abbreviations
The following abbreviations are used in this manuscript:

AoI Area of Interest
AWGN Additive White Gaussian Noise
CAF Cross Ambiguity Function
CPI Coherent Processing Interval
DAB Digital Audio Broadcasting
DoA Direction of Arrival
DPI Direct-Path Interference
DVB-T Digital Video Broadcasting–Terrestrial
DVB-S Digital Video Broadcasting–Satellite
ECA Extensive Cancellation Algorithm
ECM Electronic Countermeasures
FM Frequency Modulation
GNSS Global Navigation Satellite System
GSM Global System for Mobile Communications
IoO Illuminator of Opportunity
LoS Line-of-Sight
LTE Long Term Evolution
MIMO Multiple-Input Multiple-Output
MVDR Minimum Variance Distortionless Response
mmWave Millimeter Wave
MRC Maximum Ratio Combining
MUSIC Multiple Signal Classification
RIS Reconfigurable Intelligent Surface
STAP Space-Time Adaptive Processing
SINR Signal-to-Interference-plus-Noise Ratio
SNR Signal-to-Noise Ratio
ULA Uniform Linear Array
ZF Zero-Forcing
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